]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/futex.c
f1581ff47122354aeb8171d26bb8cfa442e1f6c2
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as full barrier (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies MB (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies MB (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit MB (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page, *page_head;
473         int err, ro = 0;
474
475         /*
476          * The futex address must be "naturally" aligned.
477          */
478         key->both.offset = address % PAGE_SIZE;
479         if (unlikely((address % sizeof(u32)) != 0))
480                 return -EINVAL;
481         address -= key->both.offset;
482
483         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484                 return -EFAULT;
485
486         if (unlikely(should_fail_futex(fshared)))
487                 return -EFAULT;
488
489         /*
490          * PROCESS_PRIVATE futexes are fast.
491          * As the mm cannot disappear under us and the 'key' only needs
492          * virtual address, we dont even have to find the underlying vma.
493          * Note : We do have to check 'uaddr' is a valid user address,
494          *        but access_ok() should be faster than find_vma()
495          */
496         if (!fshared) {
497                 key->private.mm = mm;
498                 key->private.address = address;
499                 get_futex_key_refs(key);  /* implies MB (B) */
500                 return 0;
501         }
502
503 again:
504         /* Ignore any VERIFY_READ mapping (futex common case) */
505         if (unlikely(should_fail_futex(fshared)))
506                 return -EFAULT;
507
508         err = get_user_pages_fast(address, 1, 1, &page);
509         /*
510          * If write access is not required (eg. FUTEX_WAIT), try
511          * and get read-only access.
512          */
513         if (err == -EFAULT && rw == VERIFY_READ) {
514                 err = get_user_pages_fast(address, 1, 0, &page);
515                 ro = 1;
516         }
517         if (err < 0)
518                 return err;
519         else
520                 err = 0;
521
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523         page_head = page;
524         if (unlikely(PageTail(page))) {
525                 put_page(page);
526                 /* serialize against __split_huge_page_splitting() */
527                 local_irq_disable();
528                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
529                         page_head = compound_head(page);
530                         /*
531                          * page_head is valid pointer but we must pin
532                          * it before taking the PG_lock and/or
533                          * PG_compound_lock. The moment we re-enable
534                          * irqs __split_huge_page_splitting() can
535                          * return and the head page can be freed from
536                          * under us. We can't take the PG_lock and/or
537                          * PG_compound_lock on a page that could be
538                          * freed from under us.
539                          */
540                         if (page != page_head) {
541                                 get_page(page_head);
542                                 put_page(page);
543                         }
544                         local_irq_enable();
545                 } else {
546                         local_irq_enable();
547                         goto again;
548                 }
549         }
550 #else
551         page_head = compound_head(page);
552         if (page != page_head) {
553                 get_page(page_head);
554                 put_page(page);
555         }
556 #endif
557
558         lock_page(page_head);
559
560         /*
561          * If page_head->mapping is NULL, then it cannot be a PageAnon
562          * page; but it might be the ZERO_PAGE or in the gate area or
563          * in a special mapping (all cases which we are happy to fail);
564          * or it may have been a good file page when get_user_pages_fast
565          * found it, but truncated or holepunched or subjected to
566          * invalidate_complete_page2 before we got the page lock (also
567          * cases which we are happy to fail).  And we hold a reference,
568          * so refcount care in invalidate_complete_page's remove_mapping
569          * prevents drop_caches from setting mapping to NULL beneath us.
570          *
571          * The case we do have to guard against is when memory pressure made
572          * shmem_writepage move it from filecache to swapcache beneath us:
573          * an unlikely race, but we do need to retry for page_head->mapping.
574          */
575         if (!page_head->mapping) {
576                 int shmem_swizzled = PageSwapCache(page_head);
577                 unlock_page(page_head);
578                 put_page(page_head);
579                 if (shmem_swizzled)
580                         goto again;
581                 return -EFAULT;
582         }
583
584         /*
585          * Private mappings are handled in a simple way.
586          *
587          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588          * it's a read-only handle, it's expected that futexes attach to
589          * the object not the particular process.
590          */
591         if (PageAnon(page_head)) {
592                 /*
593                  * A RO anonymous page will never change and thus doesn't make
594                  * sense for futex operations.
595                  */
596                 if (unlikely(should_fail_futex(fshared)) || ro) {
597                         err = -EFAULT;
598                         goto out;
599                 }
600
601                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
602                 key->private.mm = mm;
603                 key->private.address = address;
604         } else {
605                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
606                 key->shared.inode = page_head->mapping->host;
607                 key->shared.pgoff = basepage_index(page);
608         }
609
610         get_futex_key_refs(key); /* implies MB (B) */
611
612 out:
613         unlock_page(page_head);
614         put_page(page_head);
615         return err;
616 }
617
618 static inline void put_futex_key(union futex_key *key)
619 {
620         drop_futex_key_refs(key);
621 }
622
623 /**
624  * fault_in_user_writeable() - Fault in user address and verify RW access
625  * @uaddr:      pointer to faulting user space address
626  *
627  * Slow path to fixup the fault we just took in the atomic write
628  * access to @uaddr.
629  *
630  * We have no generic implementation of a non-destructive write to the
631  * user address. We know that we faulted in the atomic pagefault
632  * disabled section so we can as well avoid the #PF overhead by
633  * calling get_user_pages() right away.
634  */
635 static int fault_in_user_writeable(u32 __user *uaddr)
636 {
637         struct mm_struct *mm = current->mm;
638         int ret;
639
640         down_read(&mm->mmap_sem);
641         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642                                FAULT_FLAG_WRITE);
643         up_read(&mm->mmap_sem);
644
645         return ret < 0 ? ret : 0;
646 }
647
648 /**
649  * futex_top_waiter() - Return the highest priority waiter on a futex
650  * @hb:         the hash bucket the futex_q's reside in
651  * @key:        the futex key (to distinguish it from other futex futex_q's)
652  *
653  * Must be called with the hb lock held.
654  */
655 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656                                         union futex_key *key)
657 {
658         struct futex_q *this;
659
660         plist_for_each_entry(this, &hb->chain, list) {
661                 if (match_futex(&this->key, key))
662                         return this;
663         }
664         return NULL;
665 }
666
667 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668                                       u32 uval, u32 newval)
669 {
670         int ret;
671
672         pagefault_disable();
673         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
674         pagefault_enable();
675
676         return ret;
677 }
678
679 static int get_futex_value_locked(u32 *dest, u32 __user *from)
680 {
681         int ret;
682
683         pagefault_disable();
684         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
685         pagefault_enable();
686
687         return ret ? -EFAULT : 0;
688 }
689
690
691 /*
692  * PI code:
693  */
694 static int refill_pi_state_cache(void)
695 {
696         struct futex_pi_state *pi_state;
697
698         if (likely(current->pi_state_cache))
699                 return 0;
700
701         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
702
703         if (!pi_state)
704                 return -ENOMEM;
705
706         INIT_LIST_HEAD(&pi_state->list);
707         /* pi_mutex gets initialized later */
708         pi_state->owner = NULL;
709         atomic_set(&pi_state->refcount, 1);
710         pi_state->key = FUTEX_KEY_INIT;
711
712         current->pi_state_cache = pi_state;
713
714         return 0;
715 }
716
717 static struct futex_pi_state * alloc_pi_state(void)
718 {
719         struct futex_pi_state *pi_state = current->pi_state_cache;
720
721         WARN_ON(!pi_state);
722         current->pi_state_cache = NULL;
723
724         return pi_state;
725 }
726
727 /*
728  * Drops a reference to the pi_state object and frees or caches it
729  * when the last reference is gone.
730  *
731  * Must be called with the hb lock held.
732  */
733 static void put_pi_state(struct futex_pi_state *pi_state)
734 {
735         if (!pi_state)
736                 return;
737
738         if (!atomic_dec_and_test(&pi_state->refcount))
739                 return;
740
741         /*
742          * If pi_state->owner is NULL, the owner is most probably dying
743          * and has cleaned up the pi_state already
744          */
745         if (pi_state->owner) {
746                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
747                 list_del_init(&pi_state->list);
748                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
749
750                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
751         }
752
753         if (current->pi_state_cache)
754                 kfree(pi_state);
755         else {
756                 /*
757                  * pi_state->list is already empty.
758                  * clear pi_state->owner.
759                  * refcount is at 0 - put it back to 1.
760                  */
761                 pi_state->owner = NULL;
762                 atomic_set(&pi_state->refcount, 1);
763                 current->pi_state_cache = pi_state;
764         }
765 }
766
767 /*
768  * Look up the task based on what TID userspace gave us.
769  * We dont trust it.
770  */
771 static struct task_struct * futex_find_get_task(pid_t pid)
772 {
773         struct task_struct *p;
774
775         rcu_read_lock();
776         p = find_task_by_vpid(pid);
777         if (p)
778                 get_task_struct(p);
779
780         rcu_read_unlock();
781
782         return p;
783 }
784
785 /*
786  * This task is holding PI mutexes at exit time => bad.
787  * Kernel cleans up PI-state, but userspace is likely hosed.
788  * (Robust-futex cleanup is separate and might save the day for userspace.)
789  */
790 void exit_pi_state_list(struct task_struct *curr)
791 {
792         struct list_head *next, *head = &curr->pi_state_list;
793         struct futex_pi_state *pi_state;
794         struct futex_hash_bucket *hb;
795         union futex_key key = FUTEX_KEY_INIT;
796
797         if (!futex_cmpxchg_enabled)
798                 return;
799         /*
800          * We are a ZOMBIE and nobody can enqueue itself on
801          * pi_state_list anymore, but we have to be careful
802          * versus waiters unqueueing themselves:
803          */
804         raw_spin_lock_irq(&curr->pi_lock);
805         while (!list_empty(head)) {
806
807                 next = head->next;
808                 pi_state = list_entry(next, struct futex_pi_state, list);
809                 key = pi_state->key;
810                 hb = hash_futex(&key);
811                 raw_spin_unlock_irq(&curr->pi_lock);
812
813                 spin_lock(&hb->lock);
814
815                 raw_spin_lock_irq(&curr->pi_lock);
816                 /*
817                  * We dropped the pi-lock, so re-check whether this
818                  * task still owns the PI-state:
819                  */
820                 if (head->next != next) {
821                         spin_unlock(&hb->lock);
822                         continue;
823                 }
824
825                 WARN_ON(pi_state->owner != curr);
826                 WARN_ON(list_empty(&pi_state->list));
827                 list_del_init(&pi_state->list);
828                 pi_state->owner = NULL;
829                 raw_spin_unlock_irq(&curr->pi_lock);
830
831                 rt_mutex_unlock(&pi_state->pi_mutex);
832
833                 spin_unlock(&hb->lock);
834
835                 raw_spin_lock_irq(&curr->pi_lock);
836         }
837         raw_spin_unlock_irq(&curr->pi_lock);
838 }
839
840 /*
841  * We need to check the following states:
842  *
843  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
844  *
845  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
846  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
847  *
848  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
849  *
850  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
851  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
852  *
853  * [6]  Found  | Found    | task      | 0         | 1      | Valid
854  *
855  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
856  *
857  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
858  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
859  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
860  *
861  * [1]  Indicates that the kernel can acquire the futex atomically. We
862  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
863  *
864  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
865  *      thread is found then it indicates that the owner TID has died.
