]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/kprobes.c
powerpc/powernv: Fix iommu table size calculation hook for small tables
[karo-tx-linux.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 static void free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /* Optimization never be done when disarmed */
487         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488             list_empty(&optimizing_list))
489                 return;
490
491         /*
492          * The optimization/unoptimization refers online_cpus via
493          * stop_machine() and cpu-hotplug modifies online_cpus.
494          * And same time, text_mutex will be held in cpu-hotplug and here.
495          * This combination can cause a deadlock (cpu-hotplug try to lock
496          * text_mutex but stop_machine can not be done because online_cpus
497          * has been changed)
498          * To avoid this deadlock, we need to call get_online_cpus()
499          * for preventing cpu-hotplug outside of text_mutex locking.
500          */
501         get_online_cpus();
502         mutex_lock(&text_mutex);
503         arch_optimize_kprobes(&optimizing_list);
504         mutex_unlock(&text_mutex);
505         put_online_cpus();
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* Unoptimization must be done anytime */
517         if (list_empty(&unoptimizing_list))
518                 return;
519
520         /* Ditto to do_optimize_kprobes */
521         get_online_cpus();
522         mutex_lock(&text_mutex);
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Disarm probes if marked disabled */
527                 if (kprobe_disabled(&op->kp))
528                         arch_disarm_kprobe(&op->kp);
529                 if (kprobe_unused(&op->kp)) {
530                         /*
531                          * Remove unused probes from hash list. After waiting
532                          * for synchronization, these probes are reclaimed.
533                          * (reclaiming is done by do_free_cleaned_kprobes.)
534                          */
535                         hlist_del_rcu(&op->kp.hlist);
536                 } else
537                         list_del_init(&op->list);
538         }
539         mutex_unlock(&text_mutex);
540         put_online_cpus();
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         /* Lock modules while optimizing kprobes */
566         mutex_lock(&module_mutex);
567
568         /*
569          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570          * kprobes before waiting for quiesence period.
571          */
572         do_unoptimize_kprobes();
573
574         /*
575          * Step 2: Wait for quiesence period to ensure all running interrupts
576          * are done. Because optprobe may modify multiple instructions
577          * there is a chance that Nth instruction is interrupted. In that
578          * case, running interrupt can return to 2nd-Nth byte of jump
579          * instruction. This wait is for avoiding it.
580          */
581         synchronize_sched();
582
583         /* Step 3: Optimize kprobes after quiesence period */
584         do_optimize_kprobes();
585
586         /* Step 4: Free cleaned kprobes after quiesence period */
587         do_free_cleaned_kprobes();
588
589         mutex_unlock(&module_mutex);
590         mutex_unlock(&kprobe_mutex);
591
592         /* Step 5: Kick optimizer again if needed */
593         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594                 kick_kprobe_optimizer();
595 }
596
597 /* Wait for completing optimization and unoptimization */
598 static void wait_for_kprobe_optimizer(void)
599 {
600         mutex_lock(&kprobe_mutex);
601
602         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
603                 mutex_unlock(&kprobe_mutex);
604
605                 /* this will also make optimizing_work execute immmediately */
606                 flush_delayed_work(&optimizing_work);
607                 /* @optimizing_work might not have been queued yet, relax */
608                 cpu_relax();
609
610                 mutex_lock(&kprobe_mutex);
611         }
612
613         mutex_unlock(&kprobe_mutex);
614 }
615
616 /* Optimize kprobe if p is ready to be optimized */
617 static void optimize_kprobe(struct kprobe *p)
618 {
619         struct optimized_kprobe *op;
620
621         /* Check if the kprobe is disabled or not ready for optimization. */
622         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
623             (kprobe_disabled(p) || kprobes_all_disarmed))
624                 return;
625
626         /* Both of break_handler and post_handler are not supported. */
627         if (p->break_handler || p->post_handler)
628                 return;
629
630         op = container_of(p, struct optimized_kprobe, kp);
631
632         /* Check there is no other kprobes at the optimized instructions */
633         if (arch_check_optimized_kprobe(op) < 0)
634                 return;
635
636         /* Check if it is already optimized. */
637         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
638                 return;
639         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
640
641         if (!list_empty(&op->list))
642                 /* This is under unoptimizing. Just dequeue the probe */
643                 list_del_init(&op->list);
644         else {
645                 list_add(&op->list, &optimizing_list);
646                 kick_kprobe_optimizer();
647         }
648 }
649
650 /* Short cut to direct unoptimizing */
651 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
652 {
653         get_online_cpus();
654         arch_unoptimize_kprobe(op);
655         put_online_cpus();
656         if (kprobe_disabled(&op->kp))
657                 arch_disarm_kprobe(&op->kp);
658 }
659
660 /* Unoptimize a kprobe if p is optimized */
661 static void unoptimize_kprobe(struct kprobe *p, bool force)
662 {
663         struct optimized_kprobe *op;
664
665         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
666                 return; /* This is not an optprobe nor optimized */
667
668         op = container_of(p, struct optimized_kprobe, kp);
669         if (!kprobe_optimized(p)) {
670                 /* Unoptimized or unoptimizing case */
671                 if (force && !list_empty(&op->list)) {
672                         /*
673                          * Only if this is unoptimizing kprobe and forced,
674                          * forcibly unoptimize it. (No need to unoptimize
675                          * unoptimized kprobe again :)
676                          */
677                         list_del_init(&op->list);
678                         force_unoptimize_kprobe(op);
679                 }
680                 return;
681         }
682
683         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684         if (!list_empty(&op->list)) {
685                 /* Dequeue from the optimization queue */
686                 list_del_init(&op->list);
687                 return;
688         }
689         /* Optimized kprobe case */
690         if (force)
691                 /* Forcibly update the code: this is a special case */
692                 force_unoptimize_kprobe(op);
693         else {
694                 list_add(&op->list, &unoptimizing_list);
695                 kick_kprobe_optimizer();
696         }
697 }
698
699 /* Cancel unoptimizing for reusing */
700 static void reuse_unused_kprobe(struct kprobe *ap)
701 {
702         struct optimized_kprobe *op;
703
704         BUG_ON(!kprobe_unused(ap));
705         /*
706          * Unused kprobe MUST be on the way of delayed unoptimizing (means
707          * there is still a relative jump) and disabled.
708          */
709         op = container_of(ap, struct optimized_kprobe, kp);
710         if (unlikely(list_empty(&op->list)))
711                 printk(KERN_WARNING "Warning: found a stray unused "
712                         "aggrprobe@%p\n", ap->addr);
713         /* Enable the probe again */
714         ap->flags &= ~KPROBE_FLAG_DISABLED;
715         /* Optimize it again (remove from op->list) */
716         BUG_ON(!kprobe_optready(ap));
717         optimize_kprobe(ap);
718 }
719
720 /* Remove optimized instructions */
721 static void kill_optimized_kprobe(struct kprobe *p)
722 {
723         struct optimized_kprobe *op;
724
725         op = container_of(p, struct optimized_kprobe, kp);
726         if (!list_empty(&op->list))
727                 /* Dequeue from the (un)optimization queue */
728                 list_del_init(&op->list);
729         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730
731         if (kprobe_unused(p)) {
732                 /* Enqueue if it is unused */
733                 list_add(&op->list, &freeing_list);
734                 /*
735                  * Remove unused probes from the hash list. After waiting
736                  * for synchronization, this probe is reclaimed.
737                  * (reclaiming is done by do_free_cleaned_kprobes().)
