]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/irq/manage.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / kernel / irq / manage.c
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 #ifdef CONFIG_GENERIC_PENDING_IRQ
172 static inline bool irq_can_move_pcntxt(struct irq_data *data)
173 {
174         return irqd_can_move_in_process_context(data);
175 }
176 static inline bool irq_move_pending(struct irq_data *data)
177 {
178         return irqd_is_setaffinity_pending(data);
179 }
180 static inline void
181 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
182 {
183         cpumask_copy(desc->pending_mask, mask);
184 }
185 static inline void
186 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
187 {
188         cpumask_copy(mask, desc->pending_mask);
189 }
190 #else
191 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
192 static inline bool irq_move_pending(struct irq_data *data) { return false; }
193 static inline void
194 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
195 static inline void
196 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
197 #endif
198
199 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
200                         bool force)
201 {
202         struct irq_desc *desc = irq_data_to_desc(data);
203         struct irq_chip *chip = irq_data_get_irq_chip(data);
204         int ret;
205
206         ret = chip->irq_set_affinity(data, mask, force);
207         switch (ret) {
208         case IRQ_SET_MASK_OK:
209         case IRQ_SET_MASK_OK_DONE:
210                 cpumask_copy(desc->irq_common_data.affinity, mask);
211         case IRQ_SET_MASK_OK_NOCOPY:
212                 irq_set_thread_affinity(desc);
213                 ret = 0;
214         }
215
216         return ret;
217 }
218
219 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
220                             bool force)
221 {
222         struct irq_chip *chip = irq_data_get_irq_chip(data);
223         struct irq_desc *desc = irq_data_to_desc(data);
224         int ret = 0;
225
226         if (!chip || !chip->irq_set_affinity)
227                 return -EINVAL;
228
229         if (irq_can_move_pcntxt(data)) {
230                 ret = irq_do_set_affinity(data, mask, force);
231         } else {
232                 irqd_set_move_pending(data);
233                 irq_copy_pending(desc, mask);
234         }
235
236         if (desc->affinity_notify) {
237                 kref_get(&desc->affinity_notify->kref);
238                 schedule_work(&desc->affinity_notify->work);
239         }
240         irqd_set(data, IRQD_AFFINITY_SET);
241
242         return ret;
243 }
244
245 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
246 {
247         struct irq_desc *desc = irq_to_desc(irq);
248         unsigned long flags;
249         int ret;
250
251         if (!desc)
252                 return -EINVAL;
253
254         raw_spin_lock_irqsave(&desc->lock, flags);
255         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
256         raw_spin_unlock_irqrestore(&desc->lock, flags);
257         return ret;
258 }
259
260 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
261 {
262         unsigned long flags;
263         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
264
265         if (!desc)
266                 return -EINVAL;
267         desc->affinity_hint = m;
268         irq_put_desc_unlock(desc, flags);
269         /* set the initial affinity to prevent every interrupt being on CPU0 */
270         if (m)
271                 __irq_set_affinity(irq, m, false);
272         return 0;
273 }
274 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
275
276 static void irq_affinity_notify(struct work_struct *work)
277 {
278         struct irq_affinity_notify *notify =
279                 container_of(work, struct irq_affinity_notify, work);
280         struct irq_desc *desc = irq_to_desc(notify->irq);
281         cpumask_var_t cpumask;
282         unsigned long flags;
283
284         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
285                 goto out;
286
287         raw_spin_lock_irqsave(&desc->lock, flags);
288         if (irq_move_pending(&desc->irq_data))
289                 irq_get_pending(cpumask, desc);
290         else
291                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
292         raw_spin_unlock_irqrestore(&desc->lock, flags);
293
294         notify->notify(notify, cpumask);
295
296         free_cpumask_var(cpumask);
297 out:
298         kref_put(&notify->kref, notify->release);
299 }
300
301 /**
302  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
303  *      @irq:           Interrupt for which to enable/disable notification
304  *      @notify:        Context for notification, or %NULL to disable
305  *                      notification.  Function pointers must be initialised;
306  *                      the other fields will be initialised by this function.
307  *
308  *      Must be called in process context.  Notification may only be enabled
309  *      after the IRQ is allocated and must be disabled before the IRQ is
310  *      freed using free_irq().
311  */
312 int
313 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
314 {
315         struct irq_desc *desc = irq_to_desc(irq);
316         struct irq_affinity_notify *old_notify;
317         unsigned long flags;
318
319         /* The release function is promised process context */
320         might_sleep();
321
322         if (!desc)
323                 return -EINVAL;
324
325         /* Complete initialisation of *notify */
326         if (notify) {
327                 notify->irq = irq;
328                 kref_init(&notify->kref);
329                 INIT_WORK(&notify->work, irq_affinity_notify);
330         }
331
332         raw_spin_lock_irqsave(&desc->lock, flags);
333         old_notify = desc->affinity_notify;
334         desc->affinity_notify = notify;
335         raw_spin_unlock_irqrestore(&desc->lock, flags);
336
337         if (old_notify)
338                 kref_put(&old_notify->kref, old_notify->release);
339
340         return 0;
341 }
342 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
343
344 #ifndef CONFIG_AUTO_IRQ_AFFINITY
345 /*
346  * Generic version of the affinity autoselector.
347  */
348 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
349 {
350         struct cpumask *set = irq_default_affinity;
351         int node = irq_desc_get_node(desc);
352
353         /* Excludes PER_CPU and NO_BALANCE interrupts */
354         if (!__irq_can_set_affinity(desc))
355                 return 0;
356
357         /*
358          * Preserve the managed affinity setting and a userspace affinity
359          * setup, but make sure that one of the targets is online.
360          */
361         if (irqd_affinity_is_managed(&desc->irq_data) ||
362             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
363                 if (cpumask_intersects(desc->irq_common_data.affinity,
364                                        cpu_online_mask))
365                         set = desc->irq_common_data.affinity;
366                 else
367                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
368         }
369
370         cpumask_and(mask, cpu_online_mask, set);
371         if (node != NUMA_NO_NODE) {
372                 const struct cpumask *nodemask = cpumask_of_node(node);
373
374                 /* make sure at least one of the cpus in nodemask is online */
375                 if (cpumask_intersects(mask, nodemask))
376                         cpumask_and(mask, mask, nodemask);
377         }
378         irq_do_set_affinity(&desc->irq_data, mask, false);
379         return 0;
380 }
381 #else
382 /* Wrapper for ALPHA specific affinity selector magic */
383 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
384 {
385         return irq_select_affinity(irq_desc_get_irq(d));
386 }
387 #endif
388
389 /*
390  * Called when affinity is set via /proc/irq
391  */
392 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
393 {
394         struct irq_desc *desc = irq_to_desc(irq);
395         unsigned long flags;
396         int ret;
397
398         raw_spin_lock_irqsave(&desc->lock, flags);
399         ret = setup_affinity(desc, mask);
400         raw_spin_unlock_irqrestore(&desc->lock, flags);
401         return ret;
402 }
403
404 #else
405 static inline int
406 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
407 {
408         return 0;
409 }
410 #endif
411
412 /**
413  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
414  *      @irq: interrupt number to set affinity
415  *      @vcpu_info: vCPU specific data
416  *
417  *      This function uses the vCPU specific data to set the vCPU
418  *      affinity for an irq. The vCPU specific data is passed from
419  *      outside, such as KVM. One example code path is as below:
420  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
421  */
422 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
423 {
424         unsigned long flags;
425         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
426         struct irq_data *data;
427         struct irq_chip *chip;
428         int ret = -ENOSYS;
429
430         if (!desc)
431                 return -EINVAL;
432
433         data = irq_desc_get_irq_data(desc);
434         chip = irq_data_get_irq_chip(data);
435         if (chip && chip->irq_set_vcpu_affinity)
436                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
437         irq_put_desc_unlock(desc, flags);
438
439         return ret;
440 }
441 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
442
443 void __disable_irq(struct irq_desc *desc)
444 {
445         if (!desc->depth++)
446                 irq_disable(desc);
447 }
448
449 static int __disable_irq_nosync(unsigned int irq)
450 {
451         unsigned long flags;
452         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
453
454         if (!desc)
455                 return -EINVAL;
456         __disable_irq(desc);
457         irq_put_desc_busunlock(desc, flags);
458         return 0;
459 }
460
461 /**
462  *      disable_irq_nosync - disable an irq without waiting
463  *      @irq: Interrupt to disable
464  *
465  *      Disable the selected interrupt line.  Disables and Enables are
466  *      nested.
