]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/futex.c
futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 };
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 };
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in *key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel so warn for now if this happens.
674                  *
675                  * We are not calling into get_futex_key_refs() in file-backed
676                  * cases, therefore a successful atomic_inc return below will
677                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
678                  */
679                 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680                         rcu_read_unlock();
681                         put_page(page);
682
683                         goto again;
684                 }
685
686                 /* Should be impossible but lets be paranoid for now */
687                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688                         err = -EFAULT;
689                         rcu_read_unlock();
690                         iput(inode);
691
692                         goto out;
693                 }
694
695                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696                 key->shared.inode = inode;
697                 key->shared.pgoff = basepage_index(tail);
698                 rcu_read_unlock();
699         }
700
701 out:
702         put_page(page);
703         return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708         drop_futex_key_refs(key);
709 }
710
711 /**
712  * fault_in_user_writeable() - Fault in user address and verify RW access
713  * @uaddr:      pointer to faulting user space address
714  *
715  * Slow path to fixup the fault we just took in the atomic write
716  * access to @uaddr.
717  *
718  * We have no generic implementation of a non-destructive write to the
719  * user address. We know that we faulted in the atomic pagefault
720  * disabled section so we can as well avoid the #PF overhead by
721  * calling get_user_pages() right away.
722  */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725         struct mm_struct *mm = current->mm;
726         int ret;
727
728         down_read(&mm->mmap_sem);
729         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730                                FAULT_FLAG_WRITE, NULL);
731         up_read(&mm->mmap_sem);
732
733         return ret < 0 ? ret : 0;
734 }
735
736 /**
737  * futex_top_waiter() - Return the highest priority waiter on a futex
738  * @hb:         the hash bucket the futex_q's reside in
739  * @key:        the futex key (to distinguish it from other futex futex_q's)
740  *
741  * Must be called with the hb lock held.
742  */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744                                         union futex_key *key)
745 {
746         struct futex_q *this;
747
748         plist_for_each_entry(this, &hb->chain, list) {
749                 if (match_futex(&this->key, key))
750                         return this;
751         }
752         return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756                                       u32 uval, u32 newval)
757 {
758         int ret;
759
760         pagefault_disable();
761         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762         pagefault_enable();
763
764         return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769         int ret;
770
771         pagefault_disable();
772         ret = __get_user(*dest, from);
773         pagefault_enable();
774
775         return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780  * PI code:
781  */
782 static int refill_pi_state_cache(void)
783 {
784         struct futex_pi_state *pi_state;
785
786         if (likely(current->pi_state_cache))
787                 return 0;
788
789         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791         if (!pi_state)
792                 return -ENOMEM;
793
794         INIT_LIST_HEAD(&pi_state->list);
795         /* pi_mutex gets initialized later */
796         pi_state->owner = NULL;
797         atomic_set(&pi_state->refcount, 1);
798         pi_state->key = FUTEX_KEY_INIT;
799
800         current->pi_state_cache = pi_state;
801
802         return 0;
803 }
804
805 static struct futex_pi_state *alloc_pi_state(void)
806 {
807         struct futex_pi_state *pi_state = current->pi_state_cache;
808
809         WARN_ON(!pi_state);
810         current->pi_state_cache = NULL;
811
812         return pi_state;
813 }
814
815 static void get_pi_state(struct futex_pi_state *pi_state)
816 {
817         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818 }
819
820 /*
821  * Drops a reference to the pi_state object and frees or caches it
822  * when the last reference is gone.
823  *
824  * Must be called with the hb lock held.
825  */
826 static void put_pi_state(struct futex_pi_state *pi_state)
827 {
828         if (!pi_state)
829                 return;
830
831         if (!atomic_dec_and_test(&pi_state->refcount))
832                 return;
833
834         /*
835          * If pi_state->owner is NULL, the owner is most probably dying
836          * and has cleaned up the pi_state already
837          */
838         if (pi_state->owner) {
839                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840                 list_del_init(&pi_state->list);
841                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844         }
845
846         if (current->pi_state_cache)
847                 kfree(pi_state);
848         else {
849                 /*
850                  * pi_state->list is already empty.
851                  * clear pi_state->owner.
852                  * refcount is at 0 - put it back to 1.
853                  */
854                 pi_state->owner = NULL;
855                 atomic_set(&pi_state->refcount, 1);
856                 current->pi_state_cache = pi_state;
857         }
858 }
859
860 /*
861  * Look up the task based on what TID userspace gave us.
862  * We dont trust it.
863  */
864 static struct task_struct *futex_find_get_task(pid_t pid)
865 {
866         struct task_struct *p;
867
868         rcu_read_lock();
869         p = find_task_by_vpid(pid);
870         if (p)
871                 get_task_struct(p);
872
873         rcu_read_unlock();
874
875         return p;
876 }
877
878 /*
879  * This task is holding PI mutexes at exit time => bad.
880  * Kernel cleans up PI-state, but userspace is likely hosed.
881  * (Robust-futex cleanup is separate and might save the day for userspace.)
882  */
883 void exit_pi_state_list(struct task_struct *curr)
884 {
885         struct list_head *next, *head = &curr->pi_state_list;
886         struct futex_pi_state *pi_state;
887         struct futex_hash_bucket *hb;
888         union futex_key key = FUTEX_KEY_INIT;
889
890         if (!futex_cmpxchg_enabled)
891                 return;
892         /*
893          * We are a ZOMBIE and nobody can enqueue itself on
894          * pi_state_list anymore, but we have to be careful
895          * versus waiters unqueueing themselves:
896          */
897         raw_spin_lock_irq(&curr->pi_lock);
898         while (!list_empty(head)) {
899
900                 next = head->next;
901                 pi_state = list_entry(next, struct futex_pi_state, list);
902                 key = pi_state->key;
903                 hb = hash_futex(&key);
904                 raw_spin_unlock_irq(&curr->pi_lock);
905
906                 spin_lock(&hb->lock);
907
908                 raw_spin_lock_irq(&curr->pi_lock);
909                 /*
910                  * We dropped the pi-lock, so re-check whether this
911                  * task still owns the PI-state:
912                  */
913                 if (head->next != next) {
914                         spin_unlock(&hb->lock);
915                         continue;
916                 }
917
918                 WARN_ON(pi_state->owner != curr);
919                 WARN_ON(list_empty(&pi_state->list));
920                 list_del_init(&pi_state->list);
921                 pi_state->owner = NULL;
922                 raw_spin_unlock_irq(&curr->pi_lock);
923
924                 get_pi_state(pi_state);
925                 spin_unlock(&hb->lock);
926
927                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928                 put_pi_state(pi_state);
929
930                 raw_spin_lock_irq(&curr->pi_lock);
931         }
932         raw_spin_unlock_irq(&curr->pi_lock);
933 }
934
935 /*
936  * We need to check the following states:
937  *
938  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
939  *
940  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
941  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
942  *
943  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
944  *
945  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
946  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
947  *
948  * [6]  Found  | Found    | task      | 0         | 1      | Valid
949  *
950  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
951  *
952  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
953  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
954  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
955  *
956  * [1]  Indicates that the kernel can acquire the futex atomically. We
957  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958  *
959  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
960  *      thread is found then it indicates that the owner TID has died.
961  *
962  * [3]  Invalid. The waiter is queued on a non PI futex
963  *
964  * [4]  Valid state after exit_robust_list(), which sets the user space
965  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966  *
967  * [5]  The user space value got manipulated between exit_robust_list()
968  *      and exit_pi_state_list()
969  *
970  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
971  *      the pi_state but cannot access the user space value.
972  *
973  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974  *
975  * [8]  Owner and user space value match
976  *
977  * [9]  There is no transient state which sets the user space TID to 0
978  *      except exit_robust_list(), but this is indicated by the
979  *      FUTEX_OWNER_DIED bit. See [4]
980  *
981  * [10] There is no transient state which leaves owner and user space
982  *      TID out of sync.
983  *
984  *
985  * Serialization and lifetime rules:
986  *
987  * hb->lock:
988  *
989  *      hb -> futex_q, relation
990  *      futex_q -> pi_state, relation
991  *
992  *      (cannot be raw because hb can contain arbitrary amount
993  *       of futex_q's)
994  *
995  * pi_mutex->wait_lock:
996  *
997  *      {uval, pi_state}
998  *
999  *      (and pi_mutex 'obviously')
1000  *
1001  * p->pi_lock:
1002  *
1003  *      p->pi_state_list -> pi_state->list, relation
1004  *
1005  * pi_state->refcount:
1006  *
1007  *      pi_state lifetime
1008  *
1009  *
1010  * Lock order:
1011  *
1012  *   hb->lock
1013  *     pi_mutex->wait_lock
1014  *       p->pi_lock
1015  *
1016  */
1017
1018 /*
1019  * Validate that the existing waiter has a pi_state and sanity check
1020  * the pi_state against the user space value. If correct, attach to
1021  * it.
1022  */
1023 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024                               struct futex_pi_state *pi_state,
1025                               struct futex_pi_state **ps)
1026 {
1027         pid_t pid = uval & FUTEX_TID_MASK;
1028         int ret, uval2;
1029
1030         /*
1031          * Userspace might have messed up non-PI and PI futexes [3]
1032          */
1033         if (unlikely(!pi_state))
1034                 return -EINVAL;
1035
1036         /*
1037          * We get here with hb->lock held, and having found a
1038          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1039          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1040          * which in turn means that futex_lock_pi() still has a reference on
1041          * our pi_state.
1042          *
1043          * The waiter holding a reference on @pi_state also protects against
1044          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1045          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1046          * free pi_state before we can take a reference ourselves.
1047          */
1048         WARN_ON(!atomic_read(&pi_state->refcount));
1049
1050         /*
1051          * Now that we have a pi_state, we can acquire wait_lock
1052          * and do the state validation.
1053          */
1054         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1055
1056         /*
1057          * Since {uval, pi_state} is serialized by wait_lock, and our current
1058          * uval was read without holding it, it can have changed. Verify it
1059          * still is what we expect it to be, otherwise retry the entire
1060          * operation.
1061          */
1062         if (get_futex_value_locked(&uval2, uaddr))
1063                 goto out_efault;
1064
1065         if (uval != uval2)
1066                 goto out_eagain;
1067
1068         /*
1069          * Handle the owner died case:
1070          */
1071         if (uval & FUTEX_OWNER_DIED) {
1072                 /*
1073                  * exit_pi_state_list sets owner to NULL and wakes the
1074                  * topmost waiter. The task which acquires the
1075                  * pi_state->rt_mutex will fixup owner.
