]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/futex.c
futex: Deobfuscate handle_futex_death()
[mv-sheeva.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Futex flags used to encode options to functions and preserve them across
73  * restarts.
74  */
75 #define FLAGS_SHARED            0x01
76 #define FLAGS_CLOCKRT           0x02
77 #define FLAGS_HAS_TIMEOUT       0x04
78
79 /*
80  * Priority Inheritance state:
81  */
82 struct futex_pi_state {
83         /*
84          * list of 'owned' pi_state instances - these have to be
85          * cleaned up in do_exit() if the task exits prematurely:
86          */
87         struct list_head list;
88
89         /*
90          * The PI object:
91          */
92         struct rt_mutex pi_mutex;
93
94         struct task_struct *owner;
95         atomic_t refcount;
96
97         union futex_key key;
98 };
99
100 /**
101  * struct futex_q - The hashed futex queue entry, one per waiting task
102  * @list:               priority-sorted list of tasks waiting on this futex
103  * @task:               the task waiting on the futex
104  * @lock_ptr:           the hash bucket lock
105  * @key:                the key the futex is hashed on
106  * @pi_state:           optional priority inheritance state
107  * @rt_waiter:          rt_waiter storage for use with requeue_pi
108  * @requeue_pi_key:     the requeue_pi target futex key
109  * @bitset:             bitset for the optional bitmasked wakeup
110  *
111  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112  * we can wake only the relevant ones (hashed queues may be shared).
113  *
114  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116  * The order of wakeup is always to make the first condition true, then
117  * the second.
118  *
119  * PI futexes are typically woken before they are removed from the hash list via
120  * the rt_mutex code. See unqueue_me_pi().
121  */
122 struct futex_q {
123         struct plist_node list;
124
125         struct task_struct *task;
126         spinlock_t *lock_ptr;
127         union futex_key key;
128         struct futex_pi_state *pi_state;
129         struct rt_mutex_waiter *rt_waiter;
130         union futex_key *requeue_pi_key;
131         u32 bitset;
132 };
133
134 static const struct futex_q futex_q_init = {
135         /* list gets initialized in queue_me()*/
136         .key = FUTEX_KEY_INIT,
137         .bitset = FUTEX_BITSET_MATCH_ANY
138 };
139
140 /*
141  * Hash buckets are shared by all the futex_keys that hash to the same
142  * location.  Each key may have multiple futex_q structures, one for each task
143  * waiting on a futex.
144  */
145 struct futex_hash_bucket {
146         spinlock_t lock;
147         struct plist_head chain;
148 };
149
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152 /*
153  * We hash on the keys returned from get_futex_key (see below).
154  */
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
156 {
157         u32 hash = jhash2((u32*)&key->both.word,
158                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159                           key->both.offset);
160         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161 }
162
163 /*
164  * Return 1 if two futex_keys are equal, 0 otherwise.
165  */
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
167 {
168         return (key1 && key2
169                 && key1->both.word == key2->both.word
170                 && key1->both.ptr == key2->both.ptr
171                 && key1->both.offset == key2->both.offset);
172 }
173
174 /*
175  * Take a reference to the resource addressed by a key.
176  * Can be called while holding spinlocks.
177  *
178  */
179 static void get_futex_key_refs(union futex_key *key)
180 {
181         if (!key->both.ptr)
182                 return;
183
184         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185         case FUT_OFF_INODE:
186                 ihold(key->shared.inode);
187                 break;
188         case FUT_OFF_MMSHARED:
189                 atomic_inc(&key->private.mm->mm_count);
190                 break;
191         }
192 }
193
194 /*
195  * Drop a reference to the resource addressed by a key.
196  * The hash bucket spinlock must not be held.
197  */
198 static void drop_futex_key_refs(union futex_key *key)
199 {
200         if (!key->both.ptr) {
201                 /* If we're here then we tried to put a key we failed to get */
202                 WARN_ON_ONCE(1);
203                 return;
204         }
205
206         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207         case FUT_OFF_INODE:
208                 iput(key->shared.inode);
209                 break;
210         case FUT_OFF_MMSHARED:
211                 mmdrop(key->private.mm);
212                 break;
213         }
214 }
215
216 /**
217  * get_futex_key() - Get parameters which are the keys for a futex
218  * @uaddr:      virtual address of the futex
219  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220  * @key:        address where result is stored.
221  *
222  * Returns a negative error code or 0
223  * The key words are stored in *key on success.
224  *
225  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
227  * We can usually work out the index without swapping in the page.
228  *
229  * lock_page() might sleep, the caller should not hold a spinlock.
230  */
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233 {
234         unsigned long address = (unsigned long)uaddr;
235         struct mm_struct *mm = current->mm;
236         struct page *page, *page_head;
237         int err;
238
239         /*
240          * The futex address must be "naturally" aligned.
241          */
242         key->both.offset = address % PAGE_SIZE;
243         if (unlikely((address % sizeof(u32)) != 0))
244                 return -EINVAL;
245         address -= key->both.offset;
246
247         /*
248          * PROCESS_PRIVATE futexes are fast.
249          * As the mm cannot disappear under us and the 'key' only needs
250          * virtual address, we dont even have to find the underlying vma.
251          * Note : We do have to check 'uaddr' is a valid user address,
252          *        but access_ok() should be faster than find_vma()
253          */
254         if (!fshared) {
255                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256                         return -EFAULT;
257                 key->private.mm = mm;
258                 key->private.address = address;
259                 get_futex_key_refs(key);
260                 return 0;
261         }
262
263 again:
264         err = get_user_pages_fast(address, 1, 1, &page);
265         if (err < 0)
266                 return err;
267
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269         page_head = page;
270         if (unlikely(PageTail(page))) {
271                 put_page(page);
272                 /* serialize against __split_huge_page_splitting() */
273                 local_irq_disable();
274                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275                         page_head = compound_head(page);
276                         /*
277                          * page_head is valid pointer but we must pin
278                          * it before taking the PG_lock and/or
279                          * PG_compound_lock. The moment we re-enable
280                          * irqs __split_huge_page_splitting() can
281                          * return and the head page can be freed from
282                          * under us. We can't take the PG_lock and/or
283                          * PG_compound_lock on a page that could be
284                          * freed from under us.
285                          */
286                         if (page != page_head) {
287                                 get_page(page_head);
288                                 put_page(page);
289                         }
290                         local_irq_enable();
291                 } else {
292                         local_irq_enable();
293                         goto again;
294                 }
295         }
296 #else
297         page_head = compound_head(page);
298         if (page != page_head) {
299                 get_page(page_head);
300                 put_page(page);
301         }
302 #endif
303
304         lock_page(page_head);
305         if (!page_head->mapping) {
306                 unlock_page(page_head);
307                 put_page(page_head);
308                 goto again;
309         }
310
311         /*
312          * Private mappings are handled in a simple way.
313          *
314          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315          * it's a read-only handle, it's expected that futexes attach to
316          * the object not the particular process.
317          */
318         if (PageAnon(page_head)) {
319                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320                 key->private.mm = mm;
321                 key->private.address = address;
322         } else {
323                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324                 key->shared.inode = page_head->mapping->host;
325                 key->shared.pgoff = page_head->index;
326         }
327
328         get_futex_key_refs(key);
329
330         unlock_page(page_head);
331         put_page(page_head);
332         return 0;
333 }
334
335 static inline void put_futex_key(union futex_key *key)
336 {
337         drop_futex_key_refs(key);
338 }
339
340 /**
341  * fault_in_user_writeable() - Fault in user address and verify RW access
342  * @uaddr:      pointer to faulting user space address
343  *
344  * Slow path to fixup the fault we just took in the atomic write
345  * access to @uaddr.
346  *
347  * We have no generic implementation of a non-destructive write to the
348  * user address. We know that we faulted in the atomic pagefault
349  * disabled section so we can as well avoid the #PF overhead by
350  * calling get_user_pages() right away.
351  */
352 static int fault_in_user_writeable(u32 __user *uaddr)
353 {
354         struct mm_struct *mm = current->mm;
355         int ret;
356
357         down_read(&mm->mmap_sem);
358         ret = get_user_pages(current, mm, (unsigned long)uaddr,
359                              1, 1, 0, NULL, NULL);
360         up_read(&mm->mmap_sem);
361
362         return ret < 0 ? ret : 0;
363 }
364
365 /**
366  * futex_top_waiter() - Return the highest priority waiter on a futex
367  * @hb:         the hash bucket the futex_q's reside in
368  * @key:        the futex key (to distinguish it from other futex futex_q's)
369  *
370  * Must be called with the hb lock held.
371  */
372 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373                                         union futex_key *key)
374 {
375         struct futex_q *this;
376
377         plist_for_each_entry(this, &hb->chain, list) {
378                 if (match_futex(&this->key, key))
379                         return this;
380         }
381         return NULL;
382 }
383
384 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
385                                       u32 uval, u32 newval)
386 {
387         int ret;
388
389         pagefault_disable();
390         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
391         pagefault_enable();
392
393         return ret;
394 }
395
396 static int get_futex_value_locked(u32 *dest, u32 __user *from)
397 {
398         int ret;
399
400         pagefault_disable();
401         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402         pagefault_enable();
403
404         return ret ? -EFAULT : 0;
405 }
406
407
408 /*
409  * PI code:
410  */
411 static int refill_pi_state_cache(void)
412 {
413         struct futex_pi_state *pi_state;
414
415         if (likely(current->pi_state_cache))
416                 return 0;
417
418         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419
420         if (!pi_state)
421                 return -ENOMEM;
422
423         INIT_LIST_HEAD(&pi_state->list);
424         /* pi_mutex gets initialized later */
425         pi_state->owner = NULL;
426         atomic_set(&pi_state->refcount, 1);
427         pi_state->key = FUTEX_KEY_INIT;
428
429         current->pi_state_cache = pi_state;
430
431         return 0;
432 }
433
434 static struct futex_pi_state * alloc_pi_state(void)
435 {
436         struct futex_pi_state *pi_state = current->pi_state_cache;
437
438         WARN_ON(!pi_state);
439         current->pi_state_cache = NULL;
440
441         return pi_state;
442 }
443
444 static void free_pi_state(struct futex_pi_state *pi_state)
445 {
446         if (!atomic_dec_and_test(&pi_state->refcount))
447                 return;
448
449         /*
450          * If pi_state->owner is NULL, the owner is most probably dying
451          * and has cleaned up the pi_state already
452          */
453         if (pi_state->owner) {
454                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
455                 list_del_init(&pi_state->list);
456                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457
458                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
459         }
460
461         if (current->pi_state_cache)
462                 kfree(pi_state);
463         else {
464                 /*
465                  * pi_state->list is already empty.
