]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/lockdep.c
Merge remote-tracking branch 'rcu/rcu/next'
[karo-tx-linux.git] / kernel / lockdep.c
1 /*
2  * kernel/lockdep.c
3  *
4  * Runtime locking correctness validator
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10  *
11  * this code maps all the lock dependencies as they occur in a live kernel
12  * and will warn about the following classes of locking bugs:
13  *
14  * - lock inversion scenarios
15  * - circular lock dependencies
16  * - hardirq/softirq safe/unsafe locking bugs
17  *
18  * Bugs are reported even if the current locking scenario does not cause
19  * any deadlock at this point.
20  *
21  * I.e. if anytime in the past two locks were taken in a different order,
22  * even if it happened for another task, even if those were different
23  * locks (but of the same class as this lock), this code will detect it.
24  *
25  * Thanks to Arjan van de Ven for coming up with the initial idea of
26  * mapping lock dependencies runtime.
27  */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/stacktrace.h>
39 #include <linux/debug_locks.h>
40 #include <linux/irqflags.h>
41 #include <linux/utsname.h>
42 #include <linux/hash.h>
43 #include <linux/ftrace.h>
44 #include <linux/stringify.h>
45 #include <linux/bitops.h>
46 #include <linux/gfp.h>
47
48 #include <asm/sections.h>
49
50 #include "lockdep_internals.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/lock.h>
54
55 #ifdef CONFIG_PROVE_LOCKING
56 int prove_locking = 1;
57 module_param(prove_locking, int, 0644);
58 #else
59 #define prove_locking 0
60 #endif
61
62 #ifdef CONFIG_LOCK_STAT
63 int lock_stat = 1;
64 module_param(lock_stat, int, 0644);
65 #else
66 #define lock_stat 0
67 #endif
68
69 /*
70  * lockdep_lock: protects the lockdep graph, the hashes and the
71  *               class/list/hash allocators.
72  *
73  * This is one of the rare exceptions where it's justified
74  * to use a raw spinlock - we really dont want the spinlock
75  * code to recurse back into the lockdep code...
76  */
77 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
78
79 static int graph_lock(void)
80 {
81         arch_spin_lock(&lockdep_lock);
82         /*
83          * Make sure that if another CPU detected a bug while
84          * walking the graph we dont change it (while the other
85          * CPU is busy printing out stuff with the graph lock
86          * dropped already)
87          */
88         if (!debug_locks) {
89                 arch_spin_unlock(&lockdep_lock);
90                 return 0;
91         }
92         /* prevent any recursions within lockdep from causing deadlocks */
93         current->lockdep_recursion++;
94         return 1;
95 }
96
97 static inline int graph_unlock(void)
98 {
99         if (debug_locks && !arch_spin_is_locked(&lockdep_lock))
100                 return DEBUG_LOCKS_WARN_ON(1);
101
102         current->lockdep_recursion--;
103         arch_spin_unlock(&lockdep_lock);
104         return 0;
105 }
106
107 /*
108  * Turn lock debugging off and return with 0 if it was off already,
109  * and also release the graph lock:
110  */
111 static inline int debug_locks_off_graph_unlock(void)
112 {
113         int ret = debug_locks_off();
114
115         arch_spin_unlock(&lockdep_lock);
116
117         return ret;
118 }
119
120 static int lockdep_initialized;
121
122 unsigned long nr_list_entries;
123 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
124
125 /*
126  * All data structures here are protected by the global debug_lock.
127  *
128  * Mutex key structs only get allocated, once during bootup, and never
129  * get freed - this significantly simplifies the debugging code.
130  */
131 unsigned long nr_lock_classes;
132 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
133
134 static inline struct lock_class *hlock_class(struct held_lock *hlock)
135 {
136         if (!hlock->class_idx) {
137                 DEBUG_LOCKS_WARN_ON(1);
138                 return NULL;
139         }
140         return lock_classes + hlock->class_idx - 1;
141 }
142
143 #ifdef CONFIG_LOCK_STAT
144 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS],
145                       cpu_lock_stats);
146
147 static inline u64 lockstat_clock(void)
148 {
149         return local_clock();
150 }
151
152 static int lock_point(unsigned long points[], unsigned long ip)
153 {
154         int i;
155
156         for (i = 0; i < LOCKSTAT_POINTS; i++) {
157                 if (points[i] == 0) {
158                         points[i] = ip;
159                         break;
160                 }
161                 if (points[i] == ip)
162                         break;
163         }
164
165         return i;
166 }
167
168 static void lock_time_inc(struct lock_time *lt, u64 time)
169 {
170         if (time > lt->max)
171                 lt->max = time;
172
173         if (time < lt->min || !lt->nr)
174                 lt->min = time;
175
176         lt->total += time;
177         lt->nr++;
178 }
179
180 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
181 {
182         if (!src->nr)
183                 return;
184
185         if (src->max > dst->max)
186                 dst->max = src->max;
187
188         if (src->min < dst->min || !dst->nr)
189                 dst->min = src->min;
190
191         dst->total += src->total;
192         dst->nr += src->nr;
193 }
194
195 struct lock_class_stats lock_stats(struct lock_class *class)
196 {
197         struct lock_class_stats stats;
198         int cpu, i;
199
200         memset(&stats, 0, sizeof(struct lock_class_stats));
201         for_each_possible_cpu(cpu) {
202                 struct lock_class_stats *pcs =
203                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
204
205                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
206                         stats.contention_point[i] += pcs->contention_point[i];
207
208                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
209                         stats.contending_point[i] += pcs->contending_point[i];
210
211                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
212                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
213
214                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
215                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
216
217                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
218                         stats.bounces[i] += pcs->bounces[i];
219         }
220
221         return stats;
222 }
223
224 void clear_lock_stats(struct lock_class *class)
225 {
226         int cpu;
227
228         for_each_possible_cpu(cpu) {
229                 struct lock_class_stats *cpu_stats =
230                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
231
232                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
233         }
234         memset(class->contention_point, 0, sizeof(class->contention_point));
235         memset(class->contending_point, 0, sizeof(class->contending_point));
236 }
237
238 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
239 {
240         return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
241 }
242
243 static void put_lock_stats(struct lock_class_stats *stats)
244 {
245         put_cpu_var(cpu_lock_stats);
246 }
247
248 static void lock_release_holdtime(struct held_lock *hlock)
249 {
250         struct lock_class_stats *stats;
251         u64 holdtime;
252
253         if (!lock_stat)
254                 return;
255
256         holdtime = lockstat_clock() - hlock->holdtime_stamp;
257
258         stats = get_lock_stats(hlock_class(hlock));
259         if (hlock->read)
260                 lock_time_inc(&stats->read_holdtime, holdtime);
261         else
262                 lock_time_inc(&stats->write_holdtime, holdtime);
263         put_lock_stats(stats);
264 }
265 #else
266 static inline void lock_release_holdtime(struct held_lock *hlock)
267 {
268 }
269 #endif
270
271 /*
272  * We keep a global list of all lock classes. The list only grows,
273  * never shrinks. The list is only accessed with the lockdep
274  * spinlock lock held.
275  */
276 LIST_HEAD(all_lock_classes);
277
278 /*
279  * The lockdep classes are in a hash-table as well, for fast lookup:
280  */
281 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
282 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
283 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
284 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
285
286 static struct list_head classhash_table[CLASSHASH_SIZE];
287
288 /*
289  * We put the lock dependency chains into a hash-table as well, to cache
290  * their existence:
291  */
292 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
293 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
294 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
295 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
296
297 static struct list_head chainhash_table[CHAINHASH_SIZE];
298
299 /*
300  * The hash key of the lock dependency chains is a hash itself too:
301  * it's a hash of all locks taken up to that lock, including that lock.
302  * It's a 64-bit hash, because it's important for the keys to be
303  * unique.
304  */
305 #define iterate_chain_key(key1, key2) \
306         (((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \
307         ((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \
308         (key2))
309
310 void lockdep_off(void)
311 {
312         current->lockdep_recursion++;
313 }
314 EXPORT_SYMBOL(lockdep_off);
315
316 void lockdep_on(void)
317 {
318         current->lockdep_recursion--;
319 }
320 EXPORT_SYMBOL(lockdep_on);
321
322 /*
323  * Debugging switches:
324  */
325
326 #define VERBOSE                 0
327 #define VERY_VERBOSE            0
328
329 #if VERBOSE
330 # define HARDIRQ_VERBOSE        1
331 # define SOFTIRQ_VERBOSE        1
332 # define RECLAIM_VERBOSE        1
333 #else
334 # define HARDIRQ_VERBOSE        0
335 # define SOFTIRQ_VERBOSE        0
336 # define RECLAIM_VERBOSE        0
337 #endif
338
339 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
340 /*
341  * Quick filtering for interesting events:
342  */
343 static int class_filter(struct lock_class *class)
344 {
345 #if 0
346         /* Example */
347         if (class->name_version == 1 &&
348                         !strcmp(class->name, "lockname"))
349                 return 1;
350         if (class->name_version == 1 &&
351                         !strcmp(class->name, "&struct->lockfield"))
352                 return 1;
353 #endif
354         /* Filter everything else. 1 would be to allow everything else */
355         return 0;
356 }
357 #endif
358
359 static int verbose(struct lock_class *class)
360 {
361 #if VERBOSE
362         return class_filter(class);
363 #endif
364         return 0;
365 }
366
367 /*
368  * Stack-trace: tightly packed array of stack backtrace
369  * addresses. Protected by the graph_lock.
370  */
371 unsigned long nr_stack_trace_entries;
372 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
373
374 static int save_trace(struct stack_trace *trace)
375 {
376         trace->nr_entries = 0;
377         trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
378         trace->entries = stack_trace + nr_stack_trace_entries;
379
380         trace->skip = 3;
381
382         save_stack_trace(trace);
383
384         /*
385          * Some daft arches put -1 at the end to indicate its a full trace.