1076                  */
1077                 if (!pi_state->owner) {
1078                         /*
1079                          * No pi state owner, but the user space TID
1080                          * is not 0. Inconsistent state. [5]
1081                          */
1082                         if (pid)
1083                                 goto out_einval;
1084                         /*
1085                          * Take a ref on the state and return success. [4]
1086                          */
1087                         goto out_attach;
1088                 }
1089
1090                 /*
1091                  * If TID is 0, then either the dying owner has not
1092                  * yet executed exit_pi_state_list() or some waiter
1093                  * acquired the rtmutex in the pi state, but did not
1094                  * yet fixup the TID in user space.
1095                  *
1096                  * Take a ref on the state and return success. [6]
1097                  */
1098                 if (!pid)
1099                         goto out_attach;
1100         } else {
1101                 /*
1102                  * If the owner died bit is not set, then the pi_state
1103                  * must have an owner. [7]
1104                  */
1105                 if (!pi_state->owner)
1106                         goto out_einval;
1107         }
1108
1109         /*
1110          * Bail out if user space manipulated the futex value. If pi
1111          * state exists then the owner TID must be the same as the
1112          * user space TID. [9/10]
1113          */
1114         if (pid != task_pid_vnr(pi_state->owner))
1115                 goto out_einval;
1116
1117 out_attach:
1118         get_pi_state(pi_state);
1119         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1120         *ps = pi_state;
1121         return 0;
1122
1123 out_einval:
1124         ret = -EINVAL;
1125         goto out_error;
1126
1127 out_eagain:
1128         ret = -EAGAIN;
1129         goto out_error;
1130
1131 out_efault:
1132         ret = -EFAULT;
1133         goto out_error;
1134
1135 out_error:
1136         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1137         return ret;
1138 }
1139
1140 /*
1141  * Lookup the task for the TID provided from user space and attach to
1142  * it after doing proper sanity checks.
1143  */
1144 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1145                               struct futex_pi_state **ps)
1146 {
1147         pid_t pid = uval & FUTEX_TID_MASK;
1148         struct futex_pi_state *pi_state;
1149         struct task_struct *p;
1150
1151         /*
1152          * We are the first waiter - try to look up the real owner and attach
1153          * the new pi_state to it, but bail out when TID = 0 [1]
1154          */
1155         if (!pid)
1156                 return -ESRCH;
1157         p = futex_find_get_task(pid);
1158         if (!p)
1159                 return -ESRCH;
1160
1161         if (unlikely(p->flags & PF_KTHREAD)) {
1162                 put_task_struct(p);
1163                 return -EPERM;
1164         }
1165
1166         /*
1167          * We need to look at the task state flags to figure out,
1168          * whether the task is exiting. To protect against the do_exit
1169          * change of the task flags, we do this protected by
1170          * p->pi_lock:
1171          */
1172         raw_spin_lock_irq(&p->pi_lock);
1173         if (unlikely(p->flags & PF_EXITING)) {
1174                 /*
1175                  * The task is on the way out. When PF_EXITPIDONE is
1176                  * set, we know that the task has finished the
1177                  * cleanup:
1178                  */
1179                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1180
1181                 raw_spin_unlock_irq(&p->pi_lock);
1182                 put_task_struct(p);
1183                 return ret;
1184         }
1185
1186         /*
1187          * No existing pi state. First waiter. [2]
1188          *
1189          * This creates pi_state, we have hb->lock held, this means nothing can
1190          * observe this state, wait_lock is irrelevant.
1191          */
1192         pi_state = alloc_pi_state();
1193
1194         /*
1195          * Initialize the pi_mutex in locked state and make @p
1196          * the owner of it:
1197          */
1198         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1199
1200         /* Store the key for possible exit cleanups: */
1201         pi_state->key = *key;
1202
1203         WARN_ON(!list_empty(&pi_state->list));
1204         list_add(&pi_state->list, &p->pi_state_list);
1205         pi_state->owner = p;
1206         raw_spin_unlock_irq(&p->pi_lock);
1207
1208         put_task_struct(p);
1209
1210         *ps = pi_state;
1211
1212         return 0;
1213 }
1214
1215 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1216                            struct futex_hash_bucket *hb,
1217                            union futex_key *key, struct futex_pi_state **ps)
1218 {
1219         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1220
1221         /*
1222          * If there is a waiter on that futex, validate it and
1223          * attach to the pi_state when the validation succeeds.
1224          */
1225         if (top_waiter)
1226                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1227
1228         /*
1229          * We are the first waiter - try to look up the owner based on
1230          * @uval and attach to it.
1231          */
1232         return attach_to_pi_owner(uval, key, ps);
1233 }
1234
1235 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1236 {
1237         u32 uninitialized_var(curval);
1238
1239         if (unlikely(should_fail_futex(true)))
1240                 return -EFAULT;
1241
1242         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1243                 return -EFAULT;
1244
1245         /* If user space value changed, let the caller retry */
1246         return curval != uval ? -EAGAIN : 0;
1247 }
1248
1249 /**
1250  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1251  * @uaddr:              the pi futex user address
1252  * @hb:                 the pi futex hash bucket
1253  * @key:                the futex key associated with uaddr and hb
1254  * @ps:                 the pi_state pointer where we store the result of the
1255  *                      lookup
1256  * @task:               the task to perform the atomic lock work for.  This will
1257  *                      be "current" except in the case of requeue pi.
1258  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1259  *
1260  * Return:
1261  *  0 - ready to wait;
1262  *  1 - acquired the lock;
1263  * <0 - error
1264  *
1265  * The hb->lock and futex_key refs shall be held by the caller.
1266  */
1267 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1268                                 union futex_key *key,
1269                                 struct futex_pi_state **ps,
1270                                 struct task_struct *task, int set_waiters)
1271 {
1272         u32 uval, newval, vpid = task_pid_vnr(task);
1273         struct futex_q *top_waiter;
1274         int ret;
1275
1276         /*
1277          * Read the user space value first so we can validate a few
1278          * things before proceeding further.
1279          */
1280         if (get_futex_value_locked(&uval, uaddr))
1281                 return -EFAULT;
1282
1283         if (unlikely(should_fail_futex(true)))
1284                 return -EFAULT;
1285
1286         /*
1287          * Detect deadlocks.
1288          */
1289         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1290                 return -EDEADLK;
1291
1292         if ((unlikely(should_fail_futex(true))))
1293                 return -EDEADLK;
1294
1295         /*
1296          * Lookup existing state first. If it exists, try to attach to
1297          * its pi_state.
1298          */
1299         top_waiter = futex_top_waiter(hb, key);
1300         if (top_waiter)
1301                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1302
1303         /*
1304          * No waiter and user TID is 0. We are here because the
1305          * waiters or the owner died bit is set or called from
1306          * requeue_cmp_pi or for whatever reason something took the
1307          * syscall.
1308          */
1309         if (!(uval & FUTEX_TID_MASK)) {
1310                 /*
1311                  * We take over the futex. No other waiters and the user space
1312                  * TID is 0. We preserve the owner died bit.
1313                  */
1314                 newval = uval & FUTEX_OWNER_DIED;
1315                 newval |= vpid;
1316
1317                 /* The futex requeue_pi code can enforce the waiters bit */
1318                 if (set_waiters)
1319                         newval |= FUTEX_WAITERS;
1320
1321                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1322                 /* If the take over worked, return 1 */
1323                 return ret < 0 ? ret : 1;
1324         }
1325
1326         /*
1327          * First waiter. Set the waiters bit before attaching ourself to
1328          * the owner. If owner tries to unlock, it will be forced into
1329          * the kernel and blocked on hb->lock.
1330          */
1331         newval = uval | FUTEX_WAITERS;
1332         ret = lock_pi_update_atomic(uaddr, uval, newval);
1333         if (ret)
1334                 return ret;
1335         /*
1336          * If the update of the user space value succeeded, we try to
1337          * attach to the owner. If that fails, no harm done, we only
1338          * set the FUTEX_WAITERS bit in the user space variable.
1339          */
1340         return attach_to_pi_owner(uval, key, ps);
1341 }
1342
1343 /**
1344  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1345  * @q:  The futex_q to unqueue
1346  *
1347  * The q->lock_ptr must not be NULL and must be held by the caller.
1348  */
1349 static void __unqueue_futex(struct futex_q *q)
1350 {
1351         struct futex_hash_bucket *hb;
1352
1353         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1354             || WARN_ON(plist_node_empty(&q->list)))
1355                 return;
1356
1357         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1358         plist_del(&q->list, &hb->chain);
1359         hb_waiters_dec(hb);
1360 }
1361
1362 /*
1363  * The hash bucket lock must be held when this is called.
1364  * Afterwards, the futex_q must not be accessed. Callers
1365  * must ensure to later call wake_up_q() for the actual
1366  * wakeups to occur.
1367  */
1368 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1369 {
1370         struct task_struct *p = q->task;
1371
1372         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1373                 return;
1374
1375         /*
1376          * Queue the task for later wakeup for after we've released
1377          * the hb->lock. wake_q_add() grabs reference to p.
1378          */
1379         wake_q_add(wake_q, p);
1380         __unqueue_futex(q);
1381         /*
1382          * The waiting task can free the futex_q as soon as
1383          * q->lock_ptr = NULL is written, without taking any locks. A
1384          * memory barrier is required here to prevent the following
1385          * store to lock_ptr from getting ahead of the plist_del.
1386          */
1387         smp_store_release(&q->lock_ptr, NULL);
1388 }
1389
1390 /*
1391  * Caller must hold a reference on @pi_state.
1392  */
1393 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1394 {
1395         u32 uninitialized_var(curval), newval;
1396         struct task_struct *new_owner;
1397         bool deboost = false;
1398         DEFINE_WAKE_Q(wake_q);
1399         int ret = 0;
1400
1401         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1402         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1403         if (!new_owner) {
1404                 /*
1405                  * Since we held neither hb->lock nor wait_lock when coming
1406                  * into this function, we could have raced with futex_lock_pi()
1407                  * such that we might observe @this futex_q waiter, but the
1408                  * rt_mutex's wait_list can be empty (either still, or again,
1409                  * depending on which side we land).
1410                  *
1411                  * When this happens, give up our locks and try again, giving
1412                  * the futex_lock_pi() instance time to complete, either by
1413                  * waiting on the rtmutex or removing itself from the futex
1414                  * queue.
1415                  */
1416                 ret = -EAGAIN;
1417                 goto out_unlock;
1418         }
1419
1420         /*
1421          * We pass it to the next owner. The WAITERS bit is always kept
1422          * enabled while there is PI state around. We cleanup the owner
1423          * died bit, because we are the owner.