466                  * clear pi_state->owner.
467                  * refcount is at 0 - put it back to 1.
468                  */
469                 pi_state->owner = NULL;
470                 atomic_set(&pi_state->refcount, 1);
471                 current->pi_state_cache = pi_state;
472         }
473 }
474
475 /*
476  * Look up the task based on what TID userspace gave us.
477  * We dont trust it.
478  */
479 static struct task_struct * futex_find_get_task(pid_t pid)
480 {
481         struct task_struct *p;
482
483         rcu_read_lock();
484         p = find_task_by_vpid(pid);
485         if (p)
486                 get_task_struct(p);
487
488         rcu_read_unlock();
489
490         return p;
491 }
492
493 /*
494  * This task is holding PI mutexes at exit time => bad.
495  * Kernel cleans up PI-state, but userspace is likely hosed.
496  * (Robust-futex cleanup is separate and might save the day for userspace.)
497  */
498 void exit_pi_state_list(struct task_struct *curr)
499 {
500         struct list_head *next, *head = &curr->pi_state_list;
501         struct futex_pi_state *pi_state;
502         struct futex_hash_bucket *hb;
503         union futex_key key = FUTEX_KEY_INIT;
504
505         if (!futex_cmpxchg_enabled)
506                 return;
507         /*
508          * We are a ZOMBIE and nobody can enqueue itself on
509          * pi_state_list anymore, but we have to be careful
510          * versus waiters unqueueing themselves:
511          */
512         raw_spin_lock_irq(&curr->pi_lock);
513         while (!list_empty(head)) {
514
515                 next = head->next;
516                 pi_state = list_entry(next, struct futex_pi_state, list);
517                 key = pi_state->key;
518                 hb = hash_futex(&key);
519                 raw_spin_unlock_irq(&curr->pi_lock);
520
521                 spin_lock(&hb->lock);
522
523                 raw_spin_lock_irq(&curr->pi_lock);
524                 /*
525                  * We dropped the pi-lock, so re-check whether this
526                  * task still owns the PI-state:
527                  */
528                 if (head->next != next) {
529                         spin_unlock(&hb->lock);
530                         continue;
531                 }
532
533                 WARN_ON(pi_state->owner != curr);
534                 WARN_ON(list_empty(&pi_state->list));
535                 list_del_init(&pi_state->list);
536                 pi_state->owner = NULL;
537                 raw_spin_unlock_irq(&curr->pi_lock);
538
539                 rt_mutex_unlock(&pi_state->pi_mutex);
540
541                 spin_unlock(&hb->lock);
542
543                 raw_spin_lock_irq(&curr->pi_lock);
544         }
545         raw_spin_unlock_irq(&curr->pi_lock);
546 }
547
548 static int
549 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
550                 union futex_key *key, struct futex_pi_state **ps)
551 {
552         struct futex_pi_state *pi_state = NULL;
553         struct futex_q *this, *next;
554         struct plist_head *head;
555         struct task_struct *p;
556         pid_t pid = uval & FUTEX_TID_MASK;
557
558         head = &hb->chain;
559
560         plist_for_each_entry_safe(this, next, head, list) {
561                 if (match_futex(&this->key, key)) {
562                         /*
563                          * Another waiter already exists - bump up
564                          * the refcount and return its pi_state:
565                          */
566                         pi_state = this->pi_state;
567                         /*
568                          * Userspace might have messed up non-PI and PI futexes
569                          */
570                         if (unlikely(!pi_state))
571                                 return -EINVAL;
572
573                         WARN_ON(!atomic_read(&pi_state->refcount));
574
575                         /*
576                          * When pi_state->owner is NULL then the owner died
577                          * and another waiter is on the fly. pi_state->owner
578                          * is fixed up by the task which acquires
579                          * pi_state->rt_mutex.
580                          *
581                          * We do not check for pid == 0 which can happen when
582                          * the owner died and robust_list_exit() cleared the
583                          * TID.
584                          */
585                         if (pid && pi_state->owner) {
586                                 /*
587                                  * Bail out if user space manipulated the
588                                  * futex value.
589                                  */
590                                 if (pid != task_pid_vnr(pi_state->owner))
591                                         return -EINVAL;
592                         }
593
594                         atomic_inc(&pi_state->refcount);
595                         *ps = pi_state;
596
597                         return 0;
598                 }
599         }
600
601         /*
602          * We are the first waiter - try to look up the real owner and attach
603          * the new pi_state to it, but bail out when TID = 0
604          */
605         if (!pid)
606                 return -ESRCH;
607         p = futex_find_get_task(pid);
608         if (!p)
609                 return -ESRCH;
610
611         /*
612          * We need to look at the task state flags to figure out,
613          * whether the task is exiting. To protect against the do_exit
614          * change of the task flags, we do this protected by
615          * p->pi_lock:
616          */
617         raw_spin_lock_irq(&p->pi_lock);
618         if (unlikely(p->flags & PF_EXITING)) {
619                 /*
620                  * The task is on the way out. When PF_EXITPIDONE is
621                  * set, we know that the task has finished the
622                  * cleanup:
623                  */
624                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625
626                 raw_spin_unlock_irq(&p->pi_lock);
627                 put_task_struct(p);
628                 return ret;
629         }
630
631         pi_state = alloc_pi_state();
632
633         /*
634          * Initialize the pi_mutex in locked state and make 'p'
635          * the owner of it:
636          */
637         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638
639         /* Store the key for possible exit cleanups: */
640         pi_state->key = *key;
641
642         WARN_ON(!list_empty(&pi_state->list));
643         list_add(&pi_state->list, &p->pi_state_list);
644         pi_state->owner = p;
645         raw_spin_unlock_irq(&p->pi_lock);
646
647         put_task_struct(p);
648
649         *ps = pi_state;
650
651         return 0;
652 }
653
654 /**
655  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656  * @uaddr:              the pi futex user address
657  * @hb:                 the pi futex hash bucket
658  * @key:                the futex key associated with uaddr and hb
659  * @ps:                 the pi_state pointer where we store the result of the
660  *                      lookup
661  * @task:               the task to perform the atomic lock work for.  This will
662  *                      be "current" except in the case of requeue pi.
663  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
664  *
665  * Returns:
666  *  0 - ready to wait
667  *  1 - acquired the lock
668  * <0 - error
669  *
670  * The hb->lock and futex_key refs shall be held by the caller.
671  */
672 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
673                                 union futex_key *key,
674                                 struct futex_pi_state **ps,
675                                 struct task_struct *task, int set_waiters)
676 {
677         int lock_taken, ret, ownerdied = 0;
678         u32 uval, newval, curval, vpid = task_pid_vnr(task);
679
680 retry:
681         ret = lock_taken = 0;
682
683         /*
684          * To avoid races, we attempt to take the lock here again
685          * (by doing a 0 -> TID atomic cmpxchg), while holding all
686          * the locks. It will most likely not succeed.
687          */
688         newval = vpid;
689         if (set_waiters)
690                 newval |= FUTEX_WAITERS;
691
692         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693                 return -EFAULT;
694
695         /*
696          * Detect deadlocks.
697          */
698         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699                 return -EDEADLK;
700
701         /*
702          * Surprise - we got the lock. Just return to userspace:
703          */
704         if (unlikely(!curval))
705                 return 1;
706
707         uval = curval;
708
709         /*
710          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
711          * to wake at the next unlock.
712          */
713         newval = curval | FUTEX_WAITERS;
714
715         /*
716          * There are two cases, where a futex might have no owner (the
717          * owner TID is 0): OWNER_DIED. We take over the futex in this
718          * case. We also do an unconditional take over, when the owner
719          * of the futex died.
720          *
721          * This is safe as we are protected by the hash bucket lock !
722          */
723         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
724                 /* Keep the OWNER_DIED bit */
725                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
726                 ownerdied = 0;
727                 lock_taken = 1;
728         }
729
730         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731                 return -EFAULT;
732         if (unlikely(curval != uval))
733                 goto retry;
734
735         /*
736          * We took the lock due to owner died take over.
737          */
738         if (unlikely(lock_taken))
739                 return 1;
740
741         /*
742          * We dont have the lock. Look up the PI state (or create it if
743          * we are the first waiter):
744          */
745         ret = lookup_pi_state(uval, hb, key, ps);
746
747         if (unlikely(ret)) {
748                 switch (ret) {
749                 case -ESRCH:
750                         /*
751                          * No owner found for this futex. Check if the
752                          * OWNER_DIED bit is set to figure out whether
753                          * this is a robust futex or not.
754                          */
755                         if (get_futex_value_locked(&curval, uaddr))
756                                 return -EFAULT;
757
758                         /*
759                          * We simply start over in case of a robust
760                          * futex. The code above will take the futex
761                          * and return happy.