386          *
387          * <rant> this is buggy anyway, since it takes a whole extra entry so a
388          * complete trace that maxes out the entries provided will be reported
389          * as incomplete, friggin useless </rant>
390          */
391         if (trace->nr_entries != 0 &&
392             trace->entries[trace->nr_entries-1] == ULONG_MAX)
393                 trace->nr_entries--;
394
395         trace->max_entries = trace->nr_entries;
396
397         nr_stack_trace_entries += trace->nr_entries;
398
399         if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
400                 if (!debug_locks_off_graph_unlock())
401                         return 0;
402
403                 printk("BUG: MAX_STACK_TRACE_ENTRIES too low!\n");
404                 printk("turning off the locking correctness validator.\n");
405                 dump_stack();
406
407                 return 0;
408         }
409
410         return 1;
411 }
412
413 unsigned int nr_hardirq_chains;
414 unsigned int nr_softirq_chains;
415 unsigned int nr_process_chains;
416 unsigned int max_lockdep_depth;
417
418 #ifdef CONFIG_DEBUG_LOCKDEP
419 /*
420  * We cannot printk in early bootup code. Not even early_printk()
421  * might work. So we mark any initialization errors and printk
422  * about it later on, in lockdep_info().
423  */
424 static int lockdep_init_error;
425 static unsigned long lockdep_init_trace_data[20];
426 static struct stack_trace lockdep_init_trace = {
427         .max_entries = ARRAY_SIZE(lockdep_init_trace_data),
428         .entries = lockdep_init_trace_data,
429 };
430
431 /*
432  * Various lockdep statistics:
433  */
434 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
435 #endif
436
437 /*
438  * Locking printouts:
439  */
440
441 #define __USAGE(__STATE)                                                \
442         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
443         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
444         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
445         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
446
447 static const char *usage_str[] =
448 {
449 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
450 #include "lockdep_states.h"
451 #undef LOCKDEP_STATE
452         [LOCK_USED] = "INITIAL USE",
453 };
454
455 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
456 {
457         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
458 }
459
460 static inline unsigned long lock_flag(enum lock_usage_bit bit)
461 {
462         return 1UL << bit;
463 }
464
465 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
466 {
467         char c = '.';
468
469         if (class->usage_mask & lock_flag(bit + 2))
470                 c = '+';
471         if (class->usage_mask & lock_flag(bit)) {
472                 c = '-';
473                 if (class->usage_mask & lock_flag(bit + 2))
474                         c = '?';
475         }
476
477         return c;
478 }
479
480 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
481 {
482         int i = 0;
483
484 #define LOCKDEP_STATE(__STATE)                                          \
485         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
486         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
487 #include "lockdep_states.h"
488 #undef LOCKDEP_STATE
489
490         usage[i] = '\0';
491 }
492
493 static int __print_lock_name(struct lock_class *class)
494 {
495         char str[KSYM_NAME_LEN];
496         const char *name;
497
498         name = class->name;
499         if (!name)
500                 name = __get_key_name(class->key, str);
501
502         return printk("%s", name);
503 }
504
505 static void print_lock_name(struct lock_class *class)
506 {
507         char str[KSYM_NAME_LEN], usage[LOCK_USAGE_CHARS];
508         const char *name;
509
510         get_usage_chars(class, usage);
511
512         name = class->name;
513         if (!name) {
514                 name = __get_key_name(class->key, str);
515                 printk(" (%s", name);
516         } else {
517                 printk(" (%s", name);
518                 if (class->name_version > 1)
519                         printk("#%d", class->name_version);
520                 if (class->subclass)
521                         printk("/%d", class->subclass);
522         }
523         printk("){%s}", usage);
524 }
525
526 static void print_lockdep_cache(struct lockdep_map *lock)
527 {
528         const char *name;
529         char str[KSYM_NAME_LEN];
530
531         name = lock->name;
532         if (!name)
533                 name = __get_key_name(lock->key->subkeys, str);
534
535         printk("%s", name);
536 }
537
538 static void print_lock(struct held_lock *hlock)
539 {
540         print_lock_name(hlock_class(hlock));
541         printk(", at: ");
542         print_ip_sym(hlock->acquire_ip);
543 }
544
545 static void lockdep_print_held_locks(struct task_struct *curr)
546 {
547         int i, depth = curr->lockdep_depth;
548
549         if (!depth) {
550                 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
551                 return;
552         }
553         printk("%d lock%s held by %s/%d:\n",
554                 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
555
556         for (i = 0; i < depth; i++) {
557                 printk(" #%d: ", i);
558                 print_lock(curr->held_locks + i);
559         }
560 }
561
562 static void print_kernel_version(void)
563 {
564         printk("%s %.*s\n", init_utsname()->release,
565                 (int)strcspn(init_utsname()->version, " "),
566                 init_utsname()->version);
567 }
568
569 static int very_verbose(struct lock_class *class)
570 {
571 #if VERY_VERBOSE
572         return class_filter(class);
573 #endif
574         return 0;
575 }
576
577 /*
578  * Is this the address of a static object:
579  */
580 static int static_obj(void *obj)
581 {
582         unsigned long start = (unsigned long) &_stext,
583                       end   = (unsigned long) &_end,
584                       addr  = (unsigned long) obj;
585
586         /*
587          * static variable?
588          */
589         if ((addr >= start) && (addr < end))
590                 return 1;
591
592         if (arch_is_kernel_data(addr))
593                 return 1;
594
595         /*
596          * in-kernel percpu var?
597          */
598         if (is_kernel_percpu_address(addr))
599                 return 1;
600
601         /*
602          * module static or percpu var?
603          */
604         return is_module_address(addr) || is_module_percpu_address(addr);
605 }
606
607 /*
608  * To make lock name printouts unique, we calculate a unique
609  * class->name_version generation counter:
610  */
611 static int count_matching_names(struct lock_class *new_class)
612 {
613         struct lock_class *class;
614         int count = 0;
615
616         if (!new_class->name)
617                 return 0;
618
619         list_for_each_entry(class, &all_lock_classes, lock_entry) {
620                 if (new_class->key - new_class->subclass == class->key)
621                         return class->name_version;
622                 if (class->name && !strcmp(class->name, new_class->name))
623                         count = max(count, class->name_version);
624         }
625
626         return count + 1;
627 }
628
629 /*
630  * Register a lock's class in the hash-table, if the class is not present
631  * yet. Otherwise we look it up. We cache the result in the lock object
632  * itself, so actual lookup of the hash should be once per lock object.
633  */
634 static inline struct lock_class *
635 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
636 {
637         struct lockdep_subclass_key *key;
638         struct list_head *hash_head;
639         struct lock_class *class;
640
641 #ifdef CONFIG_DEBUG_LOCKDEP
642         /*
643          * If the architecture calls into lockdep before initializing
644          * the hashes then we'll warn about it later. (we cannot printk
645          * right now)
646          */
647         if (unlikely(!lockdep_initialized)) {
648                 lockdep_init();
649                 lockdep_init_error = 1;
650                 save_stack_trace(&lockdep_init_trace);
651         }
652 #endif
653
654         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
655                 debug_locks_off();
656                 printk(KERN_ERR
657                         "BUG: looking up invalid subclass: %u\n", subclass);
658                 printk(KERN_ERR
659                         "turning off the locking correctness validator.\n");
660                 dump_stack();
661                 return NULL;
662         }
663
664         /*
665          * Static locks do not have their class-keys yet - for them the key
666          * is the lock object itself:
667          */
668         if (unlikely(!lock->key))
669                 lock->key = (void *)lock;
670
671         /*
672          * NOTE: the class-key must be unique. For dynamic locks, a static
673          * lock_class_key variable is passed in through the mutex_init()
674          * (or spin_lock_init()) call - which acts as the key. For static
675          * locks we use the lock object itself as the key.
676          */
677         BUILD_BUG_ON(sizeof(struct lock_class_key) >
678                         sizeof(struct lockdep_map));
679
680         key = lock->key->subkeys + subclass;
681
682         hash_head = classhashentry(key);
683
684         /*
685          * We can walk the hash lockfree, because the hash only
686          * grows, and we are careful when adding entries to the end:
687          */
688         list_for_each_entry(class, hash_head, hash_entry) {
689                 if (class->key == key) {
690                         WARN_ON_ONCE(class->name != lock->name);
691                         return class;
692                 }
693         }
694
695         return NULL;
696 }
697
698 /*
699  * Register a lock's class in the hash-table, if the class is not present
700  * yet. Otherwise we look it up. We cache the result in the lock object
701  * itself, so actual lookup of the hash should be once per lock object.
702  */
703 static inline struct lock_class *
704 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
705 {
706         struct lockdep_subclass_key *key;
707         struct list_head *hash_head;
708         struct lock_class *class;
709         unsigned long flags;
710
711         class = look_up_lock_class(lock, subclass);
712         if (likely(class))
713                 return class;
714
715         /*
716          * Debug-check: all keys must be persistent!