738                  */
739                 hlist_del_rcu(&op->kp.hlist);
740         }
741
742         /* Don't touch the code, because it is already freed. */
743         arch_remove_optimized_kprobe(op);
744 }
745
746 static inline
747 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
748 {
749         if (!kprobe_ftrace(p))
750                 arch_prepare_optimized_kprobe(op, p);
751 }
752
753 /* Try to prepare optimized instructions */
754 static void prepare_optimized_kprobe(struct kprobe *p)
755 {
756         struct optimized_kprobe *op;
757
758         op = container_of(p, struct optimized_kprobe, kp);
759         __prepare_optimized_kprobe(op, p);
760 }
761
762 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
763 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
764 {
765         struct optimized_kprobe *op;
766
767         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
768         if (!op)
769                 return NULL;
770
771         INIT_LIST_HEAD(&op->list);
772         op->kp.addr = p->addr;
773         __prepare_optimized_kprobe(op, p);
774
775         return &op->kp;
776 }
777
778 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
779
780 /*
781  * Prepare an optimized_kprobe and optimize it
782  * NOTE: p must be a normal registered kprobe
783  */
784 static void try_to_optimize_kprobe(struct kprobe *p)
785 {
786         struct kprobe *ap;
787         struct optimized_kprobe *op;
788
789         /* Impossible to optimize ftrace-based kprobe */
790         if (kprobe_ftrace(p))
791                 return;
792
793         /* For preparing optimization, jump_label_text_reserved() is called */
794         jump_label_lock();
795         mutex_lock(&text_mutex);
796
797         ap = alloc_aggr_kprobe(p);
798         if (!ap)
799                 goto out;
800
801         op = container_of(ap, struct optimized_kprobe, kp);
802         if (!arch_prepared_optinsn(&op->optinsn)) {
803                 /* If failed to setup optimizing, fallback to kprobe */
804                 arch_remove_optimized_kprobe(op);
805                 kfree(op);
806                 goto out;
807         }
808
809         init_aggr_kprobe(ap, p);
810         optimize_kprobe(ap);    /* This just kicks optimizer thread */
811
812 out:
813         mutex_unlock(&text_mutex);
814         jump_label_unlock();
815 }
816
817 #ifdef CONFIG_SYSCTL
818 static void optimize_all_kprobes(void)
819 {
820         struct hlist_head *head;
821         struct kprobe *p;
822         unsigned int i;
823
824         mutex_lock(&kprobe_mutex);
825         /* If optimization is already allowed, just return */
826         if (kprobes_allow_optimization)
827                 goto out;
828
829         kprobes_allow_optimization = true;
830         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
831                 head = &kprobe_table[i];
832                 hlist_for_each_entry_rcu(p, head, hlist)
833                         if (!kprobe_disabled(p))
834                                 optimize_kprobe(p);
835         }
836         printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838         mutex_unlock(&kprobe_mutex);
839 }
840
841 static void unoptimize_all_kprobes(void)
842 {
843         struct hlist_head *head;
844         struct kprobe *p;
845         unsigned int i;
846
847         mutex_lock(&kprobe_mutex);
848         /* If optimization is already prohibited, just return */
849         if (!kprobes_allow_optimization) {
850                 mutex_unlock(&kprobe_mutex);
851                 return;
852         }
853
854         kprobes_allow_optimization = false;
855         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856                 head = &kprobe_table[i];
857                 hlist_for_each_entry_rcu(p, head, hlist) {
858                         if (!kprobe_disabled(p))
859                                 unoptimize_kprobe(p, false);
860                 }
861         }
862         mutex_unlock(&kprobe_mutex);
863
864         /* Wait for unoptimizing completion */
865         wait_for_kprobe_optimizer();
866         printk(KERN_INFO "Kprobes globally unoptimized\n");
867 }
868
869 static DEFINE_MUTEX(kprobe_sysctl_mutex);
870 int sysctl_kprobes_optimization;
871 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
872                                       void __user *buffer, size_t *length,
873                                       loff_t *ppos)
874 {
875         int ret;
876
877         mutex_lock(&kprobe_sysctl_mutex);
878         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
879         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
880
881         if (sysctl_kprobes_optimization)
882                 optimize_all_kprobes();
883         else
884                 unoptimize_all_kprobes();
885         mutex_unlock(&kprobe_sysctl_mutex);
886
887         return ret;
888 }
889 #endif /* CONFIG_SYSCTL */
890
891 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
892 static void __arm_kprobe(struct kprobe *p)
893 {
894         struct kprobe *_p;
895
896         /* Check collision with other optimized kprobes */
897         _p = get_optimized_kprobe((unsigned long)p->addr);
898         if (unlikely(_p))
899                 /* Fallback to unoptimized kprobe */
900                 unoptimize_kprobe(_p, true);
901
902         arch_arm_kprobe(p);
903         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
904 }
905
906 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
907 static void __disarm_kprobe(struct kprobe *p, bool reopt)
908 {
909         struct kprobe *_p;
910
911         /* Try to unoptimize */
912         unoptimize_kprobe(p, kprobes_all_disarmed);
913
914         if (!kprobe_queued(p)) {
915                 arch_disarm_kprobe(p);
916                 /* If another kprobe was blocked, optimize it. */
917                 _p = get_optimized_kprobe((unsigned long)p->addr);
918                 if (unlikely(_p) && reopt)
919                         optimize_kprobe(_p);
920         }
921         /* TODO: reoptimize others after unoptimized this probe */
922 }
923
924 #else /* !CONFIG_OPTPROBES */
925
926 #define optimize_kprobe(p)                      do {} while (0)
927 #define unoptimize_kprobe(p, f)                 do {} while (0)
928 #define kill_optimized_kprobe(p)                do {} while (0)
929 #define prepare_optimized_kprobe(p)             do {} while (0)
930 #define try_to_optimize_kprobe(p)               do {} while (0)
931 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
932 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
933 #define kprobe_disarmed(p)                      kprobe_disabled(p)
934 #define wait_for_kprobe_optimizer()             do {} while (0)
935
936 /* There should be no unused kprobes can be reused without optimization */
937 static void reuse_unused_kprobe(struct kprobe *ap)
938 {
939         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
940         BUG_ON(kprobe_unused(ap));
941 }
942
943 static void free_aggr_kprobe(struct kprobe *p)
944 {
945         arch_remove_kprobe(p);
946         kfree(p);
947 }
948
949 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
950 {
951         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
952 }
953 #endif /* CONFIG_OPTPROBES */
954
955 #ifdef CONFIG_KPROBES_ON_FTRACE
956 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
957         .func = kprobe_ftrace_handler,
958         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
959 };
960 static int kprobe_ftrace_enabled;
961
962 /* Must ensure p->addr is really on ftrace */
963 static int prepare_kprobe(struct kprobe *p)
964 {
965         if (!kprobe_ftrace(p))
966                 return arch_prepare_kprobe(p);
967
968         return arch_prepare_kprobe_ftrace(p);
969 }
970
971 /* Caller must lock kprobe_mutex */
972 static void arm_kprobe_ftrace(struct kprobe *p)
973 {
974         int ret;
975
976         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
977                                    (unsigned long)p->addr, 0, 0);
978         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
979         kprobe_ftrace_enabled++;
980         if (kprobe_ftrace_enabled == 1) {
981                 ret = register_ftrace_function(&kprobe_ftrace_ops);
982                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983         }
984 }
985
986 /* Caller must lock kprobe_mutex */
987 static void disarm_kprobe_ftrace(struct kprobe *p)
988 {
989         int ret;
990
991         kprobe_ftrace_enabled--;
992         if (kprobe_ftrace_enabled == 0) {
993                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
994                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
995         }
996         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997                            (unsigned long)p->addr, 1, 0);
998         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
999 }
1000 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1001 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1002 #define arm_kprobe_ftrace(p)    do {} while (0)
1003 #define disarm_kprobe_ftrace(p) do {} while (0)
1004 #endif
1005
1006 /* Arm a kprobe with text_mutex */
1007 static void arm_kprobe(struct kprobe *kp)
1008 {
1009         if (unlikely(kprobe_ftrace(kp))) {
1010                 arm_kprobe_ftrace(kp);
1011                 return;
1012         }
1013         /*
1014          * Here, since __arm_kprobe() doesn't use stop_machine(),
1015          * this doesn't cause deadlock on text_mutex. So, we don't
1016          * need get_online_cpus().