762                          */
763                         if (curval & FUTEX_OWNER_DIED) {
764                                 ownerdied = 1;
765                                 goto retry;
766                         }
767                 default:
768                         break;
769                 }
770         }
771
772         return ret;
773 }
774
775 /**
776  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
777  * @q:  The futex_q to unqueue
778  *
779  * The q->lock_ptr must not be NULL and must be held by the caller.
780  */
781 static void __unqueue_futex(struct futex_q *q)
782 {
783         struct futex_hash_bucket *hb;
784
785         if (WARN_ON(!q->lock_ptr || !spin_is_locked(q->lock_ptr)
786                         || plist_node_empty(&q->list)))
787                 return;
788
789         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
790         plist_del(&q->list, &hb->chain);
791 }
792
793 /*
794  * The hash bucket lock must be held when this is called.
795  * Afterwards, the futex_q must not be accessed.
796  */
797 static void wake_futex(struct futex_q *q)
798 {
799         struct task_struct *p = q->task;
800
801         /*
802          * We set q->lock_ptr = NULL _before_ we wake up the task. If
803          * a non-futex wake up happens on another CPU then the task
804          * might exit and p would dereference a non-existing task
805          * struct. Prevent this by holding a reference on p across the
806          * wake up.
807          */
808         get_task_struct(p);
809
810         __unqueue_futex(q);
811         /*
812          * The waiting task can free the futex_q as soon as
813          * q->lock_ptr = NULL is written, without taking any locks. A
814          * memory barrier is required here to prevent the following
815          * store to lock_ptr from getting ahead of the plist_del.
816          */
817         smp_wmb();
818         q->lock_ptr = NULL;
819
820         wake_up_state(p, TASK_NORMAL);
821         put_task_struct(p);
822 }
823
824 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
825 {
826         struct task_struct *new_owner;
827         struct futex_pi_state *pi_state = this->pi_state;
828         u32 curval, newval;
829
830         if (!pi_state)
831                 return -EINVAL;
832
833         /*
834          * If current does not own the pi_state then the futex is
835          * inconsistent and user space fiddled with the futex value.
836          */
837         if (pi_state->owner != current)
838                 return -EINVAL;
839
840         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
841         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
842
843         /*
844          * It is possible that the next waiter (the one that brought
845          * this owner to the kernel) timed out and is no longer
846          * waiting on the lock.
847          */
848         if (!new_owner)
849                 new_owner = this->task;
850
851         /*
852          * We pass it to the next owner. (The WAITERS bit is always
853          * kept enabled while there is PI state around. We must also
854          * preserve the owner died bit.)
855          */
856         if (!(uval & FUTEX_OWNER_DIED)) {
857                 int ret = 0;
858
859                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
860
861                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
862                         ret = -EFAULT;
863                 else if (curval != uval)
864                         ret = -EINVAL;
865                 if (ret) {
866                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
867                         return ret;
868                 }
869         }
870
871         raw_spin_lock_irq(&pi_state->owner->pi_lock);
872         WARN_ON(list_empty(&pi_state->list));
873         list_del_init(&pi_state->list);
874         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
875
876         raw_spin_lock_irq(&new_owner->pi_lock);
877         WARN_ON(!list_empty(&pi_state->list));
878         list_add(&pi_state->list, &new_owner->pi_state_list);
879         pi_state->owner = new_owner;
880         raw_spin_unlock_irq(&new_owner->pi_lock);
881
882         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
883         rt_mutex_unlock(&pi_state->pi_mutex);
884
885         return 0;
886 }
887
888 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
889 {
890         u32 oldval;
891
892         /*
893          * There is no waiter, so we unlock the futex. The owner died
894          * bit has not to be preserved here. We are the owner:
895          */
896         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
897                 return -EFAULT;
898         if (oldval != uval)
899                 return -EAGAIN;
900
901         return 0;
902 }
903
904 /*
905  * Express the locking dependencies for lockdep:
906  */
907 static inline void
908 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
909 {
910         if (hb1 <= hb2) {
911                 spin_lock(&hb1->lock);
912                 if (hb1 < hb2)
913                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
914         } else { /* hb1 > hb2 */
915                 spin_lock(&hb2->lock);
916                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
917         }
918 }
919
920 static inline void
921 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
922 {
923         spin_unlock(&hb1->lock);
924         if (hb1 != hb2)
925                 spin_unlock(&hb2->lock);
926 }
927
928 /*
929  * Wake up waiters matching bitset queued on this futex (uaddr).
930  */
931 static int
932 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
933 {
934         struct futex_hash_bucket *hb;
935         struct futex_q *this, *next;
936         struct plist_head *head;
937         union futex_key key = FUTEX_KEY_INIT;
938         int ret;
939
940         if (!bitset)
941                 return -EINVAL;
942
943         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
944         if (unlikely(ret != 0))
945                 goto out;
946
947         hb = hash_futex(&key);
948         spin_lock(&hb->lock);
949         head = &hb->chain;
950
951         plist_for_each_entry_safe(this, next, head, list) {
952                 if (match_futex (&this->key, &key)) {
953                         if (this->pi_state || this->rt_waiter) {
954                                 ret = -EINVAL;
955                                 break;
956                         }
957
958                         /* Check if one of the bits is set in both bitsets */
959                         if (!(this->bitset & bitset))
960                                 continue;
961
962                         wake_futex(this);
963                         if (++ret >= nr_wake)
964                                 break;
965                 }
966         }
967
968         spin_unlock(&hb->lock);
969         put_futex_key(&key);
970 out:
971         return ret;
972 }
973
974 /*
975  * Wake up all waiters hashed on the physical page that is mapped
976  * to this virtual address:
977  */
978 static int
979 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
980               int nr_wake, int nr_wake2, int op)
981 {
982         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
983         struct futex_hash_bucket *hb1, *hb2;
984         struct plist_head *head;
985         struct futex_q *this, *next;
986         int ret, op_ret;
987
988 retry:
989         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
990         if (unlikely(ret != 0))
991                 goto out;
992         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
993         if (unlikely(ret != 0))
994                 goto out_put_key1;
995
996         hb1 = hash_futex(&key1);
997         hb2 = hash_futex(&key2);
998
999 retry_private:
1000         double_lock_hb(hb1, hb2);
1001         op_ret = futex_atomic_op_inuser(op, uaddr2);
1002         if (unlikely(op_ret < 0)) {
1003
1004                 double_unlock_hb(hb1, hb2);
1005
1006 #ifndef CONFIG_MMU
1007                 /*
1008                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1009                  * but we might get them from range checking
1010                  */
1011                 ret = op_ret;
1012                 goto out_put_keys;
1013 #endif
1014
1015                 if (unlikely(op_ret != -EFAULT)) {
1016                         ret = op_ret;
1017                         goto out_put_keys;
1018                 }
1019
1020                 ret = fault_in_user_writeable(uaddr2);
1021                 if (ret)
1022                         goto out_put_keys;
1023
1024                 if (!(flags & FLAGS_SHARED))
1025                         goto retry_private;
1026
1027                 put_futex_key(&key2);
1028                 put_futex_key(&key1);
1029                 goto retry;
1030         }
1031
1032         head = &hb1->chain;
1033
1034         plist_for_each_entry_safe(this, next, head, list) {
1035                 if (match_futex (&this->key, &key1)) {
1036                         wake_futex(this);
1037                         if (++ret >= nr_wake)
1038                                 break;
1039                 }
1040         }
1041
1042         if (op_ret > 0) {
1043                 head = &hb2->chain;
1044
1045                 op_ret = 0;
1046                 plist_for_each_entry_safe(this, next, head, list) {
1047                         if (match_futex (&this->key, &key2)) {
1048                                 wake_futex(this);
1049                                 if (++op_ret >= nr_wake2)
1050                                         break;
1051                         }
1052                 }
1053                 ret += op_ret;
1054         }
1055
1056         double_unlock_hb(hb1, hb2);
1057 out_put_keys:
1058         put_futex_key(&key2);
1059 out_put_key1:
1060         put_futex_key(&key1);
1061 out:
1062         return ret;
1063 }
1064
1065 /**
1066  * requeue_futex() - Requeue a futex_q from one hb to another
1067  * @q:          the futex_q to requeue
1068  * @hb1:        the source hash_bucket
1069  * @hb2:        the target hash_bucket
1070  * @key2:       the new key for the requeued futex_q
1071  */
1072 static inline
1073 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1074                    struct futex_hash_bucket *hb2, union futex_key *key2)
1075 {
1076
1077         /*
1078          * If key1 and key2 hash to the same bucket, no need to
1079          * requeue.
1080          */
1081         if (likely(&hb1->chain != &hb2->chain)) {
1082                 plist_del(&q->list, &hb1->chain);
1083                 plist_add(&q->list, &hb2->chain);
1084                 q->lock_ptr = &hb2->lock;
1085         }
1086         get_futex_key_refs(key2);
1087         q->key = *key2;
1088 }
1089
1090 /**
1091  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1092  * @q:          the futex_q
1093  * @key:        the key of the requeue target futex
1094  * @hb:         the hash_bucket of the requeue target futex
1095  *
1096  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1097  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1098  * to the requeue target futex so the waiter can detect the wakeup on the right
1099  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1100  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1101  * to protect access to the pi_state to fixup the owner later.  Must be called
1102  * with both q->lock_ptr and hb->lock held.
1103  */
1104 static inline
1105 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1106                            struct futex_hash_bucket *hb)
1107 {
1108         get_futex_key_refs(key);
1109         q->key = *key;
1110
1111         __unqueue_futex(q);
1112
1113         WARN_ON(!q->rt_waiter);
1114         q->rt_waiter = NULL;
1115
1116         q->lock_ptr = &hb->lock;
1117
1118         wake_up_state(q->task, TASK_NORMAL);
1119 }
1120
1121 /**
1122  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1123  * @pifutex:            the user address of the to futex
1124  * @hb1:                the from futex hash bucket, must be locked by the caller
1125  * @hb2:                the to futex hash bucket, must be locked by the caller
1126  * @key1:               the from futex key
1127  * @key2:               the to futex key
1128  * @ps:                 address to store the pi_state pointer
1129  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1130  *
1131  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1132  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1133  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1134  * hb1 and hb2 must be held by the caller.