1424          */
1425         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1426
1427         if (unlikely(should_fail_futex(true)))
1428                 ret = -EFAULT;
1429
1430         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1431                 ret = -EFAULT;
1432
1433         } else if (curval != uval) {
1434                 /*
1435                  * If a unconditional UNLOCK_PI operation (user space did not
1436                  * try the TID->0 transition) raced with a waiter setting the
1437                  * FUTEX_WAITERS flag between get_user() and locking the hash
1438                  * bucket lock, retry the operation.
1439                  */
1440                 if ((FUTEX_TID_MASK & curval) == uval)
1441                         ret = -EAGAIN;
1442                 else
1443                         ret = -EINVAL;
1444         }
1445
1446         if (ret)
1447                 goto out_unlock;
1448
1449         raw_spin_lock(&pi_state->owner->pi_lock);
1450         WARN_ON(list_empty(&pi_state->list));
1451         list_del_init(&pi_state->list);
1452         raw_spin_unlock(&pi_state->owner->pi_lock);
1453
1454         raw_spin_lock(&new_owner->pi_lock);
1455         WARN_ON(!list_empty(&pi_state->list));
1456         list_add(&pi_state->list, &new_owner->pi_state_list);
1457         pi_state->owner = new_owner;
1458         raw_spin_unlock(&new_owner->pi_lock);
1459
1460         /*
1461          * We've updated the uservalue, this unlock cannot fail.
1462          */
1463         deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1464
1465 out_unlock:
1466         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1467
1468         if (deboost) {
1469                 wake_up_q(&wake_q);
1470                 rt_mutex_adjust_prio(current);
1471         }
1472
1473         return ret;
1474 }
1475
1476 /*
1477  * Express the locking dependencies for lockdep:
1478  */
1479 static inline void
1480 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1481 {
1482         if (hb1 <= hb2) {
1483                 spin_lock(&hb1->lock);
1484                 if (hb1 < hb2)
1485                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1486         } else { /* hb1 > hb2 */
1487                 spin_lock(&hb2->lock);
1488                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1489         }
1490 }
1491
1492 static inline void
1493 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1494 {
1495         spin_unlock(&hb1->lock);
1496         if (hb1 != hb2)
1497                 spin_unlock(&hb2->lock);
1498 }
1499
1500 /*
1501  * Wake up waiters matching bitset queued on this futex (uaddr).
1502  */
1503 static int
1504 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1505 {
1506         struct futex_hash_bucket *hb;
1507         struct futex_q *this, *next;
1508         union futex_key key = FUTEX_KEY_INIT;
1509         int ret;
1510         DEFINE_WAKE_Q(wake_q);
1511
1512         if (!bitset)
1513                 return -EINVAL;
1514
1515         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1516         if (unlikely(ret != 0))
1517                 goto out;
1518
1519         hb = hash_futex(&key);
1520
1521         /* Make sure we really have tasks to wakeup */
1522         if (!hb_waiters_pending(hb))
1523                 goto out_put_key;
1524
1525         spin_lock(&hb->lock);
1526
1527         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1528                 if (match_futex (&this->key, &key)) {
1529                         if (this->pi_state || this->rt_waiter) {
1530                                 ret = -EINVAL;
1531                                 break;
1532                         }
1533
1534                         /* Check if one of the bits is set in both bitsets */
1535                         if (!(this->bitset & bitset))
1536                                 continue;
1537
1538                         mark_wake_futex(&wake_q, this);
1539                         if (++ret >= nr_wake)
1540                                 break;
1541                 }
1542         }
1543
1544         spin_unlock(&hb->lock);
1545         wake_up_q(&wake_q);
1546 out_put_key:
1547         put_futex_key(&key);
1548 out:
1549         return ret;
1550 }
1551
1552 /*
1553  * Wake up all waiters hashed on the physical page that is mapped
1554  * to this virtual address:
1555  */
1556 static int
1557 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1558               int nr_wake, int nr_wake2, int op)
1559 {
1560         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1561         struct futex_hash_bucket *hb1, *hb2;
1562         struct futex_q *this, *next;
1563         int ret, op_ret;
1564         DEFINE_WAKE_Q(wake_q);
1565
1566 retry:
1567         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1568         if (unlikely(ret != 0))
1569                 goto out;
1570         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1571         if (unlikely(ret != 0))
1572                 goto out_put_key1;
1573
1574         hb1 = hash_futex(&key1);
1575         hb2 = hash_futex(&key2);
1576
1577 retry_private:
1578         double_lock_hb(hb1, hb2);
1579         op_ret = futex_atomic_op_inuser(op, uaddr2);
1580         if (unlikely(op_ret < 0)) {
1581
1582                 double_unlock_hb(hb1, hb2);
1583
1584 #ifndef CONFIG_MMU
1585                 /*
1586                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1587                  * but we might get them from range checking
1588                  */
1589                 ret = op_ret;
1590                 goto out_put_keys;
1591 #endif
1592
1593                 if (unlikely(op_ret != -EFAULT)) {
1594                         ret = op_ret;
1595                         goto out_put_keys;
1596                 }
1597
1598                 ret = fault_in_user_writeable(uaddr2);
1599                 if (ret)
1600                         goto out_put_keys;
1601
1602                 if (!(flags & FLAGS_SHARED))
1603                         goto retry_private;
1604
1605                 put_futex_key(&key2);
1606                 put_futex_key(&key1);
1607                 goto retry;
1608         }
1609
1610         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1611                 if (match_futex (&this->key, &key1)) {
1612                         if (this->pi_state || this->rt_waiter) {
1613                                 ret = -EINVAL;
1614                                 goto out_unlock;
1615                         }
1616                         mark_wake_futex(&wake_q, this);
1617                         if (++ret >= nr_wake)
1618                                 break;
1619                 }
1620         }
1621
1622         if (op_ret > 0) {
1623                 op_ret = 0;
1624                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1625                         if (match_futex (&this->key, &key2)) {
1626                                 if (this->pi_state || this->rt_waiter) {
1627                                         ret = -EINVAL;
1628                                         goto out_unlock;
1629                                 }
1630                                 mark_wake_futex(&wake_q, this);
1631                                 if (++op_ret >= nr_wake2)
1632                                         break;
1633                         }
1634                 }
1635                 ret += op_ret;
1636         }
1637
1638 out_unlock:
1639         double_unlock_hb(hb1, hb2);
1640         wake_up_q(&wake_q);
1641 out_put_keys:
1642         put_futex_key(&key2);
1643 out_put_key1:
1644         put_futex_key(&key1);
1645 out:
1646         return ret;
1647 }
1648
1649 /**
1650  * requeue_futex() - Requeue a futex_q from one hb to another
1651  * @q:          the futex_q to requeue
1652  * @hb1:        the source hash_bucket
1653  * @hb2:        the target hash_bucket
1654  * @key2:       the new key for the requeued futex_q
1655  */
1656 static inline
1657 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1658                    struct futex_hash_bucket *hb2, union futex_key *key2)
1659 {
1660
1661         /*
1662          * If key1 and key2 hash to the same bucket, no need to
1663          * requeue.
1664          */
1665         if (likely(&hb1->chain != &hb2->chain)) {
1666                 plist_del(&q->list, &hb1->chain);
1667                 hb_waiters_dec(hb1);
1668                 hb_waiters_inc(hb2);
1669                 plist_add(&q->list, &hb2->chain);
1670                 q->lock_ptr = &hb2->lock;
1671         }
1672         get_futex_key_refs(key2);
1673         q->key = *key2;
1674 }
1675
1676 /**
1677  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1678  * @q:          the futex_q
1679  * @key:        the key of the requeue target futex
1680  * @hb:         the hash_bucket of the requeue target futex
1681  *
1682  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1683  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1684  * to the requeue target futex so the waiter can detect the wakeup on the right
1685  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1686  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1687  * to protect access to the pi_state to fixup the owner later.  Must be called
1688  * with both q->lock_ptr and hb->lock held.
1689  */
1690 static inline
1691 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1692                            struct futex_hash_bucket *hb)
1693 {
1694         get_futex_key_refs(key);
1695         q->key = *key;
1696
1697         __unqueue_futex(q);
1698
1699         WARN_ON(!q->rt_waiter);
1700         q->rt_waiter = NULL;
1701
1702         q->lock_ptr = &hb->lock;
1703
1704         wake_up_state(q->task, TASK_NORMAL);
1705 }
1706
1707 /**
1708  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1709  * @pifutex:            the user address of the to futex
1710  * @hb1:                the from futex hash bucket, must be locked by the caller
1711  * @hb2:                the to futex hash bucket, must be locked by the caller
1712  * @key1:               the from futex key
1713  * @key2:               the to futex key
1714  * @ps:                 address to store the pi_state pointer
1715  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1716  *
1717  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1718  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1719  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1720  * hb1 and hb2 must be held by the caller.
1721  *
1722  * Return:
1723  *  0 - failed to acquire the lock atomically;
1724  * >0 - acquired the lock, return value is vpid of the top_waiter
1725  * <0 - error
1726  */
1727 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1728                                  struct futex_hash_bucket *hb1,
1729                                  struct futex_hash_bucket *hb2,
1730                                  union futex_key *key1, union futex_key *key2,
1731                                  struct futex_pi_state **ps, int set_waiters)
1732 {
1733         struct futex_q *top_waiter = NULL;
1734         u32 curval;
1735         int ret, vpid;
1736
1737         if (get_futex_value_locked(&curval, pifutex))
1738                 return -EFAULT;
1739
1740         if (unlikely(should_fail_futex(true)))
1741                 return -EFAULT;
1742
1743         /*
1744          * Find the top_waiter and determine if there are additional waiters.
1745          * If the caller intends to requeue more than 1 waiter to pifutex,
1746          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1747          * as we have means to handle the possible fault.  If not, don't set
1748          * the bit unecessarily as it will force the subsequent unlock to enter
1749          * the kernel.
1750          */
1751         top_waiter = futex_top_waiter(hb1, key1);
1752
1753         /* There are no waiters, nothing for us to do. */
1754         if (!top_waiter)
1755                 return 0;
1756
1757         /* Ensure we requeue to the expected futex. */
1758         if (!match_futex(top_waiter->requeue_pi_key, key2))
1759                 return -EINVAL;
1760
1761         /*
1762          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1763          * the contended case or if set_waiters is 1.  The pi_state is returned
1764          * in ps in contended cases.
1765          */
1766         vpid = task_pid_vnr(top_waiter->task);
1767         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1768                                    set_waiters);
1769         if (ret == 1) {
1770                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1771                 return vpid;
1772         }
1773         return ret;
1774 }
1775
1776 /**
1777  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1778  * @uaddr1:     source futex user address
1779  * @flags:      futex flags (FLAGS_SHARED, etc.)