866  *
867  * [3]  Invalid. The waiter is queued on a non PI futex
868  *
869  * [4]  Valid state after exit_robust_list(), which sets the user space
870  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
871  *
872  * [5]  The user space value got manipulated between exit_robust_list()
873  *      and exit_pi_state_list()
874  *
875  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
876  *      the pi_state but cannot access the user space value.
877  *
878  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
879  *
880  * [8]  Owner and user space value match
881  *
882  * [9]  There is no transient state which sets the user space TID to 0
883  *      except exit_robust_list(), but this is indicated by the
884  *      FUTEX_OWNER_DIED bit. See [4]
885  *
886  * [10] There is no transient state which leaves owner and user space
887  *      TID out of sync.
888  */
889
890 /*
891  * Validate that the existing waiter has a pi_state and sanity check
892  * the pi_state against the user space value. If correct, attach to
893  * it.
894  */
895 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
896                               struct futex_pi_state **ps)
897 {
898         pid_t pid = uval & FUTEX_TID_MASK;
899
900         /*
901          * Userspace might have messed up non-PI and PI futexes [3]
902          */
903         if (unlikely(!pi_state))
904                 return -EINVAL;
905
906         WARN_ON(!atomic_read(&pi_state->refcount));
907
908         /*
909          * Handle the owner died case:
910          */
911         if (uval & FUTEX_OWNER_DIED) {
912                 /*
913                  * exit_pi_state_list sets owner to NULL and wakes the
914                  * topmost waiter. The task which acquires the
915                  * pi_state->rt_mutex will fixup owner.
916                  */
917                 if (!pi_state->owner) {
918                         /*
919                          * No pi state owner, but the user space TID
920                          * is not 0. Inconsistent state. [5]
921                          */
922                         if (pid)
923                                 return -EINVAL;
924                         /*
925                          * Take a ref on the state and return success. [4]
926                          */
927                         goto out_state;
928                 }
929
930                 /*
931                  * If TID is 0, then either the dying owner has not
932                  * yet executed exit_pi_state_list() or some waiter
933                  * acquired the rtmutex in the pi state, but did not
934                  * yet fixup the TID in user space.
935                  *
936                  * Take a ref on the state and return success. [6]
937                  */
938                 if (!pid)
939                         goto out_state;
940         } else {
941                 /*
942                  * If the owner died bit is not set, then the pi_state
943                  * must have an owner. [7]
944                  */
945                 if (!pi_state->owner)
946                         return -EINVAL;
947         }
948
949         /*
950          * Bail out if user space manipulated the futex value. If pi
951          * state exists then the owner TID must be the same as the
952          * user space TID. [9/10]
953          */
954         if (pid != task_pid_vnr(pi_state->owner))
955                 return -EINVAL;
956 out_state:
957         atomic_inc(&pi_state->refcount);
958         *ps = pi_state;
959         return 0;
960 }
961
962 /*
963  * Lookup the task for the TID provided from user space and attach to
964  * it after doing proper sanity checks.
965  */
966 static int attach_to_pi_owner(u32 uval, union futex_key *key,
967                               struct futex_pi_state **ps)
968 {
969         pid_t pid = uval & FUTEX_TID_MASK;
970         struct futex_pi_state *pi_state;
971         struct task_struct *p;
972
973         /*
974          * We are the first waiter - try to look up the real owner and attach
975          * the new pi_state to it, but bail out when TID = 0 [1]
976          */
977         if (!pid)
978                 return -ESRCH;
979         p = futex_find_get_task(pid);
980         if (!p)
981                 return -ESRCH;
982
983         if (unlikely(p->flags & PF_KTHREAD)) {
984                 put_task_struct(p);
985                 return -EPERM;
986         }
987
988         /*
989          * We need to look at the task state flags to figure out,
990          * whether the task is exiting. To protect against the do_exit
991          * change of the task flags, we do this protected by
992          * p->pi_lock:
993          */
994         raw_spin_lock_irq(&p->pi_lock);
995         if (unlikely(p->flags & PF_EXITING)) {
996                 /*
997                  * The task is on the way out. When PF_EXITPIDONE is
998                  * set, we know that the task has finished the
999                  * cleanup:
1000                  */
1001                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1002
1003                 raw_spin_unlock_irq(&p->pi_lock);
1004                 put_task_struct(p);
1005                 return ret;
1006         }
1007
1008         /*
1009          * No existing pi state. First waiter. [2]
1010          */
1011         pi_state = alloc_pi_state();
1012
1013         /*
1014          * Initialize the pi_mutex in locked state and make @p
1015          * the owner of it:
1016          */
1017         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1018
1019         /* Store the key for possible exit cleanups: */
1020         pi_state->key = *key;
1021
1022         WARN_ON(!list_empty(&pi_state->list));
1023         list_add(&pi_state->list, &p->pi_state_list);
1024         pi_state->owner = p;
1025         raw_spin_unlock_irq(&p->pi_lock);
1026
1027         put_task_struct(p);
1028
1029         *ps = pi_state;
1030
1031         return 0;
1032 }
1033
1034 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1035                            union futex_key *key, struct futex_pi_state **ps)
1036 {
1037         struct futex_q *match = futex_top_waiter(hb, key);
1038
1039         /*
1040          * If there is a waiter on that futex, validate it and
1041          * attach to the pi_state when the validation succeeds.
1042          */
1043         if (match)
1044                 return attach_to_pi_state(uval, match->pi_state, ps);
1045
1046         /*
1047          * We are the first waiter - try to look up the owner based on
1048          * @uval and attach to it.
1049          */
1050         return attach_to_pi_owner(uval, key, ps);
1051 }
1052
1053 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1054 {
1055         u32 uninitialized_var(curval);
1056
1057         if (unlikely(should_fail_futex(true)))
1058                 return -EFAULT;
1059
1060         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1061                 return -EFAULT;
1062
1063         /*If user space value changed, let the caller retry */
1064         return curval != uval ? -EAGAIN : 0;
1065 }
1066
1067 /**
1068  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1069  * @uaddr:              the pi futex user address
1070  * @hb:                 the pi futex hash bucket
1071  * @key:                the futex key associated with uaddr and hb
1072  * @ps:                 the pi_state pointer where we store the result of the
1073  *                      lookup
1074  * @task:               the task to perform the atomic lock work for.  This will
1075  *                      be "current" except in the case of requeue pi.
1076  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1077  *
1078  * Return:
1079  *  0 - ready to wait;
1080  *  1 - acquired the lock;
1081  * <0 - error
1082  *
1083  * The hb->lock and futex_key refs shall be held by the caller.
1084  */
1085 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1086                                 union futex_key *key,
1087                                 struct futex_pi_state **ps,
1088                                 struct task_struct *task, int set_waiters)
1089 {
1090         u32 uval, newval, vpid = task_pid_vnr(task);
1091         struct futex_q *match;
1092         int ret;
1093
1094         /*
1095          * Read the user space value first so we can validate a few
1096          * things before proceeding further.
1097          */
1098         if (get_futex_value_locked(&uval, uaddr))
1099                 return -EFAULT;
1100
1101         if (unlikely(should_fail_futex(true)))
1102                 return -EFAULT;
1103
1104         /*
1105          * Detect deadlocks.
1106          */
1107         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1108                 return -EDEADLK;
1109
1110         if ((unlikely(should_fail_futex(true))))
1111                 return -EDEADLK;
1112
1113         /*
1114          * Lookup existing state first. If it exists, try to attach to
1115          * its pi_state.
1116          */
1117         match = futex_top_waiter(hb, key);
1118         if (match)
1119                 return attach_to_pi_state(uval, match->pi_state, ps);
1120
1121         /*
1122          * No waiter and user TID is 0. We are here because the
1123          * waiters or the owner died bit is set or called from
1124          * requeue_cmp_pi or for whatever reason something took the
1125          * syscall.
1126          */
1127         if (!(uval & FUTEX_TID_MASK)) {
1128                 /*
1129                  * We take over the futex. No other waiters and the user space
1130                  * TID is 0. We preserve the owner died bit.
1131                  */
1132                 newval = uval & FUTEX_OWNER_DIED;
1133                 newval |= vpid;
1134
1135                 /* The futex requeue_pi code can enforce the waiters bit */
1136                 if (set_waiters)
1137                         newval |= FUTEX_WAITERS;
1138
1139                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1140                 /* If the take over worked, return 1 */
1141                 return ret < 0 ? ret : 1;
1142         }
1143
1144         /*
1145          * First waiter. Set the waiters bit before attaching ourself to
1146          * the owner. If owner tries to unlock, it will be forced into
1147          * the kernel and blocked on hb->lock.
1148          */
1149         newval = uval | FUTEX_WAITERS;
1150         ret = lock_pi_update_atomic(uaddr, uval, newval);
1151         if (ret)
1152                 return ret;
1153         /*
1154          * If the update of the user space value succeeded, we try to
1155          * attach to the owner. If that fails, no harm done, we only
1156          * set the FUTEX_WAITERS bit in the user space variable.
1157          */
1158         return attach_to_pi_owner(uval, key, ps);
1159 }
1160
1161 /**
1162  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1163  * @q:  The futex_q to unqueue
1164  *
1165  * The q->lock_ptr must not be NULL and must be held by the caller.
1166  */
1167 static void __unqueue_futex(struct futex_q *q)
1168 {
1169         struct futex_hash_bucket *hb;
1170
1171         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1172             || WARN_ON(plist_node_empty(&q->list)))
1173                 return;
1174
1175         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1176         plist_del(&q->list, &hb->chain);
1177         hb_waiters_dec(hb);
1178 }
1179
1180 /*
1181  * The hash bucket lock must be held when this is called.