1135  *
1136  * Returns:
1137  *  0 - failed to acquire the lock atomicly
1138  *  1 - acquired the lock
1139  * <0 - error
1140  */
1141 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1142                                  struct futex_hash_bucket *hb1,
1143                                  struct futex_hash_bucket *hb2,
1144                                  union futex_key *key1, union futex_key *key2,
1145                                  struct futex_pi_state **ps, int set_waiters)
1146 {
1147         struct futex_q *top_waiter = NULL;
1148         u32 curval;
1149         int ret;
1150
1151         if (get_futex_value_locked(&curval, pifutex))
1152                 return -EFAULT;
1153
1154         /*
1155          * Find the top_waiter and determine if there are additional waiters.
1156          * If the caller intends to requeue more than 1 waiter to pifutex,
1157          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1158          * as we have means to handle the possible fault.  If not, don't set
1159          * the bit unecessarily as it will force the subsequent unlock to enter
1160          * the kernel.
1161          */
1162         top_waiter = futex_top_waiter(hb1, key1);
1163
1164         /* There are no waiters, nothing for us to do. */
1165         if (!top_waiter)
1166                 return 0;
1167
1168         /* Ensure we requeue to the expected futex. */
1169         if (!match_futex(top_waiter->requeue_pi_key, key2))
1170                 return -EINVAL;
1171
1172         /*
1173          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1174          * the contended case or if set_waiters is 1.  The pi_state is returned
1175          * in ps in contended cases.
1176          */
1177         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1178                                    set_waiters);
1179         if (ret == 1)
1180                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1181
1182         return ret;
1183 }
1184
1185 /**
1186  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1187  * @uaddr1:     source futex user address
1188  * @flags:      futex flags (FLAGS_SHARED, etc.)
1189  * @uaddr2:     target futex user address
1190  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1191  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1192  * @cmpval:     @uaddr1 expected value (or %NULL)
1193  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1194  *              pi futex (pi to pi requeue is not supported)
1195  *
1196  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1197  * uaddr2 atomically on behalf of the top waiter.
1198  *
1199  * Returns:
1200  * >=0 - on success, the number of tasks requeued or woken
1201  *  <0 - on error
1202  */
1203 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1204                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1205                          u32 *cmpval, int requeue_pi)
1206 {
1207         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1208         int drop_count = 0, task_count = 0, ret;
1209         struct futex_pi_state *pi_state = NULL;
1210         struct futex_hash_bucket *hb1, *hb2;
1211         struct plist_head *head1;
1212         struct futex_q *this, *next;
1213         u32 curval2;
1214
1215         if (requeue_pi) {
1216                 /*
1217                  * requeue_pi requires a pi_state, try to allocate it now
1218                  * without any locks in case it fails.
1219                  */
1220                 if (refill_pi_state_cache())
1221                         return -ENOMEM;
1222                 /*
1223                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1224                  * + nr_requeue, since it acquires the rt_mutex prior to
1225                  * returning to userspace, so as to not leave the rt_mutex with
1226                  * waiters and no owner.  However, second and third wake-ups
1227                  * cannot be predicted as they involve race conditions with the
1228                  * first wake and a fault while looking up the pi_state.  Both
1229                  * pthread_cond_signal() and pthread_cond_broadcast() should
1230                  * use nr_wake=1.
1231                  */
1232                 if (nr_wake != 1)
1233                         return -EINVAL;
1234         }
1235
1236 retry:
1237         if (pi_state != NULL) {
1238                 /*
1239                  * We will have to lookup the pi_state again, so free this one
1240                  * to keep the accounting correct.
1241                  */
1242                 free_pi_state(pi_state);
1243                 pi_state = NULL;
1244         }
1245
1246         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1247         if (unlikely(ret != 0))
1248                 goto out;
1249         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1250         if (unlikely(ret != 0))
1251                 goto out_put_key1;
1252
1253         hb1 = hash_futex(&key1);
1254         hb2 = hash_futex(&key2);
1255
1256 retry_private:
1257         double_lock_hb(hb1, hb2);
1258
1259         if (likely(cmpval != NULL)) {
1260                 u32 curval;
1261
1262                 ret = get_futex_value_locked(&curval, uaddr1);
1263
1264                 if (unlikely(ret)) {
1265                         double_unlock_hb(hb1, hb2);
1266
1267                         ret = get_user(curval, uaddr1);
1268                         if (ret)
1269                                 goto out_put_keys;
1270
1271                         if (!(flags & FLAGS_SHARED))
1272                                 goto retry_private;
1273
1274                         put_futex_key(&key2);
1275                         put_futex_key(&key1);
1276                         goto retry;
1277                 }
1278                 if (curval != *cmpval) {
1279                         ret = -EAGAIN;
1280                         goto out_unlock;
1281                 }
1282         }
1283
1284         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1285                 /*
1286                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1287                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1288                  * bit.  We force this here where we are able to easily handle
1289                  * faults rather in the requeue loop below.
1290                  */
1291                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1292                                                  &key2, &pi_state, nr_requeue);
1293
1294                 /*
1295                  * At this point the top_waiter has either taken uaddr2 or is
1296                  * waiting on it.  If the former, then the pi_state will not
1297                  * exist yet, look it up one more time to ensure we have a
1298                  * reference to it.
1299                  */
1300                 if (ret == 1) {
1301                         WARN_ON(pi_state);
1302                         drop_count++;
1303                         task_count++;
1304                         ret = get_futex_value_locked(&curval2, uaddr2);
1305                         if (!ret)
1306                                 ret = lookup_pi_state(curval2, hb2, &key2,
1307                                                       &pi_state);
1308                 }
1309
1310                 switch (ret) {
1311                 case 0:
1312                         break;
1313                 case -EFAULT:
1314                         double_unlock_hb(hb1, hb2);
1315                         put_futex_key(&key2);
1316                         put_futex_key(&key1);
1317                         ret = fault_in_user_writeable(uaddr2);
1318                         if (!ret)
1319                                 goto retry;
1320                         goto out;
1321                 case -EAGAIN:
1322                         /* The owner was exiting, try again. */
1323                         double_unlock_hb(hb1, hb2);
1324                         put_futex_key(&key2);
1325                         put_futex_key(&key1);
1326                         cond_resched();
1327                         goto retry;
1328                 default:
1329                         goto out_unlock;
1330                 }
1331         }
1332
1333         head1 = &hb1->chain;
1334         plist_for_each_entry_safe(this, next, head1, list) {
1335                 if (task_count - nr_wake >= nr_requeue)
1336                         break;
1337
1338                 if (!match_futex(&this->key, &key1))
1339                         continue;
1340
1341                 /*
1342                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1343                  * be paired with each other and no other futex ops.
1344                  */
1345                 if ((requeue_pi && !this->rt_waiter) ||
1346                     (!requeue_pi && this->rt_waiter)) {
1347                         ret = -EINVAL;
1348                         break;
1349                 }
1350
1351                 /*
1352                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1353                  * lock, we already woke the top_waiter.  If not, it will be
1354                  * woken by futex_unlock_pi().
1355                  */
1356                 if (++task_count <= nr_wake && !requeue_pi) {
1357                         wake_futex(this);
1358                         continue;
1359                 }
1360
1361                 /* Ensure we requeue to the expected futex for requeue_pi. */
1362                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1363                         ret = -EINVAL;
1364                         break;
1365                 }
1366
1367                 /*
1368                  * Requeue nr_requeue waiters and possibly one more in the case
1369                  * of requeue_pi if we couldn't acquire the lock atomically.
1370                  */
1371                 if (requeue_pi) {
1372                         /* Prepare the waiter to take the rt_mutex. */
1373                         atomic_inc(&pi_state->refcount);
1374                         this->pi_state = pi_state;
1375                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1376                                                         this->rt_waiter,
1377                                                         this->task, 1);
1378                         if (ret == 1) {
1379                                 /* We got the lock. */
1380                                 requeue_pi_wake_futex(this, &key2, hb2);
1381                                 drop_count++;
1382                                 continue;
1383                         } else if (ret) {
1384                                 /* -EDEADLK */
1385                                 this->pi_state = NULL;
1386                                 free_pi_state(pi_state);
1387                                 goto out_unlock;
1388                         }
1389                 }
1390                 requeue_futex(this, hb1, hb2, &key2);
1391                 drop_count++;
1392         }
1393
1394 out_unlock:
1395         double_unlock_hb(hb1, hb2);
1396
1397         /*
1398          * drop_futex_key_refs() must be called outside the spinlocks. During
1399          * the requeue we moved futex_q's from the hash bucket at key1 to the
1400          * one at key2 and updated their key pointer.  We no longer need to
1401          * hold the references to key1.
1402          */
1403         while (--drop_count >= 0)
1404                 drop_futex_key_refs(&key1);
1405
1406 out_put_keys:
1407         put_futex_key(&key2);
1408 out_put_key1:
1409         put_futex_key(&key1);
1410 out:
1411         if (pi_state != NULL)
1412                 free_pi_state(pi_state);
1413         return ret ? ret : task_count;
1414 }
1415
1416 /* The key must be already stored in q->key. */
1417 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1418         __acquires(&hb->lock)
1419 {
1420         struct futex_hash_bucket *hb;
1421
1422         hb = hash_futex(&q->key);
1423         q->lock_ptr = &hb->lock;
1424
1425         spin_lock(&hb->lock);
1426         return hb;
1427 }
1428
1429 static inline void
1430 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1431         __releases(&hb->lock)
1432 {
1433         spin_unlock(&hb->lock);
1434 }
1435
1436 /**
1437  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1438  * @q:  The futex_q to enqueue
1439  * @hb: The destination hash bucket
1440  *
1441  * The hb->lock must be held by the caller, and is released here. A call to
1442  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1443  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1444  * or nothing if the unqueue is done as part of the wake process and the unqueue
1445  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1446  * an example).
