]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/kprobes.c
perf/callchain: Force USER_DS when invoking perf_callchain_user()
[karo-tx-linux.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100         struct list_head list;
101         kprobe_opcode_t *insns;         /* Page of instruction slots */
102         struct kprobe_insn_cache *cache;
103         int nused;
104         int ngarbage;
105         char slot_used[];
106 };
107
108 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
109         (offsetof(struct kprobe_insn_page, slot_used) + \
110          (sizeof(char) * (slots)))
111
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116
117 enum kprobe_slot_state {
118         SLOT_CLEAN = 0,
119         SLOT_DIRTY = 1,
120         SLOT_USED = 2,
121 };
122
123 static void *alloc_insn_page(void)
124 {
125         return module_alloc(PAGE_SIZE);
126 }
127
128 static void free_insn_page(void *page)
129 {
130         module_memfree(page);
131 }
132
133 struct kprobe_insn_cache kprobe_insn_slots = {
134         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135         .alloc = alloc_insn_page,
136         .free = free_insn_page,
137         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138         .insn_size = MAX_INSN_SIZE,
139         .nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149         struct kprobe_insn_page *kip;
150         kprobe_opcode_t *slot = NULL;
151
152         /* Since the slot array is not protected by rcu, we need a mutex */
153         mutex_lock(&c->mutex);
154  retry:
155         rcu_read_lock();
156         list_for_each_entry_rcu(kip, &c->pages, list) {
157                 if (kip->nused < slots_per_page(c)) {
158                         int i;
159                         for (i = 0; i < slots_per_page(c); i++) {
160                                 if (kip->slot_used[i] == SLOT_CLEAN) {
161                                         kip->slot_used[i] = SLOT_USED;
162                                         kip->nused++;
163                                         slot = kip->insns + (i * c->insn_size);
164                                         rcu_read_unlock();
165                                         goto out;
166                                 }
167                         }
168                         /* kip->nused is broken. Fix it. */
169                         kip->nused = slots_per_page(c);
170                         WARN_ON(1);
171                 }
172         }
173         rcu_read_unlock();
174
175         /* If there are any garbage slots, collect it and try again. */
176         if (c->nr_garbage && collect_garbage_slots(c) == 0)
177                 goto retry;
178
179         /* All out of space.  Need to allocate a new page. */
180         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
181         if (!kip)
182                 goto out;
183
184         /*
185          * Use module_alloc so this page is within +/- 2GB of where the
186          * kernel image and loaded module images reside. This is required
187          * so x86_64 can correctly handle the %rip-relative fixups.
188          */
189         kip->insns = c->alloc();
190         if (!kip->insns) {
191                 kfree(kip);
192                 goto out;
193         }
194         INIT_LIST_HEAD(&kip->list);
195         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
196         kip->slot_used[0] = SLOT_USED;
197         kip->nused = 1;
198         kip->ngarbage = 0;
199         kip->cache = c;
200         list_add_rcu(&kip->list, &c->pages);
201         slot = kip->insns;
202 out:
203         mutex_unlock(&c->mutex);
204         return slot;
205 }
206
207 /* Return 1 if all garbages are collected, otherwise 0. */
208 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
209 {
210         kip->slot_used[idx] = SLOT_CLEAN;
211         kip->nused--;
212         if (kip->nused == 0) {
213                 /*
214                  * Page is no longer in use.  Free it unless
215                  * it's the last one.  We keep the last one
216                  * so as not to have to set it up again the
217                  * next time somebody inserts a probe.
218                  */
219                 if (!list_is_singular(&kip->list)) {
220                         list_del_rcu(&kip->list);
221                         synchronize_rcu();
222                         kip->cache->free(kip->insns);
223                         kfree(kip);
224                 }
225                 return 1;
226         }
227         return 0;
228 }
229
230 static int collect_garbage_slots(struct kprobe_insn_cache *c)
231 {
232         struct kprobe_insn_page *kip, *next;
233
234         /* Ensure no-one is interrupted on the garbages */
235         synchronize_sched();
236
237         list_for_each_entry_safe(kip, next, &c->pages, list) {
238                 int i;
239                 if (kip->ngarbage == 0)
240                         continue;
241                 kip->ngarbage = 0;      /* we will collect all garbages */
242                 for (i = 0; i < slots_per_page(c); i++) {
243                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
244                                 break;
245                 }
246         }
247         c->nr_garbage = 0;
248         return 0;
249 }
250
251 void __free_insn_slot(struct kprobe_insn_cache *c,
252                       kprobe_opcode_t *slot, int dirty)
253 {
254         struct kprobe_insn_page *kip;
255         long idx;
256
257         mutex_lock(&c->mutex);
258         rcu_read_lock();
259         list_for_each_entry_rcu(kip, &c->pages, list) {
260                 idx = ((long)slot - (long)kip->insns) /
261                         (c->insn_size * sizeof(kprobe_opcode_t));
262                 if (idx >= 0 && idx < slots_per_page(c))
263                         goto out;
264         }
265         /* Could not find this slot. */
266         WARN_ON(1);
267         kip = NULL;
268 out:
269         rcu_read_unlock();
270         /* Mark and sweep: this may sleep */
271         if (kip) {
272                 /* Check double free */
273                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
274                 if (dirty) {
275                         kip->slot_used[idx] = SLOT_DIRTY;
276                         kip->ngarbage++;
277                         if (++c->nr_garbage > slots_per_page(c))
278                                 collect_garbage_slots(c);
279                 } else {
280                         collect_one_slot(kip, idx);
281                 }
282         }
283         mutex_unlock(&c->mutex);
284 }
285
286 /*
287  * Check given address is on the page of kprobe instruction slots.
288  * This will be used for checking whether the address on a stack
289  * is on a text area or not.
290  */
291 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
292 {
293         struct kprobe_insn_page *kip;
294         bool ret = false;
295
296         rcu_read_lock();
297         list_for_each_entry_rcu(kip, &c->pages, list) {
298                 if (addr >= (unsigned long)kip->insns &&
299                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
300                         ret = true;
301                         break;
302                 }
303         }
304         rcu_read_unlock();
305
306         return ret;
307 }
308
309 #ifdef CONFIG_OPTPROBES
310 /* For optimized_kprobe buffer */
311 struct kprobe_insn_cache kprobe_optinsn_slots = {
312         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
313         .alloc = alloc_insn_page,
314         .free = free_insn_page,
315         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
316         /* .insn_size is initialized later */
317         .nr_garbage = 0,
318 };
319 #endif
320 #endif
321
322 /* We have preemption disabled.. so it is safe to use __ versions */
323 static inline void set_kprobe_instance(struct kprobe *kp)
324 {
325         __this_cpu_write(kprobe_instance, kp);
326 }
327
328 static inline void reset_kprobe_instance(void)
329 {
330         __this_cpu_write(kprobe_instance, NULL);
331 }
332
333 /*
334  * This routine is called either:
335  *      - under the kprobe_mutex - during kprobe_[un]register()
336  *                              OR
337  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
338  */
339 struct kprobe *get_kprobe(void *addr)
340 {
341         struct hlist_head *head;
342         struct kprobe *p;
343
344         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
345         hlist_for_each_entry_rcu(p, head, hlist) {
346                 if (p->addr == addr)
347                         return p;
348         }
349
350         return NULL;
351 }
352 NOKPROBE_SYMBOL(get_kprobe);
353
354 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
355
356 /* Return true if the kprobe is an aggregator */
357 static inline int kprobe_aggrprobe(struct kprobe *p)
358 {
359         return p->pre_handler == aggr_pre_handler;
360 }
361
362 /* Return true(!0) if the kprobe is unused */
363 static inline int kprobe_unused(struct kprobe *p)
364 {
365         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
366                list_empty(&p->list);
367 }
368
369 /*
370  * Keep all fields in the kprobe consistent
371  */
372 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
373 {
374         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
375         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
376 }
377
378 #ifdef CONFIG_OPTPROBES
379 /* NOTE: change this value only with kprobe_mutex held */
380 static bool kprobes_allow_optimization;
381
382 /*
383  * Call all pre_handler on the list, but ignores its return value.
384  * This must be called from arch-dep optimized caller.
385  */
386 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
387 {
388         struct kprobe *kp;
389
390         list_for_each_entry_rcu(kp, &p->list, list) {
391                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
392                         set_kprobe_instance(kp);
393                         kp->pre_handler(kp, regs);
394                 }
395                 reset_kprobe_instance();
396         }
397 }
398 NOKPROBE_SYMBOL(opt_pre_handler);
399
400 /* Free optimized instructions and optimized_kprobe */
401 static void free_aggr_kprobe(struct kprobe *p)
402 {
403         struct optimized_kprobe *op;
404
405         op = container_of(p, struct optimized_kprobe, kp);
406         arch_remove_optimized_kprobe(op);
407         arch_remove_kprobe(p);
408         kfree(op);
409 }
410
411 /* Return true(!0) if the kprobe is ready for optimization. */
412 static inline int kprobe_optready(struct kprobe *p)
413 {
414         struct optimized_kprobe *op;
415
416         if (kprobe_aggrprobe(p)) {
417                 op = container_of(p, struct optimized_kprobe, kp);
418                 return arch_prepared_optinsn(&op->optinsn);
419         }
420
421         return 0;
422 }
423
424 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
425 static inline int kprobe_disarmed(struct kprobe *p)
426 {
427         struct optimized_kprobe *op;
428
429         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
430         if (!kprobe_aggrprobe(p))
431                 return kprobe_disabled(p);
432
433         op = container_of(p, struct optimized_kprobe, kp);
434
435         return kprobe_disabled(p) && list_empty(&op->list);
436 }
437
438 /* Return true(!0) if the probe is queued on (un)optimizing lists */
439 static int kprobe_queued(struct kprobe *p)
440 {
441         struct optimized_kprobe *op;
442
443         if (kprobe_aggrprobe(p)) {
444                 op = container_of(p, struct optimized_kprobe, kp);
445                 if (!list_empty(&op->list))
446                         return 1;
447         }
448         return 0;
449 }
450
451 /*
452  * Return an optimized kprobe whose optimizing code replaces
453  * instructions including addr (exclude breakpoint).