1017          */
1018         mutex_lock(&text_mutex);
1019         __arm_kprobe(kp);
1020         mutex_unlock(&text_mutex);
1021 }
1022
1023 /* Disarm a kprobe with text_mutex */
1024 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1025 {
1026         if (unlikely(kprobe_ftrace(kp))) {
1027                 disarm_kprobe_ftrace(kp);
1028                 return;
1029         }
1030         /* Ditto */
1031         mutex_lock(&text_mutex);
1032         __disarm_kprobe(kp, reopt);
1033         mutex_unlock(&text_mutex);
1034 }
1035
1036 /*
1037  * Aggregate handlers for multiple kprobes support - these handlers
1038  * take care of invoking the individual kprobe handlers on p->list
1039  */
1040 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1041 {
1042         struct kprobe *kp;
1043
1044         list_for_each_entry_rcu(kp, &p->list, list) {
1045                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1046                         set_kprobe_instance(kp);
1047                         if (kp->pre_handler(kp, regs))
1048                                 return 1;
1049                 }
1050                 reset_kprobe_instance();
1051         }
1052         return 0;
1053 }
1054 NOKPROBE_SYMBOL(aggr_pre_handler);
1055
1056 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1057                               unsigned long flags)
1058 {
1059         struct kprobe *kp;
1060
1061         list_for_each_entry_rcu(kp, &p->list, list) {
1062                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1063                         set_kprobe_instance(kp);
1064                         kp->post_handler(kp, regs, flags);
1065                         reset_kprobe_instance();
1066                 }
1067         }
1068 }
1069 NOKPROBE_SYMBOL(aggr_post_handler);
1070
1071 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1072                               int trapnr)
1073 {
1074         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1075
1076         /*
1077          * if we faulted "during" the execution of a user specified
1078          * probe handler, invoke just that probe's fault handler
1079          */
1080         if (cur && cur->fault_handler) {
1081                 if (cur->fault_handler(cur, regs, trapnr))
1082                         return 1;
1083         }
1084         return 0;
1085 }
1086 NOKPROBE_SYMBOL(aggr_fault_handler);
1087
1088 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1089 {
1090         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1091         int ret = 0;
1092
1093         if (cur && cur->break_handler) {
1094                 if (cur->break_handler(cur, regs))
1095                         ret = 1;
1096         }
1097         reset_kprobe_instance();
1098         return ret;
1099 }
1100 NOKPROBE_SYMBOL(aggr_break_handler);
1101
1102 /* Walks the list and increments nmissed count for multiprobe case */
1103 void kprobes_inc_nmissed_count(struct kprobe *p)
1104 {
1105         struct kprobe *kp;
1106         if (!kprobe_aggrprobe(p)) {
1107                 p->nmissed++;
1108         } else {
1109                 list_for_each_entry_rcu(kp, &p->list, list)
1110                         kp->nmissed++;
1111         }
1112         return;
1113 }
1114 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1115
1116 void recycle_rp_inst(struct kretprobe_instance *ri,
1117                      struct hlist_head *head)
1118 {
1119         struct kretprobe *rp = ri->rp;
1120
1121         /* remove rp inst off the rprobe_inst_table */
1122         hlist_del(&ri->hlist);
1123         INIT_HLIST_NODE(&ri->hlist);
1124         if (likely(rp)) {
1125                 raw_spin_lock(&rp->lock);
1126                 hlist_add_head(&ri->hlist, &rp->free_instances);
1127                 raw_spin_unlock(&rp->lock);
1128         } else
1129                 /* Unregistering */
1130                 hlist_add_head(&ri->hlist, head);
1131 }
1132 NOKPROBE_SYMBOL(recycle_rp_inst);
1133
1134 void kretprobe_hash_lock(struct task_struct *tsk,
1135                          struct hlist_head **head, unsigned long *flags)
1136 __acquires(hlist_lock)
1137 {
1138         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1139         raw_spinlock_t *hlist_lock;
1140
1141         *head = &kretprobe_inst_table[hash];
1142         hlist_lock = kretprobe_table_lock_ptr(hash);
1143         raw_spin_lock_irqsave(hlist_lock, *flags);
1144 }
1145 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1146
1147 static void kretprobe_table_lock(unsigned long hash,
1148                                  unsigned long *flags)
1149 __acquires(hlist_lock)
1150 {
1151         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152         raw_spin_lock_irqsave(hlist_lock, *flags);
1153 }
1154 NOKPROBE_SYMBOL(kretprobe_table_lock);
1155
1156 void kretprobe_hash_unlock(struct task_struct *tsk,
1157                            unsigned long *flags)
1158 __releases(hlist_lock)
1159 {
1160         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1161         raw_spinlock_t *hlist_lock;
1162
1163         hlist_lock = kretprobe_table_lock_ptr(hash);
1164         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1165 }
1166 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1167
1168 static void kretprobe_table_unlock(unsigned long hash,
1169                                    unsigned long *flags)
1170 __releases(hlist_lock)
1171 {
1172         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1173         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1174 }
1175 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1176
1177 /*
1178  * This function is called from finish_task_switch when task tk becomes dead,
1179  * so that we can recycle any function-return probe instances associated
1180  * with this task. These left over instances represent probed functions
1181  * that have been called but will never return.
1182  */
1183 void kprobe_flush_task(struct task_struct *tk)
1184 {
1185         struct kretprobe_instance *ri;
1186         struct hlist_head *head, empty_rp;
1187         struct hlist_node *tmp;
1188         unsigned long hash, flags = 0;
1189
1190         if (unlikely(!kprobes_initialized))
1191                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1192                 return;
1193
1194         INIT_HLIST_HEAD(&empty_rp);
1195         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1196         head = &kretprobe_inst_table[hash];
1197         kretprobe_table_lock(hash, &flags);
1198         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1199                 if (ri->task == tk)
1200                         recycle_rp_inst(ri, &empty_rp);
1201         }
1202         kretprobe_table_unlock(hash, &flags);
1203         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1204                 hlist_del(&ri->hlist);
1205                 kfree(ri);
1206         }
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209
1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212         struct kretprobe_instance *ri;
1213         struct hlist_node *next;
1214
1215         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216                 hlist_del(&ri->hlist);
1217                 kfree(ri);
1218         }
1219 }
1220
1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223         unsigned long flags, hash;
1224         struct kretprobe_instance *ri;
1225         struct hlist_node *next;
1226         struct hlist_head *head;
1227
1228         /* No race here */
1229         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230                 kretprobe_table_lock(hash, &flags);
1231                 head = &kretprobe_inst_table[hash];
1232                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1233                         if (ri->rp == rp)
1234                                 ri->rp = NULL;
1235                 }
1236                 kretprobe_table_unlock(hash, &flags);
1237         }
1238         free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249
1250         if (p->break_handler || p->post_handler)
1251                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1252
1253         if (p->break_handler) {
1254                 if (ap->break_handler)
1255                         return -EEXIST;
1256                 list_add_tail_rcu(&p->list, &ap->list);
1257                 ap->break_handler = aggr_break_handler;
1258         } else
1259                 list_add_rcu(&p->list, &ap->list);
1260         if (p->post_handler && !ap->post_handler)
1261                 ap->post_handler = aggr_post_handler;
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * Fill in the required fields of the "manager kprobe". Replace the
1268  * earlier kprobe in the hlist with the manager kprobe
1269  */
1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272         /* Copy p's insn slot to ap */
1273         copy_kprobe(p, ap);
1274         flush_insn_slot(ap);
1275         ap->addr = p->addr;
1276         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277         ap->pre_handler = aggr_pre_handler;
1278         ap->fault_handler = aggr_fault_handler;
1279         /* We don't care the kprobe which has gone. */
1280         if (p->post_handler && !kprobe_gone(p))
1281                 ap->post_handler = aggr_post_handler;
1282         if (p->break_handler && !kprobe_gone(p))
1283                 ap->break_handler = aggr_break_handler;
1284
1285         INIT_LIST_HEAD(&ap->list);
1286         INIT_HLIST_NODE(&ap->hlist);
1287
1288         list_add_rcu(&p->list, &ap->list);
1289         hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291
1292 /*
1293  * This is the second or subsequent kprobe at the address - handle
1294  * the intricacies
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298         int ret = 0;
1299         struct kprobe *ap = orig_p;
1300
1301         /* For preparing optimization, jump_label_text_reserved() is called */
1302         jump_label_lock();
1303         /*
1304          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306          */
1307         get_online_cpus();
1308         mutex_lock(&text_mutex);
1309
1310         if (!kprobe_aggrprobe(orig_p)) {
1311                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312                 ap = alloc_aggr_kprobe(orig_p);
1313                 if (!ap) {
1314                         ret = -ENOMEM;
1315                         goto out;
1316                 }
1317                 init_aggr_kprobe(ap, orig_p);
1318         } else if (kprobe_unused(ap))
1319                 /* This probe is going to die. Rescue it */
1320                 reuse_unused_kprobe(ap);
1321
1322         if (kprobe_gone(ap)) {
1323                 /*
1324                  * Attempting to insert new probe at the same location that
1325                  * had a probe in the module vaddr area which already
1326                  * freed. So, the instruction slot has already been
1327                  * released. We need a new slot for the new probe.