1447  */
1448 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1449         __releases(&hb->lock)
1450 {
1451         int prio;
1452
1453         /*
1454          * The priority used to register this element is
1455          * - either the real thread-priority for the real-time threads
1456          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1457          * - or MAX_RT_PRIO for non-RT threads.
1458          * Thus, all RT-threads are woken first in priority order, and
1459          * the others are woken last, in FIFO order.
1460          */
1461         prio = min(current->normal_prio, MAX_RT_PRIO);
1462
1463         plist_node_init(&q->list, prio);
1464         plist_add(&q->list, &hb->chain);
1465         q->task = current;
1466         spin_unlock(&hb->lock);
1467 }
1468
1469 /**
1470  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1471  * @q:  The futex_q to unqueue
1472  *
1473  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1474  * be paired with exactly one earlier call to queue_me().
1475  *
1476  * Returns:
1477  *   1 - if the futex_q was still queued (and we removed unqueued it)
1478  *   0 - if the futex_q was already removed by the waking thread
1479  */
1480 static int unqueue_me(struct futex_q *q)
1481 {
1482         spinlock_t *lock_ptr;
1483         int ret = 0;
1484
1485         /* In the common case we don't take the spinlock, which is nice. */
1486 retry:
1487         lock_ptr = q->lock_ptr;
1488         barrier();
1489         if (lock_ptr != NULL) {
1490                 spin_lock(lock_ptr);
1491                 /*
1492                  * q->lock_ptr can change between reading it and
1493                  * spin_lock(), causing us to take the wrong lock.  This
1494                  * corrects the race condition.
1495                  *
1496                  * Reasoning goes like this: if we have the wrong lock,
1497                  * q->lock_ptr must have changed (maybe several times)
1498                  * between reading it and the spin_lock().  It can
1499                  * change again after the spin_lock() but only if it was
1500                  * already changed before the spin_lock().  It cannot,
1501                  * however, change back to the original value.  Therefore
1502                  * we can detect whether we acquired the correct lock.
1503                  */
1504                 if (unlikely(lock_ptr != q->lock_ptr)) {
1505                         spin_unlock(lock_ptr);
1506                         goto retry;
1507                 }
1508                 __unqueue_futex(q);
1509
1510                 BUG_ON(q->pi_state);
1511
1512                 spin_unlock(lock_ptr);
1513                 ret = 1;
1514         }
1515
1516         drop_futex_key_refs(&q->key);
1517         return ret;
1518 }
1519
1520 /*
1521  * PI futexes can not be requeued and must remove themself from the
1522  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523  * and dropped here.
1524  */
1525 static void unqueue_me_pi(struct futex_q *q)
1526         __releases(q->lock_ptr)
1527 {
1528         __unqueue_futex(q);
1529
1530         BUG_ON(!q->pi_state);
1531         free_pi_state(q->pi_state);
1532         q->pi_state = NULL;
1533
1534         spin_unlock(q->lock_ptr);
1535 }
1536
1537 /*
1538  * Fixup the pi_state owner with the new owner.
1539  *
1540  * Must be called with hash bucket lock held and mm->sem held for non
1541  * private futexes.
1542  */
1543 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1544                                 struct task_struct *newowner)
1545 {
1546         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1547         struct futex_pi_state *pi_state = q->pi_state;
1548         struct task_struct *oldowner = pi_state->owner;
1549         u32 uval, curval, newval;
1550         int ret;
1551
1552         /* Owner died? */
1553         if (!pi_state->owner)
1554                 newtid |= FUTEX_OWNER_DIED;
1555
1556         /*
1557          * We are here either because we stole the rtmutex from the
1558          * pending owner or we are the pending owner which failed to
1559          * get the rtmutex. We have to replace the pending owner TID
1560          * in the user space variable. This must be atomic as we have
1561          * to preserve the owner died bit here.
1562          *
1563          * Note: We write the user space value _before_ changing the pi_state
1564          * because we can fault here. Imagine swapped out pages or a fork
1565          * that marked all the anonymous memory readonly for cow.
1566          *
1567          * Modifying pi_state _before_ the user space value would
1568          * leave the pi_state in an inconsistent state when we fault
1569          * here, because we need to drop the hash bucket lock to
1570          * handle the fault. This might be observed in the PID check
1571          * in lookup_pi_state.
1572          */
1573 retry:
1574         if (get_futex_value_locked(&uval, uaddr))
1575                 goto handle_fault;
1576
1577         while (1) {
1578                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1579
1580                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1581                         goto handle_fault;
1582                 if (curval == uval)
1583                         break;
1584                 uval = curval;
1585         }
1586
1587         /*
1588          * We fixed up user space. Now we need to fix the pi_state
1589          * itself.
1590          */
1591         if (pi_state->owner != NULL) {
1592                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1593                 WARN_ON(list_empty(&pi_state->list));
1594                 list_del_init(&pi_state->list);
1595                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1596         }
1597
1598         pi_state->owner = newowner;
1599
1600         raw_spin_lock_irq(&newowner->pi_lock);
1601         WARN_ON(!list_empty(&pi_state->list));
1602         list_add(&pi_state->list, &newowner->pi_state_list);
1603         raw_spin_unlock_irq(&newowner->pi_lock);
1604         return 0;
1605
1606         /*
1607          * To handle the page fault we need to drop the hash bucket
1608          * lock here. That gives the other task (either the pending
1609          * owner itself or the task which stole the rtmutex) the
1610          * chance to try the fixup of the pi_state. So once we are
1611          * back from handling the fault we need to check the pi_state
1612          * after reacquiring the hash bucket lock and before trying to
1613          * do another fixup. When the fixup has been done already we
1614          * simply return.
1615          */
1616 handle_fault:
1617         spin_unlock(q->lock_ptr);
1618
1619         ret = fault_in_user_writeable(uaddr);
1620
1621         spin_lock(q->lock_ptr);
1622
1623         /*
1624          * Check if someone else fixed it for us:
1625          */
1626         if (pi_state->owner != oldowner)
1627                 return 0;
1628
1629         if (ret)
1630                 return ret;
1631
1632         goto retry;
1633 }
1634
1635 static long futex_wait_restart(struct restart_block *restart);
1636
1637 /**
1638  * fixup_owner() - Post lock pi_state and corner case management
1639  * @uaddr:      user address of the futex
1640  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1641  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1642  *
1643  * After attempting to lock an rt_mutex, this function is called to cleanup
1644  * the pi_state owner as well as handle race conditions that may allow us to
1645  * acquire the lock. Must be called with the hb lock held.
1646  *
1647  * Returns:
1648  *  1 - success, lock taken
1649  *  0 - success, lock not taken
1650  * <0 - on error (-EFAULT)
1651  */
1652 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1653 {
1654         struct task_struct *owner;
1655         int ret = 0;
1656
1657         if (locked) {
1658                 /*
1659                  * Got the lock. We might not be the anticipated owner if we
1660                  * did a lock-steal - fix up the PI-state in that case:
1661                  */
1662                 if (q->pi_state->owner != current)
1663                         ret = fixup_pi_state_owner(uaddr, q, current);
1664                 goto out;
1665         }
1666
1667         /*
1668          * Catch the rare case, where the lock was released when we were on the
1669          * way back before we locked the hash bucket.
1670          */
1671         if (q->pi_state->owner == current) {
1672                 /*
1673                  * Try to get the rt_mutex now. This might fail as some other
1674                  * task acquired the rt_mutex after we removed ourself from the
1675                  * rt_mutex waiters list.
1676                  */
1677                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1678                         locked = 1;
1679                         goto out;
1680                 }
1681
1682                 /*
1683                  * pi_state is incorrect, some other task did a lock steal and
1684                  * we returned due to timeout or signal without taking the
1685                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1686                  * locking, as the other task is now blocked on the hash bucket
1687                  * lock. Fix the state up.
1688                  */
1689                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1690                 ret = fixup_pi_state_owner(uaddr, q, owner);
1691                 goto out;
1692         }
1693
1694         /*
1695          * Paranoia check. If we did not take the lock, then we should not be
1696          * the owner, nor the pending owner, of the rt_mutex.
1697          */
1698         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1699                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1700                                 "pi-state %p\n", ret,
1701                                 q->pi_state->pi_mutex.owner,
1702                                 q->pi_state->owner);
1703
1704 out:
1705         return ret ? ret : locked;
1706 }
1707
1708 /**
1709  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1710  * @hb:         the futex hash bucket, must be locked by the caller
1711  * @q:          the futex_q to queue up on
1712  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1713  */
1714 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1715                                 struct hrtimer_sleeper *timeout)
1716 {
1717         /*
1718          * The task state is guaranteed to be set before another task can
1719          * wake it. set_current_state() is implemented using set_mb() and
1720          * queue_me() calls spin_unlock() upon completion, both serializing
1721          * access to the hash list and forcing another memory barrier.
1722          */
1723         set_current_state(TASK_INTERRUPTIBLE);
1724         queue_me(q, hb);
1725
1726         /* Arm the timer */
1727         if (timeout) {
1728                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1729                 if (!hrtimer_active(&timeout->timer))
1730                         timeout->task = NULL;
1731         }
1732
1733         /*
1734          * If we have been removed from the hash list, then another task
1735          * has tried to wake us, and we can skip the call to schedule().
1736          */
1737         if (likely(!plist_node_empty(&q->list))) {
1738                 /*
1739                  * If the timer has already expired, current will already be
1740                  * flagged for rescheduling. Only call schedule if there
1741                  * is no timeout, or if it has yet to expire.