454  */
455 static struct kprobe *get_optimized_kprobe(unsigned long addr)
456 {
457         int i;
458         struct kprobe *p = NULL;
459         struct optimized_kprobe *op;
460
461         /* Don't check i == 0, since that is a breakpoint case. */
462         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
463                 p = get_kprobe((void *)(addr - i));
464
465         if (p && kprobe_optready(p)) {
466                 op = container_of(p, struct optimized_kprobe, kp);
467                 if (arch_within_optimized_kprobe(op, addr))
468                         return p;
469         }
470
471         return NULL;
472 }
473
474 /* Optimization staging list, protected by kprobe_mutex */
475 static LIST_HEAD(optimizing_list);
476 static LIST_HEAD(unoptimizing_list);
477 static LIST_HEAD(freeing_list);
478
479 static void kprobe_optimizer(struct work_struct *work);
480 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
481 #define OPTIMIZE_DELAY 5
482
483 /*
484  * Optimize (replace a breakpoint with a jump) kprobes listed on
485  * optimizing_list.
486  */
487 static void do_optimize_kprobes(void)
488 {
489         /* Optimization never be done when disarmed */
490         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
491             list_empty(&optimizing_list))
492                 return;
493
494         /*
495          * The optimization/unoptimization refers online_cpus via
496          * stop_machine() and cpu-hotplug modifies online_cpus.
497          * And same time, text_mutex will be held in cpu-hotplug and here.
498          * This combination can cause a deadlock (cpu-hotplug try to lock
499          * text_mutex but stop_machine can not be done because online_cpus
500          * has been changed)
501          * To avoid this deadlock, we need to call get_online_cpus()
502          * for preventing cpu-hotplug outside of text_mutex locking.
503          */
504         get_online_cpus();
505         mutex_lock(&text_mutex);
506         arch_optimize_kprobes(&optimizing_list);
507         mutex_unlock(&text_mutex);
508         put_online_cpus();
509 }
510
511 /*
512  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
513  * if need) kprobes listed on unoptimizing_list.
514  */
515 static void do_unoptimize_kprobes(void)
516 {
517         struct optimized_kprobe *op, *tmp;
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         /* Ditto to do_optimize_kprobes */
524         get_online_cpus();
525         mutex_lock(&text_mutex);
526         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
527         /* Loop free_list for disarming */
528         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
529                 /* Disarm probes if marked disabled */
530                 if (kprobe_disabled(&op->kp))
531                         arch_disarm_kprobe(&op->kp);
532                 if (kprobe_unused(&op->kp)) {
533                         /*
534                          * Remove unused probes from hash list. After waiting
535                          * for synchronization, these probes are reclaimed.
536                          * (reclaiming is done by do_free_cleaned_kprobes.)
537                          */
538                         hlist_del_rcu(&op->kp.hlist);
539                 } else
540                         list_del_init(&op->list);
541         }
542         mutex_unlock(&text_mutex);
543         put_online_cpus();
544 }
545
546 /* Reclaim all kprobes on the free_list */
547 static void do_free_cleaned_kprobes(void)
548 {
549         struct optimized_kprobe *op, *tmp;
550
551         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
552                 BUG_ON(!kprobe_unused(&op->kp));
553                 list_del_init(&op->list);
554                 free_aggr_kprobe(&op->kp);
555         }
556 }
557
558 /* Start optimizer after OPTIMIZE_DELAY passed */
559 static void kick_kprobe_optimizer(void)
560 {
561         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
562 }
563
564 /* Kprobe jump optimizer */
565 static void kprobe_optimizer(struct work_struct *work)
566 {
567         mutex_lock(&kprobe_mutex);
568         /* Lock modules while optimizing kprobes */
569         mutex_lock(&module_mutex);
570
571         /*
572          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
573          * kprobes before waiting for quiesence period.
574          */
575         do_unoptimize_kprobes();
576
577         /*
578          * Step 2: Wait for quiesence period to ensure all running interrupts
579          * are done. Because optprobe may modify multiple instructions
580          * there is a chance that Nth instruction is interrupted. In that
581          * case, running interrupt can return to 2nd-Nth byte of jump
582          * instruction. This wait is for avoiding it.
583          */
584         synchronize_sched();
585
586         /* Step 3: Optimize kprobes after quiesence period */
587         do_optimize_kprobes();
588
589         /* Step 4: Free cleaned kprobes after quiesence period */
590         do_free_cleaned_kprobes();
591
592         mutex_unlock(&module_mutex);
593         mutex_unlock(&kprobe_mutex);
594
595         /* Step 5: Kick optimizer again if needed */
596         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
597                 kick_kprobe_optimizer();
598 }
599
600 /* Wait for completing optimization and unoptimization */
601 static void wait_for_kprobe_optimizer(void)
602 {
603         mutex_lock(&kprobe_mutex);
604
605         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
606                 mutex_unlock(&kprobe_mutex);
607
608                 /* this will also make optimizing_work execute immmediately */
609                 flush_delayed_work(&optimizing_work);
610                 /* @optimizing_work might not have been queued yet, relax */
611                 cpu_relax();
612
613                 mutex_lock(&kprobe_mutex);
614         }
615
616         mutex_unlock(&kprobe_mutex);
617 }
618
619 /* Optimize kprobe if p is ready to be optimized */
620 static void optimize_kprobe(struct kprobe *p)
621 {
622         struct optimized_kprobe *op;
623
624         /* Check if the kprobe is disabled or not ready for optimization. */
625         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
626             (kprobe_disabled(p) || kprobes_all_disarmed))
627                 return;
628
629         /* Both of break_handler and post_handler are not supported. */
630         if (p->break_handler || p->post_handler)
631                 return;
632
633         op = container_of(p, struct optimized_kprobe, kp);
634
635         /* Check there is no other kprobes at the optimized instructions */
636         if (arch_check_optimized_kprobe(op) < 0)
637                 return;
638
639         /* Check if it is already optimized. */
640         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
641                 return;
642         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
643
644         if (!list_empty(&op->list))
645                 /* This is under unoptimizing. Just dequeue the probe */
646                 list_del_init(&op->list);
647         else {
648                 list_add(&op->list, &optimizing_list);
649                 kick_kprobe_optimizer();
650         }
651 }
652
653 /* Short cut to direct unoptimizing */
654 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
655 {
656         get_online_cpus();
657         arch_unoptimize_kprobe(op);
658         put_online_cpus();
659         if (kprobe_disabled(&op->kp))
660                 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666         struct optimized_kprobe *op;
667
668         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669                 return; /* This is not an optprobe nor optimized */
670
671         op = container_of(p, struct optimized_kprobe, kp);
672         if (!kprobe_optimized(p)) {
673                 /* Unoptimized or unoptimizing case */
674                 if (force && !list_empty(&op->list)) {
675                         /*
676                          * Only if this is unoptimizing kprobe and forced,
677                          * forcibly unoptimize it. (No need to unoptimize
678                          * unoptimized kprobe again :)
679                          */
680                         list_del_init(&op->list);
681                         force_unoptimize_kprobe(op);
682                 }
683                 return;
684         }
685
686         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687         if (!list_empty(&op->list)) {
688                 /* Dequeue from the optimization queue */
689                 list_del_init(&op->list);
690                 return;
691         }
692         /* Optimized kprobe case */
693         if (force)
694                 /* Forcibly update the code: this is a special case */
695                 force_unoptimize_kprobe(op);
696         else {
697                 list_add(&op->list, &unoptimizing_list);
698                 kick_kprobe_optimizer();
699         }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
704 {
705         struct optimized_kprobe *op;
706
707         BUG_ON(!kprobe_unused(ap));
708         /*
709          * Unused kprobe MUST be on the way of delayed unoptimizing (means
710          * there is still a relative jump) and disabled.
711          */
712         op = container_of(ap, struct optimized_kprobe, kp);
713         if (unlikely(list_empty(&op->list)))
714                 printk(KERN_WARNING "Warning: found a stray unused "
715                         "aggrprobe@%p\n", ap->addr);
716         /* Enable the probe again */
717         ap->flags &= ~KPROBE_FLAG_DISABLED;
718         /* Optimize it again (remove from op->list) */
719         BUG_ON(!kprobe_optready(ap));
720         optimize_kprobe(ap);
721 }
722
723 /* Remove optimized instructions */
724 static void kill_optimized_kprobe(struct kprobe *p)
725 {
726         struct optimized_kprobe *op;
727
728         op = container_of(p, struct optimized_kprobe, kp);
729         if (!list_empty(&op->list))
730                 /* Dequeue from the (un)optimization queue */
731                 list_del_init(&op->list);
732         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734         if (kprobe_unused(p)) {
735                 /* Enqueue if it is unused */
736                 list_add(&op->list, &freeing_list);
737                 /*
738                  * Remove unused probes from the hash list. After waiting
739                  * for synchronization, this probe is reclaimed.