1182  * Afterwards, the futex_q must not be accessed. Callers
1183  * must ensure to later call wake_up_q() for the actual
1184  * wakeups to occur.
1185  */
1186 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1187 {
1188         struct task_struct *p = q->task;
1189
1190         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1191                 return;
1192
1193         /*
1194          * Queue the task for later wakeup for after we've released
1195          * the hb->lock. wake_q_add() grabs reference to p.
1196          */
1197         wake_q_add(wake_q, p);
1198         __unqueue_futex(q);
1199         /*
1200          * The waiting task can free the futex_q as soon as
1201          * q->lock_ptr = NULL is written, without taking any locks. A
1202          * memory barrier is required here to prevent the following
1203          * store to lock_ptr from getting ahead of the plist_del.
1204          */
1205         smp_wmb();
1206         q->lock_ptr = NULL;
1207 }
1208
1209 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1210                          struct futex_hash_bucket *hb)
1211 {
1212         struct task_struct *new_owner;
1213         struct futex_pi_state *pi_state = this->pi_state;
1214         u32 uninitialized_var(curval), newval;
1215         WAKE_Q(wake_q);
1216         bool deboost;
1217         int ret = 0;
1218
1219         if (!pi_state)
1220                 return -EINVAL;
1221
1222         /*
1223          * If current does not own the pi_state then the futex is
1224          * inconsistent and user space fiddled with the futex value.
1225          */
1226         if (pi_state->owner != current)
1227                 return -EINVAL;
1228
1229         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1230         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1231
1232         /*
1233          * It is possible that the next waiter (the one that brought
1234          * this owner to the kernel) timed out and is no longer
1235          * waiting on the lock.
1236          */
1237         if (!new_owner)
1238                 new_owner = this->task;
1239
1240         /*
1241          * We pass it to the next owner. The WAITERS bit is always
1242          * kept enabled while there is PI state around. We cleanup the
1243          * owner died bit, because we are the owner.
1244          */
1245         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1246
1247         if (unlikely(should_fail_futex(true)))
1248                 ret = -EFAULT;
1249
1250         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1251                 ret = -EFAULT;
1252         else if (curval != uval)
1253                 ret = -EINVAL;
1254         if (ret) {
1255                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1256                 return ret;
1257         }
1258
1259         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1260         WARN_ON(list_empty(&pi_state->list));
1261         list_del_init(&pi_state->list);
1262         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1263
1264         raw_spin_lock_irq(&new_owner->pi_lock);
1265         WARN_ON(!list_empty(&pi_state->list));
1266         list_add(&pi_state->list, &new_owner->pi_state_list);
1267         pi_state->owner = new_owner;
1268         raw_spin_unlock_irq(&new_owner->pi_lock);
1269
1270         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1271
1272         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1273
1274         /*
1275          * First unlock HB so the waiter does not spin on it once he got woken
1276          * up. Second wake up the waiter before the priority is adjusted. If we
1277          * deboost first (and lose our higher priority), then the task might get
1278          * scheduled away before the wake up can take place.
1279          */
1280         spin_unlock(&hb->lock);
1281         wake_up_q(&wake_q);
1282         if (deboost)
1283                 rt_mutex_adjust_prio(current);
1284
1285         return 0;
1286 }
1287
1288 /*
1289  * Express the locking dependencies for lockdep:
1290  */
1291 static inline void
1292 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1293 {
1294         if (hb1 <= hb2) {
1295                 spin_lock(&hb1->lock);
1296                 if (hb1 < hb2)
1297                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1298         } else { /* hb1 > hb2 */
1299                 spin_lock(&hb2->lock);
1300                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1301         }
1302 }
1303
1304 static inline void
1305 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1306 {
1307         spin_unlock(&hb1->lock);
1308         if (hb1 != hb2)
1309                 spin_unlock(&hb2->lock);
1310 }
1311
1312 /*
1313  * Wake up waiters matching bitset queued on this futex (uaddr).
1314  */
1315 static int
1316 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1317 {
1318         struct futex_hash_bucket *hb;
1319         struct futex_q *this, *next;
1320         union futex_key key = FUTEX_KEY_INIT;
1321         int ret;
1322         WAKE_Q(wake_q);
1323
1324         if (!bitset)
1325                 return -EINVAL;
1326
1327         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1328         if (unlikely(ret != 0))
1329                 goto out;
1330
1331         hb = hash_futex(&key);
1332
1333         /* Make sure we really have tasks to wakeup */
1334         if (!hb_waiters_pending(hb))
1335                 goto out_put_key;
1336
1337         spin_lock(&hb->lock);
1338
1339         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1340                 if (match_futex (&this->key, &key)) {
1341                         if (this->pi_state || this->rt_waiter) {
1342                                 ret = -EINVAL;
1343                                 break;
1344                         }
1345
1346                         /* Check if one of the bits is set in both bitsets */
1347                         if (!(this->bitset & bitset))
1348                                 continue;
1349
1350                         mark_wake_futex(&wake_q, this);
1351                         if (++ret >= nr_wake)
1352                                 break;
1353                 }
1354         }
1355
1356         spin_unlock(&hb->lock);
1357         wake_up_q(&wake_q);
1358 out_put_key:
1359         put_futex_key(&key);
1360 out:
1361         return ret;
1362 }
1363
1364 /*
1365  * Wake up all waiters hashed on the physical page that is mapped
1366  * to this virtual address:
1367  */
1368 static int
1369 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1370               int nr_wake, int nr_wake2, int op)
1371 {
1372         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1373         struct futex_hash_bucket *hb1, *hb2;
1374         struct futex_q *this, *next;
1375         int ret, op_ret;
1376         WAKE_Q(wake_q);
1377
1378 retry:
1379         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1380         if (unlikely(ret != 0))
1381                 goto out;
1382         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1383         if (unlikely(ret != 0))
1384                 goto out_put_key1;
1385
1386         hb1 = hash_futex(&key1);
1387         hb2 = hash_futex(&key2);
1388
1389 retry_private:
1390         double_lock_hb(hb1, hb2);
1391         op_ret = futex_atomic_op_inuser(op, uaddr2);
1392         if (unlikely(op_ret < 0)) {
1393
1394                 double_unlock_hb(hb1, hb2);
1395
1396 #ifndef CONFIG_MMU
1397                 /*
1398                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1399                  * but we might get them from range checking
1400                  */
1401                 ret = op_ret;
1402                 goto out_put_keys;
1403 #endif
1404
1405                 if (unlikely(op_ret != -EFAULT)) {
1406                         ret = op_ret;
1407                         goto out_put_keys;
1408                 }
1409
1410                 ret = fault_in_user_writeable(uaddr2);
1411                 if (ret)
1412                         goto out_put_keys;
1413
1414                 if (!(flags & FLAGS_SHARED))
1415                         goto retry_private;
1416
1417                 put_futex_key(&key2);
1418                 put_futex_key(&key1);
1419                 goto retry;
1420         }
1421
1422         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1423                 if (match_futex (&this->key, &key1)) {
1424                         if (this->pi_state || this->rt_waiter) {
1425                                 ret = -EINVAL;
1426                                 goto out_unlock;
1427                         }
1428                         mark_wake_futex(&wake_q, this);
1429                         if (++ret >= nr_wake)
1430                                 break;
1431                 }
1432         }
1433
1434         if (op_ret > 0) {
1435                 op_ret = 0;
1436                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1437                         if (match_futex (&this->key, &key2)) {
1438                                 if (this->pi_state || this->rt_waiter) {
1439                                         ret = -EINVAL;
1440                                         goto out_unlock;
1441                                 }
1442                                 mark_wake_futex(&wake_q, this);
1443                                 if (++op_ret >= nr_wake2)
1444                                         break;
1445                         }
1446                 }
1447                 ret += op_ret;
1448         }
1449
1450 out_unlock:
1451         double_unlock_hb(hb1, hb2);
1452         wake_up_q(&wake_q);
1453 out_put_keys:
1454         put_futex_key(&key2);
1455 out_put_key1:
1456         put_futex_key(&key1);
1457 out:
1458         return ret;
1459 }
1460
1461 /**
1462  * requeue_futex() - Requeue a futex_q from one hb to another
1463  * @q:          the futex_q to requeue
1464  * @hb1:        the source hash_bucket
1465  * @hb2:        the target hash_bucket
1466  * @key2:       the new key for the requeued futex_q
1467  */
1468 static inline
1469 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1470                    struct futex_hash_bucket *hb2, union futex_key *key2)
1471 {
1472
1473         /*
1474          * If key1 and key2 hash to the same bucket, no need to
1475          * requeue.
1476          */
1477         if (likely(&hb1->chain != &hb2->chain)) {
1478                 plist_del(&q->list, &hb1->chain);
1479                 hb_waiters_dec(hb1);
1480                 plist_add(&q->list, &hb2->chain);
1481                 hb_waiters_inc(hb2);
1482                 q->lock_ptr = &hb2->lock;
1483         }
1484         get_futex_key_refs(key2);
1485         q->key = *key2;
1486 }
1487
1488 /**
1489  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1490  * @q:          the futex_q
1491  * @key:        the key of the requeue target futex
1492  * @hb:         the hash_bucket of the requeue target futex
1493  *
1494  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1495  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1496  * to the requeue target futex so the waiter can detect the wakeup on the right
1497  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1498  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1499  * to protect access to the pi_state to fixup the owner later.  Must be called
1500  * with both q->lock_ptr and hb->lock held.
1501  */
1502 static inline
1503 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1504                            struct futex_hash_bucket *hb)
1505 {
1506         get_futex_key_refs(key);
1507         q->key = *key;
1508
1509         __unqueue_futex(q);
1510
1511         WARN_ON(!q->rt_waiter);
1512         q->rt_waiter = NULL;
1513
1514         q->lock_ptr = &hb->lock;
1515
1516         wake_up_state(q->task, TASK_NORMAL);
1517 }
1518
1519 /**
1520  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1521  * @pifutex:            the user address of the to futex
1522  * @hb1:                the from futex hash bucket, must be locked by the caller
1523  * @hb2:                the to futex hash bucket, must be locked by the caller
1524  * @key1:               the from futex key
1525  * @key2:               the to futex key
1526  * @ps:                 address to store the pi_state pointer
1527  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1528  *
1529  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1530  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1531  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1532  * hb1 and hb2 must be held by the caller.