1742                  */
1743                 if (!timeout || timeout->task)
1744                         schedule();
1745         }
1746         __set_current_state(TASK_RUNNING);
1747 }
1748
1749 /**
1750  * futex_wait_setup() - Prepare to wait on a futex
1751  * @uaddr:      the futex userspace address
1752  * @val:        the expected value
1753  * @flags:      futex flags (FLAGS_SHARED, etc.)
1754  * @q:          the associated futex_q
1755  * @hb:         storage for hash_bucket pointer to be returned to caller
1756  *
1757  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1758  * compare it with the expected value.  Handle atomic faults internally.
1759  * Return with the hb lock held and a q.key reference on success, and unlocked
1760  * with no q.key reference on failure.
1761  *
1762  * Returns:
1763  *  0 - uaddr contains val and hb has been locked
1764  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1765  */
1766 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1767                            struct futex_q *q, struct futex_hash_bucket **hb)
1768 {
1769         u32 uval;
1770         int ret;
1771
1772         /*
1773          * Access the page AFTER the hash-bucket is locked.
1774          * Order is important:
1775          *
1776          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1777          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1778          *
1779          * The basic logical guarantee of a futex is that it blocks ONLY
1780          * if cond(var) is known to be true at the time of blocking, for
1781          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1782          * would open a race condition where we could block indefinitely with
1783          * cond(var) false, which would violate the guarantee.
1784          *
1785          * On the other hand, we insert q and release the hash-bucket only
1786          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1787          * absorb a wakeup if *uaddr does not match the desired values
1788          * while the syscall executes.
1789          */
1790 retry:
1791         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1792         if (unlikely(ret != 0))
1793                 return ret;
1794
1795 retry_private:
1796         *hb = queue_lock(q);
1797
1798         ret = get_futex_value_locked(&uval, uaddr);
1799
1800         if (ret) {
1801                 queue_unlock(q, *hb);
1802
1803                 ret = get_user(uval, uaddr);
1804                 if (ret)
1805                         goto out;
1806
1807                 if (!(flags & FLAGS_SHARED))
1808                         goto retry_private;
1809
1810                 put_futex_key(&q->key);
1811                 goto retry;
1812         }
1813
1814         if (uval != val) {
1815                 queue_unlock(q, *hb);
1816                 ret = -EWOULDBLOCK;
1817         }
1818
1819 out:
1820         if (ret)
1821                 put_futex_key(&q->key);
1822         return ret;
1823 }
1824
1825 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1826                       ktime_t *abs_time, u32 bitset)
1827 {
1828         struct hrtimer_sleeper timeout, *to = NULL;
1829         struct restart_block *restart;
1830         struct futex_hash_bucket *hb;
1831         struct futex_q q = futex_q_init;
1832         int ret;
1833
1834         if (!bitset)
1835                 return -EINVAL;
1836         q.bitset = bitset;
1837
1838         if (abs_time) {
1839                 to = &timeout;
1840
1841                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1842                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1843                                       HRTIMER_MODE_ABS);
1844                 hrtimer_init_sleeper(to, current);
1845                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1846                                              current->timer_slack_ns);
1847         }
1848
1849 retry:
1850         /*
1851          * Prepare to wait on uaddr. On success, holds hb lock and increments
1852          * q.key refs.
1853          */
1854         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1855         if (ret)
1856                 goto out;
1857
1858         /* queue_me and wait for wakeup, timeout, or a signal. */
1859         futex_wait_queue_me(hb, &q, to);
1860
1861         /* If we were woken (and unqueued), we succeeded, whatever. */
1862         ret = 0;
1863         /* unqueue_me() drops q.key ref */
1864         if (!unqueue_me(&q))
1865                 goto out;
1866         ret = -ETIMEDOUT;
1867         if (to && !to->task)
1868                 goto out;
1869
1870         /*
1871          * We expect signal_pending(current), but we might be the
1872          * victim of a spurious wakeup as well.
1873          */
1874         if (!signal_pending(current))
1875                 goto retry;
1876
1877         ret = -ERESTARTSYS;
1878         if (!abs_time)
1879                 goto out;
1880
1881         restart = &current_thread_info()->restart_block;
1882         restart->fn = futex_wait_restart;
1883         restart->futex.uaddr = uaddr;
1884         restart->futex.val = val;
1885         restart->futex.time = abs_time->tv64;
1886         restart->futex.bitset = bitset;
1887         restart->futex.flags = flags;
1888
1889         ret = -ERESTART_RESTARTBLOCK;
1890
1891 out:
1892         if (to) {
1893                 hrtimer_cancel(&to->timer);
1894                 destroy_hrtimer_on_stack(&to->timer);
1895         }
1896         return ret;
1897 }
1898
1899
1900 static long futex_wait_restart(struct restart_block *restart)
1901 {
1902         u32 __user *uaddr = restart->futex.uaddr;
1903         ktime_t t, *tp = NULL;
1904
1905         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1906                 t.tv64 = restart->futex.time;
1907                 tp = &t;
1908         }
1909         restart->fn = do_no_restart_syscall;
1910
1911         return (long)futex_wait(uaddr, restart->futex.flags,
1912                                 restart->futex.val, tp, restart->futex.bitset);
1913 }
1914
1915
1916 /*
1917  * Userspace tried a 0 -> TID atomic transition of the futex value
1918  * and failed. The kernel side here does the whole locking operation:
1919  * if there are waiters then it will block, it does PI, etc. (Due to
1920  * races the kernel might see a 0 value of the futex too.)
1921  */
1922 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1923                          ktime_t *time, int trylock)
1924 {
1925         struct hrtimer_sleeper timeout, *to = NULL;
1926         struct futex_hash_bucket *hb;
1927         struct futex_q q = futex_q_init;
1928         int res, ret;
1929
1930         if (refill_pi_state_cache())
1931                 return -ENOMEM;
1932
1933         if (time) {
1934                 to = &timeout;
1935                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1936                                       HRTIMER_MODE_ABS);
1937                 hrtimer_init_sleeper(to, current);
1938                 hrtimer_set_expires(&to->timer, *time);
1939         }
1940
1941 retry:
1942         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1943         if (unlikely(ret != 0))
1944                 goto out;
1945
1946 retry_private:
1947         hb = queue_lock(&q);
1948
1949         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1950         if (unlikely(ret)) {
1951                 switch (ret) {
1952                 case 1:
1953                         /* We got the lock. */
1954                         ret = 0;
1955                         goto out_unlock_put_key;
1956                 case -EFAULT:
1957                         goto uaddr_faulted;
1958                 case -EAGAIN:
1959                         /*
1960                          * Task is exiting and we just wait for the
1961                          * exit to complete.
1962                          */
1963                         queue_unlock(&q, hb);
1964                         put_futex_key(&q.key);
1965                         cond_resched();
1966                         goto retry;
1967                 default:
1968                         goto out_unlock_put_key;
1969                 }
1970         }
1971
1972         /*
1973          * Only actually queue now that the atomic ops are done:
1974          */
1975         queue_me(&q, hb);
1976
1977         WARN_ON(!q.pi_state);
1978         /*
1979          * Block on the PI mutex:
1980          */
1981         if (!trylock)
1982                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1983         else {
1984                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1985                 /* Fixup the trylock return value: */
1986                 ret = ret ? 0 : -EWOULDBLOCK;
1987         }
1988
1989         spin_lock(q.lock_ptr);
1990         /*
1991          * Fixup the pi_state owner and possibly acquire the lock if we
1992          * haven't already.
1993          */
1994         res = fixup_owner(uaddr, &q, !ret);
1995         /*
1996          * If fixup_owner() returned an error, proprogate that.  If it acquired
1997          * the lock, clear our -ETIMEDOUT or -EINTR.
1998          */
1999         if (res)
2000                 ret = (res < 0) ? res : 0;
2001
2002         /*
2003          * If fixup_owner() faulted and was unable to handle the fault, unlock
2004          * it and return the fault to userspace.
2005          */
2006         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2007                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2008
2009         /* Unqueue and drop the lock */
2010         unqueue_me_pi(&q);
2011
2012         goto out_put_key;
2013
2014 out_unlock_put_key:
2015         queue_unlock(&q, hb);
2016
2017 out_put_key:
2018         put_futex_key(&q.key);
2019 out:
2020         if (to)
2021                 destroy_hrtimer_on_stack(&to->timer);
2022         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2023
2024 uaddr_faulted:
2025         queue_unlock(&q, hb);
2026
2027         ret = fault_in_user_writeable(uaddr);
2028         if (ret)
2029                 goto out_put_key;
2030
2031         if (!(flags & FLAGS_SHARED))
2032                 goto retry_private;
2033
2034         put_futex_key(&q.key);
2035         goto retry;
2036 }
2037
2038 /*
2039  * Userspace attempted a TID -> 0 atomic transition, and failed.
2040  * This is the in-kernel slowpath: we look up the PI state (if any),
2041  * and do the rt-mutex unlock.