1328                  */
1329                 ret = arch_prepare_kprobe(ap);
1330                 if (ret)
1331                         /*
1332                          * Even if fail to allocate new slot, don't need to
1333                          * free aggr_probe. It will be used next time, or
1334                          * freed by unregister_kprobe.
1335                          */
1336                         goto out;
1337
1338                 /* Prepare optimized instructions if possible. */
1339                 prepare_optimized_kprobe(ap);
1340
1341                 /*
1342                  * Clear gone flag to prevent allocating new slot again, and
1343                  * set disabled flag because it is not armed yet.
1344                  */
1345                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346                             | KPROBE_FLAG_DISABLED;
1347         }
1348
1349         /* Copy ap's insn slot to p */
1350         copy_kprobe(ap, p);
1351         ret = add_new_kprobe(ap, p);
1352
1353 out:
1354         mutex_unlock(&text_mutex);
1355         put_online_cpus();
1356         jump_label_unlock();
1357
1358         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360                 if (!kprobes_all_disarmed)
1361                         /* Arm the breakpoint again. */
1362                         arm_kprobe(ap);
1363         }
1364         return ret;
1365 }
1366
1367 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1368 {
1369         /* The __kprobes marked functions and entry code must not be probed */
1370         return addr >= (unsigned long)__kprobes_text_start &&
1371                addr < (unsigned long)__kprobes_text_end;
1372 }
1373
1374 bool within_kprobe_blacklist(unsigned long addr)
1375 {
1376         struct kprobe_blacklist_entry *ent;
1377
1378         if (arch_within_kprobe_blacklist(addr))
1379                 return true;
1380         /*
1381          * If there exists a kprobe_blacklist, verify and
1382          * fail any probe registration in the prohibited area
1383          */
1384         list_for_each_entry(ent, &kprobe_blacklist, list) {
1385                 if (addr >= ent->start_addr && addr < ent->end_addr)
1386                         return true;
1387         }
1388
1389         return false;
1390 }
1391
1392 /*
1393  * If we have a symbol_name argument, look it up and add the offset field
1394  * to it. This way, we can specify a relative address to a symbol.
1395  * This returns encoded errors if it fails to look up symbol or invalid
1396  * combination of parameters.
1397  */
1398 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1399 {
1400         kprobe_opcode_t *addr = p->addr;
1401
1402         if ((p->symbol_name && p->addr) ||
1403             (!p->symbol_name && !p->addr))
1404                 goto invalid;
1405
1406         if (p->symbol_name) {
1407                 addr = kprobe_lookup_name(p->symbol_name, p->offset);
1408                 if (!addr)
1409                         return ERR_PTR(-ENOENT);
1410         }
1411
1412         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1413         if (addr)
1414                 return addr;
1415
1416 invalid:
1417         return ERR_PTR(-EINVAL);
1418 }
1419
1420 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1421 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1422 {
1423         struct kprobe *ap, *list_p;
1424
1425         ap = get_kprobe(p->addr);
1426         if (unlikely(!ap))
1427                 return NULL;
1428
1429         if (p != ap) {
1430                 list_for_each_entry_rcu(list_p, &ap->list, list)
1431                         if (list_p == p)
1432                         /* kprobe p is a valid probe */
1433                                 goto valid;
1434                 return NULL;
1435         }
1436 valid:
1437         return ap;
1438 }
1439
1440 /* Return error if the kprobe is being re-registered */
1441 static inline int check_kprobe_rereg(struct kprobe *p)
1442 {
1443         int ret = 0;
1444
1445         mutex_lock(&kprobe_mutex);
1446         if (__get_valid_kprobe(p))
1447                 ret = -EINVAL;
1448         mutex_unlock(&kprobe_mutex);
1449
1450         return ret;
1451 }
1452
1453 int __weak arch_check_ftrace_location(struct kprobe *p)
1454 {
1455         unsigned long ftrace_addr;
1456
1457         ftrace_addr = ftrace_location((unsigned long)p->addr);
1458         if (ftrace_addr) {
1459 #ifdef CONFIG_KPROBES_ON_FTRACE
1460                 /* Given address is not on the instruction boundary */
1461                 if ((unsigned long)p->addr != ftrace_addr)
1462                         return -EILSEQ;
1463                 p->flags |= KPROBE_FLAG_FTRACE;
1464 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1465                 return -EINVAL;
1466 #endif
1467         }
1468         return 0;
1469 }
1470
1471 static int check_kprobe_address_safe(struct kprobe *p,
1472                                      struct module **probed_mod)
1473 {
1474         int ret;
1475
1476         ret = arch_check_ftrace_location(p);
1477         if (ret)
1478                 return ret;
1479         jump_label_lock();
1480         preempt_disable();
1481
1482         /* Ensure it is not in reserved area nor out of text */
1483         if (!kernel_text_address((unsigned long) p->addr) ||
1484             within_kprobe_blacklist((unsigned long) p->addr) ||
1485             jump_label_text_reserved(p->addr, p->addr)) {
1486                 ret = -EINVAL;
1487                 goto out;
1488         }
1489
1490         /* Check if are we probing a module */
1491         *probed_mod = __module_text_address((unsigned long) p->addr);
1492         if (*probed_mod) {
1493                 /*
1494                  * We must hold a refcount of the probed module while updating
1495                  * its code to prohibit unexpected unloading.
1496                  */
1497                 if (unlikely(!try_module_get(*probed_mod))) {
1498                         ret = -ENOENT;
1499                         goto out;
1500                 }
1501
1502                 /*
1503                  * If the module freed .init.text, we couldn't insert
1504                  * kprobes in there.