1533  *
1534  * Return:
1535  *  0 - failed to acquire the lock atomically;
1536  * >0 - acquired the lock, return value is vpid of the top_waiter
1537  * <0 - error
1538  */
1539 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1540                                  struct futex_hash_bucket *hb1,
1541                                  struct futex_hash_bucket *hb2,
1542                                  union futex_key *key1, union futex_key *key2,
1543                                  struct futex_pi_state **ps, int set_waiters)
1544 {
1545         struct futex_q *top_waiter = NULL;
1546         u32 curval;
1547         int ret, vpid;
1548
1549         if (get_futex_value_locked(&curval, pifutex))
1550                 return -EFAULT;
1551
1552         if (unlikely(should_fail_futex(true)))
1553                 return -EFAULT;
1554
1555         /*
1556          * Find the top_waiter and determine if there are additional waiters.
1557          * If the caller intends to requeue more than 1 waiter to pifutex,
1558          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1559          * as we have means to handle the possible fault.  If not, don't set
1560          * the bit unecessarily as it will force the subsequent unlock to enter
1561          * the kernel.
1562          */
1563         top_waiter = futex_top_waiter(hb1, key1);
1564
1565         /* There are no waiters, nothing for us to do. */
1566         if (!top_waiter)
1567                 return 0;
1568
1569         /* Ensure we requeue to the expected futex. */
1570         if (!match_futex(top_waiter->requeue_pi_key, key2))
1571                 return -EINVAL;
1572
1573         /*
1574          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1575          * the contended case or if set_waiters is 1.  The pi_state is returned
1576          * in ps in contended cases.
1577          */
1578         vpid = task_pid_vnr(top_waiter->task);
1579         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1580                                    set_waiters);
1581         if (ret == 1) {
1582                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1583                 return vpid;
1584         }
1585         return ret;
1586 }
1587
1588 /**
1589  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1590  * @uaddr1:     source futex user address
1591  * @flags:      futex flags (FLAGS_SHARED, etc.)
1592  * @uaddr2:     target futex user address
1593  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1594  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1595  * @cmpval:     @uaddr1 expected value (or %NULL)
1596  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1597  *              pi futex (pi to pi requeue is not supported)
1598  *
1599  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1600  * uaddr2 atomically on behalf of the top waiter.
1601  *
1602  * Return:
1603  * >=0 - on success, the number of tasks requeued or woken;
1604  *  <0 - on error
1605  */
1606 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1607                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1608                          u32 *cmpval, int requeue_pi)
1609 {
1610         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1611         int drop_count = 0, task_count = 0, ret;
1612         struct futex_pi_state *pi_state = NULL;
1613         struct futex_hash_bucket *hb1, *hb2;
1614         struct futex_q *this, *next;
1615         WAKE_Q(wake_q);
1616
1617         if (requeue_pi) {
1618                 /*
1619                  * Requeue PI only works on two distinct uaddrs. This
1620                  * check is only valid for private futexes. See below.
1621                  */
1622                 if (uaddr1 == uaddr2)
1623                         return -EINVAL;
1624
1625                 /*
1626                  * requeue_pi requires a pi_state, try to allocate it now
1627                  * without any locks in case it fails.
1628                  */
1629                 if (refill_pi_state_cache())
1630                         return -ENOMEM;
1631                 /*
1632                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1633                  * + nr_requeue, since it acquires the rt_mutex prior to
1634                  * returning to userspace, so as to not leave the rt_mutex with
1635                  * waiters and no owner.  However, second and third wake-ups
1636                  * cannot be predicted as they involve race conditions with the
1637                  * first wake and a fault while looking up the pi_state.  Both
1638                  * pthread_cond_signal() and pthread_cond_broadcast() should
1639                  * use nr_wake=1.
1640                  */
1641                 if (nr_wake != 1)
1642                         return -EINVAL;
1643         }
1644
1645 retry:
1646         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1647         if (unlikely(ret != 0))
1648                 goto out;
1649         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1650                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1651         if (unlikely(ret != 0))
1652                 goto out_put_key1;
1653
1654         /*
1655          * The check above which compares uaddrs is not sufficient for
1656          * shared futexes. We need to compare the keys:
1657          */
1658         if (requeue_pi && match_futex(&key1, &key2)) {
1659                 ret = -EINVAL;
1660                 goto out_put_keys;
1661         }
1662
1663         hb1 = hash_futex(&key1);
1664         hb2 = hash_futex(&key2);
1665
1666 retry_private:
1667         hb_waiters_inc(hb2);
1668         double_lock_hb(hb1, hb2);
1669
1670         if (likely(cmpval != NULL)) {
1671                 u32 curval;
1672
1673                 ret = get_futex_value_locked(&curval, uaddr1);
1674
1675                 if (unlikely(ret)) {
1676                         double_unlock_hb(hb1, hb2);
1677                         hb_waiters_dec(hb2);
1678
1679                         ret = get_user(curval, uaddr1);
1680                         if (ret)
1681                                 goto out_put_keys;
1682
1683                         if (!(flags & FLAGS_SHARED))
1684                                 goto retry_private;
1685
1686                         put_futex_key(&key2);
1687                         put_futex_key(&key1);
1688                         goto retry;
1689                 }
1690                 if (curval != *cmpval) {
1691                         ret = -EAGAIN;
1692                         goto out_unlock;
1693                 }
1694         }
1695
1696         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1697                 /*
1698                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1699                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1700                  * bit.  We force this here where we are able to easily handle
1701                  * faults rather in the requeue loop below.
1702                  */
1703                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1704                                                  &key2, &pi_state, nr_requeue);
1705
1706                 /*
1707                  * At this point the top_waiter has either taken uaddr2 or is
1708                  * waiting on it.  If the former, then the pi_state will not
1709                  * exist yet, look it up one more time to ensure we have a
1710                  * reference to it. If the lock was taken, ret contains the
1711                  * vpid of the top waiter task.
1712                  */
1713                 if (ret > 0) {
1714                         WARN_ON(pi_state);
1715                         drop_count++;
1716                         task_count++;
1717                         /*
1718                          * If we acquired the lock, then the user
1719                          * space value of uaddr2 should be vpid. It
1720                          * cannot be changed by the top waiter as it
1721                          * is blocked on hb2 lock if it tries to do
1722                          * so. If something fiddled with it behind our
1723                          * back the pi state lookup might unearth
1724                          * it. So we rather use the known value than
1725                          * rereading and handing potential crap to
1726                          * lookup_pi_state.
1727                          */
1728                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1729                 }
1730
1731                 switch (ret) {
1732                 case 0:
1733                         break;
1734                 case -EFAULT:
1735                         put_pi_state(pi_state);
1736                         pi_state = NULL;
1737                         double_unlock_hb(hb1, hb2);
1738                         hb_waiters_dec(hb2);
1739                         put_futex_key(&key2);
1740                         put_futex_key(&key1);
1741                         ret = fault_in_user_writeable(uaddr2);
1742                         if (!ret)
1743                                 goto retry;
1744                         goto out;
1745                 case -EAGAIN:
1746                         /*
1747                          * Two reasons for this:
1748                          * - Owner is exiting and we just wait for the
1749                          *   exit to complete.
1750                          * - The user space value changed.
1751                          */
1752                         put_pi_state(pi_state);
1753                         pi_state = NULL;
1754                         double_unlock_hb(hb1, hb2);
1755                         hb_waiters_dec(hb2);
1756                         put_futex_key(&key2);
1757                         put_futex_key(&key1);
1758                         cond_resched();
1759                         goto retry;
1760                 default:
1761                         goto out_unlock;
1762                 }
1763         }
1764
1765         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1766                 if (task_count - nr_wake >= nr_requeue)
1767                         break;
1768
1769                 if (!match_futex(&this->key, &key1))
1770                         continue;
1771
1772                 /*
1773                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1774                  * be paired with each other and no other futex ops.
1775                  *
1776                  * We should never be requeueing a futex_q with a pi_state,
1777                  * which is awaiting a futex_unlock_pi().
1778                  */
1779                 if ((requeue_pi && !this->rt_waiter) ||
1780                     (!requeue_pi && this->rt_waiter) ||
1781                     this->pi_state) {
1782                         ret = -EINVAL;
1783                         break;
1784                 }
1785
1786                 /*
1787                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1788                  * lock, we already woke the top_waiter.  If not, it will be
1789                  * woken by futex_unlock_pi().
1790                  */
1791                 if (++task_count <= nr_wake && !requeue_pi) {
1792                         mark_wake_futex(&wake_q, this);
1793                         continue;
1794                 }
1795
1796                 /* Ensure we requeue to the expected futex for requeue_pi. */
1797                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1798                         ret = -EINVAL;
1799                         break;
1800                 }
1801
1802                 /*
1803                  * Requeue nr_requeue waiters and possibly one more in the case
1804                  * of requeue_pi if we couldn't acquire the lock atomically.
1805                  */
1806                 if (requeue_pi) {
1807                         /* Prepare the waiter to take the rt_mutex. */
1808                         atomic_inc(&pi_state->refcount);
1809                         this->pi_state = pi_state;
1810                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1811                                                         this->rt_waiter,
1812                                                         this->task);
1813                         if (ret == 1) {
1814                                 /* We got the lock. */
1815                                 requeue_pi_wake_futex(this, &key2, hb2);
1816                                 drop_count++;
1817                                 continue;
1818                         } else if (ret) {
1819                                 /* -EDEADLK */
1820                                 this->pi_state = NULL;
1821                                 put_pi_state(pi_state);
1822                                 goto out_unlock;
1823                         }
1824                 }
1825                 requeue_futex(this, hb1, hb2, &key2);
1826                 drop_count++;
1827         }
1828
1829 out_unlock:
1830         put_pi_state(pi_state);
1831         double_unlock_hb(hb1, hb2);
1832         wake_up_q(&wake_q);
1833         hb_waiters_dec(hb2);
1834
1835         /*
1836          * drop_futex_key_refs() must be called outside the spinlocks. During
1837          * the requeue we moved futex_q's from the hash bucket at key1 to the
1838          * one at key2 and updated their key pointer.  We no longer need to
1839          * hold the references to key1.