740                  * (reclaiming is done by do_free_cleaned_kprobes().)
741                  */
742                 hlist_del_rcu(&op->kp.hlist);
743         }
744
745         /* Don't touch the code, because it is already freed. */
746         arch_remove_optimized_kprobe(op);
747 }
748
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752         struct optimized_kprobe *op;
753
754         op = container_of(p, struct optimized_kprobe, kp);
755         arch_prepare_optimized_kprobe(op, p);
756 }
757
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761         struct optimized_kprobe *op;
762
763         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764         if (!op)
765                 return NULL;
766
767         INIT_LIST_HEAD(&op->list);
768         op->kp.addr = p->addr;
769         arch_prepare_optimized_kprobe(op, p);
770
771         return &op->kp;
772 }
773
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782         struct kprobe *ap;
783         struct optimized_kprobe *op;
784
785         /* Impossible to optimize ftrace-based kprobe */
786         if (kprobe_ftrace(p))
787                 return;
788
789         /* For preparing optimization, jump_label_text_reserved() is called */
790         jump_label_lock();
791         mutex_lock(&text_mutex);
792
793         ap = alloc_aggr_kprobe(p);
794         if (!ap)
795                 goto out;
796
797         op = container_of(ap, struct optimized_kprobe, kp);
798         if (!arch_prepared_optinsn(&op->optinsn)) {
799                 /* If failed to setup optimizing, fallback to kprobe */
800                 arch_remove_optimized_kprobe(op);
801                 kfree(op);
802                 goto out;
803         }
804
805         init_aggr_kprobe(ap, p);
806         optimize_kprobe(ap);    /* This just kicks optimizer thread */
807
808 out:
809         mutex_unlock(&text_mutex);
810         jump_label_unlock();
811 }
812
813 #ifdef CONFIG_SYSCTL
814 static void optimize_all_kprobes(void)
815 {
816         struct hlist_head *head;
817         struct kprobe *p;
818         unsigned int i;
819
820         mutex_lock(&kprobe_mutex);
821         /* If optimization is already allowed, just return */
822         if (kprobes_allow_optimization)
823                 goto out;
824
825         kprobes_allow_optimization = true;
826         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827                 head = &kprobe_table[i];
828                 hlist_for_each_entry_rcu(p, head, hlist)
829                         if (!kprobe_disabled(p))
830                                 optimize_kprobe(p);
831         }
832         printk(KERN_INFO "Kprobes globally optimized\n");
833 out:
834         mutex_unlock(&kprobe_mutex);
835 }
836
837 static void unoptimize_all_kprobes(void)
838 {
839         struct hlist_head *head;
840         struct kprobe *p;
841         unsigned int i;
842
843         mutex_lock(&kprobe_mutex);
844         /* If optimization is already prohibited, just return */
845         if (!kprobes_allow_optimization) {
846                 mutex_unlock(&kprobe_mutex);
847                 return;
848         }
849
850         kprobes_allow_optimization = false;
851         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
852                 head = &kprobe_table[i];
853                 hlist_for_each_entry_rcu(p, head, hlist) {
854                         if (!kprobe_disabled(p))
855                                 unoptimize_kprobe(p, false);
856                 }
857         }
858         mutex_unlock(&kprobe_mutex);
859
860         /* Wait for unoptimizing completion */
861         wait_for_kprobe_optimizer();
862         printk(KERN_INFO "Kprobes globally unoptimized\n");
863 }
864
865 static DEFINE_MUTEX(kprobe_sysctl_mutex);
866 int sysctl_kprobes_optimization;
867 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
868                                       void __user *buffer, size_t *length,
869                                       loff_t *ppos)
870 {
871         int ret;
872
873         mutex_lock(&kprobe_sysctl_mutex);
874         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
875         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
876
877         if (sysctl_kprobes_optimization)
878                 optimize_all_kprobes();
879         else
880                 unoptimize_all_kprobes();
881         mutex_unlock(&kprobe_sysctl_mutex);
882
883         return ret;
884 }
885 #endif /* CONFIG_SYSCTL */
886
887 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
888 static void __arm_kprobe(struct kprobe *p)
889 {
890         struct kprobe *_p;
891
892         /* Check collision with other optimized kprobes */
893         _p = get_optimized_kprobe((unsigned long)p->addr);
894         if (unlikely(_p))
895                 /* Fallback to unoptimized kprobe */
896                 unoptimize_kprobe(_p, true);
897
898         arch_arm_kprobe(p);
899         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
900 }
901
902 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
903 static void __disarm_kprobe(struct kprobe *p, bool reopt)
904 {
905         struct kprobe *_p;
906
907         /* Try to unoptimize */
908         unoptimize_kprobe(p, kprobes_all_disarmed);
909
910         if (!kprobe_queued(p)) {
911                 arch_disarm_kprobe(p);
912                 /* If another kprobe was blocked, optimize it. */
913                 _p = get_optimized_kprobe((unsigned long)p->addr);
914                 if (unlikely(_p) && reopt)
915                         optimize_kprobe(_p);
916         }
917         /* TODO: reoptimize others after unoptimized this probe */
918 }
919
920 #else /* !CONFIG_OPTPROBES */
921
922 #define optimize_kprobe(p)                      do {} while (0)
923 #define unoptimize_kprobe(p, f)                 do {} while (0)
924 #define kill_optimized_kprobe(p)                do {} while (0)
925 #define prepare_optimized_kprobe(p)             do {} while (0)
926 #define try_to_optimize_kprobe(p)               do {} while (0)
927 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
928 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
929 #define kprobe_disarmed(p)                      kprobe_disabled(p)
930 #define wait_for_kprobe_optimizer()             do {} while (0)
931
932 /* There should be no unused kprobes can be reused without optimization */
933 static void reuse_unused_kprobe(struct kprobe *ap)
934 {
935         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
936         BUG_ON(kprobe_unused(ap));
937 }
938
939 static void free_aggr_kprobe(struct kprobe *p)
940 {
941         arch_remove_kprobe(p);
942         kfree(p);
943 }
944
945 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
946 {
947         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
948 }
949 #endif /* CONFIG_OPTPROBES */
950
951 #ifdef CONFIG_KPROBES_ON_FTRACE
952 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
953         .func = kprobe_ftrace_handler,
954         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
955 };
956 static int kprobe_ftrace_enabled;
957
958 /* Must ensure p->addr is really on ftrace */
959 static int prepare_kprobe(struct kprobe *p)
960 {
961         if (!kprobe_ftrace(p))
962                 return arch_prepare_kprobe(p);
963
964         return arch_prepare_kprobe_ftrace(p);
965 }
966
967 /* Caller must lock kprobe_mutex */
968 static void arm_kprobe_ftrace(struct kprobe *p)
969 {
970         int ret;
971
972         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
973                                    (unsigned long)p->addr, 0, 0);
974         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
975         kprobe_ftrace_enabled++;
976         if (kprobe_ftrace_enabled == 1) {
977                 ret = register_ftrace_function(&kprobe_ftrace_ops);
978                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
979         }
980 }
981
982 /* Caller must lock kprobe_mutex */
983 static void disarm_kprobe_ftrace(struct kprobe *p)
984 {
985         int ret;
986
987         kprobe_ftrace_enabled--;
988         if (kprobe_ftrace_enabled == 0) {
989                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
990                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
991         }
992         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
993                            (unsigned long)p->addr, 1, 0);
994         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
995 }
996 #else   /* !CONFIG_KPROBES_ON_FTRACE */
997 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
998 #define arm_kprobe_ftrace(p)    do {} while (0)
999 #define disarm_kprobe_ftrace(p) do {} while (0)
1000 #endif
1001
1002 /* Arm a kprobe with text_mutex */
1003 static void arm_kprobe(struct kprobe *kp)
1004 {
1005         if (unlikely(kprobe_ftrace(kp))) {
1006                 arm_kprobe_ftrace(kp);
1007                 return;
1008         }
1009         /*
1010          * Here, since __arm_kprobe() doesn't use stop_machine(),
1011          * this doesn't cause deadlock on text_mutex. So, we don't
1012          * need get_online_cpus().