717          */
718         if (!static_obj(lock->key)) {
719                 debug_locks_off();
720                 printk("INFO: trying to register non-static key.\n");
721                 printk("the code is fine but needs lockdep annotation.\n");
722                 printk("turning off the locking correctness validator.\n");
723                 dump_stack();
724
725                 return NULL;
726         }
727
728         key = lock->key->subkeys + subclass;
729         hash_head = classhashentry(key);
730
731         raw_local_irq_save(flags);
732         if (!graph_lock()) {
733                 raw_local_irq_restore(flags);
734                 return NULL;
735         }
736         /*
737          * We have to do the hash-walk again, to avoid races
738          * with another CPU:
739          */
740         list_for_each_entry(class, hash_head, hash_entry)
741                 if (class->key == key)
742                         goto out_unlock_set;
743         /*
744          * Allocate a new key from the static array, and add it to
745          * the hash:
746          */
747         if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
748                 if (!debug_locks_off_graph_unlock()) {
749                         raw_local_irq_restore(flags);
750                         return NULL;
751                 }
752                 raw_local_irq_restore(flags);
753
754                 printk("BUG: MAX_LOCKDEP_KEYS too low!\n");
755                 printk("turning off the locking correctness validator.\n");
756                 dump_stack();
757                 return NULL;
758         }
759         class = lock_classes + nr_lock_classes++;
760         debug_atomic_inc(nr_unused_locks);
761         class->key = key;
762         class->name = lock->name;
763         class->subclass = subclass;
764         INIT_LIST_HEAD(&class->lock_entry);
765         INIT_LIST_HEAD(&class->locks_before);
766         INIT_LIST_HEAD(&class->locks_after);
767         class->name_version = count_matching_names(class);
768         /*
769          * We use RCU's safe list-add method to make
770          * parallel walking of the hash-list safe:
771          */
772         list_add_tail_rcu(&class->hash_entry, hash_head);
773         /*
774          * Add it to the global list of classes:
775          */
776         list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
777
778         if (verbose(class)) {
779                 graph_unlock();
780                 raw_local_irq_restore(flags);
781
782                 printk("\nnew class %p: %s", class->key, class->name);
783                 if (class->name_version > 1)
784                         printk("#%d", class->name_version);
785                 printk("\n");
786                 dump_stack();
787
788                 raw_local_irq_save(flags);
789                 if (!graph_lock()) {
790                         raw_local_irq_restore(flags);
791                         return NULL;
792                 }
793         }
794 out_unlock_set:
795         graph_unlock();
796         raw_local_irq_restore(flags);
797
798         if (!subclass || force)
799                 lock->class_cache[0] = class;
800         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
801                 lock->class_cache[subclass] = class;
802
803         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
804                 return NULL;
805
806         return class;
807 }
808
809 #ifdef CONFIG_PROVE_LOCKING
810 /*
811  * Allocate a lockdep entry. (assumes the graph_lock held, returns
812  * with NULL on failure)
813  */
814 static struct lock_list *alloc_list_entry(void)
815 {
816         if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
817                 if (!debug_locks_off_graph_unlock())
818                         return NULL;
819
820                 printk("BUG: MAX_LOCKDEP_ENTRIES too low!\n");
821                 printk("turning off the locking correctness validator.\n");
822                 dump_stack();
823                 return NULL;
824         }
825         return list_entries + nr_list_entries++;
826 }
827
828 /*
829  * Add a new dependency to the head of the list:
830  */
831 static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
832                             struct list_head *head, unsigned long ip,
833                             int distance, struct stack_trace *trace)
834 {
835         struct lock_list *entry;
836         /*
837          * Lock not present yet - get a new dependency struct and
838          * add it to the list:
839          */
840         entry = alloc_list_entry();
841         if (!entry)
842                 return 0;
843
844         entry->class = this;
845         entry->distance = distance;
846         entry->trace = *trace;
847         /*
848          * Since we never remove from the dependency list, the list can
849          * be walked lockless by other CPUs, it's only allocation
850          * that must be protected by the spinlock. But this also means
851          * we must make new entries visible only once writes to the
852          * entry become visible - hence the RCU op:
853          */
854         list_add_tail_rcu(&entry->entry, head);
855
856         return 1;
857 }
858
859 /*
860  * For good efficiency of modular, we use power of 2
861  */
862 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
863 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
864
865 /*
866  * The circular_queue and helpers is used to implement the
867  * breadth-first search(BFS)algorithem, by which we can build
868  * the shortest path from the next lock to be acquired to the
869  * previous held lock if there is a circular between them.
870  */
871 struct circular_queue {
872         unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
873         unsigned int  front, rear;
874 };
875
876 static struct circular_queue lock_cq;
877
878 unsigned int max_bfs_queue_depth;
879
880 static unsigned int lockdep_dependency_gen_id;
881
882 static inline void __cq_init(struct circular_queue *cq)
883 {
884         cq->front = cq->rear = 0;
885         lockdep_dependency_gen_id++;
886 }
887
888 static inline int __cq_empty(struct circular_queue *cq)
889 {
890         return (cq->front == cq->rear);
891 }
892
893 static inline int __cq_full(struct circular_queue *cq)
894 {
895         return ((cq->rear + 1) & CQ_MASK) == cq->front;
896 }
897
898 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
899 {
900         if (__cq_full(cq))
901                 return -1;
902
903         cq->element[cq->rear] = elem;
904         cq->rear = (cq->rear + 1) & CQ_MASK;
905         return 0;
906 }
907
908 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
909 {
910         if (__cq_empty(cq))
911                 return -1;
912
913         *elem = cq->element[cq->front];
914         cq->front = (cq->front + 1) & CQ_MASK;
915         return 0;
916 }
917
918 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
919 {
920         return (cq->rear - cq->front) & CQ_MASK;
921 }
922
923 static inline void mark_lock_accessed(struct lock_list *lock,
924                                         struct lock_list *parent)
925 {
926         unsigned long nr;
927
928         nr = lock - list_entries;
929         WARN_ON(nr >= nr_list_entries);
930         lock->parent = parent;
931         lock->class->dep_gen_id = lockdep_dependency_gen_id;
932 }
933
934 static inline unsigned long lock_accessed(struct lock_list *lock)
935 {
936         unsigned long nr;
937
938         nr = lock - list_entries;
939         WARN_ON(nr >= nr_list_entries);
940         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
941 }
942
943 static inline struct lock_list *get_lock_parent(struct lock_list *child)
944 {
945         return child->parent;
946 }
947
948 static inline int get_lock_depth(struct lock_list *child)
949 {
950         int depth = 0;
951         struct lock_list *parent;
952
953         while ((parent = get_lock_parent(child))) {
954                 child = parent;
955                 depth++;
956         }
957         return depth;
958 }
959
960 static int __bfs(struct lock_list *source_entry,
961                  void *data,
962                  int (*match)(struct lock_list *entry, void *data),
963                  struct lock_list **target_entry,
964                  int forward)
965 {
966         struct lock_list *entry;
967         struct list_head *head;
968         struct circular_queue *cq = &lock_cq;
969         int ret = 1;
970
971         if (match(source_entry, data)) {
972                 *target_entry = source_entry;
973                 ret = 0;
974                 goto exit;
975         }
976
977         if (forward)
978                 head = &source_entry->class->locks_after;
979         else
980                 head = &source_entry->class->locks_before;
981
982         if (list_empty(head))
983                 goto exit;
984
985         __cq_init(cq);
986         __cq_enqueue(cq, (unsigned long)source_entry);
987
988         while (!__cq_empty(cq)) {
989                 struct lock_list *lock;
990
991                 __cq_dequeue(cq, (unsigned long *)&lock);
992
993                 if (!lock->class) {
994                         ret = -2;
995                         goto exit;
996                 }
997
998                 if (forward)
999                         head = &lock->class->locks_after;
1000                 else
1001                         head = &lock->class->locks_before;
1002
1003                 list_for_each_entry(entry, head, entry) {
1004                         if (!lock_accessed(entry)) {
1005                                 unsigned int cq_depth;
1006                                 mark_lock_accessed(entry, lock);
1007                                 if (match(entry, data)) {
1008                                         *target_entry = entry;
1009                                         ret = 0;
1010                                         goto exit;
1011                                 }
1012
1013                                 if (__cq_enqueue(cq, (unsigned long)entry)) {
1014                                         ret = -1;
1015                                         goto exit;
1016                                 }
1017                                 cq_depth = __cq_get_elem_count(cq);
1018                                 if (max_bfs_queue_depth < cq_depth)
1019                                         max_bfs_queue_depth = cq_depth;
1020                         }
1021                 }
1022         }
1023 exit:
1024         return ret;
1025 }
1026
1027 static inline int __bfs_forwards(struct lock_list *src_entry,
1028                         void *data,
1029                         int (*match)(struct lock_list *entry, void *data),
1030                         struct lock_list **target_entry)
1031 {
1032         return __bfs(src_entry, data, match, target_entry, 1);
1033
1034 }
1035
1036 static inline int __bfs_backwards(struct lock_list *src_entry,
1037                         void *data,
1038                         int (*match)(struct lock_list *entry, void *data),
1039                         struct lock_list **target_entry)
1040 {
1041         return __bfs(src_entry, data, match, target_entry, 0);
1042
1043 }
1044
1045 /*
1046  * Recursive, forwards-direction lock-dependency checking, used for
1047  * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1048  * checking.
1049  */
1050
1051 /*
1052  * Print a dependency chain entry (this is only done when a deadlock
1053  * has been detected):
1054  */
1055 static noinline int
1056 print_circular_bug_entry(struct lock_list *target, int depth)
1057 {
1058         if (debug_locks_silent)
1059                 return 0;
1060         printk("\n-> #%u", depth);
1061         print_lock_name(target->class);
1062         printk(":\n");
1063         print_stack_trace(&target->trace, 6);
1064
1065         return 0;
1066 }
1067
1068 static void
1069 print_circular_lock_scenario(struct held_lock *src,
1070                              struct held_lock *tgt,
1071                              struct lock_list *prt)
1072 {
1073         struct lock_class *source = hlock_class(src);
1074         struct lock_class *target = hlock_class(tgt);
1075         struct lock_class *parent = prt->class;
1076
1077         /*
1078          * A direct locking problem where unsafe_class lock is taken
1079          * directly by safe_class lock, then all we need to show
1080          * is the deadlock scenario, as it is obvious that the
1081          * unsafe lock is taken under the safe lock.
1082          *
1083          * But if there is a chain instead, where the safe lock takes
1084          * an intermediate lock (middle_class) where this lock is
1085          * not the same as the safe lock, then the lock chain is
1086          * used to describe the problem. Otherwise we would need
1087          * to show a different CPU case for each link in the chain
1088          * from the safe_class lock to the unsafe_class lock.