1840          */
1841         while (--drop_count >= 0)
1842                 drop_futex_key_refs(&key1);
1843
1844 out_put_keys:
1845         put_futex_key(&key2);
1846 out_put_key1:
1847         put_futex_key(&key1);
1848 out:
1849         return ret ? ret : task_count;
1850 }
1851
1852 /* The key must be already stored in q->key. */
1853 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1854         __acquires(&hb->lock)
1855 {
1856         struct futex_hash_bucket *hb;
1857
1858         hb = hash_futex(&q->key);
1859
1860         /*
1861          * Increment the counter before taking the lock so that
1862          * a potential waker won't miss a to-be-slept task that is
1863          * waiting for the spinlock. This is safe as all queue_lock()
1864          * users end up calling queue_me(). Similarly, for housekeeping,
1865          * decrement the counter at queue_unlock() when some error has
1866          * occurred and we don't end up adding the task to the list.
1867          */
1868         hb_waiters_inc(hb);
1869
1870         q->lock_ptr = &hb->lock;
1871
1872         spin_lock(&hb->lock); /* implies MB (A) */
1873         return hb;
1874 }
1875
1876 static inline void
1877 queue_unlock(struct futex_hash_bucket *hb)
1878         __releases(&hb->lock)
1879 {
1880         spin_unlock(&hb->lock);
1881         hb_waiters_dec(hb);
1882 }
1883
1884 /**
1885  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1886  * @q:  The futex_q to enqueue
1887  * @hb: The destination hash bucket
1888  *
1889  * The hb->lock must be held by the caller, and is released here. A call to
1890  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1891  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1892  * or nothing if the unqueue is done as part of the wake process and the unqueue
1893  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1894  * an example).
1895  */
1896 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1897         __releases(&hb->lock)
1898 {
1899         int prio;
1900
1901         /*
1902          * The priority used to register this element is
1903          * - either the real thread-priority for the real-time threads
1904          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1905          * - or MAX_RT_PRIO for non-RT threads.
1906          * Thus, all RT-threads are woken first in priority order, and
1907          * the others are woken last, in FIFO order.
1908          */
1909         prio = min(current->normal_prio, MAX_RT_PRIO);
1910
1911         plist_node_init(&q->list, prio);
1912         plist_add(&q->list, &hb->chain);
1913         q->task = current;
1914         spin_unlock(&hb->lock);
1915 }
1916
1917 /**
1918  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1919  * @q:  The futex_q to unqueue
1920  *
1921  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1922  * be paired with exactly one earlier call to queue_me().
1923  *
1924  * Return:
1925  *   1 - if the futex_q was still queued (and we removed unqueued it);
1926  *   0 - if the futex_q was already removed by the waking thread
1927  */
1928 static int unqueue_me(struct futex_q *q)
1929 {
1930         spinlock_t *lock_ptr;
1931         int ret = 0;
1932
1933         /* In the common case we don't take the spinlock, which is nice. */
1934 retry:
1935         lock_ptr = q->lock_ptr;
1936         barrier();
1937         if (lock_ptr != NULL) {
1938                 spin_lock(lock_ptr);
1939                 /*
1940                  * q->lock_ptr can change between reading it and
1941                  * spin_lock(), causing us to take the wrong lock.  This
1942                  * corrects the race condition.
1943                  *
1944                  * Reasoning goes like this: if we have the wrong lock,
1945                  * q->lock_ptr must have changed (maybe several times)
1946                  * between reading it and the spin_lock().  It can
1947                  * change again after the spin_lock() but only if it was
1948                  * already changed before the spin_lock().  It cannot,
1949                  * however, change back to the original value.  Therefore
1950                  * we can detect whether we acquired the correct lock.
1951                  */
1952                 if (unlikely(lock_ptr != q->lock_ptr)) {
1953                         spin_unlock(lock_ptr);
1954                         goto retry;
1955                 }
1956                 __unqueue_futex(q);
1957
1958                 BUG_ON(q->pi_state);
1959
1960                 spin_unlock(lock_ptr);
1961                 ret = 1;
1962         }
1963
1964         drop_futex_key_refs(&q->key);
1965         return ret;
1966 }
1967
1968 /*
1969  * PI futexes can not be requeued and must remove themself from the
1970  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1971  * and dropped here.
1972  */
1973 static void unqueue_me_pi(struct futex_q *q)
1974         __releases(q->lock_ptr)
1975 {
1976         __unqueue_futex(q);
1977
1978         BUG_ON(!q->pi_state);
1979         put_pi_state(q->pi_state);
1980         q->pi_state = NULL;
1981
1982         spin_unlock(q->lock_ptr);
1983 }
1984
1985 /*
1986  * Fixup the pi_state owner with the new owner.
1987  *
1988  * Must be called with hash bucket lock held and mm->sem held for non
1989  * private futexes.
1990  */
1991 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1992                                 struct task_struct *newowner)
1993 {
1994         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1995         struct futex_pi_state *pi_state = q->pi_state;
1996         struct task_struct *oldowner = pi_state->owner;
1997         u32 uval, uninitialized_var(curval), newval;
1998         int ret;
1999
2000         /* Owner died? */
2001         if (!pi_state->owner)
2002                 newtid |= FUTEX_OWNER_DIED;
2003
2004         /*
2005          * We are here either because we stole the rtmutex from the
2006          * previous highest priority waiter or we are the highest priority
2007          * waiter but failed to get the rtmutex the first time.
2008          * We have to replace the newowner TID in the user space variable.
2009          * This must be atomic as we have to preserve the owner died bit here.
2010          *
2011          * Note: We write the user space value _before_ changing the pi_state
2012          * because we can fault here. Imagine swapped out pages or a fork
2013          * that marked all the anonymous memory readonly for cow.
2014          *
2015          * Modifying pi_state _before_ the user space value would
2016          * leave the pi_state in an inconsistent state when we fault
2017          * here, because we need to drop the hash bucket lock to
2018          * handle the fault. This might be observed in the PID check
2019          * in lookup_pi_state.
2020          */
2021 retry:
2022         if (get_futex_value_locked(&uval, uaddr))
2023                 goto handle_fault;
2024
2025         while (1) {
2026                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2027
2028                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2029                         goto handle_fault;
2030                 if (curval == uval)
2031                         break;
2032                 uval = curval;
2033         }
2034
2035         /*
2036          * We fixed up user space. Now we need to fix the pi_state
2037          * itself.
2038          */
2039         if (pi_state->owner != NULL) {
2040                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2041                 WARN_ON(list_empty(&pi_state->list));
2042                 list_del_init(&pi_state->list);
2043                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2044         }
2045
2046         pi_state->owner = newowner;
2047
2048         raw_spin_lock_irq(&newowner->pi_lock);
2049         WARN_ON(!list_empty(&pi_state->list));
2050         list_add(&pi_state->list, &newowner->pi_state_list);
2051         raw_spin_unlock_irq(&newowner->pi_lock);
2052         return 0;
2053
2054         /*
2055          * To handle the page fault we need to drop the hash bucket
2056          * lock here. That gives the other task (either the highest priority
2057          * waiter itself or the task which stole the rtmutex) the
2058          * chance to try the fixup of the pi_state. So once we are
2059          * back from handling the fault we need to check the pi_state
2060          * after reacquiring the hash bucket lock and before trying to
2061          * do another fixup. When the fixup has been done already we
2062          * simply return.
2063          */
2064 handle_fault:
2065         spin_unlock(q->lock_ptr);
2066
2067         ret = fault_in_user_writeable(uaddr);
2068
2069         spin_lock(q->lock_ptr);
2070
2071         /*
2072          * Check if someone else fixed it for us:
2073          */
2074         if (pi_state->owner != oldowner)
2075                 return 0;
2076
2077         if (ret)
2078                 return ret;
2079
2080         goto retry;
2081 }
2082
2083 static long futex_wait_restart(struct restart_block *restart);
2084
2085 /**
2086  * fixup_owner() - Post lock pi_state and corner case management
2087  * @uaddr:      user address of the futex
2088  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2089  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2090  *
2091  * After attempting to lock an rt_mutex, this function is called to cleanup
2092  * the pi_state owner as well as handle race conditions that may allow us to
2093  * acquire the lock. Must be called with the hb lock held.
2094  *
2095  * Return:
2096  *  1 - success, lock taken;
2097  *  0 - success, lock not taken;
2098  * <0 - on error (-EFAULT)
2099  */
2100 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2101 {
2102         struct task_struct *owner;
2103         int ret = 0;
2104
2105         if (locked) {
2106                 /*
2107                  * Got the lock. We might not be the anticipated owner if we
2108                  * did a lock-steal - fix up the PI-state in that case:
2109                  */
2110                 if (q->pi_state->owner != current)
2111                         ret = fixup_pi_state_owner(uaddr, q, current);
2112                 goto out;
2113         }
2114
2115         /*
2116          * Catch the rare case, where the lock was released when we were on the
2117          * way back before we locked the hash bucket.
2118          */
2119         if (q->pi_state->owner == current) {
2120                 /*
2121                  * Try to get the rt_mutex now. This might fail as some other
2122                  * task acquired the rt_mutex after we removed ourself from the
2123                  * rt_mutex waiters list.
2124                  */
2125                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2126                         locked = 1;
2127                         goto out;
2128                 }
2129
2130                 /*
2131                  * pi_state is incorrect, some other task did a lock steal and
2132                  * we returned due to timeout or signal without taking the
2133                  * rt_mutex. Too late.
2134                  */
2135                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2136                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2137                 if (!owner)
2138                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2139                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2140                 ret = fixup_pi_state_owner(uaddr, q, owner);
2141                 goto out;
2142         }
2143
2144         /*
2145          * Paranoia check. If we did not take the lock, then we should not be
2146          * the owner of the rt_mutex.
2147          */
2148         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2149                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2150                                 "pi-state %p\n", ret,
2151                                 q->pi_state->pi_mutex.owner,
2152                                 q->pi_state->owner);
2153
2154 out:
2155         return ret ? ret : locked;
2156 }
2157
2158 /**
2159  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2160  * @hb:         the futex hash bucket, must be locked by the caller
2161  * @q:          the futex_q to queue up on
2162  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2163  */
2164 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2165                                 struct hrtimer_sleeper *timeout)
2166 {
2167         /*
2168          * The task state is guaranteed to be set before another task can
2169          * wake it. set_current_state() is implemented using smp_store_mb() and
2170          * queue_me() calls spin_unlock() upon completion, both serializing
2171          * access to the hash list and forcing another memory barrier.