1013          */
1014         mutex_lock(&text_mutex);
1015         __arm_kprobe(kp);
1016         mutex_unlock(&text_mutex);
1017 }
1018
1019 /* Disarm a kprobe with text_mutex */
1020 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1021 {
1022         if (unlikely(kprobe_ftrace(kp))) {
1023                 disarm_kprobe_ftrace(kp);
1024                 return;
1025         }
1026         /* Ditto */
1027         mutex_lock(&text_mutex);
1028         __disarm_kprobe(kp, reopt);
1029         mutex_unlock(&text_mutex);
1030 }
1031
1032 /*
1033  * Aggregate handlers for multiple kprobes support - these handlers
1034  * take care of invoking the individual kprobe handlers on p->list
1035  */
1036 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1037 {
1038         struct kprobe *kp;
1039
1040         list_for_each_entry_rcu(kp, &p->list, list) {
1041                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1042                         set_kprobe_instance(kp);
1043                         if (kp->pre_handler(kp, regs))
1044                                 return 1;
1045                 }
1046                 reset_kprobe_instance();
1047         }
1048         return 0;
1049 }
1050 NOKPROBE_SYMBOL(aggr_pre_handler);
1051
1052 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1053                               unsigned long flags)
1054 {
1055         struct kprobe *kp;
1056
1057         list_for_each_entry_rcu(kp, &p->list, list) {
1058                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1059                         set_kprobe_instance(kp);
1060                         kp->post_handler(kp, regs, flags);
1061                         reset_kprobe_instance();
1062                 }
1063         }
1064 }
1065 NOKPROBE_SYMBOL(aggr_post_handler);
1066
1067 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1068                               int trapnr)
1069 {
1070         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1071
1072         /*
1073          * if we faulted "during" the execution of a user specified
1074          * probe handler, invoke just that probe's fault handler
1075          */
1076         if (cur && cur->fault_handler) {
1077                 if (cur->fault_handler(cur, regs, trapnr))
1078                         return 1;
1079         }
1080         return 0;
1081 }
1082 NOKPROBE_SYMBOL(aggr_fault_handler);
1083
1084 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1087         int ret = 0;
1088
1089         if (cur && cur->break_handler) {
1090                 if (cur->break_handler(cur, regs))
1091                         ret = 1;
1092         }
1093         reset_kprobe_instance();
1094         return ret;
1095 }
1096 NOKPROBE_SYMBOL(aggr_break_handler);
1097
1098 /* Walks the list and increments nmissed count for multiprobe case */
1099 void kprobes_inc_nmissed_count(struct kprobe *p)
1100 {
1101         struct kprobe *kp;
1102         if (!kprobe_aggrprobe(p)) {
1103                 p->nmissed++;
1104         } else {
1105                 list_for_each_entry_rcu(kp, &p->list, list)
1106                         kp->nmissed++;
1107         }
1108         return;
1109 }
1110 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1111
1112 void recycle_rp_inst(struct kretprobe_instance *ri,
1113                      struct hlist_head *head)
1114 {
1115         struct kretprobe *rp = ri->rp;
1116
1117         /* remove rp inst off the rprobe_inst_table */
1118         hlist_del(&ri->hlist);
1119         INIT_HLIST_NODE(&ri->hlist);
1120         if (likely(rp)) {
1121                 raw_spin_lock(&rp->lock);
1122                 hlist_add_head(&ri->hlist, &rp->free_instances);
1123                 raw_spin_unlock(&rp->lock);
1124         } else
1125                 /* Unregistering */
1126                 hlist_add_head(&ri->hlist, head);
1127 }
1128 NOKPROBE_SYMBOL(recycle_rp_inst);
1129
1130 void kretprobe_hash_lock(struct task_struct *tsk,
1131                          struct hlist_head **head, unsigned long *flags)
1132 __acquires(hlist_lock)
1133 {
1134         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1135         raw_spinlock_t *hlist_lock;
1136
1137         *head = &kretprobe_inst_table[hash];
1138         hlist_lock = kretprobe_table_lock_ptr(hash);
1139         raw_spin_lock_irqsave(hlist_lock, *flags);
1140 }
1141 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1142
1143 static void kretprobe_table_lock(unsigned long hash,
1144                                  unsigned long *flags)
1145 __acquires(hlist_lock)
1146 {
1147         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1148         raw_spin_lock_irqsave(hlist_lock, *flags);
1149 }
1150 NOKPROBE_SYMBOL(kretprobe_table_lock);
1151
1152 void kretprobe_hash_unlock(struct task_struct *tsk,
1153                            unsigned long *flags)
1154 __releases(hlist_lock)
1155 {
1156         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1157         raw_spinlock_t *hlist_lock;
1158
1159         hlist_lock = kretprobe_table_lock_ptr(hash);
1160         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1163
1164 static void kretprobe_table_unlock(unsigned long hash,
1165                                    unsigned long *flags)
1166 __releases(hlist_lock)
1167 {
1168         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1172
1173 /*
1174  * This function is called from finish_task_switch when task tk becomes dead,
1175  * so that we can recycle any function-return probe instances associated
1176  * with this task. These left over instances represent probed functions
1177  * that have been called but will never return.
1178  */
1179 void kprobe_flush_task(struct task_struct *tk)
1180 {
1181         struct kretprobe_instance *ri;
1182         struct hlist_head *head, empty_rp;
1183         struct hlist_node *tmp;
1184         unsigned long hash, flags = 0;
1185
1186         if (unlikely(!kprobes_initialized))
1187                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1188                 return;
1189
1190         INIT_HLIST_HEAD(&empty_rp);
1191         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1192         head = &kretprobe_inst_table[hash];
1193         kretprobe_table_lock(hash, &flags);
1194         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1195                 if (ri->task == tk)
1196                         recycle_rp_inst(ri, &empty_rp);
1197         }
1198         kretprobe_table_unlock(hash, &flags);
1199         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1200                 hlist_del(&ri->hlist);
1201                 kfree(ri);
1202         }
1203 }
1204 NOKPROBE_SYMBOL(kprobe_flush_task);
1205
1206 static inline void free_rp_inst(struct kretprobe *rp)
1207 {
1208         struct kretprobe_instance *ri;
1209         struct hlist_node *next;
1210
1211         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1212                 hlist_del(&ri->hlist);
1213                 kfree(ri);
1214         }
1215 }
1216
1217 static void cleanup_rp_inst(struct kretprobe *rp)
1218 {
1219         unsigned long flags, hash;
1220         struct kretprobe_instance *ri;
1221         struct hlist_node *next;
1222         struct hlist_head *head;
1223
1224         /* No race here */
1225         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1226                 kretprobe_table_lock(hash, &flags);
1227                 head = &kretprobe_inst_table[hash];
1228                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1229                         if (ri->rp == rp)
1230                                 ri->rp = NULL;
1231                 }
1232                 kretprobe_table_unlock(hash, &flags);
1233         }
1234         free_rp_inst(rp);
1235 }
1236 NOKPROBE_SYMBOL(cleanup_rp_inst);
1237
1238 /*
1239 * Add the new probe to ap->list. Fail if this is the
1240 * second jprobe at the address - two jprobes can't coexist
1241 */
1242 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1243 {
1244         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1245
1246         if (p->break_handler || p->post_handler)
1247                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1248
1249         if (p->break_handler) {
1250                 if (ap->break_handler)
1251                         return -EEXIST;
1252                 list_add_tail_rcu(&p->list, &ap->list);
1253                 ap->break_handler = aggr_break_handler;
1254         } else
1255                 list_add_rcu(&p->list, &ap->list);
1256         if (p->post_handler && !ap->post_handler)
1257                 ap->post_handler = aggr_post_handler;
1258
1259         return 0;
1260 }
1261
1262 /*
1263  * Fill in the required fields of the "manager kprobe". Replace the
1264  * earlier kprobe in the hlist with the manager kprobe
1265  */
1266 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1267 {
1268         /* Copy p's insn slot to ap */
1269         copy_kprobe(p, ap);
1270         flush_insn_slot(ap);
1271         ap->addr = p->addr;
1272         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1273         ap->pre_handler = aggr_pre_handler;
1274         ap->fault_handler = aggr_fault_handler;
1275         /* We don't care the kprobe which has gone. */
1276         if (p->post_handler && !kprobe_gone(p))
1277                 ap->post_handler = aggr_post_handler;
1278         if (p->break_handler && !kprobe_gone(p))
1279                 ap->break_handler = aggr_break_handler;
1280
1281         INIT_LIST_HEAD(&ap->list);
1282         INIT_HLIST_NODE(&ap->hlist);
1283
1284         list_add_rcu(&p->list, &ap->list);
1285         hlist_replace_rcu(&p->hlist, &ap->hlist);
1286 }
1287
1288 /*
1289  * This is the second or subsequent kprobe at the address - handle
1290  * the intricacies
1291  */
1292 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1293 {
1294         int ret = 0;
1295         struct kprobe *ap = orig_p;
1296
1297         /* For preparing optimization, jump_label_text_reserved() is called */
1298         jump_label_lock();
1299         /*
1300          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1301          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1302          */
1303         get_online_cpus();
1304         mutex_lock(&text_mutex);
1305
1306         if (!kprobe_aggrprobe(orig_p)) {
1307                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1308                 ap = alloc_aggr_kprobe(orig_p);
1309                 if (!ap) {
1310                         ret = -ENOMEM;
1311                         goto out;
1312                 }
1313                 init_aggr_kprobe(ap, orig_p);
1314         } else if (kprobe_unused(ap))
1315                 /* This probe is going to die. Rescue it */
1316                 reuse_unused_kprobe(ap);
1317
1318         if (kprobe_gone(ap)) {
1319                 /*
1320                  * Attempting to insert new probe at the same location that
1321                  * had a probe in the module vaddr area which already
1322                  * freed. So, the instruction slot has already been
1323                  * released. We need a new slot for the new probe.
1324                  */
1325                 ret = arch_prepare_kprobe(ap);
1326                 if (ret)
1327                         /*
1328                          * Even if fail to allocate new slot, don't need to
1329                          * free aggr_probe. It will be used next time, or
1330                          * freed by unregister_kprobe.
1331                          */
1332                         goto out;
1333
1334                 /* Prepare optimized instructions if possible. */
1335                 prepare_optimized_kprobe(ap);
1336
1337                 /*
1338                  * Clear gone flag to prevent allocating new slot again, and
1339                  * set disabled flag because it is not armed yet.