1780  * @uaddr2:     target futex user address
1781  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1782  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1783  * @cmpval:     @uaddr1 expected value (or %NULL)
1784  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1785  *              pi futex (pi to pi requeue is not supported)
1786  *
1787  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1788  * uaddr2 atomically on behalf of the top waiter.
1789  *
1790  * Return:
1791  * >=0 - on success, the number of tasks requeued or woken;
1792  *  <0 - on error
1793  */
1794 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1795                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1796                          u32 *cmpval, int requeue_pi)
1797 {
1798         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1799         int drop_count = 0, task_count = 0, ret;
1800         struct futex_pi_state *pi_state = NULL;
1801         struct futex_hash_bucket *hb1, *hb2;
1802         struct futex_q *this, *next;
1803         DEFINE_WAKE_Q(wake_q);
1804
1805         if (requeue_pi) {
1806                 /*
1807                  * Requeue PI only works on two distinct uaddrs. This
1808                  * check is only valid for private futexes. See below.
1809                  */
1810                 if (uaddr1 == uaddr2)
1811                         return -EINVAL;
1812
1813                 /*
1814                  * requeue_pi requires a pi_state, try to allocate it now
1815                  * without any locks in case it fails.
1816                  */
1817                 if (refill_pi_state_cache())
1818                         return -ENOMEM;
1819                 /*
1820                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1821                  * + nr_requeue, since it acquires the rt_mutex prior to
1822                  * returning to userspace, so as to not leave the rt_mutex with
1823                  * waiters and no owner.  However, second and third wake-ups
1824                  * cannot be predicted as they involve race conditions with the
1825                  * first wake and a fault while looking up the pi_state.  Both
1826                  * pthread_cond_signal() and pthread_cond_broadcast() should
1827                  * use nr_wake=1.
1828                  */
1829                 if (nr_wake != 1)
1830                         return -EINVAL;
1831         }
1832
1833 retry:
1834         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1835         if (unlikely(ret != 0))
1836                 goto out;
1837         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1838                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1839         if (unlikely(ret != 0))
1840                 goto out_put_key1;
1841
1842         /*
1843          * The check above which compares uaddrs is not sufficient for
1844          * shared futexes. We need to compare the keys:
1845          */
1846         if (requeue_pi && match_futex(&key1, &key2)) {
1847                 ret = -EINVAL;
1848                 goto out_put_keys;
1849         }
1850
1851         hb1 = hash_futex(&key1);
1852         hb2 = hash_futex(&key2);
1853
1854 retry_private:
1855         hb_waiters_inc(hb2);
1856         double_lock_hb(hb1, hb2);
1857
1858         if (likely(cmpval != NULL)) {
1859                 u32 curval;
1860
1861                 ret = get_futex_value_locked(&curval, uaddr1);
1862
1863                 if (unlikely(ret)) {
1864                         double_unlock_hb(hb1, hb2);
1865                         hb_waiters_dec(hb2);
1866
1867                         ret = get_user(curval, uaddr1);
1868                         if (ret)
1869                                 goto out_put_keys;
1870
1871                         if (!(flags & FLAGS_SHARED))
1872                                 goto retry_private;
1873
1874                         put_futex_key(&key2);
1875                         put_futex_key(&key1);
1876                         goto retry;
1877                 }
1878                 if (curval != *cmpval) {
1879                         ret = -EAGAIN;
1880                         goto out_unlock;
1881                 }
1882         }
1883
1884         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1885                 /*
1886                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1887                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1888                  * bit.  We force this here where we are able to easily handle
1889                  * faults rather in the requeue loop below.
1890                  */
1891                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1892                                                  &key2, &pi_state, nr_requeue);
1893
1894                 /*
1895                  * At this point the top_waiter has either taken uaddr2 or is
1896                  * waiting on it.  If the former, then the pi_state will not
1897                  * exist yet, look it up one more time to ensure we have a
1898                  * reference to it. If the lock was taken, ret contains the
1899                  * vpid of the top waiter task.
1900                  * If the lock was not taken, we have pi_state and an initial
1901                  * refcount on it. In case of an error we have nothing.
1902                  */
1903                 if (ret > 0) {
1904                         WARN_ON(pi_state);
1905                         drop_count++;
1906                         task_count++;
1907                         /*
1908                          * If we acquired the lock, then the user space value
1909                          * of uaddr2 should be vpid. It cannot be changed by
1910                          * the top waiter as it is blocked on hb2 lock if it
1911                          * tries to do so. If something fiddled with it behind
1912                          * our back the pi state lookup might unearth it. So
1913                          * we rather use the known value than rereading and
1914                          * handing potential crap to lookup_pi_state.
1915                          *
1916                          * If that call succeeds then we have pi_state and an
1917                          * initial refcount on it.
1918                          */
1919                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1920                 }
1921
1922                 switch (ret) {
1923                 case 0:
1924                         /* We hold a reference on the pi state. */
1925                         break;
1926
1927                         /* If the above failed, then pi_state is NULL */
1928                 case -EFAULT:
1929                         double_unlock_hb(hb1, hb2);
1930                         hb_waiters_dec(hb2);
1931                         put_futex_key(&key2);
1932                         put_futex_key(&key1);
1933                         ret = fault_in_user_writeable(uaddr2);
1934                         if (!ret)
1935                                 goto retry;
1936                         goto out;
1937                 case -EAGAIN:
1938                         /*
1939                          * Two reasons for this:
1940                          * - Owner is exiting and we just wait for the
1941                          *   exit to complete.
1942                          * - The user space value changed.
1943                          */
1944                         double_unlock_hb(hb1, hb2);
1945                         hb_waiters_dec(hb2);
1946                         put_futex_key(&key2);
1947                         put_futex_key(&key1);
1948                         cond_resched();
1949                         goto retry;
1950                 default:
1951                         goto out_unlock;
1952                 }
1953         }
1954
1955         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1956                 if (task_count - nr_wake >= nr_requeue)
1957                         break;
1958
1959                 if (!match_futex(&this->key, &key1))
1960                         continue;
1961
1962                 /*
1963                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1964                  * be paired with each other and no other futex ops.
1965                  *
1966                  * We should never be requeueing a futex_q with a pi_state,
1967                  * which is awaiting a futex_unlock_pi().
1968                  */
1969                 if ((requeue_pi && !this->rt_waiter) ||
1970                     (!requeue_pi && this->rt_waiter) ||
1971                     this->pi_state) {
1972                         ret = -EINVAL;
1973                         break;
1974                 }
1975
1976                 /*
1977                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1978                  * lock, we already woke the top_waiter.  If not, it will be
1979                  * woken by futex_unlock_pi().
1980                  */
1981                 if (++task_count <= nr_wake && !requeue_pi) {
1982                         mark_wake_futex(&wake_q, this);
1983                         continue;
1984                 }
1985
1986                 /* Ensure we requeue to the expected futex for requeue_pi. */
1987                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1988                         ret = -EINVAL;
1989                         break;
1990                 }
1991
1992                 /*
1993                  * Requeue nr_requeue waiters and possibly one more in the case
1994                  * of requeue_pi if we couldn't acquire the lock atomically.
1995                  */
1996                 if (requeue_pi) {
1997                         /*
1998                          * Prepare the waiter to take the rt_mutex. Take a
1999                          * refcount on the pi_state and store the pointer in
2000                          * the futex_q object of the waiter.
2001                          */
2002                         get_pi_state(pi_state);
2003                         this->pi_state = pi_state;
2004                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2005                                                         this->rt_waiter,
2006                                                         this->task);
2007                         if (ret == 1) {
2008                                 /*
2009                                  * We got the lock. We do neither drop the
2010                                  * refcount on pi_state nor clear
2011                                  * this->pi_state because the waiter needs the
2012                                  * pi_state for cleaning up the user space
2013                                  * value. It will drop the refcount after
2014                                  * doing so.
2015                                  */
2016                                 requeue_pi_wake_futex(this, &key2, hb2);
2017                                 drop_count++;
2018                                 continue;
2019                         } else if (ret) {
2020                                 /*
2021                                  * rt_mutex_start_proxy_lock() detected a
2022                                  * potential deadlock when we tried to queue
2023                                  * that waiter. Drop the pi_state reference
2024                                  * which we took above and remove the pointer
2025                                  * to the state from the waiters futex_q
2026                                  * object.
2027                                  */
2028                                 this->pi_state = NULL;
2029                                 put_pi_state(pi_state);
2030                                 /*
2031                                  * We stop queueing more waiters and let user
2032                                  * space deal with the mess.
2033                                  */
2034                                 break;
2035                         }
2036                 }
2037                 requeue_futex(this, hb1, hb2, &key2);
2038                 drop_count++;
2039         }
2040
2041         /*
2042          * We took an extra initial reference to the pi_state either
2043          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2044          * need to drop it here again.
2045          */
2046         put_pi_state(pi_state);
2047
2048 out_unlock:
2049         double_unlock_hb(hb1, hb2);
2050         wake_up_q(&wake_q);
2051         hb_waiters_dec(hb2);
2052
2053         /*
2054          * drop_futex_key_refs() must be called outside the spinlocks. During
2055          * the requeue we moved futex_q's from the hash bucket at key1 to the
2056          * one at key2 and updated their key pointer.  We no longer need to
2057          * hold the references to key1.
2058          */
2059         while (--drop_count >= 0)
2060                 drop_futex_key_refs(&key1);
2061
2062 out_put_keys:
2063         put_futex_key(&key2);
2064 out_put_key1:
2065         put_futex_key(&key1);
2066 out:
2067         return ret ? ret : task_count;
2068 }
2069
2070 /* The key must be already stored in q->key. */
2071 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2072         __acquires(&hb->lock)
2073 {
2074         struct futex_hash_bucket *hb;
2075
2076         hb = hash_futex(&q->key);
2077
2078         /*
2079          * Increment the counter before taking the lock so that
2080          * a potential waker won't miss a to-be-slept task that is
2081          * waiting for the spinlock. This is safe as all queue_lock()
2082          * users end up calling queue_me(). Similarly, for housekeeping,
2083          * decrement the counter at queue_unlock() when some error has
2084          * occurred and we don't end up adding the task to the list.
2085          */
2086         hb_waiters_inc(hb);
2087
2088         q->lock_ptr = &hb->lock;
2089
2090         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2091         return hb;
2092 }
2093
2094 static inline void
2095 queue_unlock(struct futex_hash_bucket *hb)
2096         __releases(&hb->lock)
2097 {
2098         spin_unlock(&hb->lock);
2099         hb_waiters_dec(hb);
2100 }
2101
2102 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2103 {
2104         int prio;
2105
2106         /*
2107          * The priority used to register this element is
2108          * - either the real thread-priority for the real-time threads
2109          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2110          * - or MAX_RT_PRIO for non-RT threads.