2172          */
2173         set_current_state(TASK_INTERRUPTIBLE);
2174         queue_me(q, hb);
2175
2176         /* Arm the timer */
2177         if (timeout)
2178                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2179
2180         /*
2181          * If we have been removed from the hash list, then another task
2182          * has tried to wake us, and we can skip the call to schedule().
2183          */
2184         if (likely(!plist_node_empty(&q->list))) {
2185                 /*
2186                  * If the timer has already expired, current will already be
2187                  * flagged for rescheduling. Only call schedule if there
2188                  * is no timeout, or if it has yet to expire.
2189                  */
2190                 if (!timeout || timeout->task)
2191                         freezable_schedule();
2192         }
2193         __set_current_state(TASK_RUNNING);
2194 }
2195
2196 /**
2197  * futex_wait_setup() - Prepare to wait on a futex
2198  * @uaddr:      the futex userspace address
2199  * @val:        the expected value
2200  * @flags:      futex flags (FLAGS_SHARED, etc.)
2201  * @q:          the associated futex_q
2202  * @hb:         storage for hash_bucket pointer to be returned to caller
2203  *
2204  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2205  * compare it with the expected value.  Handle atomic faults internally.
2206  * Return with the hb lock held and a q.key reference on success, and unlocked
2207  * with no q.key reference on failure.
2208  *
2209  * Return:
2210  *  0 - uaddr contains val and hb has been locked;
2211  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2212  */
2213 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2214                            struct futex_q *q, struct futex_hash_bucket **hb)
2215 {
2216         u32 uval;
2217         int ret;
2218
2219         /*
2220          * Access the page AFTER the hash-bucket is locked.
2221          * Order is important:
2222          *
2223          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2224          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2225          *
2226          * The basic logical guarantee of a futex is that it blocks ONLY
2227          * if cond(var) is known to be true at the time of blocking, for
2228          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2229          * would open a race condition where we could block indefinitely with
2230          * cond(var) false, which would violate the guarantee.
2231          *
2232          * On the other hand, we insert q and release the hash-bucket only
2233          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2234          * absorb a wakeup if *uaddr does not match the desired values
2235          * while the syscall executes.
2236          */
2237 retry:
2238         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2239         if (unlikely(ret != 0))
2240                 return ret;
2241
2242 retry_private:
2243         *hb = queue_lock(q);
2244
2245         ret = get_futex_value_locked(&uval, uaddr);
2246
2247         if (ret) {
2248                 queue_unlock(*hb);
2249
2250                 ret = get_user(uval, uaddr);
2251                 if (ret)
2252                         goto out;
2253
2254                 if (!(flags & FLAGS_SHARED))
2255                         goto retry_private;
2256
2257                 put_futex_key(&q->key);
2258                 goto retry;
2259         }
2260
2261         if (uval != val) {
2262                 queue_unlock(*hb);
2263                 ret = -EWOULDBLOCK;
2264         }
2265
2266 out:
2267         if (ret)
2268                 put_futex_key(&q->key);
2269         return ret;
2270 }
2271
2272 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2273                       ktime_t *abs_time, u32 bitset)
2274 {
2275         struct hrtimer_sleeper timeout, *to = NULL;
2276         struct restart_block *restart;
2277         struct futex_hash_bucket *hb;
2278         struct futex_q q = futex_q_init;
2279         int ret;
2280
2281         if (!bitset)
2282                 return -EINVAL;
2283         q.bitset = bitset;
2284
2285         if (abs_time) {
2286                 to = &timeout;
2287
2288                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2289                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2290                                       HRTIMER_MODE_ABS);
2291                 hrtimer_init_sleeper(to, current);
2292                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2293                                              current->timer_slack_ns);
2294         }
2295
2296 retry:
2297         /*
2298          * Prepare to wait on uaddr. On success, holds hb lock and increments
2299          * q.key refs.
2300          */
2301         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2302         if (ret)
2303                 goto out;
2304
2305         /* queue_me and wait for wakeup, timeout, or a signal. */
2306         futex_wait_queue_me(hb, &q, to);
2307
2308         /* If we were woken (and unqueued), we succeeded, whatever. */
2309         ret = 0;
2310         /* unqueue_me() drops q.key ref */
2311         if (!unqueue_me(&q))
2312                 goto out;
2313         ret = -ETIMEDOUT;
2314         if (to && !to->task)
2315                 goto out;
2316
2317         /*
2318          * We expect signal_pending(current), but we might be the
2319          * victim of a spurious wakeup as well.
2320          */
2321         if (!signal_pending(current))
2322                 goto retry;
2323
2324         ret = -ERESTARTSYS;
2325         if (!abs_time)
2326                 goto out;
2327
2328         restart = &current->restart_block;
2329         restart->fn = futex_wait_restart;
2330         restart->futex.uaddr = uaddr;
2331         restart->futex.val = val;
2332         restart->futex.time = abs_time->tv64;
2333         restart->futex.bitset = bitset;
2334         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2335
2336         ret = -ERESTART_RESTARTBLOCK;
2337
2338 out:
2339         if (to) {
2340                 hrtimer_cancel(&to->timer);
2341                 destroy_hrtimer_on_stack(&to->timer);
2342         }
2343         return ret;
2344 }
2345
2346
2347 static long futex_wait_restart(struct restart_block *restart)
2348 {
2349         u32 __user *uaddr = restart->futex.uaddr;
2350         ktime_t t, *tp = NULL;
2351
2352         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2353                 t.tv64 = restart->futex.time;
2354                 tp = &t;
2355         }
2356         restart->fn = do_no_restart_syscall;
2357
2358         return (long)futex_wait(uaddr, restart->futex.flags,
2359                                 restart->futex.val, tp, restart->futex.bitset);
2360 }
2361
2362
2363 /*
2364  * Userspace tried a 0 -> TID atomic transition of the futex value
2365  * and failed. The kernel side here does the whole locking operation:
2366  * if there are waiters then it will block as a consequence of relying
2367  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2368  * a 0 value of the futex too.).
2369  *
2370  * Also serves as futex trylock_pi()'ing, and due semantics.
2371  */
2372 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2373                          ktime_t *time, int trylock)
2374 {
2375         struct hrtimer_sleeper timeout, *to = NULL;
2376         struct futex_hash_bucket *hb;
2377         struct futex_q q = futex_q_init;
2378         int res, ret;
2379
2380         if (refill_pi_state_cache())
2381                 return -ENOMEM;
2382
2383         if (time) {
2384                 to = &timeout;
2385                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2386                                       HRTIMER_MODE_ABS);
2387                 hrtimer_init_sleeper(to, current);
2388                 hrtimer_set_expires(&to->timer, *time);
2389         }
2390
2391 retry:
2392         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2393         if (unlikely(ret != 0))
2394                 goto out;
2395
2396 retry_private:
2397         hb = queue_lock(&q);
2398
2399         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2400         if (unlikely(ret)) {
2401                 /*
2402                  * Atomic work succeeded and we got the lock,
2403                  * or failed. Either way, we do _not_ block.
2404                  */
2405                 switch (ret) {
2406                 case 1:
2407                         /* We got the lock. */
2408                         ret = 0;
2409                         goto out_unlock_put_key;
2410                 case -EFAULT:
2411                         goto uaddr_faulted;
2412                 case -EAGAIN:
2413                         /*
2414                          * Two reasons for this:
2415                          * - Task is exiting and we just wait for the
2416                          *   exit to complete.
2417                          * - The user space value changed.
2418                          */
2419                         queue_unlock(hb);
2420                         put_futex_key(&q.key);
2421                         cond_resched();
2422                         goto retry;
2423                 default:
2424                         goto out_unlock_put_key;
2425                 }
2426         }
2427
2428         /*
2429          * Only actually queue now that the atomic ops are done:
2430          */
2431         queue_me(&q, hb);
2432
2433         WARN_ON(!q.pi_state);
2434         /*
2435          * Block on the PI mutex:
2436          */
2437         if (!trylock) {
2438                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2439         } else {
2440                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2441                 /* Fixup the trylock return value: */
2442                 ret = ret ? 0 : -EWOULDBLOCK;
2443         }
2444
2445         spin_lock(q.lock_ptr);
2446         /*
2447          * Fixup the pi_state owner and possibly acquire the lock if we
2448          * haven't already.
2449          */
2450         res = fixup_owner(uaddr, &q, !ret);
2451         /*
2452          * If fixup_owner() returned an error, proprogate that.  If it acquired
2453          * the lock, clear our -ETIMEDOUT or -EINTR.
2454          */
2455         if (res)
2456                 ret = (res < 0) ? res : 0;
2457
2458         /*
2459          * If fixup_owner() faulted and was unable to handle the fault, unlock
2460          * it and return the fault to userspace.
2461          */
2462         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2463                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2464
2465         /* Unqueue and drop the lock */
2466         unqueue_me_pi(&q);
2467
2468         goto out_put_key;
2469
2470 out_unlock_put_key:
2471         queue_unlock(hb);
2472
2473 out_put_key:
2474         put_futex_key(&q.key);
2475 out:
2476         if (to)
2477                 destroy_hrtimer_on_stack(&to->timer);
2478         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2479
2480 uaddr_faulted:
2481         queue_unlock(hb);
2482
2483         ret = fault_in_user_writeable(uaddr);
2484         if (ret)
2485                 goto out_put_key;
2486
2487         if (!(flags & FLAGS_SHARED))
2488                 goto retry_private;
2489
2490         put_futex_key(&q.key);
2491         goto retry;
2492 }
2493
2494 /*
2495  * Userspace attempted a TID -> 0 atomic transition, and failed.
2496  * This is the in-kernel slowpath: we look up the PI state (if any),
2497  * and do the rt-mutex unlock.
2498  */
2499 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2500 {
2501         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2502         union futex_key key = FUTEX_KEY_INIT;
2503         struct futex_hash_bucket *hb;
2504         struct futex_q *match;
2505         int ret;
2506
2507 retry:
2508         if (get_user(uval, uaddr))
2509                 return -EFAULT;
2510         /*
2511          * We release only a lock we actually own:
2512          */
2513         if ((uval & FUTEX_TID_MASK) != vpid)
2514                 return -EPERM;
2515
2516         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2517         if (ret)
2518                 return ret;
2519
2520         hb = hash_futex(&key);
2521         spin_lock(&hb->lock);
2522
2523         /*
2524          * Check waiters first. We do not trust user space values at
2525          * all and we at least want to know if user space fiddled
2526          * with the futex value instead of blindly unlocking.