1340                  */
1341                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1342                             | KPROBE_FLAG_DISABLED;
1343         }
1344
1345         /* Copy ap's insn slot to p */
1346         copy_kprobe(ap, p);
1347         ret = add_new_kprobe(ap, p);
1348
1349 out:
1350         mutex_unlock(&text_mutex);
1351         put_online_cpus();
1352         jump_label_unlock();
1353
1354         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1355                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1356                 if (!kprobes_all_disarmed)
1357                         /* Arm the breakpoint again. */
1358                         arm_kprobe(ap);
1359         }
1360         return ret;
1361 }
1362
1363 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1364 {
1365         /* The __kprobes marked functions and entry code must not be probed */
1366         return addr >= (unsigned long)__kprobes_text_start &&
1367                addr < (unsigned long)__kprobes_text_end;
1368 }
1369
1370 bool within_kprobe_blacklist(unsigned long addr)
1371 {
1372         struct kprobe_blacklist_entry *ent;
1373
1374         if (arch_within_kprobe_blacklist(addr))
1375                 return true;
1376         /*
1377          * If there exists a kprobe_blacklist, verify and
1378          * fail any probe registration in the prohibited area
1379          */
1380         list_for_each_entry(ent, &kprobe_blacklist, list) {
1381                 if (addr >= ent->start_addr && addr < ent->end_addr)
1382                         return true;
1383         }
1384
1385         return false;
1386 }
1387
1388 /*
1389  * If we have a symbol_name argument, look it up and add the offset field
1390  * to it. This way, we can specify a relative address to a symbol.
1391  * This returns encoded errors if it fails to look up symbol or invalid
1392  * combination of parameters.
1393  */
1394 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1395                         const char *symbol_name, unsigned int offset)
1396 {
1397         if ((symbol_name && addr) || (!symbol_name && !addr))
1398                 goto invalid;
1399
1400         if (symbol_name) {
1401                 kprobe_lookup_name(symbol_name, addr);
1402                 if (!addr)
1403                         return ERR_PTR(-ENOENT);
1404         }
1405
1406         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1407         if (addr)
1408                 return addr;
1409
1410 invalid:
1411         return ERR_PTR(-EINVAL);
1412 }
1413
1414 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1415 {
1416         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1417 }
1418
1419 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1420 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1421 {
1422         struct kprobe *ap, *list_p;
1423
1424         ap = get_kprobe(p->addr);
1425         if (unlikely(!ap))
1426                 return NULL;
1427
1428         if (p != ap) {
1429                 list_for_each_entry_rcu(list_p, &ap->list, list)
1430                         if (list_p == p)
1431                         /* kprobe p is a valid probe */
1432                                 goto valid;
1433                 return NULL;
1434         }
1435 valid:
1436         return ap;
1437 }
1438
1439 /* Return error if the kprobe is being re-registered */
1440 static inline int check_kprobe_rereg(struct kprobe *p)
1441 {
1442         int ret = 0;
1443
1444         mutex_lock(&kprobe_mutex);
1445         if (__get_valid_kprobe(p))
1446                 ret = -EINVAL;
1447         mutex_unlock(&kprobe_mutex);
1448
1449         return ret;
1450 }
1451
1452 int __weak arch_check_ftrace_location(struct kprobe *p)
1453 {
1454         unsigned long ftrace_addr;
1455
1456         ftrace_addr = ftrace_location((unsigned long)p->addr);
1457         if (ftrace_addr) {
1458 #ifdef CONFIG_KPROBES_ON_FTRACE
1459                 /* Given address is not on the instruction boundary */
1460                 if ((unsigned long)p->addr != ftrace_addr)
1461                         return -EILSEQ;
1462                 p->flags |= KPROBE_FLAG_FTRACE;
1463 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1464                 return -EINVAL;
1465 #endif
1466         }
1467         return 0;
1468 }
1469
1470 static int check_kprobe_address_safe(struct kprobe *p,
1471                                      struct module **probed_mod)
1472 {
1473         int ret;
1474
1475         ret = arch_check_ftrace_location(p);
1476         if (ret)
1477                 return ret;
1478         jump_label_lock();
1479         preempt_disable();
1480
1481         /* Ensure it is not in reserved area nor out of text */
1482         if (!kernel_text_address((unsigned long) p->addr) ||
1483             within_kprobe_blacklist((unsigned long) p->addr) ||
1484             jump_label_text_reserved(p->addr, p->addr)) {
1485                 ret = -EINVAL;
1486                 goto out;
1487         }
1488
1489         /* Check if are we probing a module */
1490         *probed_mod = __module_text_address((unsigned long) p->addr);
1491         if (*probed_mod) {
1492                 /*
1493                  * We must hold a refcount of the probed module while updating
1494                  * its code to prohibit unexpected unloading.
1495                  */
1496                 if (unlikely(!try_module_get(*probed_mod))) {
1497                         ret = -ENOENT;
1498                         goto out;
1499                 }
1500
1501                 /*
1502                  * If the module freed .init.text, we couldn't insert
1503                  * kprobes in there.
1504                  */
1505                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1506                     (*probed_mod)->state != MODULE_STATE_COMING) {
1507                         module_put(*probed_mod);
1508                         *probed_mod = NULL;
1509                         ret = -ENOENT;
1510                 }
1511         }
1512 out:
1513         preempt_enable();
1514         jump_label_unlock();
1515
1516         return ret;
1517 }
1518
1519 int register_kprobe(struct kprobe *p)
1520 {
1521         int ret;
1522         struct kprobe *old_p;
1523         struct module *probed_mod;
1524         kprobe_opcode_t *addr;
1525
1526         /* Adjust probe address from symbol */
1527         addr = kprobe_addr(p);
1528         if (IS_ERR(addr))
1529                 return PTR_ERR(addr);
1530         p->addr = addr;
1531
1532         ret = check_kprobe_rereg(p);
1533         if (ret)
1534                 return ret;
1535
1536         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1537         p->flags &= KPROBE_FLAG_DISABLED;
1538         p->nmissed = 0;
1539         INIT_LIST_HEAD(&p->list);
1540
1541         ret = check_kprobe_address_safe(p, &probed_mod);
1542         if (ret)
1543                 return ret;
1544
1545         mutex_lock(&kprobe_mutex);
1546
1547         old_p = get_kprobe(p->addr);
1548         if (old_p) {
1549                 /* Since this may unoptimize old_p, locking text_mutex. */
1550                 ret = register_aggr_kprobe(old_p, p);
1551                 goto out;
1552         }
1553
1554         mutex_lock(&text_mutex);        /* Avoiding text modification */
1555         ret = prepare_kprobe(p);
1556         mutex_unlock(&text_mutex);
1557         if (ret)
1558                 goto out;
1559
1560         INIT_HLIST_NODE(&p->hlist);
1561         hlist_add_head_rcu(&p->hlist,
1562                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1563
1564         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1565                 arm_kprobe(p);
1566
1567         /* Try to optimize kprobe */
1568         try_to_optimize_kprobe(p);
1569
1570 out:
1571         mutex_unlock(&kprobe_mutex);
1572
1573         if (probed_mod)
1574                 module_put(probed_mod);
1575
1576         return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(register_kprobe);
1579
1580 /* Check if all probes on the aggrprobe are disabled */
1581 static int aggr_kprobe_disabled(struct kprobe *ap)
1582 {
1583         struct kprobe *kp;
1584
1585         list_for_each_entry_rcu(kp, &ap->list, list)
1586                 if (!kprobe_disabled(kp))
1587                         /*
1588                          * There is an active probe on the list.
1589                          * We can't disable this ap.
1590                          */
1591                         return 0;
1592
1593         return 1;
1594 }
1595
1596 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1597 static struct kprobe *__disable_kprobe(struct kprobe *p)
1598 {
1599         struct kprobe *orig_p;
1600
1601         /* Get an original kprobe for return */
1602         orig_p = __get_valid_kprobe(p);
1603         if (unlikely(orig_p == NULL))
1604                 return NULL;
1605
1606         if (!kprobe_disabled(p)) {
1607                 /* Disable probe if it is a child probe */
1608                 if (p != orig_p)
1609                         p->flags |= KPROBE_FLAG_DISABLED;
1610
1611                 /* Try to disarm and disable this/parent probe */
1612                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1613                         /*
1614                          * If kprobes_all_disarmed is set, orig_p
1615                          * should have already been disarmed, so
1616                          * skip unneed disarming process.
1617                          */
1618                         if (!kprobes_all_disarmed)
1619                                 disarm_kprobe(orig_p, true);
1620                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1621                 }
1622         }
1623
1624         return orig_p;
1625 }
1626
1627 /*
1628  * Unregister a kprobe without a scheduler synchronization.
1629  */
1630 static int __unregister_kprobe_top(struct kprobe *p)
1631 {
1632         struct kprobe *ap, *list_p;
1633
1634         /* Disable kprobe. This will disarm it if needed. */
1635         ap = __disable_kprobe(p);
1636         if (ap == NULL)
1637                 return -EINVAL;
1638
1639         if (ap == p)
1640                 /*
1641                  * This probe is an independent(and non-optimized) kprobe
1642                  * (not an aggrprobe). Remove from the hash list.
1643                  */
1644                 goto disarmed;
1645
1646         /* Following process expects this probe is an aggrprobe */
1647         WARN_ON(!kprobe_aggrprobe(ap));
1648
1649         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1650                 /*
1651                  * !disarmed could be happen if the probe is under delayed
1652                  * unoptimizing.