1089          */
1090         if (parent != source) {
1091                 printk("Chain exists of:\n  ");
1092                 __print_lock_name(source);
1093                 printk(" --> ");
1094                 __print_lock_name(parent);
1095                 printk(" --> ");
1096                 __print_lock_name(target);
1097                 printk("\n\n");
1098         }
1099
1100         printk(" Possible unsafe locking scenario:\n\n");
1101         printk("       CPU0                    CPU1\n");
1102         printk("       ----                    ----\n");
1103         printk("  lock(");
1104         __print_lock_name(target);
1105         printk(");\n");
1106         printk("                               lock(");
1107         __print_lock_name(parent);
1108         printk(");\n");
1109         printk("                               lock(");
1110         __print_lock_name(target);
1111         printk(");\n");
1112         printk("  lock(");
1113         __print_lock_name(source);
1114         printk(");\n");
1115         printk("\n *** DEADLOCK ***\n\n");
1116 }
1117
1118 /*
1119  * When a circular dependency is detected, print the
1120  * header first:
1121  */
1122 static noinline int
1123 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1124                         struct held_lock *check_src,
1125                         struct held_lock *check_tgt)
1126 {
1127         struct task_struct *curr = current;
1128
1129         if (debug_locks_silent)
1130                 return 0;
1131
1132         printk("\n");
1133         printk("======================================================\n");
1134         printk("[ INFO: possible circular locking dependency detected ]\n");
1135         print_kernel_version();
1136         printk("-------------------------------------------------------\n");
1137         printk("%s/%d is trying to acquire lock:\n",
1138                 curr->comm, task_pid_nr(curr));
1139         print_lock(check_src);
1140         printk("\nbut task is already holding lock:\n");
1141         print_lock(check_tgt);
1142         printk("\nwhich lock already depends on the new lock.\n\n");
1143         printk("\nthe existing dependency chain (in reverse order) is:\n");
1144
1145         print_circular_bug_entry(entry, depth);
1146
1147         return 0;
1148 }
1149
1150 static inline int class_equal(struct lock_list *entry, void *data)
1151 {
1152         return entry->class == data;
1153 }
1154
1155 static noinline int print_circular_bug(struct lock_list *this,
1156                                 struct lock_list *target,
1157                                 struct held_lock *check_src,
1158                                 struct held_lock *check_tgt)
1159 {
1160         struct task_struct *curr = current;
1161         struct lock_list *parent;
1162         struct lock_list *first_parent;
1163         int depth;
1164
1165         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1166                 return 0;
1167
1168         if (!save_trace(&this->trace))
1169                 return 0;
1170
1171         depth = get_lock_depth(target);
1172
1173         print_circular_bug_header(target, depth, check_src, check_tgt);
1174
1175         parent = get_lock_parent(target);
1176         first_parent = parent;
1177
1178         while (parent) {
1179                 print_circular_bug_entry(parent, --depth);
1180                 parent = get_lock_parent(parent);
1181         }
1182
1183         printk("\nother info that might help us debug this:\n\n");
1184         print_circular_lock_scenario(check_src, check_tgt,
1185                                      first_parent);
1186
1187         lockdep_print_held_locks(curr);
1188
1189         printk("\nstack backtrace:\n");
1190         dump_stack();
1191
1192         return 0;
1193 }
1194
1195 static noinline int print_bfs_bug(int ret)
1196 {
1197         if (!debug_locks_off_graph_unlock())
1198                 return 0;
1199
1200         WARN(1, "lockdep bfs error:%d\n", ret);
1201
1202         return 0;
1203 }
1204
1205 static int noop_count(struct lock_list *entry, void *data)
1206 {
1207         (*(unsigned long *)data)++;
1208         return 0;
1209 }
1210
1211 unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1212 {
1213         unsigned long  count = 0;
1214         struct lock_list *uninitialized_var(target_entry);
1215
1216         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1217
1218         return count;
1219 }
1220 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1221 {
1222         unsigned long ret, flags;
1223         struct lock_list this;
1224
1225         this.parent = NULL;
1226         this.class = class;
1227
1228         local_irq_save(flags);
1229         arch_spin_lock(&lockdep_lock);
1230         ret = __lockdep_count_forward_deps(&this);
1231         arch_spin_unlock(&lockdep_lock);
1232         local_irq_restore(flags);
1233
1234         return ret;
1235 }
1236
1237 unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1238 {
1239         unsigned long  count = 0;
1240         struct lock_list *uninitialized_var(target_entry);
1241
1242         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1243
1244         return count;
1245 }
1246
1247 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1248 {
1249         unsigned long ret, flags;
1250         struct lock_list this;
1251
1252         this.parent = NULL;
1253         this.class = class;
1254
1255         local_irq_save(flags);
1256         arch_spin_lock(&lockdep_lock);
1257         ret = __lockdep_count_backward_deps(&this);
1258         arch_spin_unlock(&lockdep_lock);
1259         local_irq_restore(flags);
1260
1261         return ret;
1262 }
1263
1264 /*
1265  * Prove that the dependency graph starting at <entry> can not
1266  * lead to <target>. Print an error and return 0 if it does.
1267  */
1268 static noinline int
1269 check_noncircular(struct lock_list *root, struct lock_class *target,
1270                 struct lock_list **target_entry)
1271 {
1272         int result;
1273
1274         debug_atomic_inc(nr_cyclic_checks);
1275
1276         result = __bfs_forwards(root, target, class_equal, target_entry);
1277
1278         return result;
1279 }
1280
1281 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1282 /*
1283  * Forwards and backwards subgraph searching, for the purposes of
1284  * proving that two subgraphs can be connected by a new dependency
1285  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1286  */
1287
1288 static inline int usage_match(struct lock_list *entry, void *bit)
1289 {
1290         return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1291 }
1292
1293
1294
1295 /*
1296  * Find a node in the forwards-direction dependency sub-graph starting
1297  * at @root->class that matches @bit.
1298  *
1299  * Return 0 if such a node exists in the subgraph, and put that node
1300  * into *@target_entry.
1301  *
1302  * Return 1 otherwise and keep *@target_entry unchanged.
1303  * Return <0 on error.
1304  */
1305 static int
1306 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1307                         struct lock_list **target_entry)
1308 {
1309         int result;
1310
1311         debug_atomic_inc(nr_find_usage_forwards_checks);
1312
1313         result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1314
1315         return result;
1316 }
1317
1318 /*
1319  * Find a node in the backwards-direction dependency sub-graph starting
1320  * at @root->class that matches @bit.
1321  *
1322  * Return 0 if such a node exists in the subgraph, and put that node
1323  * into *@target_entry.
1324  *
1325  * Return 1 otherwise and keep *@target_entry unchanged.
1326  * Return <0 on error.
1327  */
1328 static int
1329 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1330                         struct lock_list **target_entry)
1331 {
1332         int result;
1333
1334         debug_atomic_inc(nr_find_usage_backwards_checks);
1335
1336         result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1337
1338         return result;
1339 }
1340
1341 static void print_lock_class_header(struct lock_class *class, int depth)
1342 {
1343         int bit;
1344
1345         printk("%*s->", depth, "");
1346         print_lock_name(class);
1347         printk(" ops: %lu", class->ops);
1348         printk(" {\n");
1349
1350         for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1351                 if (class->usage_mask & (1 << bit)) {
1352                         int len = depth;
1353
1354                         len += printk("%*s   %s", depth, "", usage_str[bit]);
1355                         len += printk(" at:\n");
1356                         print_stack_trace(class->usage_traces + bit, len);
1357                 }
1358         }
1359         printk("%*s }\n", depth, "");
1360
1361         printk("%*s ... key      at: ",depth,"");
1362         print_ip_sym((unsigned long)class->key);
1363 }
1364
1365 /*
1366  * printk the shortest lock dependencies from @start to @end in reverse order:
1367  */
1368 static void __used
1369 print_shortest_lock_dependencies(struct lock_list *leaf,
1370                                 struct lock_list *root)
1371 {
1372         struct lock_list *entry = leaf;
1373         int depth;
1374
1375         /*compute depth from generated tree by BFS*/
1376         depth = get_lock_depth(leaf);
1377
1378         do {
1379                 print_lock_class_header(entry->class, depth);
1380                 printk("%*s ... acquired at:\n", depth, "");
1381                 print_stack_trace(&entry->trace, 2);
1382                 printk("\n");
1383
1384                 if (depth == 0 && (entry != root)) {
1385                         printk("lockdep:%s bad path found in chain graph\n", __func__);
1386                         break;
1387                 }
1388
1389                 entry = get_lock_parent(entry);
1390                 depth--;
1391         } while (entry && (depth >= 0));
1392
1393         return;
1394 }
1395
1396 static void
1397 print_irq_lock_scenario(struct lock_list *safe_entry,
1398                         struct lock_list *unsafe_entry,
1399                         struct lock_class *prev_class,
1400                         struct lock_class *next_class)
1401 {
1402         struct lock_class *safe_class = safe_entry->class;
1403         struct lock_class *unsafe_class = unsafe_entry->class;
1404         struct lock_class *middle_class = prev_class;
1405
1406         if (middle_class == safe_class)
1407                 middle_class = next_class;
1408
1409         /*
1410          * A direct locking problem where unsafe_class lock is taken
1411          * directly by safe_class lock, then all we need to show
1412          * is the deadlock scenario, as it is obvious that the
1413          * unsafe lock is taken under the safe lock.
1414          *
1415          * But if there is a chain instead, where the safe lock takes
1416          * an intermediate lock (middle_class) where this lock is
1417          * not the same as the safe lock, then the lock chain is
1418          * used to describe the problem. Otherwise we would need
1419          * to show a different CPU case for each link in the chain
1420          * from the safe_class lock to the unsafe_class lock.