2111          * Thus, all RT-threads are woken first in priority order, and
2112          * the others are woken last, in FIFO order.
2113          */
2114         prio = min(current->normal_prio, MAX_RT_PRIO);
2115
2116         plist_node_init(&q->list, prio);
2117         plist_add(&q->list, &hb->chain);
2118         q->task = current;
2119 }
2120
2121 /**
2122  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2123  * @q:  The futex_q to enqueue
2124  * @hb: The destination hash bucket
2125  *
2126  * The hb->lock must be held by the caller, and is released here. A call to
2127  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2128  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2129  * or nothing if the unqueue is done as part of the wake process and the unqueue
2130  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2131  * an example).
2132  */
2133 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2134         __releases(&hb->lock)
2135 {
2136         __queue_me(q, hb);
2137         spin_unlock(&hb->lock);
2138 }
2139
2140 /**
2141  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2142  * @q:  The futex_q to unqueue
2143  *
2144  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2145  * be paired with exactly one earlier call to queue_me().
2146  *
2147  * Return:
2148  *   1 - if the futex_q was still queued (and we removed unqueued it);
2149  *   0 - if the futex_q was already removed by the waking thread
2150  */
2151 static int unqueue_me(struct futex_q *q)
2152 {
2153         spinlock_t *lock_ptr;
2154         int ret = 0;
2155
2156         /* In the common case we don't take the spinlock, which is nice. */
2157 retry:
2158         /*
2159          * q->lock_ptr can change between this read and the following spin_lock.
2160          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2161          * optimizing lock_ptr out of the logic below.
2162          */
2163         lock_ptr = READ_ONCE(q->lock_ptr);
2164         if (lock_ptr != NULL) {
2165                 spin_lock(lock_ptr);
2166                 /*
2167                  * q->lock_ptr can change between reading it and
2168                  * spin_lock(), causing us to take the wrong lock.  This
2169                  * corrects the race condition.
2170                  *
2171                  * Reasoning goes like this: if we have the wrong lock,
2172                  * q->lock_ptr must have changed (maybe several times)
2173                  * between reading it and the spin_lock().  It can
2174                  * change again after the spin_lock() but only if it was
2175                  * already changed before the spin_lock().  It cannot,
2176                  * however, change back to the original value.  Therefore
2177                  * we can detect whether we acquired the correct lock.
2178                  */
2179                 if (unlikely(lock_ptr != q->lock_ptr)) {
2180                         spin_unlock(lock_ptr);
2181                         goto retry;
2182                 }
2183                 __unqueue_futex(q);
2184
2185                 BUG_ON(q->pi_state);
2186
2187                 spin_unlock(lock_ptr);
2188                 ret = 1;
2189         }
2190
2191         drop_futex_key_refs(&q->key);
2192         return ret;
2193 }
2194
2195 /*
2196  * PI futexes can not be requeued and must remove themself from the
2197  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2198  * and dropped here.
2199  */
2200 static void unqueue_me_pi(struct futex_q *q)
2201         __releases(q->lock_ptr)
2202 {
2203         __unqueue_futex(q);
2204
2205         BUG_ON(!q->pi_state);
2206         put_pi_state(q->pi_state);
2207         q->pi_state = NULL;
2208
2209         spin_unlock(q->lock_ptr);
2210 }
2211
2212 /*
2213  * Fixup the pi_state owner with the new owner.
2214  *
2215  * Must be called with hash bucket lock held and mm->sem held for non
2216  * private futexes.
2217  */
2218 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2219                                 struct task_struct *newowner)
2220 {
2221         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2222         struct futex_pi_state *pi_state = q->pi_state;
2223         u32 uval, uninitialized_var(curval), newval;
2224         struct task_struct *oldowner;
2225         int ret;
2226
2227         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2228
2229         oldowner = pi_state->owner;
2230         /* Owner died? */
2231         if (!pi_state->owner)
2232                 newtid |= FUTEX_OWNER_DIED;
2233
2234         /*
2235          * We are here either because we stole the rtmutex from the
2236          * previous highest priority waiter or we are the highest priority
2237          * waiter but have failed to get the rtmutex the first time.
2238          *
2239          * We have to replace the newowner TID in the user space variable.
2240          * This must be atomic as we have to preserve the owner died bit here.
2241          *
2242          * Note: We write the user space value _before_ changing the pi_state
2243          * because we can fault here. Imagine swapped out pages or a fork
2244          * that marked all the anonymous memory readonly for cow.
2245          *
2246          * Modifying pi_state _before_ the user space value would leave the
2247          * pi_state in an inconsistent state when we fault here, because we
2248          * need to drop the locks to handle the fault. This might be observed
2249          * in the PID check in lookup_pi_state.
2250          */
2251 retry:
2252         if (get_futex_value_locked(&uval, uaddr))
2253                 goto handle_fault;
2254
2255         for (;;) {
2256                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2257
2258                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2259                         goto handle_fault;
2260                 if (curval == uval)
2261                         break;
2262                 uval = curval;
2263         }
2264
2265         /*
2266          * We fixed up user space. Now we need to fix the pi_state
2267          * itself.
2268          */
2269         if (pi_state->owner != NULL) {
2270                 raw_spin_lock(&pi_state->owner->pi_lock);
2271                 WARN_ON(list_empty(&pi_state->list));
2272                 list_del_init(&pi_state->list);
2273                 raw_spin_unlock(&pi_state->owner->pi_lock);
2274         }
2275
2276         pi_state->owner = newowner;
2277
2278         raw_spin_lock(&newowner->pi_lock);
2279         WARN_ON(!list_empty(&pi_state->list));
2280         list_add(&pi_state->list, &newowner->pi_state_list);
2281         raw_spin_unlock(&newowner->pi_lock);
2282         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2283
2284         return 0;
2285
2286         /*
2287          * To handle the page fault we need to drop the locks here. That gives
2288          * the other task (either the highest priority waiter itself or the
2289          * task which stole the rtmutex) the chance to try the fixup of the
2290          * pi_state. So once we are back from handling the fault we need to
2291          * check the pi_state after reacquiring the locks and before trying to
2292          * do another fixup. When the fixup has been done already we simply
2293          * return.
2294          *
2295          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2296          * drop hb->lock since the caller owns the hb -> futex_q relation.
2297          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2298          */
2299 handle_fault:
2300         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2301         spin_unlock(q->lock_ptr);
2302
2303         ret = fault_in_user_writeable(uaddr);
2304
2305         spin_lock(q->lock_ptr);
2306         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2307
2308         /*
2309          * Check if someone else fixed it for us:
2310          */
2311         if (pi_state->owner != oldowner) {
2312                 ret = 0;
2313                 goto out_unlock;
2314         }
2315
2316         if (ret)
2317                 goto out_unlock;
2318
2319         goto retry;
2320
2321 out_unlock:
2322         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2323         return ret;
2324 }
2325
2326 static long futex_wait_restart(struct restart_block *restart);
2327
2328 /**
2329  * fixup_owner() - Post lock pi_state and corner case management
2330  * @uaddr:      user address of the futex
2331  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2332  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2333  *
2334  * After attempting to lock an rt_mutex, this function is called to cleanup
2335  * the pi_state owner as well as handle race conditions that may allow us to
2336  * acquire the lock. Must be called with the hb lock held.
2337  *
2338  * Return:
2339  *  1 - success, lock taken;
2340  *  0 - success, lock not taken;
2341  * <0 - on error (-EFAULT)
2342  */
2343 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2344 {
2345         int ret = 0;
2346
2347         if (locked) {
2348                 /*
2349                  * Got the lock. We might not be the anticipated owner if we
2350                  * did a lock-steal - fix up the PI-state in that case:
2351                  *
2352                  * We can safely read pi_state->owner without holding wait_lock
2353                  * because we now own the rt_mutex, only the owner will attempt
2354                  * to change it.
2355                  */
2356                 if (q->pi_state->owner != current)
2357                         ret = fixup_pi_state_owner(uaddr, q, current);
2358                 goto out;
2359         }
2360
2361         /*
2362          * Paranoia check. If we did not take the lock, then we should not be
2363          * the owner of the rt_mutex.
2364          */
2365         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2366                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2367                                 "pi-state %p\n", ret,
2368                                 q->pi_state->pi_mutex.owner,
2369                                 q->pi_state->owner);
2370         }
2371
2372 out:
2373         return ret ? ret : locked;
2374 }
2375
2376 /**
2377  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2378  * @hb:         the futex hash bucket, must be locked by the caller
2379  * @q:          the futex_q to queue up on
2380  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2381  */
2382 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2383                                 struct hrtimer_sleeper *timeout)
2384 {
2385         /*
2386          * The task state is guaranteed to be set before another task can
2387          * wake it. set_current_state() is implemented using smp_store_mb() and
2388          * queue_me() calls spin_unlock() upon completion, both serializing
2389          * access to the hash list and forcing another memory barrier.
2390          */
2391         set_current_state(TASK_INTERRUPTIBLE);
2392         queue_me(q, hb);
2393
2394         /* Arm the timer */
2395         if (timeout)
2396                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2397
2398         /*
2399          * If we have been removed from the hash list, then another task
2400          * has tried to wake us, and we can skip the call to schedule().
2401          */
2402         if (likely(!plist_node_empty(&q->list))) {
2403                 /*
2404                  * If the timer has already expired, current will already be
2405                  * flagged for rescheduling. Only call schedule if there
2406                  * is no timeout, or if it has yet to expire.
2407                  */
2408                 if (!timeout || timeout->task)
2409                         freezable_schedule();
2410         }
2411         __set_current_state(TASK_RUNNING);
2412 }
2413
2414 /**
2415  * futex_wait_setup() - Prepare to wait on a futex
2416  * @uaddr:      the futex userspace address
2417  * @val:        the expected value
2418  * @flags:      futex flags (FLAGS_SHARED, etc.)
2419  * @q:          the associated futex_q
2420  * @hb:         storage for hash_bucket pointer to be returned to caller
2421  *
2422  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2423  * compare it with the expected value.  Handle atomic faults internally.
2424  * Return with the hb lock held and a q.key reference on success, and unlocked
2425  * with no q.key reference on failure.
2426  *
2427  * Return:
2428  *  0 - uaddr contains val and hb has been locked;
2429  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2430  */
2431 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2432                            struct futex_q *q, struct futex_hash_bucket **hb)
2433 {
2434         u32 uval;
2435         int ret;
2436
2437         /*
2438          * Access the page AFTER the hash-bucket is locked.