1653                  */
1654                 goto disarmed;
1655         else {
1656                 /* If disabling probe has special handlers, update aggrprobe */
1657                 if (p->break_handler && !kprobe_gone(p))
1658                         ap->break_handler = NULL;
1659                 if (p->post_handler && !kprobe_gone(p)) {
1660                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1661                                 if ((list_p != p) && (list_p->post_handler))
1662                                         goto noclean;
1663                         }
1664                         ap->post_handler = NULL;
1665                 }
1666 noclean:
1667                 /*
1668                  * Remove from the aggrprobe: this path will do nothing in
1669                  * __unregister_kprobe_bottom().
1670                  */
1671                 list_del_rcu(&p->list);
1672                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1673                         /*
1674                          * Try to optimize this probe again, because post
1675                          * handler may have been changed.
1676                          */
1677                         optimize_kprobe(ap);
1678         }
1679         return 0;
1680
1681 disarmed:
1682         BUG_ON(!kprobe_disarmed(ap));
1683         hlist_del_rcu(&ap->hlist);
1684         return 0;
1685 }
1686
1687 static void __unregister_kprobe_bottom(struct kprobe *p)
1688 {
1689         struct kprobe *ap;
1690
1691         if (list_empty(&p->list))
1692                 /* This is an independent kprobe */
1693                 arch_remove_kprobe(p);
1694         else if (list_is_singular(&p->list)) {
1695                 /* This is the last child of an aggrprobe */
1696                 ap = list_entry(p->list.next, struct kprobe, list);
1697                 list_del(&p->list);
1698                 free_aggr_kprobe(ap);
1699         }
1700         /* Otherwise, do nothing. */
1701 }
1702
1703 int register_kprobes(struct kprobe **kps, int num)
1704 {
1705         int i, ret = 0;
1706
1707         if (num <= 0)
1708                 return -EINVAL;
1709         for (i = 0; i < num; i++) {
1710                 ret = register_kprobe(kps[i]);
1711                 if (ret < 0) {
1712                         if (i > 0)
1713                                 unregister_kprobes(kps, i);
1714                         break;
1715                 }
1716         }
1717         return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(register_kprobes);
1720
1721 void unregister_kprobe(struct kprobe *p)
1722 {
1723         unregister_kprobes(&p, 1);
1724 }
1725 EXPORT_SYMBOL_GPL(unregister_kprobe);
1726
1727 void unregister_kprobes(struct kprobe **kps, int num)
1728 {
1729         int i;
1730
1731         if (num <= 0)
1732                 return;
1733         mutex_lock(&kprobe_mutex);
1734         for (i = 0; i < num; i++)
1735                 if (__unregister_kprobe_top(kps[i]) < 0)
1736                         kps[i]->addr = NULL;
1737         mutex_unlock(&kprobe_mutex);
1738
1739         synchronize_sched();
1740         for (i = 0; i < num; i++)
1741                 if (kps[i]->addr)
1742                         __unregister_kprobe_bottom(kps[i]);
1743 }
1744 EXPORT_SYMBOL_GPL(unregister_kprobes);
1745
1746 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1747                                         unsigned long val, void *data)
1748 {
1749         return NOTIFY_DONE;
1750 }
1751 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1752
1753 static struct notifier_block kprobe_exceptions_nb = {
1754         .notifier_call = kprobe_exceptions_notify,
1755         .priority = 0x7fffffff /* we need to be notified first */
1756 };
1757
1758 unsigned long __weak arch_deref_entry_point(void *entry)
1759 {
1760         return (unsigned long)entry;
1761 }
1762
1763 int register_jprobes(struct jprobe **jps, int num)
1764 {
1765         struct jprobe *jp;
1766         int ret = 0, i;
1767
1768         if (num <= 0)
1769                 return -EINVAL;
1770         for (i = 0; i < num; i++) {
1771                 unsigned long addr, offset;
1772                 jp = jps[i];
1773                 addr = arch_deref_entry_point(jp->entry);
1774
1775                 /* Verify probepoint is a function entry point */
1776                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1777                     offset == 0) {
1778                         jp->kp.pre_handler = setjmp_pre_handler;
1779                         jp->kp.break_handler = longjmp_break_handler;
1780                         ret = register_kprobe(&jp->kp);
1781                 } else
1782                         ret = -EINVAL;
1783
1784                 if (ret < 0) {
1785                         if (i > 0)
1786                                 unregister_jprobes(jps, i);
1787                         break;
1788                 }
1789         }
1790         return ret;
1791 }
1792 EXPORT_SYMBOL_GPL(register_jprobes);
1793
1794 int register_jprobe(struct jprobe *jp)
1795 {
1796         return register_jprobes(&jp, 1);
1797 }
1798 EXPORT_SYMBOL_GPL(register_jprobe);
1799
1800 void unregister_jprobe(struct jprobe *jp)
1801 {
1802         unregister_jprobes(&jp, 1);
1803 }
1804 EXPORT_SYMBOL_GPL(unregister_jprobe);
1805
1806 void unregister_jprobes(struct jprobe **jps, int num)
1807 {
1808         int i;
1809
1810         if (num <= 0)
1811                 return;
1812         mutex_lock(&kprobe_mutex);
1813         for (i = 0; i < num; i++)
1814                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1815                         jps[i]->kp.addr = NULL;
1816         mutex_unlock(&kprobe_mutex);
1817
1818         synchronize_sched();
1819         for (i = 0; i < num; i++) {
1820                 if (jps[i]->kp.addr)
1821                         __unregister_kprobe_bottom(&jps[i]->kp);
1822         }
1823 }
1824 EXPORT_SYMBOL_GPL(unregister_jprobes);
1825
1826 #ifdef CONFIG_KRETPROBES
1827 /*
1828  * This kprobe pre_handler is registered with every kretprobe. When probe
1829  * hits it will set up the return probe.
1830  */
1831 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1832 {
1833         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1834         unsigned long hash, flags = 0;
1835         struct kretprobe_instance *ri;
1836
1837         /*
1838          * To avoid deadlocks, prohibit return probing in NMI contexts,
1839          * just skip the probe and increase the (inexact) 'nmissed'
1840          * statistical counter, so that the user is informed that
1841          * something happened:
1842          */
1843         if (unlikely(in_nmi())) {
1844                 rp->nmissed++;
1845                 return 0;
1846         }
1847
1848         /* TODO: consider to only swap the RA after the last pre_handler fired */
1849         hash = hash_ptr(current, KPROBE_HASH_BITS);
1850         raw_spin_lock_irqsave(&rp->lock, flags);
1851         if (!hlist_empty(&rp->free_instances)) {
1852                 ri = hlist_entry(rp->free_instances.first,
1853                                 struct kretprobe_instance, hlist);
1854                 hlist_del(&ri->hlist);
1855                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1856
1857                 ri->rp = rp;
1858                 ri->task = current;
1859
1860                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1861                         raw_spin_lock_irqsave(&rp->lock, flags);
1862                         hlist_add_head(&ri->hlist, &rp->free_instances);
1863                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1864                         return 0;
1865                 }
1866
1867                 arch_prepare_kretprobe(ri, regs);
1868
1869                 /* XXX(hch): why is there no hlist_move_head? */
1870                 INIT_HLIST_NODE(&ri->hlist);
1871                 kretprobe_table_lock(hash, &flags);
1872                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1873                 kretprobe_table_unlock(hash, &flags);
1874         } else {
1875                 rp->nmissed++;
1876                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1877         }
1878         return 0;
1879 }
1880 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1881
1882 bool __weak arch_function_offset_within_entry(unsigned long offset)
1883 {
1884         return !offset;
1885 }
1886
1887 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1888 {
1889         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1890
1891         if (IS_ERR(kp_addr))
1892                 return false;
1893
1894         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1895                                                 !arch_function_offset_within_entry(offset))
1896                 return false;
1897
1898         return true;
1899 }
1900
1901 int register_kretprobe(struct kretprobe *rp)
1902 {
1903         int ret = 0;
1904         struct kretprobe_instance *inst;
1905         int i;
1906         void *addr;
1907
1908         if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1909                 return -EINVAL;
1910
1911         if (kretprobe_blacklist_size) {
1912                 addr = kprobe_addr(&rp->kp);
1913                 if (IS_ERR(addr))
1914                         return PTR_ERR(addr);
1915