2527          */
2528         match = futex_top_waiter(hb, &key);
2529         if (match) {
2530                 ret = wake_futex_pi(uaddr, uval, match, hb);
2531                 /*
2532                  * In case of success wake_futex_pi dropped the hash
2533                  * bucket lock.
2534                  */
2535                 if (!ret)
2536                         goto out_putkey;
2537                 /*
2538                  * The atomic access to the futex value generated a
2539                  * pagefault, so retry the user-access and the wakeup:
2540                  */
2541                 if (ret == -EFAULT)
2542                         goto pi_faulted;
2543                 /*
2544                  * wake_futex_pi has detected invalid state. Tell user
2545                  * space.
2546                  */
2547                 goto out_unlock;
2548         }
2549
2550         /*
2551          * We have no kernel internal state, i.e. no waiters in the
2552          * kernel. Waiters which are about to queue themselves are stuck
2553          * on hb->lock. So we can safely ignore them. We do neither
2554          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2555          * owner.
2556          */
2557         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2558                 goto pi_faulted;
2559
2560         /*
2561          * If uval has changed, let user space handle it.
2562          */
2563         ret = (curval == uval) ? 0 : -EAGAIN;
2564
2565 out_unlock:
2566         spin_unlock(&hb->lock);
2567 out_putkey:
2568         put_futex_key(&key);
2569         return ret;
2570
2571 pi_faulted:
2572         spin_unlock(&hb->lock);
2573         put_futex_key(&key);
2574
2575         ret = fault_in_user_writeable(uaddr);
2576         if (!ret)
2577                 goto retry;
2578
2579         return ret;
2580 }
2581
2582 /**
2583  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2584  * @hb:         the hash_bucket futex_q was original enqueued on
2585  * @q:          the futex_q woken while waiting to be requeued
2586  * @key2:       the futex_key of the requeue target futex
2587  * @timeout:    the timeout associated with the wait (NULL if none)
2588  *
2589  * Detect if the task was woken on the initial futex as opposed to the requeue
2590  * target futex.  If so, determine if it was a timeout or a signal that caused
2591  * the wakeup and return the appropriate error code to the caller.  Must be
2592  * called with the hb lock held.
2593  *
2594  * Return:
2595  *  0 = no early wakeup detected;
2596  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2597  */
2598 static inline
2599 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2600                                    struct futex_q *q, union futex_key *key2,
2601                                    struct hrtimer_sleeper *timeout)
2602 {
2603         int ret = 0;
2604
2605         /*
2606          * With the hb lock held, we avoid races while we process the wakeup.
2607          * We only need to hold hb (and not hb2) to ensure atomicity as the
2608          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2609          * It can't be requeued from uaddr2 to something else since we don't
2610          * support a PI aware source futex for requeue.
2611          */
2612         if (!match_futex(&q->key, key2)) {
2613                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2614                 /*
2615                  * We were woken prior to requeue by a timeout or a signal.
2616                  * Unqueue the futex_q and determine which it was.
2617                  */
2618                 plist_del(&q->list, &hb->chain);
2619                 hb_waiters_dec(hb);
2620
2621                 /* Handle spurious wakeups gracefully */
2622                 ret = -EWOULDBLOCK;
2623                 if (timeout && !timeout->task)
2624                         ret = -ETIMEDOUT;
2625                 else if (signal_pending(current))
2626                         ret = -ERESTARTNOINTR;
2627         }
2628         return ret;
2629 }
2630
2631 /**
2632  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2633  * @uaddr:      the futex we initially wait on (non-pi)
2634  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2635  *              the same type, no requeueing from private to shared, etc.
2636  * @val:        the expected value of uaddr
2637  * @abs_time:   absolute timeout
2638  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2639  * @uaddr2:     the pi futex we will take prior to returning to user-space
2640  *
2641  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2642  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2643  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2644  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2645  * without one, the pi logic would not know which task to boost/deboost, if
2646  * there was a need to.
2647  *
2648  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2649  * via the following--
2650  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2651  * 2) wakeup on uaddr2 after a requeue
2652  * 3) signal
2653  * 4) timeout
2654  *
2655  * If 3, cleanup and return -ERESTARTNOINTR.
2656  *
2657  * If 2, we may then block on trying to take the rt_mutex and return via:
2658  * 5) successful lock
2659  * 6) signal
2660  * 7) timeout
2661  * 8) other lock acquisition failure
2662  *
2663  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2664  *
2665  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2666  *
2667  * Return:
2668  *  0 - On success;
2669  * <0 - On error
2670  */
2671 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2672                                  u32 val, ktime_t *abs_time, u32 bitset,
2673                                  u32 __user *uaddr2)
2674 {
2675         struct hrtimer_sleeper timeout, *to = NULL;
2676         struct rt_mutex_waiter rt_waiter;
2677         struct rt_mutex *pi_mutex = NULL;
2678         struct futex_hash_bucket *hb;
2679         union futex_key key2 = FUTEX_KEY_INIT;
2680         struct futex_q q = futex_q_init;
2681         int res, ret;
2682
2683         if (uaddr == uaddr2)
2684                 return -EINVAL;
2685
2686         if (!bitset)
2687                 return -EINVAL;
2688
2689         if (abs_time) {
2690                 to = &timeout;
2691                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2692                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2693                                       HRTIMER_MODE_ABS);
2694                 hrtimer_init_sleeper(to, current);
2695                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2696                                              current->timer_slack_ns);
2697         }
2698
2699         /*
2700          * The waiter is allocated on our stack, manipulated by the requeue
2701          * code while we sleep on uaddr.
2702          */
2703         debug_rt_mutex_init_waiter(&rt_waiter);
2704         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2705         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2706         rt_waiter.task = NULL;
2707
2708         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2709         if (unlikely(ret != 0))
2710                 goto out;
2711
2712         q.bitset = bitset;
2713         q.rt_waiter = &rt_waiter;
2714         q.requeue_pi_key = &key2;
2715
2716         /*
2717          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2718          * count.
2719          */
2720         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2721         if (ret)
2722                 goto out_key2;
2723
2724         /*
2725          * The check above which compares uaddrs is not sufficient for
2726          * shared futexes. We need to compare the keys:
2727          */
2728         if (match_futex(&q.key, &key2)) {
2729                 queue_unlock(hb);
2730                 ret = -EINVAL;
2731                 goto out_put_keys;
2732         }
2733
2734         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2735         futex_wait_queue_me(hb, &q, to);
2736
2737         spin_lock(&hb->lock);
2738         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2739         spin_unlock(&hb->lock);
2740         if (ret)
2741                 goto out_put_keys;
2742
2743         /*
2744          * In order for us to be here, we know our q.key == key2, and since
2745          * we took the hb->lock above, we also know that futex_requeue() has
2746          * completed and we no longer have to concern ourselves with a wakeup
2747          * race with the atomic proxy lock acquisition by the requeue code. The
2748          * futex_requeue dropped our key1 reference and incremented our key2
2749          * reference count.
2750          */
2751
2752         /* Check if the requeue code acquired the second futex for us. */
2753         if (!q.rt_waiter) {
2754                 /*
2755                  * Got the lock. We might not be the anticipated owner if we
2756                  * did a lock-steal - fix up the PI-state in that case.
2757                  */
2758                 if (q.pi_state && (q.pi_state->owner != current)) {
2759                         spin_lock(q.lock_ptr);
2760                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2761                         /*
2762                          * Drop the reference to the pi state which
2763                          * the requeue_pi() code acquired for us.
2764                          */
2765                         put_pi_state(q.pi_state);
2766                         spin_unlock(q.lock_ptr);
2767                 }
2768         } else {
2769                 /*
2770                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2771                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2772                  * the pi_state.
2773                  */
2774                 WARN_ON(!q.pi_state);
2775                 pi_mutex = &q.pi_state->pi_mutex;
2776                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2777                 debug_rt_mutex_free_waiter(&rt_waiter);
2778
2779                 spin_lock(q.lock_ptr);
2780                 /*
2781                  * Fixup the pi_state owner and possibly acquire the lock if we
2782                  * haven't already.
2783                  */
2784                 res = fixup_owner(uaddr2, &q, !ret);
2785                 /*
2786                  * If fixup_owner() returned an error, proprogate that.  If it
2787                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2788                  */
2789                 if (res)
2790                         ret = (res < 0) ? res : 0;
2791
2792                 /* Unqueue and drop the lock. */
2793                 unqueue_me_pi(&q);
2794         }
2795
2796         /*
2797          * If fixup_pi_state_owner() faulted and was unable to handle the
2798          * fault, unlock the rt_mutex and return the fault to userspace.
2799          */
2800         if (ret == -EFAULT) {
2801                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2802                         rt_mutex_unlock(pi_mutex);
2803         } else if (ret == -EINTR) {
2804                 /*
2805                  * We've already been requeued, but cannot restart by calling
2806                  * futex_lock_pi() directly. We could restart this syscall, but
2807                  * it would detect that the user space "val" changed and return
2808                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2809                  * -EWOULDBLOCK directly.
2810                  */
2811                 ret = -EWOULDBLOCK;
2812         }
2813
2814 out_put_keys:
2815         put_futex_key(&q.key);
2816 out_key2:
2817         put_futex_key(&key2);
2818
2819 out:
2820         if (to) {
2821                 hrtimer_cancel(&to->timer);
2822                 destroy_hrtimer_on_stack(&to->timer);
2823         }
2824         return ret;
2825 }
2826
2827 /*
2828  * Support for robust futexes: the kernel cleans up held futexes at
2829  * thread exit time.
2830  *
2831  * Implementation: user-space maintains a per-thread list of locks it
2832  * is holding. Upon do_exit(), the kernel carefully walks this list,
2833  * and marks all locks that are owned by this thread with the
2834  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2835  * always manipulated with the lock held, so the list is private and
2836  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2837  * field, to allow the kernel to clean up if the thread dies after
2838  * acquiring the lock, but just before it could have added itself to
2839  * the list. There can only be one such pending lock.