1505                  */
1506                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1507                     (*probed_mod)->state != MODULE_STATE_COMING) {
1508                         module_put(*probed_mod);
1509                         *probed_mod = NULL;
1510                         ret = -ENOENT;
1511                 }
1512         }
1513 out:
1514         preempt_enable();
1515         jump_label_unlock();
1516
1517         return ret;
1518 }
1519
1520 int register_kprobe(struct kprobe *p)
1521 {
1522         int ret;
1523         struct kprobe *old_p;
1524         struct module *probed_mod;
1525         kprobe_opcode_t *addr;
1526
1527         /* Adjust probe address from symbol */
1528         addr = kprobe_addr(p);
1529         if (IS_ERR(addr))
1530                 return PTR_ERR(addr);
1531         p->addr = addr;
1532
1533         ret = check_kprobe_rereg(p);
1534         if (ret)
1535                 return ret;
1536
1537         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1538         p->flags &= KPROBE_FLAG_DISABLED;
1539         p->nmissed = 0;
1540         INIT_LIST_HEAD(&p->list);
1541
1542         ret = check_kprobe_address_safe(p, &probed_mod);
1543         if (ret)
1544                 return ret;
1545
1546         mutex_lock(&kprobe_mutex);
1547
1548         old_p = get_kprobe(p->addr);
1549         if (old_p) {
1550                 /* Since this may unoptimize old_p, locking text_mutex. */
1551                 ret = register_aggr_kprobe(old_p, p);
1552                 goto out;
1553         }
1554
1555         mutex_lock(&text_mutex);        /* Avoiding text modification */
1556         ret = prepare_kprobe(p);
1557         mutex_unlock(&text_mutex);
1558         if (ret)
1559                 goto out;
1560
1561         INIT_HLIST_NODE(&p->hlist);
1562         hlist_add_head_rcu(&p->hlist,
1563                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1564
1565         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1566                 arm_kprobe(p);
1567
1568         /* Try to optimize kprobe */
1569         try_to_optimize_kprobe(p);
1570
1571 out:
1572         mutex_unlock(&kprobe_mutex);
1573
1574         if (probed_mod)
1575                 module_put(probed_mod);
1576
1577         return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(register_kprobe);
1580
1581 /* Check if all probes on the aggrprobe are disabled */
1582 static int aggr_kprobe_disabled(struct kprobe *ap)
1583 {
1584         struct kprobe *kp;
1585
1586         list_for_each_entry_rcu(kp, &ap->list, list)
1587                 if (!kprobe_disabled(kp))
1588                         /*
1589                          * There is an active probe on the list.
1590                          * We can't disable this ap.
1591                          */
1592                         return 0;
1593
1594         return 1;
1595 }
1596
1597 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1598 static struct kprobe *__disable_kprobe(struct kprobe *p)
1599 {
1600         struct kprobe *orig_p;
1601
1602         /* Get an original kprobe for return */
1603         orig_p = __get_valid_kprobe(p);
1604         if (unlikely(orig_p == NULL))
1605                 return NULL;
1606
1607         if (!kprobe_disabled(p)) {
1608                 /* Disable probe if it is a child probe */
1609                 if (p != orig_p)
1610                         p->flags |= KPROBE_FLAG_DISABLED;
1611
1612                 /* Try to disarm and disable this/parent probe */
1613                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1614                         /*
1615                          * If kprobes_all_disarmed is set, orig_p
1616                          * should have already been disarmed, so
1617                          * skip unneed disarming process.
1618                          */
1619                         if (!kprobes_all_disarmed)
1620                                 disarm_kprobe(orig_p, true);
1621                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1622                 }
1623         }
1624
1625         return orig_p;
1626 }
1627
1628 /*
1629  * Unregister a kprobe without a scheduler synchronization.
1630  */
1631 static int __unregister_kprobe_top(struct kprobe *p)
1632 {
1633         struct kprobe *ap, *list_p;
1634
1635         /* Disable kprobe. This will disarm it if needed. */
1636         ap = __disable_kprobe(p);
1637         if (ap == NULL)
1638                 return -EINVAL;
1639
1640         if (ap == p)
1641                 /*
1642                  * This probe is an independent(and non-optimized) kprobe
1643                  * (not an aggrprobe). Remove from the hash list.
1644                  */
1645                 goto disarmed;
1646
1647         /* Following process expects this probe is an aggrprobe */
1648         WARN_ON(!kprobe_aggrprobe(ap));
1649
1650         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1651                 /*
1652                  * !disarmed could be happen if the probe is under delayed
1653                  * unoptimizing.
1654                  */
1655                 goto disarmed;
1656         else {
1657                 /* If disabling probe has special handlers, update aggrprobe */
1658                 if (p->break_handler && !kprobe_gone(p))
1659                         ap->break_handler = NULL;
1660                 if (p->post_handler && !kprobe_gone(p)) {
1661                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1662                                 if ((list_p != p) && (list_p->post_handler))
1663                                         goto noclean;
1664                         }
1665                         ap->post_handler = NULL;
1666                 }
1667 noclean:
1668                 /*
1669                  * Remove from the aggrprobe: this path will do nothing in
1670                  * __unregister_kprobe_bottom().
1671                  */
1672                 list_del_rcu(&p->list);
1673                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1674                         /*
1675                          * Try to optimize this probe again, because post
1676                          * handler may have been changed.
1677                          */
1678                         optimize_kprobe(ap);
1679         }
1680         return 0;
1681
1682 disarmed:
1683         BUG_ON(!kprobe_disarmed(ap));
1684         hlist_del_rcu(&ap->hlist);
1685         return 0;
1686 }
1687
1688 static void __unregister_kprobe_bottom(struct kprobe *p)
1689 {
1690         struct kprobe *ap;
1691
1692         if (list_empty(&p->list))
1693                 /* This is an independent kprobe */
1694                 arch_remove_kprobe(p);
1695         else if (list_is_singular(&p->list)) {
1696                 /* This is the last child of an aggrprobe */
1697                 ap = list_entry(p->list.next, struct kprobe, list);
1698                 list_del(&p->list);
1699                 free_aggr_kprobe(ap);
1700         }
1701         /* Otherwise, do nothing. */
1702 }
1703
1704 int register_kprobes(struct kprobe **kps, int num)
1705 {
1706         int i, ret = 0;
1707
1708         if (num <= 0)
1709                 return -EINVAL;
1710         for (i = 0; i < num; i++) {
1711                 ret = register_kprobe(kps[i]);
1712                 if (ret < 0) {
1713                         if (i > 0)
1714                                 unregister_kprobes(kps, i);
1715                         break;
1716                 }
1717         }
1718         return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(register_kprobes);
1721
1722 void unregister_kprobe(struct kprobe *p)
1723 {
1724         unregister_kprobes(&p, 1);
1725 }
1726 EXPORT_SYMBOL_GPL(unregister_kprobe);
1727
1728 void unregister_kprobes(struct kprobe **kps, int num)
1729 {
1730         int i;
1731
1732         if (num <= 0)
1733                 return;
1734         mutex_lock(&kprobe_mutex);
1735         for (i = 0; i < num; i++)
1736                 if (__unregister_kprobe_top(kps[i]) < 0)
1737                         kps[i]->addr = NULL;
1738         mutex_unlock(&kprobe_mutex);
1739
1740         synchronize_sched();
1741         for (i = 0; i < num; i++)
1742                 if (kps[i]->addr)
1743                         __unregister_kprobe_bottom(kps[i]);
1744 }
1745 EXPORT_SYMBOL_GPL(unregister_kprobes);
1746
1747 int __weak __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1748                                               unsigned long val, void *data)
1749 {
1750         return NOTIFY_DONE;
1751 }
1752
1753 static struct notifier_block kprobe_exceptions_nb = {
1754         .notifier_call = kprobe_exceptions_notify,
1755         .priority = 0x7fffffff /* we need to be notified first */
1756 };
1757
1758 unsigned long __weak arch_deref_entry_point(void *entry)
1759 {
1760         return (unsigned long)entry;
1761 }
1762
1763 int register_jprobes(struct jprobe **jps, int num)
1764 {
1765         struct jprobe *jp;
1766         int ret = 0, i;
1767
1768         if (num <= 0)
1769                 return -EINVAL;
1770         for (i = 0; i < num; i++) {
1771                 unsigned long addr, offset;
1772                 jp = jps[i];
1773                 addr = arch_deref_entry_point(jp->entry);
1774
1775                 /* Verify probepoint is a function entry point */
1776                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1777                     offset == 0) {
1778                         jp->kp.pre_handler = setjmp_pre_handler;
1779                         jp->kp.break_handler = longjmp_break_handler;
1780                         ret = register_kprobe(&jp->kp);
1781                 } else
1782                         ret = -EINVAL;
1783
1784                 if (ret < 0) {
1785                         if (i > 0)
1786                                 unregister_jprobes(jps, i);
1787                         break;
1788                 }
1789         }
1790         return ret;
1791 }
1792 EXPORT_SYMBOL_GPL(register_jprobes);
1793
1794 int register_jprobe(struct jprobe *jp)
1795 {
1796         return register_jprobes(&jp, 1);
1797 }
1798 EXPORT_SYMBOL_GPL(register_jprobe);
1799
1800 void unregister_jprobe(struct jprobe *jp)
1801 {
1802         unregister_jprobes(&jp, 1);
1803 }
1804 EXPORT_SYMBOL_GPL(unregister_jprobe);
1805
1806 void unregister_jprobes(struct jprobe **jps, int num)
1807 {
1808         int i;
1809
1810         if (num <= 0)
1811                 return;
1812         mutex_lock(&kprobe_mutex);
1813         for (i = 0; i < num; i++)
1814                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1815                         jps[i]->kp.addr = NULL;
1816         mutex_unlock(&kprobe_mutex);
1817
1818         synchronize_sched();
1819         for (i = 0; i < num; i++) {
1820                 if (jps[i]->kp.addr)
1821                         __unregister_kprobe_bottom(&jps[i]->kp);
1822         }
1823 }
1824 EXPORT_SYMBOL_GPL(unregister_jprobes);
1825
1826 #ifdef CONFIG_KRETPROBES
1827 /*
1828  * This kprobe pre_handler is registered with every kretprobe. When probe
1829  * hits it will set up the return probe.