467  *      Unlike disable_irq(), this function does not ensure existing
468  *      instances of the IRQ handler have completed before returning.
469  *
470  *      This function may be called from IRQ context.
471  */
472 void disable_irq_nosync(unsigned int irq)
473 {
474         __disable_irq_nosync(irq);
475 }
476 EXPORT_SYMBOL(disable_irq_nosync);
477
478 /**
479  *      disable_irq - disable an irq and wait for completion
480  *      @irq: Interrupt to disable
481  *
482  *      Disable the selected interrupt line.  Enables and Disables are
483  *      nested.
484  *      This function waits for any pending IRQ handlers for this interrupt
485  *      to complete before returning. If you use this function while
486  *      holding a resource the IRQ handler may need you will deadlock.
487  *
488  *      This function may be called - with care - from IRQ context.
489  */
490 void disable_irq(unsigned int irq)
491 {
492         if (!__disable_irq_nosync(irq))
493                 synchronize_irq(irq);
494 }
495 EXPORT_SYMBOL(disable_irq);
496
497 /**
498  *      disable_hardirq - disables an irq and waits for hardirq completion
499  *      @irq: Interrupt to disable
500  *
501  *      Disable the selected interrupt line.  Enables and Disables are
502  *      nested.
503  *      This function waits for any pending hard IRQ handlers for this
504  *      interrupt to complete before returning. If you use this function while
505  *      holding a resource the hard IRQ handler may need you will deadlock.
506  *
507  *      When used to optimistically disable an interrupt from atomic context
508  *      the return value must be checked.
509  *
510  *      Returns: false if a threaded handler is active.
511  *
512  *      This function may be called - with care - from IRQ context.
513  */
514 bool disable_hardirq(unsigned int irq)
515 {
516         if (!__disable_irq_nosync(irq))
517                 return synchronize_hardirq(irq);
518
519         return false;
520 }
521 EXPORT_SYMBOL_GPL(disable_hardirq);
522
523 void __enable_irq(struct irq_desc *desc)
524 {
525         switch (desc->depth) {
526         case 0:
527  err_out:
528                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
529                      irq_desc_get_irq(desc));
530                 break;
531         case 1: {
532                 if (desc->istate & IRQS_SUSPENDED)
533                         goto err_out;
534                 /* Prevent probing on this irq: */
535                 irq_settings_set_noprobe(desc);
536                 irq_enable(desc);
537                 check_irq_resend(desc);
538                 /* fall-through */
539         }
540         default:
541                 desc->depth--;
542         }
543 }
544
545 /**
546  *      enable_irq - enable handling of an irq
547  *      @irq: Interrupt to enable
548  *
549  *      Undoes the effect of one call to disable_irq().  If this
550  *      matches the last disable, processing of interrupts on this
551  *      IRQ line is re-enabled.
552  *
553  *      This function may be called from IRQ context only when
554  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
555  */
556 void enable_irq(unsigned int irq)
557 {
558         unsigned long flags;
559         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
560
561         if (!desc)
562                 return;
563         if (WARN(!desc->irq_data.chip,
564                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
565                 goto out;
566
567         __enable_irq(desc);
568 out:
569         irq_put_desc_busunlock(desc, flags);
570 }
571 EXPORT_SYMBOL(enable_irq);
572
573 static int set_irq_wake_real(unsigned int irq, unsigned int on)
574 {
575         struct irq_desc *desc = irq_to_desc(irq);
576         int ret = -ENXIO;
577
578         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
579                 return 0;
580
581         if (desc->irq_data.chip->irq_set_wake)
582                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
583
584         return ret;
585 }
586
587 /**
588  *      irq_set_irq_wake - control irq power management wakeup
589  *      @irq:   interrupt to control
590  *      @on:    enable/disable power management wakeup
591  *
592  *      Enable/disable power management wakeup mode, which is
593  *      disabled by default.  Enables and disables must match,
594  *      just as they match for non-wakeup mode support.
595  *
596  *      Wakeup mode lets this IRQ wake the system from sleep
597  *      states like "suspend to RAM".
598  */
599 int irq_set_irq_wake(unsigned int irq, unsigned int on)
600 {
601         unsigned long flags;
602         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
603         int ret = 0;
604
605         if (!desc)
606                 return -EINVAL;
607
608         /* wakeup-capable irqs can be shared between drivers that
609          * don't need to have the same sleep mode behaviors.
610          */
611         if (on) {
612                 if (desc->wake_depth++ == 0) {
613                         ret = set_irq_wake_real(irq, on);
614                         if (ret)
615                                 desc->wake_depth = 0;
616                         else
617                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
618                 }
619         } else {
620                 if (desc->wake_depth == 0) {
621                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
622                 } else if (--desc->wake_depth == 0) {
623                         ret = set_irq_wake_real(irq, on);
624                         if (ret)
625                                 desc->wake_depth = 1;
626                         else
627                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
628                 }
629         }
630         irq_put_desc_busunlock(desc, flags);
631         return ret;
632 }
633 EXPORT_SYMBOL(irq_set_irq_wake);
634
635 /*
636  * Internal function that tells the architecture code whether a
637  * particular irq has been exclusively allocated or is available
638  * for driver use.
639  */
640 int can_request_irq(unsigned int irq, unsigned long irqflags)
641 {
642         unsigned long flags;
643         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
644         int canrequest = 0;
645
646         if (!desc)
647                 return 0;
648
649         if (irq_settings_can_request(desc)) {
650                 if (!desc->action ||
651                     irqflags & desc->action->flags & IRQF_SHARED)
652                         canrequest = 1;
653         }
654         irq_put_desc_unlock(desc, flags);
655         return canrequest;
656 }
657
658 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
659 {
660         struct irq_chip *chip = desc->irq_data.chip;
661         int ret, unmask = 0;
662
663         if (!chip || !chip->irq_set_type) {
664                 /*
665                  * IRQF_TRIGGER_* but the PIC does not support multiple
666                  * flow-types?