2439          * Order is important:
2440          *
2441          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2442          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2443          *
2444          * The basic logical guarantee of a futex is that it blocks ONLY
2445          * if cond(var) is known to be true at the time of blocking, for
2446          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2447          * would open a race condition where we could block indefinitely with
2448          * cond(var) false, which would violate the guarantee.
2449          *
2450          * On the other hand, we insert q and release the hash-bucket only
2451          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2452          * absorb a wakeup if *uaddr does not match the desired values
2453          * while the syscall executes.
2454          */
2455 retry:
2456         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2457         if (unlikely(ret != 0))
2458                 return ret;
2459
2460 retry_private:
2461         *hb = queue_lock(q);
2462
2463         ret = get_futex_value_locked(&uval, uaddr);
2464
2465         if (ret) {
2466                 queue_unlock(*hb);
2467
2468                 ret = get_user(uval, uaddr);
2469                 if (ret)
2470                         goto out;
2471
2472                 if (!(flags & FLAGS_SHARED))
2473                         goto retry_private;
2474
2475                 put_futex_key(&q->key);
2476                 goto retry;
2477         }
2478
2479         if (uval != val) {
2480                 queue_unlock(*hb);
2481                 ret = -EWOULDBLOCK;
2482         }
2483
2484 out:
2485         if (ret)
2486                 put_futex_key(&q->key);
2487         return ret;
2488 }
2489
2490 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2491                       ktime_t *abs_time, u32 bitset)
2492 {
2493         struct hrtimer_sleeper timeout, *to = NULL;
2494         struct restart_block *restart;
2495         struct futex_hash_bucket *hb;
2496         struct futex_q q = futex_q_init;
2497         int ret;
2498
2499         if (!bitset)
2500                 return -EINVAL;
2501         q.bitset = bitset;
2502
2503         if (abs_time) {
2504                 to = &timeout;
2505
2506                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2507                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2508                                       HRTIMER_MODE_ABS);
2509                 hrtimer_init_sleeper(to, current);
2510                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2511                                              current->timer_slack_ns);
2512         }
2513
2514 retry:
2515         /*
2516          * Prepare to wait on uaddr. On success, holds hb lock and increments
2517          * q.key refs.
2518          */
2519         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2520         if (ret)
2521                 goto out;
2522
2523         /* queue_me and wait for wakeup, timeout, or a signal. */
2524         futex_wait_queue_me(hb, &q, to);
2525
2526         /* If we were woken (and unqueued), we succeeded, whatever. */
2527         ret = 0;
2528         /* unqueue_me() drops q.key ref */
2529         if (!unqueue_me(&q))
2530                 goto out;
2531         ret = -ETIMEDOUT;
2532         if (to && !to->task)
2533                 goto out;
2534
2535         /*
2536          * We expect signal_pending(current), but we might be the
2537          * victim of a spurious wakeup as well.
2538          */
2539         if (!signal_pending(current))
2540                 goto retry;
2541
2542         ret = -ERESTARTSYS;
2543         if (!abs_time)
2544                 goto out;
2545
2546         restart = &current->restart_block;
2547         restart->fn = futex_wait_restart;
2548         restart->futex.uaddr = uaddr;
2549         restart->futex.val = val;
2550         restart->futex.time = *abs_time;
2551         restart->futex.bitset = bitset;
2552         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2553
2554         ret = -ERESTART_RESTARTBLOCK;
2555
2556 out:
2557         if (to) {
2558                 hrtimer_cancel(&to->timer);
2559                 destroy_hrtimer_on_stack(&to->timer);
2560         }
2561         return ret;
2562 }
2563
2564
2565 static long futex_wait_restart(struct restart_block *restart)
2566 {
2567         u32 __user *uaddr = restart->futex.uaddr;
2568         ktime_t t, *tp = NULL;
2569
2570         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2571                 t = restart->futex.time;
2572                 tp = &t;
2573         }
2574         restart->fn = do_no_restart_syscall;
2575
2576         return (long)futex_wait(uaddr, restart->futex.flags,
2577                                 restart->futex.val, tp, restart->futex.bitset);
2578 }
2579
2580
2581 /*
2582  * Userspace tried a 0 -> TID atomic transition of the futex value
2583  * and failed. The kernel side here does the whole locking operation:
2584  * if there are waiters then it will block as a consequence of relying
2585  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2586  * a 0 value of the futex too.).
2587  *
2588  * Also serves as futex trylock_pi()'ing, and due semantics.
2589  */
2590 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2591                          ktime_t *time, int trylock)
2592 {
2593         struct hrtimer_sleeper timeout, *to = NULL;
2594         struct futex_pi_state *pi_state = NULL;
2595         struct rt_mutex_waiter rt_waiter;
2596         struct futex_hash_bucket *hb;
2597         struct futex_q q = futex_q_init;
2598         int res, ret;
2599
2600         if (refill_pi_state_cache())
2601                 return -ENOMEM;
2602
2603         if (time) {
2604                 to = &timeout;
2605                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2606                                       HRTIMER_MODE_ABS);
2607                 hrtimer_init_sleeper(to, current);
2608                 hrtimer_set_expires(&to->timer, *time);
2609         }
2610
2611 retry:
2612         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2613         if (unlikely(ret != 0))
2614                 goto out;
2615
2616 retry_private:
2617         hb = queue_lock(&q);
2618
2619         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2620         if (unlikely(ret)) {
2621                 /*
2622                  * Atomic work succeeded and we got the lock,
2623                  * or failed. Either way, we do _not_ block.
2624                  */
2625                 switch (ret) {
2626                 case 1:
2627                         /* We got the lock. */
2628                         ret = 0;
2629                         goto out_unlock_put_key;
2630                 case -EFAULT:
2631                         goto uaddr_faulted;
2632                 case -EAGAIN:
2633                         /*
2634                          * Two reasons for this:
2635                          * - Task is exiting and we just wait for the
2636                          *   exit to complete.
2637                          * - The user space value changed.
2638                          */
2639                         queue_unlock(hb);
2640                         put_futex_key(&q.key);
2641                         cond_resched();
2642                         goto retry;
2643                 default:
2644                         goto out_unlock_put_key;
2645                 }
2646         }
2647
2648         WARN_ON(!q.pi_state);
2649
2650         /*
2651          * Only actually queue now that the atomic ops are done:
2652          */
2653         __queue_me(&q, hb);
2654
2655         if (trylock) {
2656                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2657                 /* Fixup the trylock return value: */
2658                 ret = ret ? 0 : -EWOULDBLOCK;
2659                 goto no_block;
2660         }
2661
2662         /*
2663          * We must add ourselves to the rt_mutex waitlist while holding hb->lock
2664          * such that the hb and rt_mutex wait lists match.
2665          */
2666         rt_mutex_init_waiter(&rt_waiter);
2667         ret = rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2668         if (ret) {
2669                 if (ret == 1)
2670                         ret = 0;
2671
2672                 goto no_block;
2673         }
2674
2675         spin_unlock(q.lock_ptr);
2676
2677         if (unlikely(to))
2678                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2679
2680         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2681
2682         spin_lock(q.lock_ptr);
2683         /*
2684          * If we failed to acquire the lock (signal/timeout), we must
2685          * first acquire the hb->lock before removing the lock from the
2686          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2687          * wait lists consistent.
2688          */
2689         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2690                 ret = 0;
2691
2692 no_block:
2693         /*
2694          * Fixup the pi_state owner and possibly acquire the lock if we
2695          * haven't already.
2696          */
2697         res = fixup_owner(uaddr, &q, !ret);
2698         /*
2699          * If fixup_owner() returned an error, proprogate that.  If it acquired
2700          * the lock, clear our -ETIMEDOUT or -EINTR.
2701          */
2702         if (res)
2703                 ret = (res < 0) ? res : 0;
2704
2705         /*
2706          * If fixup_owner() faulted and was unable to handle the fault, unlock
2707          * it and return the fault to userspace.
2708          */
2709         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2710                 pi_state = q.pi_state;
2711                 get_pi_state(pi_state);
2712         }
2713
2714         /* Unqueue and drop the lock */
2715         unqueue_me_pi(&q);
2716
2717         if (pi_state) {
2718                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2719                 put_pi_state(pi_state);
2720         }
2721
2722         goto out_put_key;
2723
2724 out_unlock_put_key:
2725         queue_unlock(hb);
2726
2727 out_put_key:
2728         put_futex_key(&q.key);
2729 out:
2730         if (to)
2731                 destroy_hrtimer_on_stack(&to->timer);
2732         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2733
2734 uaddr_faulted:
2735         queue_unlock(hb);
2736
2737         ret = fault_in_user_writeable(uaddr);
2738         if (ret)
2739                 goto out_put_key;
2740
2741         if (!(flags & FLAGS_SHARED))
2742                 goto retry_private;
2743
2744         put_futex_key(&q.key);
2745         goto retry;
2746 }
2747
2748 /*
2749  * Userspace attempted a TID -> 0 atomic transition, and failed.
2750  * This is the in-kernel slowpath: we look up the PI state (if any),
2751  * and do the rt-mutex unlock.
2752  */
2753 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2754 {
2755         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2756         union futex_key key = FUTEX_KEY_INIT;
2757         struct futex_hash_bucket *hb;
2758         struct futex_q *top_waiter;
2759         int ret;
2760
2761 retry:
2762         if (get_user(uval, uaddr))
2763                 return -EFAULT;
2764         /*
2765          * We release only a lock we actually own:
2766          */
2767         if ((uval & FUTEX_TID_MASK) != vpid)
2768                 return -EPERM;
2769
2770         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2771         if (ret)
2772                 return ret;
2773
2774         hb = hash_futex(&key);
2775         spin_lock(&hb->lock);
2776
2777         /*
2778          * Check waiters first. We do not trust user space values at
2779          * all and we at least want to know if user space fiddled
2780          * with the futex value instead of blindly unlocking.
2781          */
2782         top_waiter = futex_top_waiter(hb, &key);
2783         if (top_waiter) {
2784                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2785
2786                 ret = -EINVAL;
2787                 if (!pi_state)
2788                         goto out_unlock;
2789
2790                 /*
2791                  * If current does not own the pi_state then the futex is
2792                  * inconsistent and user space fiddled with the futex value.
2793                  */
2794                 if (pi_state->owner != current)
2795                         goto out_unlock;
2796
2797                 /*
2798                  * Grab a reference on the pi_state and drop hb->lock.
2799                  *
2800                  * The reference ensures pi_state lives, dropping the hb->lock
2801                  * is tricky.. wake_futex_pi() will take rt_mutex::wait_lock to
2802                  * close the races against futex_lock_pi(), but in case of
2803                  * _any_ fail we'll abort and retry the whole deal.