1421          */
1422         if (middle_class != unsafe_class) {
1423                 printk("Chain exists of:\n  ");
1424                 __print_lock_name(safe_class);
1425                 printk(" --> ");
1426                 __print_lock_name(middle_class);
1427                 printk(" --> ");
1428                 __print_lock_name(unsafe_class);
1429                 printk("\n\n");
1430         }
1431
1432         printk(" Possible interrupt unsafe locking scenario:\n\n");
1433         printk("       CPU0                    CPU1\n");
1434         printk("       ----                    ----\n");
1435         printk("  lock(");
1436         __print_lock_name(unsafe_class);
1437         printk(");\n");
1438         printk("                               local_irq_disable();\n");
1439         printk("                               lock(");
1440         __print_lock_name(safe_class);
1441         printk(");\n");
1442         printk("                               lock(");
1443         __print_lock_name(middle_class);
1444         printk(");\n");
1445         printk("  <Interrupt>\n");
1446         printk("    lock(");
1447         __print_lock_name(safe_class);
1448         printk(");\n");
1449         printk("\n *** DEADLOCK ***\n\n");
1450 }
1451
1452 static int
1453 print_bad_irq_dependency(struct task_struct *curr,
1454                          struct lock_list *prev_root,
1455                          struct lock_list *next_root,
1456                          struct lock_list *backwards_entry,
1457                          struct lock_list *forwards_entry,
1458                          struct held_lock *prev,
1459                          struct held_lock *next,
1460                          enum lock_usage_bit bit1,
1461                          enum lock_usage_bit bit2,
1462                          const char *irqclass)
1463 {
1464         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1465                 return 0;
1466
1467         printk("\n");
1468         printk("======================================================\n");
1469         printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1470                 irqclass, irqclass);
1471         print_kernel_version();
1472         printk("------------------------------------------------------\n");
1473         printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1474                 curr->comm, task_pid_nr(curr),
1475                 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1476                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1477                 curr->hardirqs_enabled,
1478                 curr->softirqs_enabled);
1479         print_lock(next);
1480
1481         printk("\nand this task is already holding:\n");
1482         print_lock(prev);
1483         printk("which would create a new lock dependency:\n");
1484         print_lock_name(hlock_class(prev));
1485         printk(" ->");
1486         print_lock_name(hlock_class(next));
1487         printk("\n");
1488
1489         printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1490                 irqclass);
1491         print_lock_name(backwards_entry->class);
1492         printk("\n... which became %s-irq-safe at:\n", irqclass);
1493
1494         print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1495
1496         printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1497         print_lock_name(forwards_entry->class);
1498         printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1499         printk("...");
1500
1501         print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1502
1503         printk("\nother info that might help us debug this:\n\n");
1504         print_irq_lock_scenario(backwards_entry, forwards_entry,
1505                                 hlock_class(prev), hlock_class(next));
1506
1507         lockdep_print_held_locks(curr);
1508
1509         printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1510         printk(" and the holding lock:\n");
1511         if (!save_trace(&prev_root->trace))
1512                 return 0;
1513         print_shortest_lock_dependencies(backwards_entry, prev_root);
1514
1515         printk("\nthe dependencies between the lock to be acquired");
1516         printk(" and %s-irq-unsafe lock:\n", irqclass);
1517         if (!save_trace(&next_root->trace))
1518                 return 0;
1519         print_shortest_lock_dependencies(forwards_entry, next_root);
1520
1521         printk("\nstack backtrace:\n");
1522         dump_stack();
1523
1524         return 0;
1525 }
1526
1527 static int
1528 check_usage(struct task_struct *curr, struct held_lock *prev,
1529             struct held_lock *next, enum lock_usage_bit bit_backwards,
1530             enum lock_usage_bit bit_forwards, const char *irqclass)
1531 {
1532         int ret;
1533         struct lock_list this, that;
1534         struct lock_list *uninitialized_var(target_entry);
1535         struct lock_list *uninitialized_var(target_entry1);
1536
1537         this.parent = NULL;
1538
1539         this.class = hlock_class(prev);
1540         ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1541         if (ret < 0)
1542                 return print_bfs_bug(ret);
1543         if (ret == 1)
1544                 return ret;
1545
1546         that.parent = NULL;
1547         that.class = hlock_class(next);
1548         ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1549         if (ret < 0)
1550                 return print_bfs_bug(ret);
1551         if (ret == 1)
1552                 return ret;
1553
1554         return print_bad_irq_dependency(curr, &this, &that,
1555                         target_entry, target_entry1,
1556                         prev, next,
1557                         bit_backwards, bit_forwards, irqclass);
1558 }
1559
1560 static const char *state_names[] = {
1561 #define LOCKDEP_STATE(__STATE) \
1562         __stringify(__STATE),
1563 #include "lockdep_states.h"
1564 #undef LOCKDEP_STATE
1565 };
1566
1567 static const char *state_rnames[] = {
1568 #define LOCKDEP_STATE(__STATE) \
1569         __stringify(__STATE)"-READ",
1570 #include "lockdep_states.h"
1571 #undef LOCKDEP_STATE
1572 };
1573
1574 static inline const char *state_name(enum lock_usage_bit bit)
1575 {
1576         return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1577 }
1578
1579 static int exclusive_bit(int new_bit)
1580 {
1581         /*
1582          * USED_IN
1583          * USED_IN_READ
1584          * ENABLED
1585          * ENABLED_READ
1586          *
1587          * bit 0 - write/read
1588          * bit 1 - used_in/enabled
1589          * bit 2+  state
1590          */
1591
1592         int state = new_bit & ~3;
1593         int dir = new_bit & 2;
1594
1595         /*
1596          * keep state, bit flip the direction and strip read.
1597          */
1598         return state | (dir ^ 2);
1599 }
1600
1601 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1602                            struct held_lock *next, enum lock_usage_bit bit)
1603 {
1604         /*
1605          * Prove that the new dependency does not connect a hardirq-safe
1606          * lock with a hardirq-unsafe lock - to achieve this we search
1607          * the backwards-subgraph starting at <prev>, and the
1608          * forwards-subgraph starting at <next>:
1609          */
1610         if (!check_usage(curr, prev, next, bit,
1611                            exclusive_bit(bit), state_name(bit)))
1612                 return 0;
1613
1614         bit++; /* _READ */
1615
1616         /*
1617          * Prove that the new dependency does not connect a hardirq-safe-read
1618          * lock with a hardirq-unsafe lock - to achieve this we search
1619          * the backwards-subgraph starting at <prev>, and the
1620          * forwards-subgraph starting at <next>:
1621          */
1622         if (!check_usage(curr, prev, next, bit,
1623                            exclusive_bit(bit), state_name(bit)))
1624                 return 0;
1625
1626         return 1;
1627 }
1628
1629 static int
1630 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1631                 struct held_lock *next)
1632 {
1633 #define LOCKDEP_STATE(__STATE)                                          \
1634         if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \
1635                 return 0;
1636 #include "lockdep_states.h"
1637 #undef LOCKDEP_STATE
1638
1639         return 1;
1640 }
1641
1642 static void inc_chains(void)
1643 {
1644         if (current->hardirq_context)
1645                 nr_hardirq_chains++;
1646         else {
1647                 if (current->softirq_context)
1648                         nr_softirq_chains++;
1649                 else
1650                         nr_process_chains++;
1651         }
1652 }
1653
1654 #else
1655
1656 static inline int
1657 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1658                 struct held_lock *next)
1659 {
1660         return 1;
1661 }
1662
1663 static inline void inc_chains(void)
1664 {
1665         nr_process_chains++;
1666 }
1667
1668 #endif
1669
1670 static void
1671 print_deadlock_scenario(struct held_lock *nxt,
1672                              struct held_lock *prv)
1673 {
1674         struct lock_class *next = hlock_class(nxt);
1675         struct lock_class *prev = hlock_class(prv);
1676
1677         printk(" Possible unsafe locking scenario:\n\n");
1678         printk("       CPU0\n");
1679         printk("       ----\n");
1680         printk("  lock(");
1681         __print_lock_name(prev);
1682         printk(");\n");
1683         printk("  lock(");
1684         __print_lock_name(next);
1685         printk(");\n");
1686         printk("\n *** DEADLOCK ***\n\n");
1687         printk(" May be due to missing lock nesting notation\n\n");
1688 }
1689
1690 static int
1691 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1692                    struct held_lock *next)
1693 {
1694         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1695                 return 0;
1696
1697         printk("\n");
1698         printk("=============================================\n");
1699         printk("[ INFO: possible recursive locking detected ]\n");
1700         print_kernel_version();
1701         printk("---------------------------------------------\n");
1702         printk("%s/%d is trying to acquire lock:\n",
1703                 curr->comm, task_pid_nr(curr));
1704         print_lock(next);
1705         printk("\nbut task is already holding lock:\n");
1706         print_lock(prev);
1707
1708         printk("\nother info that might help us debug this:\n");
1709         print_deadlock_scenario(next, prev);
1710         lockdep_print_held_locks(curr);
1711
1712         printk("\nstack backtrace:\n");
1713         dump_stack();
1714
1715         return 0;
1716 }
1717
1718 /*
1719  * Check whether we are holding such a class already.
1720  *
1721  * (Note that this has to be done separately, because the graph cannot
1722  * detect such classes of deadlocks.)
1723  *
1724  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1725  */
1726 static int
1727 check_deadlock(struct task_struct *curr, struct held_lock *next,
1728                struct lockdep_map *next_instance, int read)
1729 {
1730         struct held_lock *prev;
1731         struct held_lock *nest = NULL;
1732         int i;
1733
1734         for (i = 0; i < curr->lockdep_depth; i++) {
1735                 prev = curr->held_locks + i;
1736
1737                 if (prev->instance == next->nest_lock)
1738                         nest = prev;
1739
1740                 if (hlock_class(prev) != hlock_class(next))
1741                         continue;
1742
1743                 /*
1744                  * Allow read-after-read recursion of the same
1745                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
1746                  */
1747                 if ((read == 2) && prev->read)
1748                         return 2;
1749
1750                 /*
1751                  * We're holding the nest_lock, which serializes this lock's
1752                  * nesting behaviour.