1916                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1917                         if (kretprobe_blacklist[i].addr == addr)
1918                                 return -EINVAL;
1919                 }
1920         }
1921
1922         rp->kp.pre_handler = pre_handler_kretprobe;
1923         rp->kp.post_handler = NULL;
1924         rp->kp.fault_handler = NULL;
1925         rp->kp.break_handler = NULL;
1926
1927         /* Pre-allocate memory for max kretprobe instances */
1928         if (rp->maxactive <= 0) {
1929 #ifdef CONFIG_PREEMPT
1930                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1931 #else
1932                 rp->maxactive = num_possible_cpus();
1933 #endif
1934         }
1935         raw_spin_lock_init(&rp->lock);
1936         INIT_HLIST_HEAD(&rp->free_instances);
1937         for (i = 0; i < rp->maxactive; i++) {
1938                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1939                                rp->data_size, GFP_KERNEL);
1940                 if (inst == NULL) {
1941                         free_rp_inst(rp);
1942                         return -ENOMEM;
1943                 }
1944                 INIT_HLIST_NODE(&inst->hlist);
1945                 hlist_add_head(&inst->hlist, &rp->free_instances);
1946         }
1947
1948         rp->nmissed = 0;
1949         /* Establish function entry probe point */
1950         ret = register_kprobe(&rp->kp);
1951         if (ret != 0)
1952                 free_rp_inst(rp);
1953         return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(register_kretprobe);
1956
1957 int register_kretprobes(struct kretprobe **rps, int num)
1958 {
1959         int ret = 0, i;
1960
1961         if (num <= 0)
1962                 return -EINVAL;
1963         for (i = 0; i < num; i++) {
1964                 ret = register_kretprobe(rps[i]);
1965                 if (ret < 0) {
1966                         if (i > 0)
1967                                 unregister_kretprobes(rps, i);
1968                         break;
1969                 }
1970         }
1971         return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(register_kretprobes);
1974
1975 void unregister_kretprobe(struct kretprobe *rp)
1976 {
1977         unregister_kretprobes(&rp, 1);
1978 }
1979 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1980
1981 void unregister_kretprobes(struct kretprobe **rps, int num)
1982 {
1983         int i;
1984
1985         if (num <= 0)
1986                 return;
1987         mutex_lock(&kprobe_mutex);
1988         for (i = 0; i < num; i++)
1989                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1990                         rps[i]->kp.addr = NULL;
1991         mutex_unlock(&kprobe_mutex);
1992
1993         synchronize_sched();
1994         for (i = 0; i < num; i++) {
1995                 if (rps[i]->kp.addr) {
1996                         __unregister_kprobe_bottom(&rps[i]->kp);
1997                         cleanup_rp_inst(rps[i]);
1998                 }
1999         }
2000 }
2001 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2002
2003 #else /* CONFIG_KRETPROBES */
2004 int register_kretprobe(struct kretprobe *rp)
2005 {
2006         return -ENOSYS;
2007 }
2008 EXPORT_SYMBOL_GPL(register_kretprobe);
2009
2010 int register_kretprobes(struct kretprobe **rps, int num)
2011 {
2012         return -ENOSYS;
2013 }
2014 EXPORT_SYMBOL_GPL(register_kretprobes);
2015
2016 void unregister_kretprobe(struct kretprobe *rp)
2017 {
2018 }
2019 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2020
2021 void unregister_kretprobes(struct kretprobe **rps, int num)
2022 {
2023 }
2024 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2025
2026 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2027 {
2028         return 0;
2029 }
2030 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2031
2032 #endif /* CONFIG_KRETPROBES */
2033
2034 /* Set the kprobe gone and remove its instruction buffer. */
2035 static void kill_kprobe(struct kprobe *p)
2036 {
2037         struct kprobe *kp;
2038
2039         p->flags |= KPROBE_FLAG_GONE;
2040         if (kprobe_aggrprobe(p)) {
2041                 /*
2042                  * If this is an aggr_kprobe, we have to list all the
2043                  * chained probes and mark them GONE.
2044                  */
2045                 list_for_each_entry_rcu(kp, &p->list, list)
2046                         kp->flags |= KPROBE_FLAG_GONE;
2047                 p->post_handler = NULL;
2048                 p->break_handler = NULL;
2049                 kill_optimized_kprobe(p);
2050         }
2051         /*
2052          * Here, we can remove insn_slot safely, because no thread calls
2053          * the original probed function (which will be freed soon) any more.
2054          */
2055         arch_remove_kprobe(p);
2056 }
2057
2058 /* Disable one kprobe */
2059 int disable_kprobe(struct kprobe *kp)
2060 {
2061         int ret = 0;
2062
2063         mutex_lock(&kprobe_mutex);
2064
2065         /* Disable this kprobe */
2066         if (__disable_kprobe(kp) == NULL)
2067                 ret = -EINVAL;
2068
2069         mutex_unlock(&kprobe_mutex);
2070         return ret;
2071 }
2072 EXPORT_SYMBOL_GPL(disable_kprobe);
2073
2074 /* Enable one kprobe */
2075 int enable_kprobe(struct kprobe *kp)
2076 {
2077         int ret = 0;
2078         struct kprobe *p;
2079
2080         mutex_lock(&kprobe_mutex);
2081
2082         /* Check whether specified probe is valid. */
2083         p = __get_valid_kprobe(kp);
2084         if (unlikely(p == NULL)) {
2085                 ret = -EINVAL;
2086                 goto out;
2087         }
2088
2089         if (kprobe_gone(kp)) {
2090                 /* This kprobe has gone, we couldn't enable it. */
2091                 ret = -EINVAL;
2092                 goto out;
2093         }
2094
2095         if (p != kp)
2096                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2097
2098         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2099                 p->flags &= ~KPROBE_FLAG_DISABLED;
2100                 arm_kprobe(p);
2101         }
2102 out:
2103         mutex_unlock(&kprobe_mutex);
2104         return ret;
2105 }
2106 EXPORT_SYMBOL_GPL(enable_kprobe);
2107
2108 void dump_kprobe(struct kprobe *kp)
2109 {
2110         printk(KERN_WARNING "Dumping kprobe:\n");
2111         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2112                kp->symbol_name, kp->addr, kp->offset);
2113 }
2114 NOKPROBE_SYMBOL(dump_kprobe);
2115
2116 /*
2117  * Lookup and populate the kprobe_blacklist.
2118  *
2119  * Unlike the kretprobe blacklist, we'll need to determine
2120  * the range of addresses that belong to the said functions,
2121  * since a kprobe need not necessarily be at the beginning
2122  * of a function.
2123  */
2124 static int __init populate_kprobe_blacklist(unsigned long *start,
2125                                              unsigned long *end)
2126 {
2127         unsigned long *iter;
2128         struct kprobe_blacklist_entry *ent;
2129         unsigned long entry, offset = 0, size = 0;
2130
2131         for (iter = start; iter < end; iter++) {
2132                 entry = arch_deref_entry_point((void *)*iter);
2133
2134                 if (!kernel_text_address(entry) ||
2135                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2136                         pr_err("Failed to find blacklist at %p\n",
2137                                 (void *)entry);
2138                         continue;
2139                 }
2140
2141                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2142                 if (!ent)
2143                         return -ENOMEM;
2144                 ent->start_addr = entry;
2145                 ent->end_addr = entry + size;
2146                 INIT_LIST_HEAD(&ent->list);
2147                 list_add_tail(&ent->list, &kprobe_blacklist);
2148         }
2149         return 0;
2150 }
2151
2152 /* Module notifier call back, checking kprobes on the module */
2153 static int kprobes_module_callback(struct notifier_block *nb,
2154                                    unsigned long val, void *data)
2155 {
2156         struct module *mod = data;
2157         struct hlist_head *head;
2158         struct kprobe *p;
2159         unsigned int i;
2160         int checkcore = (val == MODULE_STATE_GOING);
2161
2162         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2163                 return NOTIFY_DONE;
2164
2165         /*
2166          * When MODULE_STATE_GOING was notified, both of module .text and
2167          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2168          * notified, only .init.text section would be freed. We need to
2169          * disable kprobes which have been inserted in the sections.
2170          */
2171         mutex_lock(&kprobe_mutex);
2172         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2173                 head = &kprobe_table[i];
2174                 hlist_for_each_entry_rcu(p, head, hlist)
2175                         if (within_module_init((unsigned long)p->addr, mod) ||
2176                             (checkcore &&
2177                              within_module_core((unsigned long)p->addr, mod))) {
2178                                 /*
2179                                  * The vaddr this probe is installed will soon
2180                                  * be vfreed buy not synced to disk. Hence,
2181                                  * disarming the breakpoint isn't needed.