667                  */
668                 pr_debug("No set_type function for IRQ %d (%s)\n",
669                          irq_desc_get_irq(desc),
670                          chip ? (chip->name ? : "unknown") : "unknown");
671                 return 0;
672         }
673
674         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
675                 if (!irqd_irq_masked(&desc->irq_data))
676                         mask_irq(desc);
677                 if (!irqd_irq_disabled(&desc->irq_data))
678                         unmask = 1;
679         }
680
681         /* Mask all flags except trigger mode */
682         flags &= IRQ_TYPE_SENSE_MASK;
683         ret = chip->irq_set_type(&desc->irq_data, flags);
684
685         switch (ret) {
686         case IRQ_SET_MASK_OK:
687         case IRQ_SET_MASK_OK_DONE:
688                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
689                 irqd_set(&desc->irq_data, flags);
690
691         case IRQ_SET_MASK_OK_NOCOPY:
692                 flags = irqd_get_trigger_type(&desc->irq_data);
693                 irq_settings_set_trigger_mask(desc, flags);
694                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
695                 irq_settings_clr_level(desc);
696                 if (flags & IRQ_TYPE_LEVEL_MASK) {
697                         irq_settings_set_level(desc);
698                         irqd_set(&desc->irq_data, IRQD_LEVEL);
699                 }
700
701                 ret = 0;
702                 break;
703         default:
704                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
705                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
706         }
707         if (unmask)
708                 unmask_irq(desc);
709         return ret;
710 }
711
712 #ifdef CONFIG_HARDIRQS_SW_RESEND
713 int irq_set_parent(int irq, int parent_irq)
714 {
715         unsigned long flags;
716         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
717
718         if (!desc)
719                 return -EINVAL;
720
721         desc->parent_irq = parent_irq;
722
723         irq_put_desc_unlock(desc, flags);
724         return 0;
725 }
726 EXPORT_SYMBOL_GPL(irq_set_parent);
727 #endif
728
729 /*
730  * Default primary interrupt handler for threaded interrupts. Is
731  * assigned as primary handler when request_threaded_irq is called
732  * with handler == NULL. Useful for oneshot interrupts.
733  */
734 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
735 {
736         return IRQ_WAKE_THREAD;
737 }
738
739 /*
740  * Primary handler for nested threaded interrupts. Should never be
741  * called.
742  */
743 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
744 {
745         WARN(1, "Primary handler called for nested irq %d\n", irq);
746         return IRQ_NONE;
747 }
748
749 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
750 {
751         WARN(1, "Secondary action handler called for irq %d\n", irq);
752         return IRQ_NONE;
753 }
754
755 static int irq_wait_for_interrupt(struct irqaction *action)
756 {
757         set_current_state(TASK_INTERRUPTIBLE);
758
759         while (!kthread_should_stop()) {
760
761                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
762                                        &action->thread_flags)) {
763                         __set_current_state(TASK_RUNNING);
764                         return 0;
765                 }
766                 schedule();
767                 set_current_state(TASK_INTERRUPTIBLE);
768         }
769         __set_current_state(TASK_RUNNING);
770         return -1;
771 }
772
773 /*
774  * Oneshot interrupts keep the irq line masked until the threaded
775  * handler finished. unmask if the interrupt has not been disabled and
776  * is marked MASKED.
777  */
778 static void irq_finalize_oneshot(struct irq_desc *desc,
779                                  struct irqaction *action)
780 {
781         if (!(desc->istate & IRQS_ONESHOT) ||
782             action->handler == irq_forced_secondary_handler)
783                 return;
784 again:
785         chip_bus_lock(desc);
786         raw_spin_lock_irq(&desc->lock);
787
788         /*
789          * Implausible though it may be we need to protect us against
790          * the following scenario:
791          *
792          * The thread is faster done than the hard interrupt handler
793          * on the other CPU. If we unmask the irq line then the
794          * interrupt can come in again and masks the line, leaves due
795          * to IRQS_INPROGRESS and the irq line is masked forever.
796          *
797          * This also serializes the state of shared oneshot handlers
798          * versus "desc->threads_onehsot |= action->thread_mask;" in
799          * irq_wake_thread(). See the comment there which explains the
800          * serialization.
801          */
802         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
803                 raw_spin_unlock_irq(&desc->lock);
804                 chip_bus_sync_unlock(desc);
805                 cpu_relax();
806                 goto again;
807         }
808
809         /*
810          * Now check again, whether the thread should run. Otherwise
811          * we would clear the threads_oneshot bit of this thread which
812          * was just set.
813          */
814         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
815                 goto out_unlock;
816
817         desc->threads_oneshot &= ~action->thread_mask;
818
819         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
820             irqd_irq_masked(&desc->irq_data))
821                 unmask_threaded_irq(desc);
822
823 out_unlock:
824         raw_spin_unlock_irq(&desc->lock);
825         chip_bus_sync_unlock(desc);
826 }
827
828 #ifdef CONFIG_SMP
829 /*
830  * Check whether we need to change the affinity of the interrupt thread.
831  */
832 static void
833 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
834 {
835         cpumask_var_t mask;
836         bool valid = true;
837
838         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
839                 return;
840
841         /*
842          * In case we are out of memory we set IRQTF_AFFINITY again and
843          * try again next time
844          */
845         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
846                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
847                 return;
848         }
849
850         raw_spin_lock_irq(&desc->lock);
851         /*
852          * This code is triggered unconditionally. Check the affinity
853          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
854          */
855         if (cpumask_available(desc->irq_common_data.affinity))
856                 cpumask_copy(mask, desc->irq_common_data.affinity);
857         else
858                 valid = false;
859         raw_spin_unlock_irq(&desc->lock);
860
861         if (valid)
862                 set_cpus_allowed_ptr(current, mask);
863         free_cpumask_var(mask);
864 }
865 #else
866 static inline void
867 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
868 #endif
869
870 /*
871  * Interrupts which are not explicitely requested as threaded
872  * interrupts rely on the implicit bh/preempt disable of the hard irq
873  * context. So we need to disable bh here to avoid deadlocks and other
874  * side effects.
875  */
876 static irqreturn_t
877 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
878 {
879         irqreturn_t ret;
880
881         local_bh_disable();
882         ret = action->thread_fn(action->irq, action->dev_id);
883         irq_finalize_oneshot(desc, action);
884         local_bh_enable();
885         return ret;
886 }
887
888 /*
889  * Interrupts explicitly requested as threaded interrupts want to be
890  * preemtible - many of them need to sleep and wait for slow busses to
891  * complete.
892  */
893 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
894                 struct irqaction *action)
895 {
896         irqreturn_t ret;
897
898         ret = action->thread_fn(action->irq, action->dev_id);
899         irq_finalize_oneshot(desc, action);
900         return ret;
901 }
902
903 static void wake_threads_waitq(struct irq_desc *desc)
904 {
905         if (atomic_dec_and_test(&desc->threads_active))
906                 wake_up(&desc->wait_for_threads);
907 }
908
909 static void irq_thread_dtor(struct callback_head *unused)
910 {
911         struct task_struct *tsk = current;
912         struct irq_desc *desc;
913         struct irqaction *action;
914
915         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
916                 return;
917
918         action = kthread_data(tsk);
919
920         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
921                tsk->comm, tsk->pid, action->irq);
922
923
924         desc = irq_to_desc(action->irq);
925         /*
926          * If IRQTF_RUNTHREAD is set, we need to decrement
927          * desc->threads_active and wake possible waiters.