1753                  */
1754                 if (nest)
1755                         return 2;
1756
1757                 return print_deadlock_bug(curr, prev, next);
1758         }
1759         return 1;
1760 }
1761
1762 /*
1763  * There was a chain-cache miss, and we are about to add a new dependency
1764  * to a previous lock. We recursively validate the following rules:
1765  *
1766  *  - would the adding of the <prev> -> <next> dependency create a
1767  *    circular dependency in the graph? [== circular deadlock]
1768  *
1769  *  - does the new prev->next dependency connect any hardirq-safe lock
1770  *    (in the full backwards-subgraph starting at <prev>) with any
1771  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1772  *    <next>)? [== illegal lock inversion with hardirq contexts]
1773  *
1774  *  - does the new prev->next dependency connect any softirq-safe lock
1775  *    (in the full backwards-subgraph starting at <prev>) with any
1776  *    softirq-unsafe lock (in the full forwards-subgraph starting at
1777  *    <next>)? [== illegal lock inversion with softirq contexts]
1778  *
1779  * any of these scenarios could lead to a deadlock.
1780  *
1781  * Then if all the validations pass, we add the forwards and backwards
1782  * dependency.
1783  */
1784 static int
1785 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1786                struct held_lock *next, int distance, int trylock_loop)
1787 {
1788         struct lock_list *entry;
1789         int ret;
1790         struct lock_list this;
1791         struct lock_list *uninitialized_var(target_entry);
1792         /*
1793          * Static variable, serialized by the graph_lock().
1794          *
1795          * We use this static variable to save the stack trace in case
1796          * we call into this function multiple times due to encountering
1797          * trylocks in the held lock stack.
1798          */
1799         static struct stack_trace trace;
1800
1801         /*
1802          * Prove that the new <prev> -> <next> dependency would not
1803          * create a circular dependency in the graph. (We do this by
1804          * forward-recursing into the graph starting at <next>, and
1805          * checking whether we can reach <prev>.)
1806          *
1807          * We are using global variables to control the recursion, to
1808          * keep the stackframe size of the recursive functions low:
1809          */
1810         this.class = hlock_class(next);
1811         this.parent = NULL;
1812         ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1813         if (unlikely(!ret))
1814                 return print_circular_bug(&this, target_entry, next, prev);
1815         else if (unlikely(ret < 0))
1816                 return print_bfs_bug(ret);
1817
1818         if (!check_prev_add_irq(curr, prev, next))
1819                 return 0;
1820
1821         /*
1822          * For recursive read-locks we do all the dependency checks,
1823          * but we dont store read-triggered dependencies (only
1824          * write-triggered dependencies). This ensures that only the
1825          * write-side dependencies matter, and that if for example a
1826          * write-lock never takes any other locks, then the reads are
1827          * equivalent to a NOP.
1828          */
1829         if (next->read == 2 || prev->read == 2)
1830                 return 1;
1831         /*
1832          * Is the <prev> -> <next> dependency already present?
1833          *
1834          * (this may occur even though this is a new chain: consider
1835          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1836          *  chains - the second one will be new, but L1 already has
1837          *  L2 added to its dependency list, due to the first chain.)
1838          */
1839         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1840                 if (entry->class == hlock_class(next)) {
1841                         if (distance == 1)
1842                                 entry->distance = 1;
1843                         return 2;
1844                 }
1845         }
1846
1847         if (!trylock_loop && !save_trace(&trace))
1848                 return 0;
1849
1850         /*
1851          * Ok, all validations passed, add the new lock
1852          * to the previous lock's dependency list:
1853          */
1854         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1855                                &hlock_class(prev)->locks_after,
1856                                next->acquire_ip, distance, &trace);
1857
1858         if (!ret)
1859                 return 0;
1860
1861         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1862                                &hlock_class(next)->locks_before,
1863                                next->acquire_ip, distance, &trace);
1864         if (!ret)
1865                 return 0;
1866
1867         /*
1868          * Debugging printouts:
1869          */
1870         if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1871                 graph_unlock();
1872                 printk("\n new dependency: ");
1873                 print_lock_name(hlock_class(prev));
1874                 printk(" => ");
1875                 print_lock_name(hlock_class(next));
1876                 printk("\n");
1877                 dump_stack();
1878                 return graph_lock();
1879         }
1880         return 1;
1881 }
1882
1883 /*
1884  * Add the dependency to all directly-previous locks that are 'relevant'.
1885  * The ones that are relevant are (in increasing distance from curr):
1886  * all consecutive trylock entries and the final non-trylock entry - or
1887  * the end of this context's lock-chain - whichever comes first.
1888  */
1889 static int
1890 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1891 {
1892         int depth = curr->lockdep_depth;
1893         int trylock_loop = 0;
1894         struct held_lock *hlock;
1895
1896         /*
1897          * Debugging checks.
1898          *
1899          * Depth must not be zero for a non-head lock:
1900          */
1901         if (!depth)
1902                 goto out_bug;
1903         /*
1904          * At least two relevant locks must exist for this
1905          * to be a head:
1906          */
1907         if (curr->held_locks[depth].irq_context !=
1908                         curr->held_locks[depth-1].irq_context)
1909                 goto out_bug;
1910
1911         for (;;) {
1912                 int distance = curr->lockdep_depth - depth + 1;
1913                 hlock = curr->held_locks + depth-1;
1914                 /*
1915                  * Only non-recursive-read entries get new dependencies
1916                  * added:
1917                  */
1918                 if (hlock->read != 2) {
1919                         if (!check_prev_add(curr, hlock, next,
1920                                                 distance, trylock_loop))
1921                                 return 0;
1922                         /*
1923                          * Stop after the first non-trylock entry,
1924                          * as non-trylock entries have added their
1925                          * own direct dependencies already, so this
1926                          * lock is connected to them indirectly:
1927                          */
1928                         if (!hlock->trylock)
1929                                 break;
1930                 }
1931                 depth--;
1932                 /*
1933                  * End of lock-stack?
1934                  */
1935                 if (!depth)
1936                         break;
1937                 /*
1938                  * Stop the search if we cross into another context:
1939                  */
1940                 if (curr->held_locks[depth].irq_context !=
1941                                 curr->held_locks[depth-1].irq_context)
1942                         break;
1943                 trylock_loop = 1;
1944         }
1945         return 1;
1946 out_bug:
1947         if (!debug_locks_off_graph_unlock())
1948                 return 0;
1949
1950         WARN_ON(1);
1951
1952         return 0;
1953 }
1954
1955 unsigned long nr_lock_chains;
1956 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1957 int nr_chain_hlocks;
1958 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1959
1960 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
1961 {
1962         return lock_classes + chain_hlocks[chain->base + i];
1963 }
1964
1965 /*
1966  * Look up a dependency chain. If the key is not present yet then
1967  * add it and return 1 - in this case the new dependency chain is
1968  * validated. If the key is already hashed, return 0.
1969  * (On return with 1 graph_lock is held.)
1970  */
1971 static inline int lookup_chain_cache(struct task_struct *curr,
1972                                      struct held_lock *hlock,
1973                                      u64 chain_key)
1974 {
1975         struct lock_class *class = hlock_class(hlock);
1976         struct list_head *hash_head = chainhashentry(chain_key);
1977         struct lock_chain *chain;
1978         struct held_lock *hlock_curr, *hlock_next;
1979         int i, j;
1980
1981         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
1982                 return 0;
1983         /*
1984          * We can walk it lock-free, because entries only get added
1985          * to the hash:
1986          */
1987         list_for_each_entry(chain, hash_head, entry) {
1988                 if (chain->chain_key == chain_key) {
1989 cache_hit:
1990                         debug_atomic_inc(chain_lookup_hits);
1991                         if (very_verbose(class))
1992                                 printk("\nhash chain already cached, key: "
1993                                         "%016Lx tail class: [%p] %s\n",
1994                                         (unsigned long long)chain_key,
1995                                         class->key, class->name);
1996                         return 0;
1997                 }
1998         }
1999         if (very_verbose(class))
2000                 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
2001                         (unsigned long long)chain_key, class->key, class->name);
2002         /*
2003          * Allocate a new chain entry from the static array, and add
2004          * it to the hash:
2005          */
2006         if (!graph_lock())
2007                 return 0;
2008         /*
2009          * We have to walk the chain again locked - to avoid duplicates:
2010          */
2011         list_for_each_entry(chain, hash_head, entry) {
2012                 if (chain->chain_key == chain_key) {
2013                         graph_unlock();
2014                         goto cache_hit;
2015                 }
2016         }
2017         if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2018                 if (!debug_locks_off_graph_unlock())
2019                         return 0;
2020
2021                 printk("BUG: MAX_LOCKDEP_CHAINS too low!\n");
2022                 printk("turning off the locking correctness validator.\n");
2023                 dump_stack();
2024                 return 0;
2025         }
2026         chain = lock_chains + nr_lock_chains++;
2027         chain->chain_key = chain_key;
2028         chain->irq_context = hlock->irq_context;
2029         /* Find the first held_lock of current chain */
2030         hlock_next = hlock;
2031         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2032                 hlock_curr = curr->held_locks + i;
2033                 if (hlock_curr->irq_context != hlock_next->irq_context)
2034                         break;
2035                 hlock_next = hlock;
2036         }
2037         i++;
2038         chain->depth = curr->lockdep_depth + 1 - i;
2039         if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2040                 chain->base = nr_chain_hlocks;
2041                 nr_chain_hlocks += chain->depth;
2042                 for (j = 0; j < chain->depth - 1; j++, i++) {
2043                         int lock_id = curr->held_locks[i].class_idx - 1;
2044                         chain_hlocks[chain->base + j] = lock_id;
2045                 }
2046                 chain_hlocks[chain->base + j] = class - lock_classes;
2047         }
2048         list_add_tail_rcu(&chain->entry, hash_head);
2049         debug_atomic_inc(chain_lookup_misses);
2050         inc_chains();
2051
2052         return 1;
2053 }
2054
2055 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
2056                 struct held_lock *hlock, int chain_head, u64 chain_key)
2057 {
2058         /*
2059          * Trylock needs to maintain the stack of held locks, but it
2060          * does not add new dependencies, because trylock can be done
2061          * in any order.