2182                                  */
2183                                 kill_kprobe(p);
2184                         }
2185         }
2186         mutex_unlock(&kprobe_mutex);
2187         return NOTIFY_DONE;
2188 }
2189
2190 static struct notifier_block kprobe_module_nb = {
2191         .notifier_call = kprobes_module_callback,
2192         .priority = 0
2193 };
2194
2195 /* Markers of _kprobe_blacklist section */
2196 extern unsigned long __start_kprobe_blacklist[];
2197 extern unsigned long __stop_kprobe_blacklist[];
2198
2199 static int __init init_kprobes(void)
2200 {
2201         int i, err = 0;
2202
2203         /* FIXME allocate the probe table, currently defined statically */
2204         /* initialize all list heads */
2205         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2206                 INIT_HLIST_HEAD(&kprobe_table[i]);
2207                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2208                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2209         }
2210
2211         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2212                                         __stop_kprobe_blacklist);
2213         if (err) {
2214                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2215                 pr_err("Please take care of using kprobes.\n");
2216         }
2217
2218         if (kretprobe_blacklist_size) {
2219                 /* lookup the function address from its name */
2220                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2221                         kprobe_lookup_name(kretprobe_blacklist[i].name,
2222                                            kretprobe_blacklist[i].addr);
2223                         if (!kretprobe_blacklist[i].addr)
2224                                 printk("kretprobe: lookup failed: %s\n",
2225                                        kretprobe_blacklist[i].name);
2226                 }
2227         }
2228
2229 #if defined(CONFIG_OPTPROBES)
2230 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2231         /* Init kprobe_optinsn_slots */
2232         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2233 #endif
2234         /* By default, kprobes can be optimized */
2235         kprobes_allow_optimization = true;
2236 #endif
2237
2238         /* By default, kprobes are armed */
2239         kprobes_all_disarmed = false;
2240
2241         err = arch_init_kprobes();
2242         if (!err)
2243                 err = register_die_notifier(&kprobe_exceptions_nb);
2244         if (!err)
2245                 err = register_module_notifier(&kprobe_module_nb);
2246
2247         kprobes_initialized = (err == 0);
2248
2249         if (!err)
2250                 init_test_probes();
2251         return err;
2252 }
2253
2254 #ifdef CONFIG_DEBUG_FS
2255 static void report_probe(struct seq_file *pi, struct kprobe *p,
2256                 const char *sym, int offset, char *modname, struct kprobe *pp)
2257 {
2258         char *kprobe_type;
2259
2260         if (p->pre_handler == pre_handler_kretprobe)
2261                 kprobe_type = "r";
2262         else if (p->pre_handler == setjmp_pre_handler)
2263                 kprobe_type = "j";
2264         else
2265                 kprobe_type = "k";
2266
2267         if (sym)
2268                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2269                         p->addr, kprobe_type, sym, offset,
2270                         (modname ? modname : " "));
2271         else
2272                 seq_printf(pi, "%p  %s  %p ",
2273                         p->addr, kprobe_type, p->addr);
2274
2275         if (!pp)
2276                 pp = p;
2277         seq_printf(pi, "%s%s%s%s\n",
2278                 (kprobe_gone(p) ? "[GONE]" : ""),
2279                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2280                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2281                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2282 }
2283
2284 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2285 {
2286         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2287 }
2288
2289 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2290 {
2291         (*pos)++;
2292         if (*pos >= KPROBE_TABLE_SIZE)
2293                 return NULL;
2294         return pos;
2295 }
2296
2297 static void kprobe_seq_stop(struct seq_file *f, void *v)
2298 {
2299         /* Nothing to do */
2300 }
2301
2302 static int show_kprobe_addr(struct seq_file *pi, void *v)
2303 {
2304         struct hlist_head *head;
2305         struct kprobe *p, *kp;
2306         const char *sym = NULL;
2307         unsigned int i = *(loff_t *) v;
2308         unsigned long offset = 0;
2309         char *modname, namebuf[KSYM_NAME_LEN];
2310
2311         head = &kprobe_table[i];
2312         preempt_disable();
2313         hlist_for_each_entry_rcu(p, head, hlist) {
2314                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2315                                         &offset, &modname, namebuf);
2316                 if (kprobe_aggrprobe(p)) {
2317                         list_for_each_entry_rcu(kp, &p->list, list)
2318                                 report_probe(pi, kp, sym, offset, modname, p);
2319                 } else
2320                         report_probe(pi, p, sym, offset, modname, NULL);
2321         }
2322         preempt_enable();
2323         return 0;
2324 }
2325
2326 static const struct seq_operations kprobes_seq_ops = {
2327         .start = kprobe_seq_start,
2328         .next  = kprobe_seq_next,
2329         .stop  = kprobe_seq_stop,
2330         .show  = show_kprobe_addr
2331 };
2332
2333 static int kprobes_open(struct inode *inode, struct file *filp)
2334 {
2335         return seq_open(filp, &kprobes_seq_ops);
2336 }
2337
2338 static const struct file_operations debugfs_kprobes_operations = {
2339         .open           = kprobes_open,
2340         .read           = seq_read,
2341         .llseek         = seq_lseek,
2342         .release        = seq_release,
2343 };
2344
2345 /* kprobes/blacklist -- shows which functions can not be probed */
2346 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2347 {
2348         return seq_list_start(&kprobe_blacklist, *pos);
2349 }
2350
2351 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2352 {
2353         return seq_list_next(v, &kprobe_blacklist, pos);
2354 }
2355
2356 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2357 {
2358         struct kprobe_blacklist_entry *ent =
2359                 list_entry(v, struct kprobe_blacklist_entry, list);
2360
2361         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2362                    (void *)ent->end_addr, (void *)ent->start_addr);
2363         return 0;
2364 }
2365
2366 static const struct seq_operations kprobe_blacklist_seq_ops = {
2367         .start = kprobe_blacklist_seq_start,
2368         .next  = kprobe_blacklist_seq_next,
2369         .stop  = kprobe_seq_stop,       /* Reuse void function */
2370         .show  = kprobe_blacklist_seq_show,
2371 };
2372
2373 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2374 {
2375         return seq_open(filp, &kprobe_blacklist_seq_ops);
2376 }
2377
2378 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2379         .open           = kprobe_blacklist_open,
2380         .read           = seq_read,
2381         .llseek         = seq_lseek,
2382         .release        = seq_release,
2383 };
2384
2385 static void arm_all_kprobes(void)
2386 {
2387         struct hlist_head *head;
2388         struct kprobe *p;
2389         unsigned int i;
2390
2391         mutex_lock(&kprobe_mutex);
2392
2393         /* If kprobes are armed, just return */
2394         if (!kprobes_all_disarmed)
2395                 goto already_enabled;
2396
2397         /*
2398          * optimize_kprobe() called by arm_kprobe() checks
2399          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2400          * arm_kprobe.
2401          */
2402         kprobes_all_disarmed = false;
2403         /* Arming kprobes doesn't optimize kprobe itself */
2404         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2405                 head = &kprobe_table[i];
2406                 hlist_for_each_entry_rcu(p, head, hlist)
2407                         if (!kprobe_disabled(p))
2408                                 arm_kprobe(p);
2409         }
2410
2411         printk(KERN_INFO "Kprobes globally enabled\n");
2412
2413 already_enabled:
2414         mutex_unlock(&kprobe_mutex);
2415         return;
2416 }
2417
2418 static void disarm_all_kprobes(void)
2419 {
2420         struct hlist_head *head;
2421         struct kprobe *p;
2422         unsigned int i;
2423
2424         mutex_lock(&kprobe_mutex);
2425
2426         /* If kprobes are already disarmed, just return */
2427         if (kprobes_all_disarmed) {
2428                 mutex_unlock(&kprobe_mutex);
2429                 return;
2430         }
2431
2432         kprobes_all_disarmed = true;
2433         printk(KERN_INFO "Kprobes globally disabled\n");
2434
2435         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2436                 head = &kprobe_table[i];
2437                 hlist_for_each_entry_rcu(p, head, hlist) {
2438                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2439                                 disarm_kprobe(p, false);
2440                 }
2441         }
2442         mutex_unlock(&kprobe_mutex);
2443
2444         /* Wait for disarming all kprobes by optimizer */
2445         wait_for_kprobe_optimizer();
2446 }
2447
2448 /*
2449  * XXX: The debugfs bool file interface doesn't allow for callbacks
2450  * when the bool state is switched. We can reuse that facility when
2451  * available
2452  */
2453 static ssize_t read_enabled_file_bool(struct file *file,
2454                char __user *user_buf, size_t count, loff_t *ppos)
2455 {
2456         char buf[3];
2457
2458         if (!kprobes_all_disarmed)
2459                 buf[0] = '1';
2460         else
2461                 buf[0] = '0';
2462         buf[1] = '\n';
2463         buf[2] = 0x00;
2464         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2465 }
2466
2467 static ssize_t write_enabled_file_bool(struct file *file,
2468                const char __user *user_buf, size_t count, loff_t *ppos)
2469 {
2470         char buf[32];
2471         size_t buf_size;
2472
2473         buf_size = min(count, (sizeof(buf)-1));
2474         if (copy_from_user(buf, user_buf, buf_size))
2475                 return -EFAULT;
2476
2477         buf[buf_size] = '\0';
2478         switch (buf[0]) {
2479         case 'y':
2480         case 'Y':
2481         case '1':
2482                 arm_all_kprobes();
2483                 break;
2484         case 'n':
2485         case 'N':
2486         case '0':
2487                 disarm_all_kprobes();
2488                 break;
2489         default:
2490                 return -EINVAL;
2491         }
2492
2493         return count;
2494 }
2495
2496 static const struct file_operations fops_kp = {
2497         .read =         read_enabled_file_bool,
2498         .write =        write_enabled_file_bool,
2499         .llseek =       default_llseek,
2500 };
2501
2502 static int __init debugfs_kprobe_init(void)
2503 {
2504         struct dentry *dir, *file;
2505         unsigned int value = 1;
2506
2507         dir = debugfs_create_dir("kprobes", NULL);
2508         if (!dir)
2509                 return -ENOMEM;
2510
2511         file = debugfs_create_file("list", 0444, dir, NULL,
2512                                 &debugfs_kprobes_operations);
2513         if (!file)
2514                 goto error;
2515
2516         file = debugfs_create_file("enabled", 0600, dir,
2517                                         &value, &fops_kp);
2518         if (!file)
2519                 goto error;
2520
2521         file = debugfs_create_file("blacklist", 0444, dir, NULL,
2522                                 &debugfs_kprobe_blacklist_ops);
2523         if (!file)
2524                 goto error;
2525
2526         return 0;
2527
2528 error:
2529         debugfs_remove(dir);
2530         return -ENOMEM;
2531 }
2532
2533 late_initcall(debugfs_kprobe_init);
2534 #endif /* CONFIG_DEBUG_FS */
2535
2536 module_init(init_kprobes);
2537
2538 /* defined in arch/.../kernel/kprobes.c */
2539 EXPORT_SYMBOL_GPL(jprobe_return);