1830  */
1831 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1832 {
1833         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1834         unsigned long hash, flags = 0;
1835         struct kretprobe_instance *ri;
1836
1837         /*
1838          * To avoid deadlocks, prohibit return probing in NMI contexts,
1839          * just skip the probe and increase the (inexact) 'nmissed'
1840          * statistical counter, so that the user is informed that
1841          * something happened:
1842          */
1843         if (unlikely(in_nmi())) {
1844                 rp->nmissed++;
1845                 return 0;
1846         }
1847
1848         /* TODO: consider to only swap the RA after the last pre_handler fired */
1849         hash = hash_ptr(current, KPROBE_HASH_BITS);
1850         raw_spin_lock_irqsave(&rp->lock, flags);
1851         if (!hlist_empty(&rp->free_instances)) {
1852                 ri = hlist_entry(rp->free_instances.first,
1853                                 struct kretprobe_instance, hlist);
1854                 hlist_del(&ri->hlist);
1855                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1856
1857                 ri->rp = rp;
1858                 ri->task = current;
1859
1860                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1861                         raw_spin_lock_irqsave(&rp->lock, flags);
1862                         hlist_add_head(&ri->hlist, &rp->free_instances);
1863                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1864                         return 0;
1865                 }
1866
1867                 arch_prepare_kretprobe(ri, regs);
1868
1869                 /* XXX(hch): why is there no hlist_move_head? */
1870                 INIT_HLIST_NODE(&ri->hlist);
1871                 kretprobe_table_lock(hash, &flags);
1872                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1873                 kretprobe_table_unlock(hash, &flags);
1874         } else {
1875                 rp->nmissed++;
1876                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1877         }
1878         return 0;
1879 }
1880 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1881
1882 int register_kretprobe(struct kretprobe *rp)
1883 {
1884         int ret = 0;
1885         struct kretprobe_instance *inst;
1886         int i;
1887         void *addr;
1888
1889         if (kretprobe_blacklist_size) {
1890                 addr = kprobe_addr(&rp->kp);
1891                 if (IS_ERR(addr))
1892                         return PTR_ERR(addr);
1893
1894                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1895                         if (kretprobe_blacklist[i].addr == addr)
1896                                 return -EINVAL;
1897                 }
1898         }
1899
1900         rp->kp.pre_handler = pre_handler_kretprobe;
1901         rp->kp.post_handler = NULL;
1902         rp->kp.fault_handler = NULL;
1903         rp->kp.break_handler = NULL;
1904
1905         /* Pre-allocate memory for max kretprobe instances */
1906         if (rp->maxactive <= 0) {
1907 #ifdef CONFIG_PREEMPT
1908                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1909 #else
1910                 rp->maxactive = num_possible_cpus();
1911 #endif
1912         }
1913         raw_spin_lock_init(&rp->lock);
1914         INIT_HLIST_HEAD(&rp->free_instances);
1915         for (i = 0; i < rp->maxactive; i++) {
1916                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1917                                rp->data_size, GFP_KERNEL);
1918                 if (inst == NULL) {
1919                         free_rp_inst(rp);
1920                         return -ENOMEM;
1921                 }
1922                 INIT_HLIST_NODE(&inst->hlist);
1923                 hlist_add_head(&inst->hlist, &rp->free_instances);
1924         }
1925
1926         rp->nmissed = 0;
1927         /* Establish function entry probe point */
1928         ret = register_kprobe(&rp->kp);
1929         if (ret != 0)
1930                 free_rp_inst(rp);
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(register_kretprobe);
1934
1935 int register_kretprobes(struct kretprobe **rps, int num)
1936 {
1937         int ret = 0, i;
1938
1939         if (num <= 0)
1940                 return -EINVAL;
1941         for (i = 0; i < num; i++) {
1942                 ret = register_kretprobe(rps[i]);
1943                 if (ret < 0) {
1944                         if (i > 0)
1945                                 unregister_kretprobes(rps, i);
1946                         break;
1947                 }
1948         }
1949         return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(register_kretprobes);
1952
1953 void unregister_kretprobe(struct kretprobe *rp)
1954 {
1955         unregister_kretprobes(&rp, 1);
1956 }
1957 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1958
1959 void unregister_kretprobes(struct kretprobe **rps, int num)
1960 {
1961         int i;
1962
1963         if (num <= 0)
1964                 return;
1965         mutex_lock(&kprobe_mutex);
1966         for (i = 0; i < num; i++)
1967                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1968                         rps[i]->kp.addr = NULL;
1969         mutex_unlock(&kprobe_mutex);
1970
1971         synchronize_sched();
1972         for (i = 0; i < num; i++) {
1973                 if (rps[i]->kp.addr) {
1974                         __unregister_kprobe_bottom(&rps[i]->kp);
1975                         cleanup_rp_inst(rps[i]);
1976                 }
1977         }
1978 }
1979 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1980
1981 #else /* CONFIG_KRETPROBES */
1982 int register_kretprobe(struct kretprobe *rp)
1983 {
1984         return -ENOSYS;
1985 }
1986 EXPORT_SYMBOL_GPL(register_kretprobe);
1987
1988 int register_kretprobes(struct kretprobe **rps, int num)
1989 {
1990         return -ENOSYS;
1991 }
1992 EXPORT_SYMBOL_GPL(register_kretprobes);
1993
1994 void unregister_kretprobe(struct kretprobe *rp)
1995 {
1996 }
1997 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1998
1999 void unregister_kretprobes(struct kretprobe **rps, int num)
2000 {
2001 }
2002 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2003
2004 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2005 {
2006         return 0;
2007 }
2008 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2009
2010 #endif /* CONFIG_KRETPROBES */
2011
2012 /* Set the kprobe gone and remove its instruction buffer. */
2013 static void kill_kprobe(struct kprobe *p)
2014 {
2015         struct kprobe *kp;
2016
2017         p->flags |= KPROBE_FLAG_GONE;
2018         if (kprobe_aggrprobe(p)) {
2019                 /*
2020                  * If this is an aggr_kprobe, we have to list all the
2021                  * chained probes and mark them GONE.