2042  */
2043 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2044 {
2045         struct futex_hash_bucket *hb;
2046         struct futex_q *this, *next;
2047         struct plist_head *head;
2048         union futex_key key = FUTEX_KEY_INIT;
2049         u32 uval, vpid = task_pid_vnr(current);
2050         int ret;
2051
2052 retry:
2053         if (get_user(uval, uaddr))
2054                 return -EFAULT;
2055         /*
2056          * We release only a lock we actually own:
2057          */
2058         if ((uval & FUTEX_TID_MASK) != vpid)
2059                 return -EPERM;
2060
2061         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2062         if (unlikely(ret != 0))
2063                 goto out;
2064
2065         hb = hash_futex(&key);
2066         spin_lock(&hb->lock);
2067
2068         /*
2069          * To avoid races, try to do the TID -> 0 atomic transition
2070          * again. If it succeeds then we can return without waking
2071          * anyone else up:
2072          */
2073         if (!(uval & FUTEX_OWNER_DIED) &&
2074             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2075                 goto pi_faulted;
2076         /*
2077          * Rare case: we managed to release the lock atomically,
2078          * no need to wake anyone else up:
2079          */
2080         if (unlikely(uval == vpid))
2081                 goto out_unlock;
2082
2083         /*
2084          * Ok, other tasks may need to be woken up - check waiters
2085          * and do the wakeup if necessary:
2086          */
2087         head = &hb->chain;
2088
2089         plist_for_each_entry_safe(this, next, head, list) {
2090                 if (!match_futex (&this->key, &key))
2091                         continue;
2092                 ret = wake_futex_pi(uaddr, uval, this);
2093                 /*
2094                  * The atomic access to the futex value
2095                  * generated a pagefault, so retry the
2096                  * user-access and the wakeup:
2097                  */
2098                 if (ret == -EFAULT)
2099                         goto pi_faulted;
2100                 goto out_unlock;
2101         }
2102         /*
2103          * No waiters - kernel unlocks the futex:
2104          */
2105         if (!(uval & FUTEX_OWNER_DIED)) {
2106                 ret = unlock_futex_pi(uaddr, uval);
2107                 if (ret == -EFAULT)
2108                         goto pi_faulted;
2109         }
2110
2111 out_unlock:
2112         spin_unlock(&hb->lock);
2113         put_futex_key(&key);
2114
2115 out:
2116         return ret;
2117
2118 pi_faulted:
2119         spin_unlock(&hb->lock);
2120         put_futex_key(&key);
2121
2122         ret = fault_in_user_writeable(uaddr);
2123         if (!ret)
2124                 goto retry;
2125
2126         return ret;
2127 }
2128
2129 /**
2130  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2131  * @hb:         the hash_bucket futex_q was original enqueued on
2132  * @q:          the futex_q woken while waiting to be requeued
2133  * @key2:       the futex_key of the requeue target futex
2134  * @timeout:    the timeout associated with the wait (NULL if none)
2135  *
2136  * Detect if the task was woken on the initial futex as opposed to the requeue
2137  * target futex.  If so, determine if it was a timeout or a signal that caused
2138  * the wakeup and return the appropriate error code to the caller.  Must be
2139  * called with the hb lock held.
2140  *
2141  * Returns
2142  *  0 - no early wakeup detected
2143  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2144  */
2145 static inline
2146 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2147                                    struct futex_q *q, union futex_key *key2,
2148                                    struct hrtimer_sleeper *timeout)
2149 {
2150         int ret = 0;
2151
2152         /*
2153          * With the hb lock held, we avoid races while we process the wakeup.
2154          * We only need to hold hb (and not hb2) to ensure atomicity as the
2155          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2156          * It can't be requeued from uaddr2 to something else since we don't
2157          * support a PI aware source futex for requeue.
2158          */
2159         if (!match_futex(&q->key, key2)) {
2160                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2161                 /*
2162                  * We were woken prior to requeue by a timeout or a signal.
2163                  * Unqueue the futex_q and determine which it was.
2164                  */
2165                 plist_del(&q->list, &hb->chain);
2166
2167                 /* Handle spurious wakeups gracefully */
2168                 ret = -EWOULDBLOCK;
2169                 if (timeout && !timeout->task)
2170                         ret = -ETIMEDOUT;
2171                 else if (signal_pending(current))
2172                         ret = -ERESTARTNOINTR;
2173         }
2174         return ret;
2175 }
2176
2177 /**
2178  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2179  * @uaddr:      the futex we initially wait on (non-pi)
2180  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2181  *              the same type, no requeueing from private to shared, etc.
2182  * @val:        the expected value of uaddr
2183  * @abs_time:   absolute timeout
2184  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2185  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2186  * @uaddr2:     the pi futex we will take prior to returning to user-space
2187  *
2188  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2189  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2190  * complete the acquisition of the rt_mutex prior to returning to userspace.
2191  * This ensures the rt_mutex maintains an owner when it has waiters; without
2192  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2193  * need to.
2194  *
2195  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2196  * via the following:
2197  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2198  * 2) wakeup on uaddr2 after a requeue
2199  * 3) signal
2200  * 4) timeout
2201  *
2202  * If 3, cleanup and return -ERESTARTNOINTR.
2203  *
2204  * If 2, we may then block on trying to take the rt_mutex and return via:
2205  * 5) successful lock
2206  * 6) signal
2207  * 7) timeout
2208  * 8) other lock acquisition failure
2209  *
2210  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2211  *
2212  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2213  *
2214  * Returns:
2215  *  0 - On success
2216  * <0 - On error
2217  */
2218 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2219                                  u32 val, ktime_t *abs_time, u32 bitset,
2220                                  u32 __user *uaddr2)
2221 {
2222         struct hrtimer_sleeper timeout, *to = NULL;
2223         struct rt_mutex_waiter rt_waiter;
2224         struct rt_mutex *pi_mutex = NULL;
2225         struct futex_hash_bucket *hb;
2226         union futex_key key2 = FUTEX_KEY_INIT;
2227         struct futex_q q = futex_q_init;
2228         int res, ret;
2229
2230         if (!bitset)
2231                 return -EINVAL;
2232
2233         if (abs_time) {
2234                 to = &timeout;
2235                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2236                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2237                                       HRTIMER_MODE_ABS);
2238                 hrtimer_init_sleeper(to, current);
2239                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2240                                              current->timer_slack_ns);
2241         }
2242
2243         /*
2244          * The waiter is allocated on our stack, manipulated by the requeue
2245          * code while we sleep on uaddr.
2246          */
2247         debug_rt_mutex_init_waiter(&rt_waiter);
2248         rt_waiter.task = NULL;
2249
2250         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2251         if (unlikely(ret != 0))
2252                 goto out;
2253
2254         q.bitset = bitset;
2255         q.rt_waiter = &rt_waiter;
2256         q.requeue_pi_key = &key2;
2257
2258         /*
2259          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2260          * count.
2261          */
2262         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2263         if (ret)
2264                 goto out_key2;
2265
2266         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2267         futex_wait_queue_me(hb, &q, to);
2268
2269         spin_lock(&hb->lock);
2270         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2271         spin_unlock(&hb->lock);
2272         if (ret)
2273                 goto out_put_keys;
2274
2275         /*
2276          * In order for us to be here, we know our q.key == key2, and since
2277          * we took the hb->lock above, we also know that futex_requeue() has
2278          * completed and we no longer have to concern ourselves with a wakeup
2279          * race with the atomic proxy lock acquisition by the requeue code. The
2280          * futex_requeue dropped our key1 reference and incremented our key2
2281          * reference count.
2282          */
2283
2284         /* Check if the requeue code acquired the second futex for us. */
2285         if (!q.rt_waiter) {
2286                 /*
2287                  * Got the lock. We might not be the anticipated owner if we
2288                  * did a lock-steal - fix up the PI-state in that case.
2289                  */
2290                 if (q.pi_state && (q.pi_state->owner != current)) {
2291                         spin_lock(q.lock_ptr);
2292                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2293                         spin_unlock(q.lock_ptr);
2294                 }
2295         } else {
2296                 /*
2297                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2298                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2299                  * the pi_state.
2300                  */
2301                 WARN_ON(!&q.pi_state);
2302                 pi_mutex = &q.pi_state->pi_mutex;
2303                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2304                 debug_rt_mutex_free_waiter(&rt_waiter);
2305
2306                 spin_lock(q.lock_ptr);
2307                 /*
2308                  * Fixup the pi_state owner and possibly acquire the lock if we
2309                  * haven't already.
2310                  */
2311                 res = fixup_owner(uaddr2, &q, !ret);
2312                 /*
2313                  * If fixup_owner() returned an error, proprogate that.  If it
2314                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2315                  */
2316                 if (res)
2317                         ret = (res < 0) ? res : 0;
2318
2319                 /* Unqueue and drop the lock. */
2320                 unqueue_me_pi(&q);
2321         }
2322
2323         /*
2324          * If fixup_pi_state_owner() faulted and was unable to handle the
2325          * fault, unlock the rt_mutex and return the fault to userspace.
2326          */
2327         if (ret == -EFAULT) {
2328                 if (rt_mutex_owner(pi_mutex) == current)
2329                         rt_mutex_unlock(pi_mutex);
2330         } else if (ret == -EINTR) {
2331                 /*
2332                  * We've already been requeued, but cannot restart by calling
2333                  * futex_lock_pi() directly. We could restart this syscall, but
2334                  * it would detect that the user space "val" changed and return
2335                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2336                  * -EWOULDBLOCK directly.
2337                  */
2338                 ret = -EWOULDBLOCK;
2339         }
2340
2341 out_put_keys:
2342         put_futex_key(&q.key);
2343 out_key2:
2344         put_futex_key(&key2);
2345
2346 out:
2347         if (to) {
2348                 hrtimer_cancel(&to->timer);
2349                 destroy_hrtimer_on_stack(&to->timer);
2350         }
2351         return ret;
2352 }
2353
2354 /*
2355  * Support for robust futexes: the kernel cleans up held futexes at
2356  * thread exit time.
2357  *
2358  * Implementation: user-space maintains a per-thread list of locks it
2359  * is holding. Upon do_exit(), the kernel carefully walks this list,
2360  * and marks all locks that are owned by this thread with the
2361  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2362  * always manipulated with the lock held, so the list is private and
2363  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2364  * field, to allow the kernel to clean up if the thread dies after
2365  * acquiring the lock, but just before it could have added itself to
2366  * the list. There can only be one such pending lock.