928          */
929         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
930                 wake_threads_waitq(desc);
931
932         /* Prevent a stale desc->threads_oneshot */
933         irq_finalize_oneshot(desc, action);
934 }
935
936 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
937 {
938         struct irqaction *secondary = action->secondary;
939
940         if (WARN_ON_ONCE(!secondary))
941                 return;
942
943         raw_spin_lock_irq(&desc->lock);
944         __irq_wake_thread(desc, secondary);
945         raw_spin_unlock_irq(&desc->lock);
946 }
947
948 /*
949  * Interrupt handler thread
950  */
951 static int irq_thread(void *data)
952 {
953         struct callback_head on_exit_work;
954         struct irqaction *action = data;
955         struct irq_desc *desc = irq_to_desc(action->irq);
956         irqreturn_t (*handler_fn)(struct irq_desc *desc,
957                         struct irqaction *action);
958
959         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
960                                         &action->thread_flags))
961                 handler_fn = irq_forced_thread_fn;
962         else
963                 handler_fn = irq_thread_fn;
964
965         init_task_work(&on_exit_work, irq_thread_dtor);
966         task_work_add(current, &on_exit_work, false);
967
968         irq_thread_check_affinity(desc, action);
969
970         while (!irq_wait_for_interrupt(action)) {
971                 irqreturn_t action_ret;
972
973                 irq_thread_check_affinity(desc, action);
974
975                 action_ret = handler_fn(desc, action);
976                 if (action_ret == IRQ_HANDLED)
977                         atomic_inc(&desc->threads_handled);
978                 if (action_ret == IRQ_WAKE_THREAD)
979                         irq_wake_secondary(desc, action);
980
981                 wake_threads_waitq(desc);
982         }
983
984         /*
985          * This is the regular exit path. __free_irq() is stopping the
986          * thread via kthread_stop() after calling
987          * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
988          * oneshot mask bit can be set. We cannot verify that as we
989          * cannot touch the oneshot mask at this point anymore as
990          * __setup_irq() might have given out currents thread_mask
991          * again.
992          */
993         task_work_cancel(current, irq_thread_dtor);
994         return 0;
995 }
996
997 /**
998  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
999  *      @irq:           Interrupt line
1000  *      @dev_id:        Device identity for which the thread should be woken
1001  *
1002  */
1003 void irq_wake_thread(unsigned int irq, void *dev_id)
1004 {
1005         struct irq_desc *desc = irq_to_desc(irq);
1006         struct irqaction *action;
1007         unsigned long flags;
1008
1009         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1010                 return;
1011
1012         raw_spin_lock_irqsave(&desc->lock, flags);
1013         for_each_action_of_desc(desc, action) {
1014                 if (action->dev_id == dev_id) {
1015                         if (action->thread)
1016                                 __irq_wake_thread(desc, action);
1017                         break;
1018                 }
1019         }
1020         raw_spin_unlock_irqrestore(&desc->lock, flags);
1021 }
1022 EXPORT_SYMBOL_GPL(irq_wake_thread);
1023
1024 static int irq_setup_forced_threading(struct irqaction *new)
1025 {
1026         if (!force_irqthreads)
1027                 return 0;
1028         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1029                 return 0;
1030
1031         new->flags |= IRQF_ONESHOT;
1032
1033         /*
1034          * Handle the case where we have a real primary handler and a
1035          * thread handler. We force thread them as well by creating a
1036          * secondary action.
1037          */
1038         if (new->handler != irq_default_primary_handler && new->thread_fn) {
1039                 /* Allocate the secondary action */
1040                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1041                 if (!new->secondary)
1042                         return -ENOMEM;
1043                 new->secondary->handler = irq_forced_secondary_handler;
1044                 new->secondary->thread_fn = new->thread_fn;
1045                 new->secondary->dev_id = new->dev_id;
1046                 new->secondary->irq = new->irq;
1047                 new->secondary->name = new->name;
1048         }
1049         /* Deal with the primary handler */
1050         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1051         new->thread_fn = new->handler;
1052         new->handler = irq_default_primary_handler;
1053         return 0;
1054 }
1055
1056 static int irq_request_resources(struct irq_desc *desc)
1057 {
1058         struct irq_data *d = &desc->irq_data;
1059         struct irq_chip *c = d->chip;
1060
1061         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1062 }
1063
1064 static void irq_release_resources(struct irq_desc *desc)
1065 {
1066         struct irq_data *d = &desc->irq_data;
1067         struct irq_chip *c = d->chip;
1068
1069         if (c->irq_release_resources)
1070                 c->irq_release_resources(d);
1071 }
1072
1073 static int
1074 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1075 {
1076         struct task_struct *t;
1077         struct sched_param param = {
1078                 .sched_priority = MAX_USER_RT_PRIO/2,
1079         };
1080
1081         if (!secondary) {
1082                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1083                                    new->name);
1084         } else {
1085                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1086                                    new->name);
1087                 param.sched_priority -= 1;
1088         }
1089
1090         if (IS_ERR(t))
1091                 return PTR_ERR(t);
1092
1093         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1094
1095         /*
1096          * We keep the reference to the task struct even if
1097          * the thread dies to avoid that the interrupt code
1098          * references an already freed task_struct.
1099          */
1100         get_task_struct(t);
1101         new->thread = t;
1102         /*
1103          * Tell the thread to set its affinity. This is
1104          * important for shared interrupt handlers as we do
1105          * not invoke setup_affinity() for the secondary
1106          * handlers as everything is already set up. Even for
1107          * interrupts marked with IRQF_NO_BALANCE this is
1108          * correct as we want the thread to move to the cpu(s)
1109          * on which the requesting code placed the interrupt.
1110          */
1111         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1112         return 0;
1113 }
1114
1115 /*
1116  * Internal function to register an irqaction - typically used to
1117  * allocate special interrupts that are part of the architecture.
1118  */
1119 static int
1120 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1121 {
1122         struct irqaction *old, **old_ptr;
1123         unsigned long flags, thread_mask = 0;
1124         int ret, nested, shared = 0;
1125         cpumask_var_t mask;
1126
1127         if (!desc)
1128                 return -EINVAL;
1129
1130         if (desc->irq_data.chip == &no_irq_chip)
1131                 return -ENOSYS;
1132         if (!try_module_get(desc->owner))
1133                 return -ENODEV;
1134
1135         new->irq = irq;
1136
1137         /*
1138          * If the trigger type is not specified by the caller,
1139          * then use the default for this interrupt.
1140          */
1141         if (!(new->flags & IRQF_TRIGGER_MASK))
1142                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1143
1144         /*
1145          * Check whether the interrupt nests into another interrupt
1146          * thread.
1147          */
1148         nested = irq_settings_is_nested_thread(desc);
1149         if (nested) {
1150                 if (!new->thread_fn) {
1151                         ret = -EINVAL;
1152                         goto out_mput;
1153                 }
1154                 /*
1155                  * Replace the primary handler which was provided from
1156                  * the driver for non nested interrupt handling by the
1157                  * dummy function which warns when called.
1158                  */
1159                 new->handler = irq_nested_primary_handler;
1160         } else {
1161                 if (irq_settings_can_thread(desc)) {
1162                         ret = irq_setup_forced_threading(new);
1163                         if (ret)
1164                                 goto out_mput;
1165                 }
1166         }
1167
1168         /*
1169          * Create a handler thread when a thread function is supplied
1170          * and the interrupt does not nest into another interrupt
1171          * thread.