2804                  */
2805                 get_pi_state(pi_state);
2806                 spin_unlock(&hb->lock);
2807
2808                 ret = wake_futex_pi(uaddr, uval, pi_state);
2809
2810                 put_pi_state(pi_state);
2811
2812                 /*
2813                  * Success, we're done! No tricky corner cases.
2814                  */
2815                 if (!ret)
2816                         goto out_putkey;
2817                 /*
2818                  * The atomic access to the futex value generated a
2819                  * pagefault, so retry the user-access and the wakeup:
2820                  */
2821                 if (ret == -EFAULT)
2822                         goto pi_faulted;
2823                 /*
2824                  * A unconditional UNLOCK_PI op raced against a waiter
2825                  * setting the FUTEX_WAITERS bit. Try again.
2826                  */
2827                 if (ret == -EAGAIN) {
2828                         put_futex_key(&key);
2829                         goto retry;
2830                 }
2831                 /*
2832                  * wake_futex_pi has detected invalid state. Tell user
2833                  * space.
2834                  */
2835                 goto out_putkey;
2836         }
2837
2838         /*
2839          * We have no kernel internal state, i.e. no waiters in the
2840          * kernel. Waiters which are about to queue themselves are stuck
2841          * on hb->lock. So we can safely ignore them. We do neither
2842          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2843          * owner.
2844          */
2845         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2846                 spin_unlock(&hb->lock);
2847                 goto pi_faulted;
2848         }
2849
2850         /*
2851          * If uval has changed, let user space handle it.
2852          */
2853         ret = (curval == uval) ? 0 : -EAGAIN;
2854
2855 out_unlock:
2856         spin_unlock(&hb->lock);
2857 out_putkey:
2858         put_futex_key(&key);
2859         return ret;
2860
2861 pi_faulted:
2862         put_futex_key(&key);
2863
2864         ret = fault_in_user_writeable(uaddr);
2865         if (!ret)
2866                 goto retry;
2867
2868         return ret;
2869 }
2870
2871 /**
2872  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2873  * @hb:         the hash_bucket futex_q was original enqueued on
2874  * @q:          the futex_q woken while waiting to be requeued
2875  * @key2:       the futex_key of the requeue target futex
2876  * @timeout:    the timeout associated with the wait (NULL if none)
2877  *
2878  * Detect if the task was woken on the initial futex as opposed to the requeue
2879  * target futex.  If so, determine if it was a timeout or a signal that caused
2880  * the wakeup and return the appropriate error code to the caller.  Must be
2881  * called with the hb lock held.
2882  *
2883  * Return:
2884  *  0 = no early wakeup detected;
2885  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2886  */
2887 static inline
2888 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2889                                    struct futex_q *q, union futex_key *key2,
2890                                    struct hrtimer_sleeper *timeout)
2891 {
2892         int ret = 0;
2893
2894         /*
2895          * With the hb lock held, we avoid races while we process the wakeup.
2896          * We only need to hold hb (and not hb2) to ensure atomicity as the
2897          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2898          * It can't be requeued from uaddr2 to something else since we don't
2899          * support a PI aware source futex for requeue.
2900          */
2901         if (!match_futex(&q->key, key2)) {
2902                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2903                 /*
2904                  * We were woken prior to requeue by a timeout or a signal.
2905                  * Unqueue the futex_q and determine which it was.
2906                  */
2907                 plist_del(&q->list, &hb->chain);
2908                 hb_waiters_dec(hb);
2909
2910                 /* Handle spurious wakeups gracefully */
2911                 ret = -EWOULDBLOCK;
2912                 if (timeout && !timeout->task)
2913                         ret = -ETIMEDOUT;
2914                 else if (signal_pending(current))
2915                         ret = -ERESTARTNOINTR;
2916         }
2917         return ret;
2918 }
2919
2920 /**
2921  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2922  * @uaddr:      the futex we initially wait on (non-pi)
2923  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2924  *              the same type, no requeueing from private to shared, etc.
2925  * @val:        the expected value of uaddr
2926  * @abs_time:   absolute timeout
2927  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2928  * @uaddr2:     the pi futex we will take prior to returning to user-space
2929  *
2930  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2931  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2932  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2933  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2934  * without one, the pi logic would not know which task to boost/deboost, if
2935  * there was a need to.
2936  *
2937  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2938  * via the following--
2939  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2940  * 2) wakeup on uaddr2 after a requeue
2941  * 3) signal
2942  * 4) timeout
2943  *
2944  * If 3, cleanup and return -ERESTARTNOINTR.
2945  *
2946  * If 2, we may then block on trying to take the rt_mutex and return via:
2947  * 5) successful lock
2948  * 6) signal
2949  * 7) timeout
2950  * 8) other lock acquisition failure
2951  *
2952  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2953  *
2954  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2955  *
2956  * Return:
2957  *  0 - On success;
2958  * <0 - On error
2959  */
2960 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2961                                  u32 val, ktime_t *abs_time, u32 bitset,
2962                                  u32 __user *uaddr2)
2963 {
2964         struct hrtimer_sleeper timeout, *to = NULL;
2965         struct futex_pi_state *pi_state = NULL;
2966         struct rt_mutex_waiter rt_waiter;
2967         struct futex_hash_bucket *hb;
2968         union futex_key key2 = FUTEX_KEY_INIT;
2969         struct futex_q q = futex_q_init;
2970         int res, ret;
2971
2972         if (uaddr == uaddr2)
2973                 return -EINVAL;
2974
2975         if (!bitset)
2976                 return -EINVAL;
2977
2978         if (abs_time) {
2979                 to = &timeout;
2980                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2981                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2982                                       HRTIMER_MODE_ABS);
2983                 hrtimer_init_sleeper(to, current);
2984                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2985                                              current->timer_slack_ns);
2986         }
2987
2988         /*
2989          * The waiter is allocated on our stack, manipulated by the requeue
2990          * code while we sleep on uaddr.
2991          */
2992         rt_mutex_init_waiter(&rt_waiter);
2993
2994         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2995         if (unlikely(ret != 0))
2996                 goto out;
2997
2998         q.bitset = bitset;
2999         q.rt_waiter = &rt_waiter;
3000         q.requeue_pi_key = &key2;
3001
3002         /*
3003          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3004          * count.
3005          */
3006         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3007         if (ret)
3008                 goto out_key2;
3009
3010         /*
3011          * The check above which compares uaddrs is not sufficient for
3012          * shared futexes. We need to compare the keys:
3013          */
3014         if (match_futex(&q.key, &key2)) {
3015                 queue_unlock(hb);
3016                 ret = -EINVAL;
3017                 goto out_put_keys;
3018         }
3019
3020         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3021         futex_wait_queue_me(hb, &q, to);
3022
3023         spin_lock(&hb->lock);
3024         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3025         spin_unlock(&hb->lock);
3026         if (ret)
3027                 goto out_put_keys;
3028
3029         /*
3030          * In order for us to be here, we know our q.key == key2, and since
3031          * we took the hb->lock above, we also know that futex_requeue() has
3032          * completed and we no longer have to concern ourselves with a wakeup
3033          * race with the atomic proxy lock acquisition by the requeue code. The
3034          * futex_requeue dropped our key1 reference and incremented our key2
3035          * reference count.
3036          */
3037
3038         /* Check if the requeue code acquired the second futex for us. */
3039         if (!q.rt_waiter) {
3040                 /*
3041                  * Got the lock. We might not be the anticipated owner if we
3042                  * did a lock-steal - fix up the PI-state in that case.
3043                  */
3044                 if (q.pi_state && (q.pi_state->owner != current)) {
3045                         spin_lock(q.lock_ptr);
3046                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3047                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3048                                 pi_state = q.pi_state;
3049                                 get_pi_state(pi_state);
3050                         }
3051                         /*
3052                          * Drop the reference to the pi state which
3053                          * the requeue_pi() code acquired for us.
3054                          */
3055                         put_pi_state(q.pi_state);
3056                         spin_unlock(q.lock_ptr);
3057                 }
3058         } else {
3059                 struct rt_mutex *pi_mutex;
3060
3061                 /*
3062                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3063                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3064                  * the pi_state.
3065                  */
3066                 WARN_ON(!q.pi_state);
3067                 pi_mutex = &q.pi_state->pi_mutex;
3068                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3069
3070                 spin_lock(q.lock_ptr);
3071                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3072                         ret = 0;
3073
3074                 debug_rt_mutex_free_waiter(&rt_waiter);
3075                 /*
3076                  * Fixup the pi_state owner and possibly acquire the lock if we
3077                  * haven't already.
3078                  */
3079                 res = fixup_owner(uaddr2, &q, !ret);
3080                 /*
3081                  * If fixup_owner() returned an error, proprogate that.  If it
3082                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3083                  */
3084                 if (res)
3085                         ret = (res < 0) ? res : 0;
3086
3087                 /*
3088                  * If fixup_pi_state_owner() faulted and was unable to handle
3089                  * the fault, unlock the rt_mutex and return the fault to
3090                  * userspace.
3091                  */
3092                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3093                         pi_state = q.pi_state;
3094                         get_pi_state(pi_state);
3095                 }
3096
3097                 /* Unqueue and drop the lock. */
3098                 unqueue_me_pi(&q);
3099         }
3100
3101         if (pi_state) {
3102                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3103                 put_pi_state(pi_state);
3104         }
3105
3106         if (ret == -EINTR) {
3107                 /*
3108                  * We've already been requeued, but cannot restart by calling
3109                  * futex_lock_pi() directly. We could restart this syscall, but
3110                  * it would detect that the user space "val" changed and return
3111                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3112                  * -EWOULDBLOCK directly.
3113                  */
3114                 ret = -EWOULDBLOCK;
3115         }
3116
3117 out_put_keys:
3118         put_futex_key(&q.key);
3119 out_key2:
3120         put_futex_key(&key2);
3121
3122 out:
3123         if (to) {
3124                 hrtimer_cancel(&to->timer);
3125                 destroy_hrtimer_on_stack(&to->timer);
3126         }
3127         return ret;
3128 }
3129
3130 /*
3131  * Support for robust futexes: the kernel cleans up held futexes at
3132  * thread exit time.
3133  *
3134  * Implementation: user-space maintains a per-thread list of locks it
3135  * is holding. Upon do_exit(), the kernel carefully walks this list,
3136  * and marks all locks that are owned by this thread with the
3137  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3138  * always manipulated with the lock held, so the list is private and
3139  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3140  * field, to allow the kernel to clean up if the thread dies after
3141  * acquiring the lock, but just before it could have added itself to
3142  * the list. There can only be one such pending lock.