2367  */
2368
2369 /**
2370  * sys_set_robust_list() - Set the robust-futex list head of a task
2371  * @head:       pointer to the list-head
2372  * @len:        length of the list-head, as userspace expects
2373  */
2374 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2375                 size_t, len)
2376 {
2377         if (!futex_cmpxchg_enabled)
2378                 return -ENOSYS;
2379         /*
2380          * The kernel knows only one size for now:
2381          */
2382         if (unlikely(len != sizeof(*head)))
2383                 return -EINVAL;
2384
2385         current->robust_list = head;
2386
2387         return 0;
2388 }
2389
2390 /**
2391  * sys_get_robust_list() - Get the robust-futex list head of a task
2392  * @pid:        pid of the process [zero for current task]
2393  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2394  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2395  */
2396 SYSCALL_DEFINE3(get_robust_list, int, pid,
2397                 struct robust_list_head __user * __user *, head_ptr,
2398                 size_t __user *, len_ptr)
2399 {
2400         struct robust_list_head __user *head;
2401         unsigned long ret;
2402         const struct cred *cred = current_cred(), *pcred;
2403
2404         if (!futex_cmpxchg_enabled)
2405                 return -ENOSYS;
2406
2407         if (!pid)
2408                 head = current->robust_list;
2409         else {
2410                 struct task_struct *p;
2411
2412                 ret = -ESRCH;
2413                 rcu_read_lock();
2414                 p = find_task_by_vpid(pid);
2415                 if (!p)
2416                         goto err_unlock;
2417                 ret = -EPERM;
2418                 pcred = __task_cred(p);
2419                 if (cred->euid != pcred->euid &&
2420                     cred->euid != pcred->uid &&
2421                     !capable(CAP_SYS_PTRACE))
2422                         goto err_unlock;
2423                 head = p->robust_list;
2424                 rcu_read_unlock();
2425         }
2426
2427         if (put_user(sizeof(*head), len_ptr))
2428                 return -EFAULT;
2429         return put_user(head, head_ptr);
2430
2431 err_unlock:
2432         rcu_read_unlock();
2433
2434         return ret;
2435 }
2436
2437 /*
2438  * Process a futex-list entry, check whether it's owned by the
2439  * dying task, and do notification if so:
2440  */
2441 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2442 {
2443         u32 uval, nval, mval;
2444
2445 retry:
2446         if (get_user(uval, uaddr))
2447                 return -1;
2448
2449         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2450                 /*
2451                  * Ok, this dying thread is truly holding a futex
2452                  * of interest. Set the OWNER_DIED bit atomically
2453                  * via cmpxchg, and if the value had FUTEX_WAITERS
2454                  * set, wake up a waiter (if any). (We have to do a
2455                  * futex_wake() even if OWNER_DIED is already set -
2456                  * to handle the rare but possible case of recursive
2457                  * thread-death.) The rest of the cleanup is done in
2458                  * userspace.
2459                  */
2460                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2461                 /*
2462                  * We are not holding a lock here, but we want to have
2463                  * the pagefault_disable/enable() protection because
2464                  * we want to handle the fault gracefully. If the
2465                  * access fails we try to fault in the futex with R/W
2466                  * verification via get_user_pages. get_user() above
2467                  * does not guarantee R/W access. If that fails we
2468                  * give up and leave the futex locked.
2469                  */
2470                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2471                         if (fault_in_user_writeable(uaddr))
2472                                 return -1;
2473                         goto retry;
2474                 }
2475                 if (nval != uval)
2476                         goto retry;
2477
2478                 /*
2479                  * Wake robust non-PI futexes here. The wakeup of
2480                  * PI futexes happens in exit_pi_state():
2481                  */
2482                 if (!pi && (uval & FUTEX_WAITERS))
2483                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2484         }
2485         return 0;
2486 }
2487
2488 /*
2489  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2490  */
2491 static inline int fetch_robust_entry(struct robust_list __user **entry,
2492                                      struct robust_list __user * __user *head,
2493                                      unsigned int *pi)
2494 {
2495         unsigned long uentry;
2496
2497         if (get_user(uentry, (unsigned long __user *)head))
2498                 return -EFAULT;
2499
2500         *entry = (void __user *)(uentry & ~1UL);
2501         *pi = uentry & 1;
2502
2503         return 0;
2504 }
2505
2506 /*
2507  * Walk curr->robust_list (very carefully, it's a userspace list!)
2508  * and mark any locks found there dead, and notify any waiters.
2509  *
2510  * We silently return on any sign of list-walking problem.
2511  */
2512 void exit_robust_list(struct task_struct *curr)
2513 {
2514         struct robust_list_head __user *head = curr->robust_list;
2515         struct robust_list __user *entry, *next_entry, *pending;
2516         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2517         unsigned int uninitialized_var(next_pi);
2518         unsigned long futex_offset;
2519         int rc;
2520
2521         if (!futex_cmpxchg_enabled)
2522                 return;
2523
2524         /*
2525          * Fetch the list head (which was registered earlier, via
2526          * sys_set_robust_list()):
2527          */
2528         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2529                 return;
2530         /*
2531          * Fetch the relative futex offset:
2532          */
2533         if (get_user(futex_offset, &head->futex_offset))
2534                 return;
2535         /*
2536          * Fetch any possibly pending lock-add first, and handle it
2537          * if it exists:
2538          */
2539         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2540                 return;
2541
2542         next_entry = NULL;      /* avoid warning with gcc */
2543         while (entry != &head->list) {
2544                 /*
2545                  * Fetch the next entry in the list before calling
2546                  * handle_futex_death:
2547                  */
2548                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2549                 /*
2550                  * A pending lock might already be on the list, so
2551                  * don't process it twice:
2552                  */
2553                 if (entry != pending)
2554                         if (handle_futex_death((void __user *)entry + futex_offset,
2555                                                 curr, pi))
2556                                 return;
2557                 if (rc)
2558                         return;
2559                 entry = next_entry;
2560                 pi = next_pi;
2561                 /*
2562                  * Avoid excessively long or circular lists:
2563                  */
2564                 if (!--limit)
2565                         break;
2566
2567                 cond_resched();
2568         }
2569
2570         if (pending)
2571                 handle_futex_death((void __user *)pending + futex_offset,
2572                                    curr, pip);
2573 }
2574
2575 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2576                 u32 __user *uaddr2, u32 val2, u32 val3)
2577 {
2578         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2579         unsigned int flags = 0;
2580
2581         if (!(op & FUTEX_PRIVATE_FLAG))
2582                 flags |= FLAGS_SHARED;
2583
2584         if (op & FUTEX_CLOCK_REALTIME) {
2585                 flags |= FLAGS_CLOCKRT;
2586                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2587                         return -ENOSYS;
2588         }
2589
2590         switch (cmd) {
2591         case FUTEX_WAIT:
2592                 val3 = FUTEX_BITSET_MATCH_ANY;
2593         case FUTEX_WAIT_BITSET:
2594                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2595                 break;
2596         case FUTEX_WAKE:
2597                 val3 = FUTEX_BITSET_MATCH_ANY;
2598         case FUTEX_WAKE_BITSET:
2599                 ret = futex_wake(uaddr, flags, val, val3);
2600                 break;
2601         case FUTEX_REQUEUE:
2602                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2603                 break;
2604         case FUTEX_CMP_REQUEUE:
2605                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2606                 break;
2607         case FUTEX_WAKE_OP:
2608                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2609                 break;
2610         case FUTEX_LOCK_PI:
2611                 if (futex_cmpxchg_enabled)
2612                         ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2613                 break;
2614         case FUTEX_UNLOCK_PI:
2615                 if (futex_cmpxchg_enabled)
2616                         ret = futex_unlock_pi(uaddr, flags);
2617                 break;
2618         case FUTEX_TRYLOCK_PI:
2619                 if (futex_cmpxchg_enabled)
2620                         ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2621                 break;
2622         case FUTEX_WAIT_REQUEUE_PI:
2623                 val3 = FUTEX_BITSET_MATCH_ANY;
2624                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2625                                             uaddr2);
2626                 break;
2627         case FUTEX_CMP_REQUEUE_PI:
2628                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2629                 break;
2630         default:
2631                 ret = -ENOSYS;
2632         }
2633         return ret;
2634 }
2635
2636
2637 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2638                 struct timespec __user *, utime, u32 __user *, uaddr2,
2639                 u32, val3)
2640 {
2641         struct timespec ts;
2642         ktime_t t, *tp = NULL;
2643         u32 val2 = 0;
2644         int cmd = op & FUTEX_CMD_MASK;
2645
2646         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2647                       cmd == FUTEX_WAIT_BITSET ||
2648                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2649                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2650                         return -EFAULT;
2651                 if (!timespec_valid(&ts))
2652                         return -EINVAL;
2653
2654                 t = timespec_to_ktime(ts);
2655                 if (cmd == FUTEX_WAIT)
2656                         t = ktime_add_safe(ktime_get(), t);
2657                 tp = &t;
2658         }
2659         /*
2660          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2661          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2662          */
2663         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2664             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2665                 val2 = (u32) (unsigned long) utime;
2666
2667         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2668 }
2669
2670 static int __init futex_init(void)
2671 {
2672         u32 curval;
2673         int i;
2674
2675         /*
2676          * This will fail and we want it. Some arch implementations do
2677          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2678          * functionality. We want to know that before we call in any
2679          * of the complex code paths. Also we want to prevent
2680          * registration of robust lists in that case. NULL is
2681          * guaranteed to fault and we get -EFAULT on functional
2682          * implementation, the non-functional ones will return
2683          * -ENOSYS.
2684          */
2685         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2686                 futex_cmpxchg_enabled = 1;
2687
2688         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2689                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2690                 spin_lock_init(&futex_queues[i].lock);
2691         }
2692
2693         return 0;
2694 }
2695 __initcall(futex_init);