2062          *
2063          * We look up the chain_key and do the O(N^2) check and update of
2064          * the dependencies only if this is a new dependency chain.
2065          * (If lookup_chain_cache() returns with 1 it acquires
2066          * graph_lock for us)
2067          */
2068         if (!hlock->trylock && (hlock->check == 2) &&
2069             lookup_chain_cache(curr, hlock, chain_key)) {
2070                 /*
2071                  * Check whether last held lock:
2072                  *
2073                  * - is irq-safe, if this lock is irq-unsafe
2074                  * - is softirq-safe, if this lock is hardirq-unsafe
2075                  *
2076                  * And check whether the new lock's dependency graph
2077                  * could lead back to the previous lock.
2078                  *
2079                  * any of these scenarios could lead to a deadlock. If
2080                  * All validations
2081                  */
2082                 int ret = check_deadlock(curr, hlock, lock, hlock->read);
2083
2084                 if (!ret)
2085                         return 0;
2086                 /*
2087                  * Mark recursive read, as we jump over it when
2088                  * building dependencies (just like we jump over
2089                  * trylock entries):
2090                  */
2091                 if (ret == 2)
2092                         hlock->read = 2;
2093                 /*
2094                  * Add dependency only if this lock is not the head
2095                  * of the chain, and if it's not a secondary read-lock:
2096                  */
2097                 if (!chain_head && ret != 2)
2098                         if (!check_prevs_add(curr, hlock))
2099                                 return 0;
2100                 graph_unlock();
2101         } else
2102                 /* after lookup_chain_cache(): */
2103                 if (unlikely(!debug_locks))
2104                         return 0;
2105
2106         return 1;
2107 }
2108 #else
2109 static inline int validate_chain(struct task_struct *curr,
2110                 struct lockdep_map *lock, struct held_lock *hlock,
2111                 int chain_head, u64 chain_key)
2112 {
2113         return 1;
2114 }
2115 #endif
2116
2117 /*
2118  * We are building curr_chain_key incrementally, so double-check
2119  * it from scratch, to make sure that it's done correctly:
2120  */
2121 static void check_chain_key(struct task_struct *curr)
2122 {
2123 #ifdef CONFIG_DEBUG_LOCKDEP
2124         struct held_lock *hlock, *prev_hlock = NULL;
2125         unsigned int i, id;
2126         u64 chain_key = 0;
2127
2128         for (i = 0; i < curr->lockdep_depth; i++) {
2129                 hlock = curr->held_locks + i;
2130                 if (chain_key != hlock->prev_chain_key) {
2131                         debug_locks_off();
2132                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2133                                 curr->lockdep_depth, i,
2134                                 (unsigned long long)chain_key,
2135                                 (unsigned long long)hlock->prev_chain_key);
2136                         return;
2137                 }
2138                 id = hlock->class_idx - 1;
2139                 if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
2140                         return;
2141
2142                 if (prev_hlock && (prev_hlock->irq_context !=
2143                                                         hlock->irq_context))
2144                         chain_key = 0;
2145                 chain_key = iterate_chain_key(chain_key, id);
2146                 prev_hlock = hlock;
2147         }
2148         if (chain_key != curr->curr_chain_key) {
2149                 debug_locks_off();
2150                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2151                         curr->lockdep_depth, i,
2152                         (unsigned long long)chain_key,
2153                         (unsigned long long)curr->curr_chain_key);
2154         }
2155 #endif
2156 }
2157
2158 static void
2159 print_usage_bug_scenario(struct held_lock *lock)
2160 {
2161         struct lock_class *class = hlock_class(lock);
2162
2163         printk(" Possible unsafe locking scenario:\n\n");
2164         printk("       CPU0\n");
2165         printk("       ----\n");
2166         printk("  lock(");
2167         __print_lock_name(class);
2168         printk(");\n");
2169         printk("  <Interrupt>\n");
2170         printk("    lock(");
2171         __print_lock_name(class);
2172         printk(");\n");
2173         printk("\n *** DEADLOCK ***\n\n");
2174 }
2175
2176 static int
2177 print_usage_bug(struct task_struct *curr, struct held_lock *this,
2178                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2179 {
2180         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2181                 return 0;
2182
2183         printk("\n");
2184         printk("=================================\n");
2185         printk("[ INFO: inconsistent lock state ]\n");
2186         print_kernel_version();
2187         printk("---------------------------------\n");
2188
2189         printk("inconsistent {%s} -> {%s} usage.\n",
2190                 usage_str[prev_bit], usage_str[new_bit]);
2191
2192         printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2193                 curr->comm, task_pid_nr(curr),
2194                 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2195                 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2196                 trace_hardirqs_enabled(curr),
2197                 trace_softirqs_enabled(curr));
2198         print_lock(this);
2199
2200         printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2201         print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2202
2203         print_irqtrace_events(curr);
2204         printk("\nother info that might help us debug this:\n");
2205         print_usage_bug_scenario(this);
2206
2207         lockdep_print_held_locks(curr);
2208
2209         printk("\nstack backtrace:\n");
2210         dump_stack();
2211
2212         return 0;
2213 }
2214
2215 /*
2216  * Print out an error if an invalid bit is set:
2217  */
2218 static inline int
2219 valid_state(struct task_struct *curr, struct held_lock *this,
2220             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2221 {
2222         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2223                 return print_usage_bug(curr, this, bad_bit, new_bit);
2224         return 1;
2225 }
2226
2227 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2228                      enum lock_usage_bit new_bit);
2229
2230 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2231
2232 /*
2233  * print irq inversion bug:
2234  */
2235 static int
2236 print_irq_inversion_bug(struct task_struct *curr,
2237                         struct lock_list *root, struct lock_list *other,
2238                         struct held_lock *this, int forwards,
2239                         const char *irqclass)
2240 {
2241         struct lock_list *entry = other;
2242         struct lock_list *middle = NULL;
2243         int depth;
2244
2245         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2246                 return 0;
2247
2248         printk("\n");
2249         printk("=========================================================\n");
2250         printk("[ INFO: possible irq lock inversion dependency detected ]\n");
2251         print_kernel_version();
2252         printk("---------------------------------------------------------\n");
2253         printk("%s/%d just changed the state of lock:\n",
2254                 curr->comm, task_pid_nr(curr));
2255         print_lock(this);
2256         if (forwards)
2257                 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2258         else
2259                 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2260         print_lock_name(other->class);
2261         printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2262
2263         printk("\nother info that might help us debug this:\n");
2264
2265         /* Find a middle lock (if one exists) */
2266         depth = get_lock_depth(other);
2267         do {
2268                 if (depth == 0 && (entry != root)) {
2269                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2270                         break;
2271                 }
2272                 middle = entry;
2273                 entry = get_lock_parent(entry);
2274                 depth--;
2275         } while (entry && entry != root && (depth >= 0));
2276         if (forwards)
2277                 print_irq_lock_scenario(root, other,
2278                         middle ? middle->class : root->class, other->class);
2279         else
2280                 print_irq_lock_scenario(other, root,
2281                         middle ? middle->class : other->class, root->class);
2282
2283         lockdep_print_held_locks(curr);
2284
2285         printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2286         if (!save_trace(&root->trace))
2287                 return 0;
2288         print_shortest_lock_dependencies(other, root);
2289
2290         printk("\nstack backtrace:\n");
2291         dump_stack();
2292
2293         return 0;
2294 }
2295
2296 /*
2297  * Prove that in the forwards-direction subgraph starting at <this>
2298  * there is no lock matching <mask>:
2299  */
2300 static int
2301 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2302                      enum lock_usage_bit bit, const char *irqclass)
2303 {
2304         int ret;
2305         struct lock_list root;
2306         struct lock_list *uninitialized_var(target_entry);
2307
2308         root.parent = NULL;
2309         root.class = hlock_class(this);
2310         ret = find_usage_forwards(&root, bit, &target_entry);
2311         if (ret < 0)
2312                 return print_bfs_bug(ret);
2313         if (ret == 1)
2314                 return ret;
2315
2316         return print_irq_inversion_bug(curr, &root, target_entry,
2317                                         this, 1, irqclass);
2318 }
2319
2320 /*
2321  * Prove that in the backwards-direction subgraph starting at <this>
2322  * there is no lock matching <mask>:
2323  */
2324 static int
2325 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2326                       enum lock_usage_bit bit, const char *irqclass)
2327 {
2328         int ret;
2329         struct lock_list root;
2330         struct lock_list *uninitialized_var(target_entry);
2331
2332         root.parent = NULL;
2333         root.class = hlock_class(this);
2334         ret = find_usage_backwards(&root, bit, &target_entry);
2335         if (ret < 0)
2336                 return print_bfs_bug(ret);
2337         if (ret == 1)
2338                 return ret;
2339
2340         return print_irq_inversion_bug(curr, &root, target_entry,
2341                                         this, 0, irqclass);
2342 }
2343
2344 void print_irqtrace_events(struct task_struct *curr)
2345 {
2346         printk("irq event stamp: %u\n", curr->irq_events);
2347         printk("hardirqs last  enabled at (%u): ", curr->hardirq_enable_event);
2348         print_ip_sym(curr->hardirq_enable_ip);
2349         printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
2350         print_ip_sym(curr->hardirq_disable_ip);
2351         printk("softirqs last  enabled at (%u): ", curr->softirq_enable_event);
2352         print_ip_sym(curr->softirq_enable_ip);
2353         printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
2354         print_ip_sym(curr->softirq_disable_ip);
2355 }
2356
2357 static int HARDIRQ_verbose(struct lock_class *class)
2358 {
2359 #if HARDIRQ_VERBOSE
2360         return class_filter(class);
2361 #endif
2362         return 0;
2363 }
2364
2365 static int SOFTIRQ_verbose(struct lock_class *class)
2366 {
2367 #if SOFTIRQ_VERBOSE
2368         return class_filter(class);
2369 #endif
2370         return 0;
2371 }
2372
2373 static int RECLAIM_FS_verbose(struct lock_class *class)
2374 {
2375 #if RECLAIM_VERBOSE
2376         return class_filter(class);
2377 #endif
2378         return 0;
2379 }
2380
2381 #define STRICT_READ_CHECKS      1
2382
2383 static int (*state_verbose_f[])(struct lock_class *class) = {
2384 #define LOCKDEP_STATE(__STATE) \
2385         __STATE##_verbose,
2386 #include "lockdep_states.h"
2387 #undef LOCKDEP_STATE
2388 };
2389
2390 static inline int state_verbose(enum lock_usage_bit bit,
2391                                 struct lock_class *class)
2392 {
2393         return state_verbose_f[bit >> 2](class);
2394 }
2395
2396 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2397                              enum lock_usage_bit bit, const char *name);
2398
2399 static int
2400 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2401                 enum lock_usage_bit new_bit)
2402 {
2403         int excl_bit = exclusive_bit(new_bit);
2404         int read = new_bit & 1;
2405         int dir = new_bit & 2;
2406
2407         /*
2408          * mark USED_IN has to look forwards -- to ensure no dependency
2409          * has ENABLED state, which would allow recursion deadlocks.