3143  */
3144
3145 /**
3146  * sys_set_robust_list() - Set the robust-futex list head of a task
3147  * @head:       pointer to the list-head
3148  * @len:        length of the list-head, as userspace expects
3149  */
3150 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3151                 size_t, len)
3152 {
3153         if (!futex_cmpxchg_enabled)
3154                 return -ENOSYS;
3155         /*
3156          * The kernel knows only one size for now:
3157          */
3158         if (unlikely(len != sizeof(*head)))
3159                 return -EINVAL;
3160
3161         current->robust_list = head;
3162
3163         return 0;
3164 }
3165
3166 /**
3167  * sys_get_robust_list() - Get the robust-futex list head of a task
3168  * @pid:        pid of the process [zero for current task]
3169  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3170  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3171  */
3172 SYSCALL_DEFINE3(get_robust_list, int, pid,
3173                 struct robust_list_head __user * __user *, head_ptr,
3174                 size_t __user *, len_ptr)
3175 {
3176         struct robust_list_head __user *head;
3177         unsigned long ret;
3178         struct task_struct *p;
3179
3180         if (!futex_cmpxchg_enabled)
3181                 return -ENOSYS;
3182
3183         rcu_read_lock();
3184
3185         ret = -ESRCH;
3186         if (!pid)
3187                 p = current;
3188         else {
3189                 p = find_task_by_vpid(pid);
3190                 if (!p)
3191                         goto err_unlock;
3192         }
3193
3194         ret = -EPERM;
3195         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3196                 goto err_unlock;
3197
3198         head = p->robust_list;
3199         rcu_read_unlock();
3200
3201         if (put_user(sizeof(*head), len_ptr))
3202                 return -EFAULT;
3203         return put_user(head, head_ptr);
3204
3205 err_unlock:
3206         rcu_read_unlock();
3207
3208         return ret;
3209 }
3210
3211 /*
3212  * Process a futex-list entry, check whether it's owned by the
3213  * dying task, and do notification if so:
3214  */
3215 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3216 {
3217         u32 uval, uninitialized_var(nval), mval;
3218
3219 retry:
3220         if (get_user(uval, uaddr))
3221                 return -1;
3222
3223         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3224                 /*
3225                  * Ok, this dying thread is truly holding a futex
3226                  * of interest. Set the OWNER_DIED bit atomically
3227                  * via cmpxchg, and if the value had FUTEX_WAITERS
3228                  * set, wake up a waiter (if any). (We have to do a
3229                  * futex_wake() even if OWNER_DIED is already set -
3230                  * to handle the rare but possible case of recursive
3231                  * thread-death.) The rest of the cleanup is done in
3232                  * userspace.
3233                  */
3234                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3235                 /*
3236                  * We are not holding a lock here, but we want to have
3237                  * the pagefault_disable/enable() protection because
3238                  * we want to handle the fault gracefully. If the
3239                  * access fails we try to fault in the futex with R/W
3240                  * verification via get_user_pages. get_user() above
3241                  * does not guarantee R/W access. If that fails we
3242                  * give up and leave the futex locked.
3243                  */
3244                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3245                         if (fault_in_user_writeable(uaddr))
3246                                 return -1;
3247                         goto retry;
3248                 }
3249                 if (nval != uval)
3250                         goto retry;
3251
3252                 /*
3253                  * Wake robust non-PI futexes here. The wakeup of
3254                  * PI futexes happens in exit_pi_state():
3255                  */
3256                 if (!pi && (uval & FUTEX_WAITERS))
3257                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3258         }
3259         return 0;
3260 }
3261
3262 /*
3263  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3264  */
3265 static inline int fetch_robust_entry(struct robust_list __user **entry,
3266                                      struct robust_list __user * __user *head,
3267                                      unsigned int *pi)
3268 {
3269         unsigned long uentry;
3270
3271         if (get_user(uentry, (unsigned long __user *)head))
3272                 return -EFAULT;
3273
3274         *entry = (void __user *)(uentry & ~1UL);
3275         *pi = uentry & 1;
3276
3277         return 0;
3278 }
3279
3280 /*
3281  * Walk curr->robust_list (very carefully, it's a userspace list!)
3282  * and mark any locks found there dead, and notify any waiters.
3283  *
3284  * We silently return on any sign of list-walking problem.
3285  */
3286 void exit_robust_list(struct task_struct *curr)
3287 {
3288         struct robust_list_head __user *head = curr->robust_list;
3289         struct robust_list __user *entry, *next_entry, *pending;
3290         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3291         unsigned int uninitialized_var(next_pi);
3292         unsigned long futex_offset;
3293         int rc;
3294
3295         if (!futex_cmpxchg_enabled)
3296                 return;
3297
3298         /*
3299          * Fetch the list head (which was registered earlier, via
3300          * sys_set_robust_list()):
3301          */
3302         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3303                 return;
3304         /*
3305          * Fetch the relative futex offset:
3306          */
3307         if (get_user(futex_offset, &head->futex_offset))
3308                 return;
3309         /*
3310          * Fetch any possibly pending lock-add first, and handle it
3311          * if it exists:
3312          */
3313         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3314                 return;
3315
3316         next_entry = NULL;      /* avoid warning with gcc */
3317         while (entry != &head->list) {
3318                 /*
3319                  * Fetch the next entry in the list before calling
3320                  * handle_futex_death:
3321                  */
3322                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3323                 /*
3324                  * A pending lock might already be on the list, so
3325                  * don't process it twice:
3326                  */
3327                 if (entry != pending)
3328                         if (handle_futex_death((void __user *)entry + futex_offset,
3329                                                 curr, pi))
3330                                 return;
3331                 if (rc)
3332                         return;
3333                 entry = next_entry;
3334                 pi = next_pi;
3335                 /*
3336                  * Avoid excessively long or circular lists:
3337                  */
3338                 if (!--limit)
3339                         break;
3340
3341                 cond_resched();
3342         }
3343
3344         if (pending)
3345                 handle_futex_death((void __user *)pending + futex_offset,
3346                                    curr, pip);
3347 }
3348
3349 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3350                 u32 __user *uaddr2, u32 val2, u32 val3)
3351 {
3352         int cmd = op & FUTEX_CMD_MASK;
3353         unsigned int flags = 0;
3354
3355         if (!(op & FUTEX_PRIVATE_FLAG))
3356                 flags |= FLAGS_SHARED;
3357
3358         if (op & FUTEX_CLOCK_REALTIME) {
3359                 flags |= FLAGS_CLOCKRT;
3360                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3361                     cmd != FUTEX_WAIT_REQUEUE_PI)
3362                         return -ENOSYS;
3363         }
3364
3365         switch (cmd) {
3366         case FUTEX_LOCK_PI:
3367         case FUTEX_UNLOCK_PI:
3368         case FUTEX_TRYLOCK_PI:
3369         case FUTEX_WAIT_REQUEUE_PI:
3370         case FUTEX_CMP_REQUEUE_PI:
3371                 if (!futex_cmpxchg_enabled)
3372                         return -ENOSYS;
3373         }
3374
3375         switch (cmd) {
3376         case FUTEX_WAIT:
3377                 val3 = FUTEX_BITSET_MATCH_ANY;
3378         case FUTEX_WAIT_BITSET:
3379                 return futex_wait(uaddr, flags, val, timeout, val3);
3380         case FUTEX_WAKE:
3381                 val3 = FUTEX_BITSET_MATCH_ANY;
3382         case FUTEX_WAKE_BITSET:
3383                 return futex_wake(uaddr, flags, val, val3);
3384         case FUTEX_REQUEUE:
3385                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3386         case FUTEX_CMP_REQUEUE:
3387                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3388         case FUTEX_WAKE_OP:
3389                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3390         case FUTEX_LOCK_PI:
3391                 return futex_lock_pi(uaddr, flags, timeout, 0);
3392         case FUTEX_UNLOCK_PI:
3393                 return futex_unlock_pi(uaddr, flags);
3394         case FUTEX_TRYLOCK_PI:
3395                 return futex_lock_pi(uaddr, flags, NULL, 1);
3396         case FUTEX_WAIT_REQUEUE_PI:
3397                 val3 = FUTEX_BITSET_MATCH_ANY;
3398                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3399                                              uaddr2);
3400         case FUTEX_CMP_REQUEUE_PI:
3401                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3402         }
3403         return -ENOSYS;
3404 }
3405
3406
3407 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3408                 struct timespec __user *, utime, u32 __user *, uaddr2,
3409                 u32, val3)
3410 {
3411         struct timespec ts;
3412         ktime_t t, *tp = NULL;
3413         u32 val2 = 0;
3414         int cmd = op & FUTEX_CMD_MASK;
3415
3416         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3417                       cmd == FUTEX_WAIT_BITSET ||
3418                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3419                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3420                         return -EFAULT;
3421                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3422                         return -EFAULT;
3423                 if (!timespec_valid(&ts))
3424                         return -EINVAL;
3425
3426                 t = timespec_to_ktime(ts);
3427                 if (cmd == FUTEX_WAIT)
3428                         t = ktime_add_safe(ktime_get(), t);
3429                 tp = &t;
3430         }
3431         /*
3432          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3433          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3434          */
3435         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3436             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3437                 val2 = (u32) (unsigned long) utime;
3438
3439         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3440 }
3441
3442 static void __init futex_detect_cmpxchg(void)
3443 {
3444 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3445         u32 curval;
3446
3447         /*
3448          * This will fail and we want it. Some arch implementations do
3449          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3450          * functionality. We want to know that before we call in any
3451          * of the complex code paths. Also we want to prevent
3452          * registration of robust lists in that case. NULL is
3453          * guaranteed to fault and we get -EFAULT on functional
3454          * implementation, the non-functional ones will return
3455          * -ENOSYS.
3456          */
3457         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3458                 futex_cmpxchg_enabled = 1;
3459 #endif
3460 }
3461
3462 static int __init futex_init(void)
3463 {
3464         unsigned int futex_shift;
3465         unsigned long i;
3466
3467 #if CONFIG_BASE_SMALL
3468         futex_hashsize = 16;
3469 #else
3470         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3471 #endif
3472
3473         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3474                                                futex_hashsize, 0,
3475                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3476                                                &futex_shift, NULL,
3477                                                futex_hashsize, futex_hashsize);
3478         futex_hashsize = 1UL << futex_shift;
3479
3480         futex_detect_cmpxchg();
3481
3482         for (i = 0; i < futex_hashsize; i++) {
3483                 atomic_set(&futex_queues[i].waiters, 0);
3484                 plist_head_init(&futex_queues[i].chain);
3485                 spin_lock_init(&futex_queues[i].lock);
3486         }
3487
3488         return 0;
3489 }
3490 core_initcall(futex_init);