1172          */
1173         if (new->thread_fn && !nested) {
1174                 ret = setup_irq_thread(new, irq, false);
1175                 if (ret)
1176                         goto out_mput;
1177                 if (new->secondary) {
1178                         ret = setup_irq_thread(new->secondary, irq, true);
1179                         if (ret)
1180                                 goto out_thread;
1181                 }
1182         }
1183
1184         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1185                 ret = -ENOMEM;
1186                 goto out_thread;
1187         }
1188
1189         /*
1190          * Drivers are often written to work w/o knowledge about the
1191          * underlying irq chip implementation, so a request for a
1192          * threaded irq without a primary hard irq context handler
1193          * requires the ONESHOT flag to be set. Some irq chips like
1194          * MSI based interrupts are per se one shot safe. Check the
1195          * chip flags, so we can avoid the unmask dance at the end of
1196          * the threaded handler for those.
1197          */
1198         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1199                 new->flags &= ~IRQF_ONESHOT;
1200
1201         /*
1202          * The following block of code has to be executed atomically
1203          */
1204         raw_spin_lock_irqsave(&desc->lock, flags);
1205         old_ptr = &desc->action;
1206         old = *old_ptr;
1207         if (old) {
1208                 /*
1209                  * Can't share interrupts unless both agree to and are
1210                  * the same type (level, edge, polarity). So both flag
1211                  * fields must have IRQF_SHARED set and the bits which
1212                  * set the trigger type must match. Also all must
1213                  * agree on ONESHOT.
1214                  */
1215                 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1216
1217                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1218                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1219                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1220                         goto mismatch;
1221
1222                 /* All handlers must agree on per-cpuness */
1223                 if ((old->flags & IRQF_PERCPU) !=
1224                     (new->flags & IRQF_PERCPU))
1225                         goto mismatch;
1226
1227                 /* add new interrupt at end of irq queue */
1228                 do {
1229                         /*
1230                          * Or all existing action->thread_mask bits,
1231                          * so we can find the next zero bit for this
1232                          * new action.
1233                          */
1234                         thread_mask |= old->thread_mask;
1235                         old_ptr = &old->next;
1236                         old = *old_ptr;
1237                 } while (old);
1238                 shared = 1;
1239         }
1240
1241         /*
1242          * Setup the thread mask for this irqaction for ONESHOT. For
1243          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1244          * conditional in irq_wake_thread().
1245          */
1246         if (new->flags & IRQF_ONESHOT) {
1247                 /*
1248                  * Unlikely to have 32 resp 64 irqs sharing one line,
1249                  * but who knows.
1250                  */
1251                 if (thread_mask == ~0UL) {
1252                         ret = -EBUSY;
1253                         goto out_mask;
1254                 }
1255                 /*
1256                  * The thread_mask for the action is or'ed to
1257                  * desc->thread_active to indicate that the
1258                  * IRQF_ONESHOT thread handler has been woken, but not
1259                  * yet finished. The bit is cleared when a thread
1260                  * completes. When all threads of a shared interrupt
1261                  * line have completed desc->threads_active becomes
1262                  * zero and the interrupt line is unmasked. See
1263                  * handle.c:irq_wake_thread() for further information.
1264                  *
1265                  * If no thread is woken by primary (hard irq context)
1266                  * interrupt handlers, then desc->threads_active is
1267                  * also checked for zero to unmask the irq line in the
1268                  * affected hard irq flow handlers
1269                  * (handle_[fasteoi|level]_irq).
1270                  *
1271                  * The new action gets the first zero bit of
1272                  * thread_mask assigned. See the loop above which or's
1273                  * all existing action->thread_mask bits.
1274                  */
1275                 new->thread_mask = 1 << ffz(thread_mask);
1276
1277         } else if (new->handler == irq_default_primary_handler &&
1278                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1279                 /*
1280                  * The interrupt was requested with handler = NULL, so
1281                  * we use the default primary handler for it. But it
1282                  * does not have the oneshot flag set. In combination
1283                  * with level interrupts this is deadly, because the
1284                  * default primary handler just wakes the thread, then
1285                  * the irq lines is reenabled, but the device still
1286                  * has the level irq asserted. Rinse and repeat....
1287                  *
1288                  * While this works for edge type interrupts, we play
1289                  * it safe and reject unconditionally because we can't
1290                  * say for sure which type this interrupt really
1291                  * has. The type flags are unreliable as the
1292                  * underlying chip implementation can override them.
1293                  */
1294                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1295                        irq);
1296                 ret = -EINVAL;
1297                 goto out_mask;
1298         }
1299
1300         if (!shared) {
1301                 ret = irq_request_resources(desc);
1302                 if (ret) {
1303                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1304                                new->name, irq, desc->irq_data.chip->name);
1305                         goto out_mask;
1306                 }
1307
1308                 init_waitqueue_head(&desc->wait_for_threads);
1309
1310                 /* Setup the type (level, edge polarity) if configured: */
1311                 if (new->flags & IRQF_TRIGGER_MASK) {
1312                         ret = __irq_set_trigger(desc,
1313                                                 new->flags & IRQF_TRIGGER_MASK);
1314
1315                         if (ret) {
1316                                 irq_release_resources(desc);
1317                                 goto out_mask;
1318                         }
1319                 }
1320
1321                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1322                                   IRQS_ONESHOT | IRQS_WAITING);
1323                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1324
1325                 if (new->flags & IRQF_PERCPU) {
1326                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1327                         irq_settings_set_per_cpu(desc);
1328                 }
1329
1330                 if (new->flags & IRQF_ONESHOT)
1331                         desc->istate |= IRQS_ONESHOT;
1332
1333                 if (irq_settings_can_autoenable(desc))
1334                         irq_startup(desc, true);
1335                 else
1336                         /* Undo nested disables: */
1337                         desc->depth = 1;
1338
1339                 /* Exclude IRQ from balancing if requested */
1340                 if (new->flags & IRQF_NOBALANCING) {
1341                         irq_settings_set_no_balancing(desc);
1342                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1343                 }
1344
1345                 /* Set default affinity mask once everything is setup */
1346                 setup_affinity(desc, mask);
1347
1348         } else if (new->flags & IRQF_TRIGGER_MASK) {
1349                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1350                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1351
1352                 if (nmsk != omsk)
1353                         /* hope the handler works with current  trigger mode */
1354                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1355                                 irq, omsk, nmsk);
1356         }
1357
1358         *old_ptr = new;
1359
1360         irq_pm_install_action(desc, new);
1361
1362         /* Reset broken irq detection when installing new handler */
1363         desc->irq_count = 0;
1364         desc->irqs_unhandled = 0;
1365
1366         /*
1367          * Check whether we disabled the irq via the spurious handler
1368          * before. Reenable it and give it another chance.
1369          */
1370         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1371                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1372                 __enable_irq(desc);
1373         }
1374
1375         raw_spin_unlock_irqrestore(&desc->lock, flags);
1376
1377         /*
1378          * Strictly no need to wake it up, but hung_task complains
1379          * when no hard interrupt wakes the thread up.