2022                  */
2023                 list_for_each_entry_rcu(kp, &p->list, list)
2024                         kp->flags |= KPROBE_FLAG_GONE;
2025                 p->post_handler = NULL;
2026                 p->break_handler = NULL;
2027                 kill_optimized_kprobe(p);
2028         }
2029         /*
2030          * Here, we can remove insn_slot safely, because no thread calls
2031          * the original probed function (which will be freed soon) any more.
2032          */
2033         arch_remove_kprobe(p);
2034 }
2035
2036 /* Disable one kprobe */
2037 int disable_kprobe(struct kprobe *kp)
2038 {
2039         int ret = 0;
2040
2041         mutex_lock(&kprobe_mutex);
2042
2043         /* Disable this kprobe */
2044         if (__disable_kprobe(kp) == NULL)
2045                 ret = -EINVAL;
2046
2047         mutex_unlock(&kprobe_mutex);
2048         return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(disable_kprobe);
2051
2052 /* Enable one kprobe */
2053 int enable_kprobe(struct kprobe *kp)
2054 {
2055         int ret = 0;
2056         struct kprobe *p;
2057
2058         mutex_lock(&kprobe_mutex);
2059
2060         /* Check whether specified probe is valid. */
2061         p = __get_valid_kprobe(kp);
2062         if (unlikely(p == NULL)) {
2063                 ret = -EINVAL;
2064                 goto out;
2065         }
2066
2067         if (kprobe_gone(kp)) {
2068                 /* This kprobe has gone, we couldn't enable it. */
2069                 ret = -EINVAL;
2070                 goto out;
2071         }
2072
2073         if (p != kp)
2074                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2075
2076         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2077                 p->flags &= ~KPROBE_FLAG_DISABLED;
2078                 arm_kprobe(p);
2079         }
2080 out:
2081         mutex_unlock(&kprobe_mutex);
2082         return ret;
2083 }
2084 EXPORT_SYMBOL_GPL(enable_kprobe);
2085
2086 void dump_kprobe(struct kprobe *kp)
2087 {
2088         printk(KERN_WARNING "Dumping kprobe:\n");
2089         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2090                kp->symbol_name, kp->addr, kp->offset);
2091 }
2092 NOKPROBE_SYMBOL(dump_kprobe);
2093
2094 /*
2095  * Lookup and populate the kprobe_blacklist.
2096  *
2097  * Unlike the kretprobe blacklist, we'll need to determine
2098  * the range of addresses that belong to the said functions,
2099  * since a kprobe need not necessarily be at the beginning
2100  * of a function.
2101  */
2102 static int __init populate_kprobe_blacklist(unsigned long *start,
2103                                              unsigned long *end)
2104 {
2105         unsigned long *iter;
2106         struct kprobe_blacklist_entry *ent;
2107         unsigned long entry, offset = 0, size = 0;
2108
2109         for (iter = start; iter < end; iter++) {
2110                 entry = arch_deref_entry_point((void *)*iter);
2111
2112                 if (!kernel_text_address(entry) ||
2113                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2114                         pr_err("Failed to find blacklist at %p\n",
2115                                 (void *)entry);
2116                         continue;
2117                 }
2118
2119                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2120                 if (!ent)
2121                         return -ENOMEM;
2122                 ent->start_addr = entry;
2123                 ent->end_addr = entry + size;
2124                 INIT_LIST_HEAD(&ent->list);
2125                 list_add_tail(&ent->list, &kprobe_blacklist);
2126         }
2127         return 0;
2128 }
2129
2130 /* Module notifier call back, checking kprobes on the module */
2131 static int kprobes_module_callback(struct notifier_block *nb,
2132                                    unsigned long val, void *data)
2133 {
2134         struct module *mod = data;
2135         struct hlist_head *head;
2136         struct kprobe *p;
2137         unsigned int i;
2138         int checkcore = (val == MODULE_STATE_GOING);
2139
2140         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2141                 return NOTIFY_DONE;
2142
2143         /*
2144          * When MODULE_STATE_GOING was notified, both of module .text and
2145          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2146          * notified, only .init.text section would be freed. We need to
2147          * disable kprobes which have been inserted in the sections.
2148          */
2149         mutex_lock(&kprobe_mutex);
2150         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2151                 head = &kprobe_table[i];
2152                 hlist_for_each_entry_rcu(p, head, hlist)
2153                         if (within_module_init((unsigned long)p->addr, mod) ||
2154                             (checkcore &&
2155                              within_module_core((unsigned long)p->addr, mod))) {
2156                                 /*
2157                                  * The vaddr this probe is installed will soon
2158                                  * be vfreed buy not synced to disk. Hence,
2159                                  * disarming the breakpoint isn't needed.
2160                                  */
2161                                 kill_kprobe(p);
2162                         }
2163         }
2164         mutex_unlock(&kprobe_mutex);
2165         return NOTIFY_DONE;
2166 }
2167
2168 static struct notifier_block kprobe_module_nb = {
2169         .notifier_call = kprobes_module_callback,
2170         .priority = 0
2171 };
2172
2173 /* Markers of _kprobe_blacklist section */
2174 extern unsigned long __start_kprobe_blacklist[];
2175 extern unsigned long __stop_kprobe_blacklist[];
2176
2177 static int __init init_kprobes(void)
2178 {
2179         int i, err = 0;
2180
2181         /* FIXME allocate the probe table, currently defined statically */
2182         /* initialize all list heads */
2183         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2184                 INIT_HLIST_HEAD(&kprobe_table[i]);
2185                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2186                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2187         }
2188
2189         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2190                                         __stop_kprobe_blacklist);
2191         if (err) {
2192                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2193                 pr_err("Please take care of using kprobes.\n");
2194         }
2195
2196         if (kretprobe_blacklist_size) {
2197                 /* lookup the function address from its name */
2198                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2199                         kretprobe_blacklist[i].addr =
2200                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2201                         if (!kretprobe_blacklist[i].addr)
2202                                 printk("kretprobe: lookup failed: %s\n",
2203                                        kretprobe_blacklist[i].name);
2204                 }
2205         }
2206
2207 #if defined(CONFIG_OPTPROBES)
2208 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2209         /* Init kprobe_optinsn_slots */
2210         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2211 #endif
2212         /* By default, kprobes can be optimized */
2213         kprobes_allow_optimization = true;
2214 #endif
2215
2216         /* By default, kprobes are armed */
2217         kprobes_all_disarmed = false;
2218
2219         err = arch_init_kprobes();
2220         if (!err)
2221                 err = register_die_notifier(&kprobe_exceptions_nb);
2222         if (!err)
2223                 err = register_module_notifier(&kprobe_module_nb);
2224
2225         kprobes_initialized = (err == 0);
2226
2227         if (!err)
2228                 init_test_probes();
2229         return err;
2230 }
2231
2232 #ifdef CONFIG_DEBUG_FS
2233 static void report_probe(struct seq_file *pi, struct kprobe *p,
2234                 const char *sym, int offset, char *modname, struct kprobe *pp)
2235 {
2236         char *kprobe_type;
2237
2238         if (p->pre_handler == pre_handler_kretprobe)
2239                 kprobe_type = "r";
2240         else if (p->pre_handler == setjmp_pre_handler)
2241                 kprobe_type = "j";
2242         else
2243                 kprobe_type = "k";
2244
2245         if (sym)
2246                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2247                         p->addr, kprobe_type, sym, offset,
2248                         (modname ? modname : " "));
2249         else
2250                 seq_printf(pi, "%p  %s  %p ",
2251                         p->addr, kprobe_type, p->addr);