2840  */
2841
2842 /**
2843  * sys_set_robust_list() - Set the robust-futex list head of a task
2844  * @head:       pointer to the list-head
2845  * @len:        length of the list-head, as userspace expects
2846  */
2847 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2848                 size_t, len)
2849 {
2850         if (!futex_cmpxchg_enabled)
2851                 return -ENOSYS;
2852         /*
2853          * The kernel knows only one size for now:
2854          */
2855         if (unlikely(len != sizeof(*head)))
2856                 return -EINVAL;
2857
2858         current->robust_list = head;
2859
2860         return 0;
2861 }
2862
2863 /**
2864  * sys_get_robust_list() - Get the robust-futex list head of a task
2865  * @pid:        pid of the process [zero for current task]
2866  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2867  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2868  */
2869 SYSCALL_DEFINE3(get_robust_list, int, pid,
2870                 struct robust_list_head __user * __user *, head_ptr,
2871                 size_t __user *, len_ptr)
2872 {
2873         struct robust_list_head __user *head;
2874         unsigned long ret;
2875         struct task_struct *p;
2876
2877         if (!futex_cmpxchg_enabled)
2878                 return -ENOSYS;
2879
2880         rcu_read_lock();
2881
2882         ret = -ESRCH;
2883         if (!pid)
2884                 p = current;
2885         else {
2886                 p = find_task_by_vpid(pid);
2887                 if (!p)
2888                         goto err_unlock;
2889         }
2890
2891         ret = -EPERM;
2892         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2893                 goto err_unlock;
2894
2895         head = p->robust_list;
2896         rcu_read_unlock();
2897
2898         if (put_user(sizeof(*head), len_ptr))
2899                 return -EFAULT;
2900         return put_user(head, head_ptr);
2901
2902 err_unlock:
2903         rcu_read_unlock();
2904
2905         return ret;
2906 }
2907
2908 /*
2909  * Process a futex-list entry, check whether it's owned by the
2910  * dying task, and do notification if so:
2911  */
2912 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2913 {
2914         u32 uval, uninitialized_var(nval), mval;
2915
2916 retry:
2917         if (get_user(uval, uaddr))
2918                 return -1;
2919
2920         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2921                 /*
2922                  * Ok, this dying thread is truly holding a futex
2923                  * of interest. Set the OWNER_DIED bit atomically
2924                  * via cmpxchg, and if the value had FUTEX_WAITERS
2925                  * set, wake up a waiter (if any). (We have to do a
2926                  * futex_wake() even if OWNER_DIED is already set -
2927                  * to handle the rare but possible case of recursive
2928                  * thread-death.) The rest of the cleanup is done in
2929                  * userspace.
2930                  */
2931                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2932                 /*
2933                  * We are not holding a lock here, but we want to have
2934                  * the pagefault_disable/enable() protection because
2935                  * we want to handle the fault gracefully. If the
2936                  * access fails we try to fault in the futex with R/W
2937                  * verification via get_user_pages. get_user() above
2938                  * does not guarantee R/W access. If that fails we
2939                  * give up and leave the futex locked.
2940                  */
2941                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2942                         if (fault_in_user_writeable(uaddr))
2943                                 return -1;
2944                         goto retry;
2945                 }
2946                 if (nval != uval)
2947                         goto retry;
2948
2949                 /*
2950                  * Wake robust non-PI futexes here. The wakeup of
2951                  * PI futexes happens in exit_pi_state():
2952                  */
2953                 if (!pi && (uval & FUTEX_WAITERS))
2954                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2955         }
2956         return 0;
2957 }
2958
2959 /*
2960  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2961  */
2962 static inline int fetch_robust_entry(struct robust_list __user **entry,
2963                                      struct robust_list __user * __user *head,
2964                                      unsigned int *pi)
2965 {
2966         unsigned long uentry;
2967
2968         if (get_user(uentry, (unsigned long __user *)head))
2969                 return -EFAULT;
2970
2971         *entry = (void __user *)(uentry & ~1UL);
2972         *pi = uentry & 1;
2973
2974         return 0;
2975 }
2976
2977 /*
2978  * Walk curr->robust_list (very carefully, it's a userspace list!)
2979  * and mark any locks found there dead, and notify any waiters.
2980  *
2981  * We silently return on any sign of list-walking problem.
2982  */
2983 void exit_robust_list(struct task_struct *curr)
2984 {
2985         struct robust_list_head __user *head = curr->robust_list;
2986         struct robust_list __user *entry, *next_entry, *pending;
2987         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2988         unsigned int uninitialized_var(next_pi);
2989         unsigned long futex_offset;
2990         int rc;
2991
2992         if (!futex_cmpxchg_enabled)
2993                 return;
2994
2995         /*
2996          * Fetch the list head (which was registered earlier, via
2997          * sys_set_robust_list()):
2998          */
2999         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3000                 return;
3001         /*
3002          * Fetch the relative futex offset:
3003          */
3004         if (get_user(futex_offset, &head->futex_offset))
3005                 return;
3006         /*
3007          * Fetch any possibly pending lock-add first, and handle it
3008          * if it exists:
3009          */
3010         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3011                 return;
3012
3013         next_entry = NULL;      /* avoid warning with gcc */
3014         while (entry != &head->list) {
3015                 /*
3016                  * Fetch the next entry in the list before calling
3017                  * handle_futex_death:
3018                  */
3019                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3020                 /*
3021                  * A pending lock might already be on the list, so
3022                  * don't process it twice:
3023                  */
3024                 if (entry != pending)
3025                         if (handle_futex_death((void __user *)entry + futex_offset,
3026                                                 curr, pi))
3027                                 return;
3028                 if (rc)
3029                         return;
3030                 entry = next_entry;
3031                 pi = next_pi;
3032                 /*
3033                  * Avoid excessively long or circular lists:
3034                  */
3035                 if (!--limit)
3036                         break;
3037
3038                 cond_resched();
3039         }
3040
3041         if (pending)
3042                 handle_futex_death((void __user *)pending + futex_offset,
3043                                    curr, pip);
3044 }
3045
3046 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3047                 u32 __user *uaddr2, u32 val2, u32 val3)
3048 {
3049         int cmd = op & FUTEX_CMD_MASK;
3050         unsigned int flags = 0;
3051
3052         if (!(op & FUTEX_PRIVATE_FLAG))
3053                 flags |= FLAGS_SHARED;
3054
3055         if (op & FUTEX_CLOCK_REALTIME) {
3056                 flags |= FLAGS_CLOCKRT;
3057                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3058                         return -ENOSYS;
3059         }
3060
3061         switch (cmd) {
3062         case FUTEX_LOCK_PI:
3063         case FUTEX_UNLOCK_PI:
3064         case FUTEX_TRYLOCK_PI:
3065         case FUTEX_WAIT_REQUEUE_PI:
3066         case FUTEX_CMP_REQUEUE_PI:
3067                 if (!futex_cmpxchg_enabled)
3068                         return -ENOSYS;
3069         }
3070
3071         switch (cmd) {
3072         case FUTEX_WAIT:
3073                 val3 = FUTEX_BITSET_MATCH_ANY;
3074         case FUTEX_WAIT_BITSET:
3075                 return futex_wait(uaddr, flags, val, timeout, val3);
3076         case FUTEX_WAKE:
3077                 val3 = FUTEX_BITSET_MATCH_ANY;
3078         case FUTEX_WAKE_BITSET:
3079                 return futex_wake(uaddr, flags, val, val3);
3080         case FUTEX_REQUEUE:
3081                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3082         case FUTEX_CMP_REQUEUE:
3083                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3084         case FUTEX_WAKE_OP:
3085                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3086         case FUTEX_LOCK_PI:
3087                 return futex_lock_pi(uaddr, flags, timeout, 0);
3088         case FUTEX_UNLOCK_PI:
3089                 return futex_unlock_pi(uaddr, flags);
3090         case FUTEX_TRYLOCK_PI:
3091                 return futex_lock_pi(uaddr, flags, NULL, 1);
3092         case FUTEX_WAIT_REQUEUE_PI:
3093                 val3 = FUTEX_BITSET_MATCH_ANY;
3094                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3095                                              uaddr2);
3096         case FUTEX_CMP_REQUEUE_PI:
3097                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3098         }
3099         return -ENOSYS;
3100 }
3101
3102
3103 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3104                 struct timespec __user *, utime, u32 __user *, uaddr2,
3105                 u32, val3)
3106 {
3107         struct timespec ts;
3108         ktime_t t, *tp = NULL;
3109         u32 val2 = 0;
3110         int cmd = op & FUTEX_CMD_MASK;
3111
3112         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3113                       cmd == FUTEX_WAIT_BITSET ||
3114                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3115                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3116                         return -EFAULT;
3117                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3118                         return -EFAULT;
3119                 if (!timespec_valid(&ts))
3120                         return -EINVAL;
3121
3122                 t = timespec_to_ktime(ts);
3123                 if (cmd == FUTEX_WAIT)
3124                         t = ktime_add_safe(ktime_get(), t);
3125                 tp = &t;
3126         }
3127         /*
3128          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3129          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3130          */
3131         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3132             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3133                 val2 = (u32) (unsigned long) utime;
3134
3135         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3136 }
3137
3138 static void __init futex_detect_cmpxchg(void)
3139 {
3140 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3141         u32 curval;
3142
3143         /*
3144          * This will fail and we want it. Some arch implementations do
3145          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3146          * functionality. We want to know that before we call in any
3147          * of the complex code paths. Also we want to prevent
3148          * registration of robust lists in that case. NULL is
3149          * guaranteed to fault and we get -EFAULT on functional
3150          * implementation, the non-functional ones will return
3151          * -ENOSYS.
3152          */
3153         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3154                 futex_cmpxchg_enabled = 1;
3155 #endif
3156 }
3157
3158 static int __init futex_init(void)
3159 {
3160         unsigned int futex_shift;
3161         unsigned long i;
3162
3163 #if CONFIG_BASE_SMALL
3164         futex_hashsize = 16;
3165 #else
3166         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3167 #endif
3168
3169         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3170                                                futex_hashsize, 0,
3171                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3172                                                &futex_shift, NULL,
3173                                                futex_hashsize, futex_hashsize);
3174         futex_hashsize = 1UL << futex_shift;
3175
3176         futex_detect_cmpxchg();
3177
3178         for (i = 0; i < futex_hashsize; i++) {
3179                 atomic_set(&futex_queues[i].waiters, 0);
3180                 plist_head_init(&futex_queues[i].chain);
3181                 spin_lock_init(&futex_queues[i].lock);
3182         }
3183
3184         return 0;
3185 }
3186 __initcall(futex_init);