1380          */
1381         if (new->thread)
1382                 wake_up_process(new->thread);
1383         if (new->secondary)
1384                 wake_up_process(new->secondary->thread);
1385
1386         register_irq_proc(irq, desc);
1387         new->dir = NULL;
1388         register_handler_proc(irq, new);
1389         free_cpumask_var(mask);
1390
1391         return 0;
1392
1393 mismatch:
1394         if (!(new->flags & IRQF_PROBE_SHARED)) {
1395                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1396                        irq, new->flags, new->name, old->flags, old->name);
1397 #ifdef CONFIG_DEBUG_SHIRQ
1398                 dump_stack();
1399 #endif
1400         }
1401         ret = -EBUSY;
1402
1403 out_mask:
1404         raw_spin_unlock_irqrestore(&desc->lock, flags);
1405         free_cpumask_var(mask);
1406
1407 out_thread:
1408         if (new->thread) {
1409                 struct task_struct *t = new->thread;
1410
1411                 new->thread = NULL;
1412                 kthread_stop(t);
1413                 put_task_struct(t);
1414         }
1415         if (new->secondary && new->secondary->thread) {
1416                 struct task_struct *t = new->secondary->thread;
1417
1418                 new->secondary->thread = NULL;
1419                 kthread_stop(t);
1420                 put_task_struct(t);
1421         }
1422 out_mput:
1423         module_put(desc->owner);
1424         return ret;
1425 }
1426
1427 /**
1428  *      setup_irq - setup an interrupt
1429  *      @irq: Interrupt line to setup
1430  *      @act: irqaction for the interrupt
1431  *
1432  * Used to statically setup interrupts in the early boot process.
1433  */
1434 int setup_irq(unsigned int irq, struct irqaction *act)
1435 {
1436         int retval;
1437         struct irq_desc *desc = irq_to_desc(irq);
1438
1439         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1440                 return -EINVAL;
1441
1442         retval = irq_chip_pm_get(&desc->irq_data);
1443         if (retval < 0)
1444                 return retval;
1445
1446         chip_bus_lock(desc);
1447         retval = __setup_irq(irq, desc, act);
1448         chip_bus_sync_unlock(desc);
1449
1450         if (retval)
1451                 irq_chip_pm_put(&desc->irq_data);
1452
1453         return retval;
1454 }
1455 EXPORT_SYMBOL_GPL(setup_irq);
1456
1457 /*
1458  * Internal function to unregister an irqaction - used to free
1459  * regular and special interrupts that are part of the architecture.
1460  */
1461 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1462 {
1463         struct irq_desc *desc = irq_to_desc(irq);
1464         struct irqaction *action, **action_ptr;
1465         unsigned long flags;
1466
1467         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1468
1469         if (!desc)
1470                 return NULL;
1471
1472         chip_bus_lock(desc);
1473         raw_spin_lock_irqsave(&desc->lock, flags);
1474
1475         /*
1476          * There can be multiple actions per IRQ descriptor, find the right
1477          * one based on the dev_id:
1478          */
1479         action_ptr = &desc->action;
1480         for (;;) {
1481                 action = *action_ptr;
1482
1483                 if (!action) {
1484                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1485                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1486                         chip_bus_sync_unlock(desc);
1487                         return NULL;
1488                 }
1489
1490                 if (action->dev_id == dev_id)
1491                         break;
1492                 action_ptr = &action->next;
1493         }
1494
1495         /* Found it - now remove it from the list of entries: */
1496         *action_ptr = action->next;
1497
1498         irq_pm_remove_action(desc, action);
1499
1500         /* If this was the last handler, shut down the IRQ line: */
1501         if (!desc->action) {
1502                 irq_settings_clr_disable_unlazy(desc);
1503                 irq_shutdown(desc);
1504                 irq_release_resources(desc);
1505         }
1506
1507 #ifdef CONFIG_SMP
1508         /* make sure affinity_hint is cleaned up */
1509         if (WARN_ON_ONCE(desc->affinity_hint))
1510                 desc->affinity_hint = NULL;
1511 #endif
1512
1513         raw_spin_unlock_irqrestore(&desc->lock, flags);
1514         chip_bus_sync_unlock(desc);
1515
1516         unregister_handler_proc(irq, action);
1517
1518         /* Make sure it's not being used on another CPU: */
1519         synchronize_irq(irq);
1520
1521 #ifdef CONFIG_DEBUG_SHIRQ
1522         /*
1523          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1524          * event to happen even now it's being freed, so let's make sure that
1525          * is so by doing an extra call to the handler ....
1526          *
1527          * ( We do this after actually deregistering it, to make sure that a
1528          *   'real' IRQ doesn't run in * parallel with our fake. )
1529          */
1530         if (action->flags & IRQF_SHARED) {
1531                 local_irq_save(flags);
1532                 action->handler(irq, dev_id);
1533                 local_irq_restore(flags);
1534         }
1535 #endif
1536
1537         if (action->thread) {
1538                 kthread_stop(action->thread);
1539                 put_task_struct(action->thread);
1540                 if (action->secondary && action->secondary->thread) {
1541                         kthread_stop(action->secondary->thread);
1542                         put_task_struct(action->secondary->thread);
1543                 }
1544         }
1545
1546         irq_chip_pm_put(&desc->irq_data);
1547         module_put(desc->owner);
1548         kfree(action->secondary);
1549         return action;
1550 }
1551
1552 /**
1553  *      remove_irq - free an interrupt
1554  *      @irq: Interrupt line to free
1555  *      @act: irqaction for the interrupt
1556  *
1557  * Used to remove interrupts statically setup by the early boot process.
1558  */
1559 void remove_irq(unsigned int irq, struct irqaction *act)
1560 {
1561         struct irq_desc *desc = irq_to_desc(irq);
1562
1563         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1564                 __free_irq(irq, act->dev_id);
1565 }
1566 EXPORT_SYMBOL_GPL(remove_irq);
1567
1568 /**
1569  *      free_irq - free an interrupt allocated with request_irq
1570  *      @irq: Interrupt line to free
1571  *      @dev_id: Device identity to free
1572  *
1573  *      Remove an interrupt handler. The handler is removed and if the
1574  *      interrupt line is no longer in use by any driver it is disabled.
1575  *      On a shared IRQ the caller must ensure the interrupt is disabled
1576  *      on the card it drives before calling this function. The function
1577  *      does not return until any executing interrupts for this IRQ
1578  *      have completed.
1579  *
1580  *      This function must not be called from interrupt context.
1581  *
1582  *      Returns the devname argument passed to request_irq.
1583  */
1584 const void *free_irq(unsigned int irq, void *dev_id)
1585 {
1586         struct irq_desc *desc = irq_to_desc(irq);
1587         struct irqaction *action;
1588         const char *devname;
1589
1590         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1591                 return NULL;
1592
1593 #ifdef CONFIG_SMP
1594         if (WARN_ON(desc->affinity_notify))
1595                 desc->affinity_notify = NULL;
1596 #endif
1597
1598         action = __free_irq(irq, dev_id);
1599         devname = action->name;
1600         kfree(action);
1601         return devname;
1602 }
1603 EXPORT_SYMBOL(free_irq);
1604
1605 /**
1606  *      request_threaded_irq - allocate an interrupt line
1607  *      @irq: Interrupt line to allocate
1608  *      @handler: Function to be called when the IRQ occurs.
1609  *                Primary handler for threaded interrupts
1610  *                If NULL and thread_fn != NULL the default
1611  *                primary handler is installed
1612  *      @thread_fn: Function called from the irq handler thread
1613  *                  If NULL, no irq thread is created
1614  *      @irqflags: Interrupt type flags
1615  *      @devname: An ascii name for the claiming device
1616  *      @dev_id: A cookie passed back to the handler function
1617  *
1618  *      This call allocates interrupt resources and enables the
1619  *      interrupt line and IRQ handling. From the point this
1620  *      call is made your handler function may be invoked. Since
1621  *      your handler function must clear any interrupt the board
1622  *      raises, you must take care both to initialise your hardware
1623  *      and to set up the interrupt handler in the right order.