2252
2253         if (!pp)
2254                 pp = p;
2255         seq_printf(pi, "%s%s%s%s\n",
2256                 (kprobe_gone(p) ? "[GONE]" : ""),
2257                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2258                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2259                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2260 }
2261
2262 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2263 {
2264         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2265 }
2266
2267 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2268 {
2269         (*pos)++;
2270         if (*pos >= KPROBE_TABLE_SIZE)
2271                 return NULL;
2272         return pos;
2273 }
2274
2275 static void kprobe_seq_stop(struct seq_file *f, void *v)
2276 {
2277         /* Nothing to do */
2278 }
2279
2280 static int show_kprobe_addr(struct seq_file *pi, void *v)
2281 {
2282         struct hlist_head *head;
2283         struct kprobe *p, *kp;
2284         const char *sym = NULL;
2285         unsigned int i = *(loff_t *) v;
2286         unsigned long offset = 0;
2287         char *modname, namebuf[KSYM_NAME_LEN];
2288
2289         head = &kprobe_table[i];
2290         preempt_disable();
2291         hlist_for_each_entry_rcu(p, head, hlist) {
2292                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2293                                         &offset, &modname, namebuf);
2294                 if (kprobe_aggrprobe(p)) {
2295                         list_for_each_entry_rcu(kp, &p->list, list)
2296                                 report_probe(pi, kp, sym, offset, modname, p);
2297                 } else
2298                         report_probe(pi, p, sym, offset, modname, NULL);
2299         }
2300         preempt_enable();
2301         return 0;
2302 }
2303
2304 static const struct seq_operations kprobes_seq_ops = {
2305         .start = kprobe_seq_start,
2306         .next  = kprobe_seq_next,
2307         .stop  = kprobe_seq_stop,
2308         .show  = show_kprobe_addr
2309 };
2310
2311 static int kprobes_open(struct inode *inode, struct file *filp)
2312 {
2313         return seq_open(filp, &kprobes_seq_ops);
2314 }
2315
2316 static const struct file_operations debugfs_kprobes_operations = {
2317         .open           = kprobes_open,
2318         .read           = seq_read,
2319         .llseek         = seq_lseek,
2320         .release        = seq_release,
2321 };
2322
2323 /* kprobes/blacklist -- shows which functions can not be probed */
2324 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2325 {
2326         return seq_list_start(&kprobe_blacklist, *pos);
2327 }
2328
2329 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2330 {
2331         return seq_list_next(v, &kprobe_blacklist, pos);
2332 }
2333
2334 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2335 {
2336         struct kprobe_blacklist_entry *ent =
2337                 list_entry(v, struct kprobe_blacklist_entry, list);
2338
2339         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2340                    (void *)ent->end_addr, (void *)ent->start_addr);
2341         return 0;
2342 }
2343
2344 static const struct seq_operations kprobe_blacklist_seq_ops = {
2345         .start = kprobe_blacklist_seq_start,
2346         .next  = kprobe_blacklist_seq_next,
2347         .stop  = kprobe_seq_stop,       /* Reuse void function */
2348         .show  = kprobe_blacklist_seq_show,
2349 };
2350
2351 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2352 {
2353         return seq_open(filp, &kprobe_blacklist_seq_ops);
2354 }
2355
2356 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2357         .open           = kprobe_blacklist_open,
2358         .read           = seq_read,
2359         .llseek         = seq_lseek,
2360         .release        = seq_release,
2361 };
2362
2363 static void arm_all_kprobes(void)
2364 {
2365         struct hlist_head *head;
2366         struct kprobe *p;
2367         unsigned int i;
2368
2369         mutex_lock(&kprobe_mutex);
2370
2371         /* If kprobes are armed, just return */
2372         if (!kprobes_all_disarmed)
2373                 goto already_enabled;
2374
2375         /*
2376          * optimize_kprobe() called by arm_kprobe() checks
2377          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2378          * arm_kprobe.
2379          */
2380         kprobes_all_disarmed = false;
2381         /* Arming kprobes doesn't optimize kprobe itself */
2382         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2383                 head = &kprobe_table[i];
2384                 hlist_for_each_entry_rcu(p, head, hlist)
2385                         if (!kprobe_disabled(p))
2386                                 arm_kprobe(p);
2387         }
2388
2389         printk(KERN_INFO "Kprobes globally enabled\n");
2390
2391 already_enabled:
2392         mutex_unlock(&kprobe_mutex);
2393         return;
2394 }
2395
2396 static void disarm_all_kprobes(void)
2397 {
2398         struct hlist_head *head;
2399         struct kprobe *p;
2400         unsigned int i;
2401
2402         mutex_lock(&kprobe_mutex);
2403
2404         /* If kprobes are already disarmed, just return */
2405         if (kprobes_all_disarmed) {
2406                 mutex_unlock(&kprobe_mutex);
2407                 return;
2408         }
2409
2410         kprobes_all_disarmed = true;
2411         printk(KERN_INFO "Kprobes globally disabled\n");
2412
2413         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2414                 head = &kprobe_table[i];
2415                 hlist_for_each_entry_rcu(p, head, hlist) {
2416                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2417                                 disarm_kprobe(p, false);
2418                 }
2419         }
2420         mutex_unlock(&kprobe_mutex);
2421
2422         /* Wait for disarming all kprobes by optimizer */
2423         wait_for_kprobe_optimizer();
2424 }
2425
2426 /*
2427  * XXX: The debugfs bool file interface doesn't allow for callbacks
2428  * when the bool state is switched. We can reuse that facility when
2429  * available
2430  */
2431 static ssize_t read_enabled_file_bool(struct file *file,
2432                char __user *user_buf, size_t count, loff_t *ppos)
2433 {
2434         char buf[3];
2435
2436         if (!kprobes_all_disarmed)
2437                 buf[0] = '1';
2438         else
2439                 buf[0] = '0';
2440         buf[1] = '\n';
2441         buf[2] = 0x00;
2442         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2443 }
2444
2445 static ssize_t write_enabled_file_bool(struct file *file,
2446                const char __user *user_buf, size_t count, loff_t *ppos)
2447 {
2448         char buf[32];
2449         size_t buf_size;
2450
2451         buf_size = min(count, (sizeof(buf)-1));
2452         if (copy_from_user(buf, user_buf, buf_size))
2453                 return -EFAULT;
2454
2455         buf[buf_size] = '\0';
2456         switch (buf[0]) {
2457         case 'y':
2458         case 'Y':
2459         case '1':
2460                 arm_all_kprobes();
2461                 break;
2462         case 'n':
2463         case 'N':
2464         case '0':
2465                 disarm_all_kprobes();
2466                 break;
2467         default:
2468                 return -EINVAL;
2469         }
2470
2471         return count;
2472 }
2473
2474 static const struct file_operations fops_kp = {
2475         .read =         read_enabled_file_bool,
2476         .write =        write_enabled_file_bool,
2477         .llseek =       default_llseek,
2478 };
2479
2480 static int __init debugfs_kprobe_init(void)
2481 {
2482         struct dentry *dir, *file;
2483         unsigned int value = 1;
2484
2485         dir = debugfs_create_dir("kprobes", NULL);
2486         if (!dir)
2487                 return -ENOMEM;
2488
2489         file = debugfs_create_file("list", 0444, dir, NULL,
2490                                 &debugfs_kprobes_operations);
2491         if (!file)
2492                 goto error;
2493
2494         file = debugfs_create_file("enabled", 0600, dir,
2495                                         &value, &fops_kp);
2496         if (!file)
2497                 goto error;
2498
2499         file = debugfs_create_file("blacklist", 0444, dir, NULL,
2500                                 &debugfs_kprobe_blacklist_ops);
2501         if (!file)
2502                 goto error;
2503
2504         return 0;
2505
2506 error:
2507         debugfs_remove(dir);
2508         return -ENOMEM;
2509 }
2510
2511 late_initcall(debugfs_kprobe_init);
2512 #endif /* CONFIG_DEBUG_FS */
2513
2514 module_init(init_kprobes);
2515
2516 /* defined in arch/.../kernel/kprobes.c */
2517 EXPORT_SYMBOL_GPL(jprobe_return);