1624  *
1625  *      If you want to set up a threaded irq handler for your device
1626  *      then you need to supply @handler and @thread_fn. @handler is
1627  *      still called in hard interrupt context and has to check
1628  *      whether the interrupt originates from the device. If yes it
1629  *      needs to disable the interrupt on the device and return
1630  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1631  *      @thread_fn. This split handler design is necessary to support
1632  *      shared interrupts.
1633  *
1634  *      Dev_id must be globally unique. Normally the address of the
1635  *      device data structure is used as the cookie. Since the handler
1636  *      receives this value it makes sense to use it.
1637  *
1638  *      If your interrupt is shared you must pass a non NULL dev_id
1639  *      as this is required when freeing the interrupt.
1640  *
1641  *      Flags:
1642  *
1643  *      IRQF_SHARED             Interrupt is shared
1644  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1645  *
1646  */
1647 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1648                          irq_handler_t thread_fn, unsigned long irqflags,
1649                          const char *devname, void *dev_id)
1650 {
1651         struct irqaction *action;
1652         struct irq_desc *desc;
1653         int retval;
1654
1655         if (irq == IRQ_NOTCONNECTED)
1656                 return -ENOTCONN;
1657
1658         /*
1659          * Sanity-check: shared interrupts must pass in a real dev-ID,
1660          * otherwise we'll have trouble later trying to figure out
1661          * which interrupt is which (messes up the interrupt freeing
1662          * logic etc).
1663          *
1664          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1665          * it cannot be set along with IRQF_NO_SUSPEND.
1666          */
1667         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1668             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1669             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1670                 return -EINVAL;
1671
1672         desc = irq_to_desc(irq);
1673         if (!desc)
1674                 return -EINVAL;
1675
1676         if (!irq_settings_can_request(desc) ||
1677             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1678                 return -EINVAL;
1679
1680         if (!handler) {
1681                 if (!thread_fn)
1682                         return -EINVAL;
1683                 handler = irq_default_primary_handler;
1684         }
1685
1686         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1687         if (!action)
1688                 return -ENOMEM;
1689
1690         action->handler = handler;
1691         action->thread_fn = thread_fn;
1692         action->flags = irqflags;
1693         action->name = devname;
1694         action->dev_id = dev_id;
1695
1696         retval = irq_chip_pm_get(&desc->irq_data);
1697         if (retval < 0) {
1698                 kfree(action);
1699                 return retval;
1700         }
1701
1702         chip_bus_lock(desc);
1703         retval = __setup_irq(irq, desc, action);
1704         chip_bus_sync_unlock(desc);
1705
1706         if (retval) {
1707                 irq_chip_pm_put(&desc->irq_data);
1708                 kfree(action->secondary);
1709                 kfree(action);
1710         }
1711
1712 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1713         if (!retval && (irqflags & IRQF_SHARED)) {
1714                 /*
1715                  * It's a shared IRQ -- the driver ought to be prepared for it
1716                  * to happen immediately, so let's make sure....
1717                  * We disable the irq to make sure that a 'real' IRQ doesn't
1718                  * run in parallel with our fake.
1719                  */
1720                 unsigned long flags;
1721
1722                 disable_irq(irq);
1723                 local_irq_save(flags);
1724
1725                 handler(irq, dev_id);
1726
1727                 local_irq_restore(flags);
1728                 enable_irq(irq);
1729         }
1730 #endif
1731         return retval;
1732 }
1733 EXPORT_SYMBOL(request_threaded_irq);
1734
1735 /**
1736  *      request_any_context_irq - allocate an interrupt line
1737  *      @irq: Interrupt line to allocate
1738  *      @handler: Function to be called when the IRQ occurs.
1739  *                Threaded handler for threaded interrupts.
1740  *      @flags: Interrupt type flags
1741  *      @name: An ascii name for the claiming device
1742  *      @dev_id: A cookie passed back to the handler function
1743  *
1744  *      This call allocates interrupt resources and enables the
1745  *      interrupt line and IRQ handling. It selects either a
1746  *      hardirq or threaded handling method depending on the
1747  *      context.
1748  *
1749  *      On failure, it returns a negative value. On success,
1750  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1751  */
1752 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1753                             unsigned long flags, const char *name, void *dev_id)
1754 {
1755         struct irq_desc *desc;
1756         int ret;
1757
1758         if (irq == IRQ_NOTCONNECTED)
1759                 return -ENOTCONN;
1760
1761         desc = irq_to_desc(irq);
1762         if (!desc)
1763                 return -EINVAL;
1764
1765         if (irq_settings_is_nested_thread(desc)) {
1766                 ret = request_threaded_irq(irq, NULL, handler,
1767                                            flags, name, dev_id);
1768                 return !ret ? IRQC_IS_NESTED : ret;
1769         }
1770
1771         ret = request_irq(irq, handler, flags, name, dev_id);
1772         return !ret ? IRQC_IS_HARDIRQ : ret;
1773 }
1774 EXPORT_SYMBOL_GPL(request_any_context_irq);
1775
1776 void enable_percpu_irq(unsigned int irq, unsigned int type)
1777 {
1778         unsigned int cpu = smp_processor_id();
1779         unsigned long flags;
1780         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1781
1782         if (!desc)
1783                 return;
1784
1785         /*
1786          * If the trigger type is not specified by the caller, then
1787          * use the default for this interrupt.
1788          */
1789         type &= IRQ_TYPE_SENSE_MASK;
1790         if (type == IRQ_TYPE_NONE)
1791                 type = irqd_get_trigger_type(&desc->irq_data);
1792
1793         if (type != IRQ_TYPE_NONE) {
1794                 int ret;
1795
1796                 ret = __irq_set_trigger(desc, type);
1797
1798                 if (ret) {
1799                         WARN(1, "failed to set type for IRQ%d\n", irq);
1800                         goto out;
1801                 }
1802         }
1803
1804         irq_percpu_enable(desc, cpu);
1805 out:
1806         irq_put_desc_unlock(desc, flags);
1807 }
1808 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1809
1810 /**
1811  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1812  * @irq:        Linux irq number to check for
1813  *
1814  * Must be called from a non migratable context. Returns the enable
1815  * state of a per cpu interrupt on the current cpu.
1816  */
1817 bool irq_percpu_is_enabled(unsigned int irq)
1818 {
1819         unsigned int cpu = smp_processor_id();
1820         struct irq_desc *desc;
1821         unsigned long flags;
1822         bool is_enabled;
1823
1824         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1825         if (!desc)
1826                 return false;
1827
1828         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1829         irq_put_desc_unlock(desc, flags);
1830
1831         return is_enabled;
1832 }
1833 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1834
1835 void disable_percpu_irq(unsigned int irq)
1836 {
1837         unsigned int cpu = smp_processor_id();
1838         unsigned long flags;
1839         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1840
1841         if (!desc)
1842                 return;
1843
1844         irq_percpu_disable(desc, cpu);
1845         irq_put_desc_unlock(desc, flags);
1846 }
1847 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1848
1849 /*
1850  * Internal function to unregister a percpu irqaction.
1851  */
1852 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1853 {
1854         struct irq_desc *desc = irq_to_desc(irq);
1855         struct irqaction *action;
1856         unsigned long flags;
1857
1858         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1859
1860         if (!desc)
1861                 return NULL;
1862
1863         raw_spin_lock_irqsave(&desc->lock, flags);
1864
1865         action = desc->action;
1866         if (!action || action->percpu_dev_id != dev_id) {
1867                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1868                 goto bad;
1869         }
1870
1871         if (!cpumask_empty(desc->percpu_enabled)) {
1872                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1873                      irq, cpumask_first(desc->percpu_enabled));
1874                 goto bad;
1875         }
1876
1877         /* Found it - now remove it from the list of entries: */
1878         desc->action = NULL;
1879
1880         raw_spin_unlock_irqrestore(&desc->lock, flags);
1881
1882         unregister_handler_proc(irq, action);
1883
1884         irq_chip_pm_put(&desc->irq_data);
1885         module_put(desc->owner);
1886         return action;
1887
1888 bad:
1889         raw_spin_unlock_irqrestore(&desc->lock, flags);
1890         return NULL;
1891 }
1892
1893 /**
1894  *      remove_percpu_irq - free a per-cpu interrupt
1895  *      @irq: Interrupt line to free
1896  *      @act: irqaction for the interrupt
1897  *
1898  * Used to remove interrupts statically setup by the early boot process.
1899  */
1900 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1901 {
1902         struct irq_desc *desc = irq_to_desc(irq);
1903
1904         if (desc && irq_settings_is_per_cpu_devid(desc))
1905             __free_percpu_irq(irq, act->percpu_dev_id);
1906 }
1907
1908 /**
1909  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
1910  *      @irq: Interrupt line to free
1911  *      @dev_id: Device identity to free
1912  *
1913  *      Remove a percpu interrupt handler. The handler is removed, but
1914  *      the interrupt line is not disabled. This must be done on each
1915  *      CPU before calling this function. The function does not return
1916  *      until any executing interrupts for this IRQ have completed.
1917  *
1918  *      This function must not be called from interrupt context.
1919  */
1920 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1921 {
1922         struct irq_desc *desc = irq_to_desc(irq);
1923
1924         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1925                 return;
1926
1927         chip_bus_lock(desc);
1928         kfree(__free_percpu_irq(irq, dev_id));
1929         chip_bus_sync_unlock(desc);
1930 }
1931 EXPORT_SYMBOL_GPL(free_percpu_irq);
1932
1933 /**
1934  *      setup_percpu_irq - setup a per-cpu interrupt
1935  *      @irq: Interrupt line to setup
1936  *      @act: irqaction for the interrupt
1937  *
1938  * Used to statically setup per-cpu interrupts in the early boot process.
1939  */
1940 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1941 {
1942         struct irq_desc *desc = irq_to_desc(irq);
1943         int retval;
1944
1945         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1946                 return -EINVAL;
1947
1948         retval = irq_chip_pm_get(&desc->irq_data);
1949         if (retval < 0)
1950                 return retval;
1951
1952         chip_bus_lock(desc);
1953         retval = __setup_irq(irq, desc, act);
1954         chip_bus_sync_unlock(desc);
1955
1956         if (retval)
1957                 irq_chip_pm_put(&desc->irq_data);
1958
1959         return retval;
1960 }
1961
1962 /**
1963  *      request_percpu_irq - allocate a percpu interrupt line
1964  *      @irq: Interrupt line to allocate
1965  *      @handler: Function to be called when the IRQ occurs.
1966  *      @devname: An ascii name for the claiming device
1967  *      @dev_id: A percpu cookie passed back to the handler function
1968  *
1969  *      This call allocates interrupt resources and enables the
1970  *      interrupt on the local CPU. If the interrupt is supposed to be
1971  *      enabled on other CPUs, it has to be done on each CPU using
1972  *      enable_percpu_irq().
1973  *
1974  *      Dev_id must be globally unique. It is a per-cpu variable, and
1975  *      the handler gets called with the interrupted CPU's instance of
1976  *      that variable.
1977  */
1978 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1979                        const char *devname, void __percpu *dev_id)
1980 {
1981         struct irqaction *action;
1982         struct irq_desc *desc;
1983         int retval;
1984
1985         if (!dev_id)
1986                 return -EINVAL;
1987
1988         desc = irq_to_desc(irq);
1989         if (!desc || !irq_settings_can_request(desc) ||
1990             !irq_settings_is_per_cpu_devid(desc))
1991                 return -EINVAL;
1992
1993         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1994         if (!action)
1995                 return -ENOMEM;
1996
1997         action->handler = handler;
1998         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1999         action->name = devname;
2000         action->percpu_dev_id = dev_id;
2001
2002         retval = irq_chip_pm_get(&desc->irq_data);
2003         if (retval < 0) {
2004                 kfree(action);
2005                 return retval;
2006         }
2007
2008         chip_bus_lock(desc);
2009         retval = __setup_irq(irq, desc, action);
2010         chip_bus_sync_unlock(desc);
2011
2012         if (retval) {
2013                 irq_chip_pm_put(&desc->irq_data);
2014                 kfree(action);
2015         }
2016
2017         return retval;
2018 }
2019 EXPORT_SYMBOL_GPL(request_percpu_irq);
2020
2021 /**
2022  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2023  *      @irq: Interrupt line that is forwarded to a VM
2024  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2025  *      @state: a pointer to a boolean where the state is to be storeed
2026  *
2027  *      This call snapshots the internal irqchip state of an
2028  *      interrupt, returning into @state the bit corresponding to
2029  *      stage @which
2030  *
2031  *      This function should be called with preemption disabled if the
2032  *      interrupt controller has per-cpu registers.
2033  */
2034 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2035                           bool *state)
2036 {
2037         struct irq_desc *desc;
2038         struct irq_data *data;
2039         struct irq_chip *chip;
2040         unsigned long flags;
2041         int err = -EINVAL;
2042
2043         desc = irq_get_desc_buslock(irq, &flags, 0);
2044         if (!desc)
2045                 return err;
2046
2047         data = irq_desc_get_irq_data(desc);
2048
2049         do {
2050                 chip = irq_data_get_irq_chip(data);
2051                 if (chip->irq_get_irqchip_state)
2052                         break;
2053 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2054                 data = data->parent_data;
2055 #else
2056                 data = NULL;
2057 #endif
2058         } while (data);
2059
2060         if (data)
2061                 err = chip->irq_get_irqchip_state(data, which, state);
2062
2063         irq_put_desc_busunlock(desc, flags);
2064         return err;
2065 }
2066 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2067
2068 /**
2069  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2070  *      @irq: Interrupt line that is forwarded to a VM
2071  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2072  *      @val: Value corresponding to @which
2073  *
2074  *      This call sets the internal irqchip state of an interrupt,
2075  *      depending on the value of @which.
2076  *
2077  *      This function should be called with preemption disabled if the
2078  *      interrupt controller has per-cpu registers.
2079  */
2080 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2081                           bool val)
2082 {
2083         struct irq_desc *desc;
2084         struct irq_data *data;
2085         struct irq_chip *chip;
2086         unsigned long flags;
2087         int err = -EINVAL;
2088
2089         desc = irq_get_desc_buslock(irq, &flags, 0);
2090         if (!desc)
2091                 return err;
2092
2093         data = irq_desc_get_irq_data(desc);
2094
2095         do {
2096                 chip = irq_data_get_irq_chip(data);
2097                 if (chip->irq_set_irqchip_state)
2098                         break;
2099 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2100                 data = data->parent_data;
2101 #else
2102                 data = NULL;
2103 #endif
2104         } while (data);
2105
2106         if (data)
2107                 err = chip->irq_set_irqchip_state(data, which, val);
2108
2109         irq_put_desc_busunlock(desc, flags);
2110         return err;
2111 }
2112 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);