2410          *
2411          * mark ENABLED has to look backwards -- to ensure no dependee
2412          * has USED_IN state, which, again, would allow  recursion deadlocks.
2413          */
2414         check_usage_f usage = dir ?
2415                 check_usage_backwards : check_usage_forwards;
2416
2417         /*
2418          * Validate that this particular lock does not have conflicting
2419          * usage states.
2420          */
2421         if (!valid_state(curr, this, new_bit, excl_bit))
2422                 return 0;
2423
2424         /*
2425          * Validate that the lock dependencies don't have conflicting usage
2426          * states.
2427          */
2428         if ((!read || !dir || STRICT_READ_CHECKS) &&
2429                         !usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2430                 return 0;
2431
2432         /*
2433          * Check for read in write conflicts
2434          */
2435         if (!read) {
2436                 if (!valid_state(curr, this, new_bit, excl_bit + 1))
2437                         return 0;
2438
2439                 if (STRICT_READ_CHECKS &&
2440                         !usage(curr, this, excl_bit + 1,
2441                                 state_name(new_bit + 1)))
2442                         return 0;
2443         }
2444
2445         if (state_verbose(new_bit, hlock_class(this)))
2446                 return 2;
2447
2448         return 1;
2449 }
2450
2451 enum mark_type {
2452 #define LOCKDEP_STATE(__STATE)  __STATE,
2453 #include "lockdep_states.h"
2454 #undef LOCKDEP_STATE
2455 };
2456
2457 /*
2458  * Mark all held locks with a usage bit:
2459  */
2460 static int
2461 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2462 {
2463         enum lock_usage_bit usage_bit;
2464         struct held_lock *hlock;
2465         int i;
2466
2467         for (i = 0; i < curr->lockdep_depth; i++) {
2468                 hlock = curr->held_locks + i;
2469
2470                 usage_bit = 2 + (mark << 2); /* ENABLED */
2471                 if (hlock->read)
2472                         usage_bit += 1; /* READ */
2473
2474                 BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2475
2476                 if (hlock_class(hlock)->key == __lockdep_no_validate__.subkeys)
2477                         continue;
2478
2479                 if (!mark_lock(curr, hlock, usage_bit))
2480                         return 0;
2481         }
2482
2483         return 1;
2484 }
2485
2486 /*
2487  * Hardirqs will be enabled:
2488  */
2489 static void __trace_hardirqs_on_caller(unsigned long ip)
2490 {
2491         struct task_struct *curr = current;
2492
2493         /* we'll do an OFF -> ON transition: */
2494         curr->hardirqs_enabled = 1;
2495
2496         /*
2497          * We are going to turn hardirqs on, so set the
2498          * usage bit for all held locks:
2499          */
2500         if (!mark_held_locks(curr, HARDIRQ))
2501                 return;
2502         /*
2503          * If we have softirqs enabled, then set the usage
2504          * bit for all held locks. (disabled hardirqs prevented
2505          * this bit from being set before)
2506          */
2507         if (curr->softirqs_enabled)
2508                 if (!mark_held_locks(curr, SOFTIRQ))
2509                         return;
2510
2511         curr->hardirq_enable_ip = ip;
2512         curr->hardirq_enable_event = ++curr->irq_events;
2513         debug_atomic_inc(hardirqs_on_events);
2514 }
2515
2516 void trace_hardirqs_on_caller(unsigned long ip)
2517 {
2518         time_hardirqs_on(CALLER_ADDR0, ip);
2519
2520         if (unlikely(!debug_locks || current->lockdep_recursion))
2521                 return;
2522
2523         if (unlikely(current->hardirqs_enabled)) {
2524                 /*
2525                  * Neither irq nor preemption are disabled here
2526                  * so this is racy by nature but losing one hit
2527                  * in a stat is not a big deal.
2528                  */
2529                 __debug_atomic_inc(redundant_hardirqs_on);
2530                 return;
2531         }
2532
2533         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2534                 return;
2535
2536         if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled)))
2537                 return;
2538
2539         if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2540                 return;
2541
2542         current->lockdep_recursion = 1;
2543         __trace_hardirqs_on_caller(ip);
2544         current->lockdep_recursion = 0;
2545 }
2546 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2547
2548 void trace_hardirqs_on(void)
2549 {
2550         trace_hardirqs_on_caller(CALLER_ADDR0);
2551 }
2552 EXPORT_SYMBOL(trace_hardirqs_on);
2553
2554 /*
2555  * Hardirqs were disabled:
2556  */
2557 void trace_hardirqs_off_caller(unsigned long ip)
2558 {
2559         struct task_struct *curr = current;
2560
2561         time_hardirqs_off(CALLER_ADDR0, ip);
2562
2563         if (unlikely(!debug_locks || current->lockdep_recursion))
2564                 return;
2565
2566         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2567                 return;
2568
2569         if (curr->hardirqs_enabled) {
2570                 /*
2571                  * We have done an ON -> OFF transition:
2572                  */
2573                 curr->hardirqs_enabled = 0;
2574                 curr->hardirq_disable_ip = ip;
2575                 curr->hardirq_disable_event = ++curr->irq_events;
2576                 debug_atomic_inc(hardirqs_off_events);
2577         } else
2578                 debug_atomic_inc(redundant_hardirqs_off);
2579 }
2580 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2581
2582 void trace_hardirqs_off(void)
2583 {
2584         trace_hardirqs_off_caller(CALLER_ADDR0);
2585 }
2586 EXPORT_SYMBOL(trace_hardirqs_off);
2587
2588 /*
2589  * Softirqs will be enabled:
2590  */
2591 void trace_softirqs_on(unsigned long ip)
2592 {
2593         struct task_struct *curr = current;
2594
2595         if (unlikely(!debug_locks || current->lockdep_recursion))
2596                 return;
2597
2598         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2599                 return;
2600
2601         if (curr->softirqs_enabled) {
2602                 debug_atomic_inc(redundant_softirqs_on);
2603                 return;
2604         }
2605
2606         current->lockdep_recursion = 1;
2607         /*
2608          * We'll do an OFF -> ON transition:
2609          */
2610         curr->softirqs_enabled = 1;
2611         curr->softirq_enable_ip = ip;
2612         curr->softirq_enable_event = ++curr->irq_events;
2613         debug_atomic_inc(softirqs_on_events);
2614         /*
2615          * We are going to turn softirqs on, so set the
2616          * usage bit for all held locks, if hardirqs are
2617          * enabled too:
2618          */
2619         if (curr->hardirqs_enabled)
2620                 mark_held_locks(curr, SOFTIRQ);
2621         current->lockdep_recursion = 0;
2622 }
2623
2624 /*
2625  * Softirqs were disabled:
2626  */
2627 void trace_softirqs_off(unsigned long ip)
2628 {
2629         struct task_struct *curr = current;
2630
2631         if (unlikely(!debug_locks || current->lockdep_recursion))
2632                 return;
2633
2634         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2635                 return;
2636
2637         if (curr->softirqs_enabled) {
2638                 /*
2639                  * We have done an ON -> OFF transition:
2640                  */
2641                 curr->softirqs_enabled = 0;
2642                 curr->softirq_disable_ip = ip;
2643                 curr->softirq_disable_event = ++curr->irq_events;
2644                 debug_atomic_inc(softirqs_off_events);
2645                 DEBUG_LOCKS_WARN_ON(!softirq_count());
2646         } else
2647                 debug_atomic_inc(redundant_softirqs_off);
2648 }
2649
2650 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2651 {
2652         struct task_struct *curr = current;
2653
2654         if (unlikely(!debug_locks))
2655                 return;
2656
2657         /* no reclaim without waiting on it */
2658         if (!(gfp_mask & __GFP_WAIT))
2659                 return;
2660
2661         /* this guy won't enter reclaim */
2662         if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2663                 return;
2664
2665         /* We're only interested __GFP_FS allocations for now */
2666         if (!(gfp_mask & __GFP_FS))
2667                 return;
2668
2669         if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2670                 return;
2671
2672         mark_held_locks(curr, RECLAIM_FS);
2673 }
2674
2675 static void check_flags(unsigned long flags);
2676
2677 void lockdep_trace_alloc(gfp_t gfp_mask)
2678 {
2679         unsigned long flags;
2680
2681         if (unlikely(current->lockdep_recursion))
2682                 return;
2683
2684         raw_local_irq_save(flags);
2685         check_flags(flags);
2686         current->lockdep_recursion = 1;
2687         __lockdep_trace_alloc(gfp_mask, flags);
2688         current->lockdep_recursion = 0;
2689         raw_local_irq_restore(flags);
2690 }
2691
2692 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2693 {
2694         /*
2695          * If non-trylock use in a hardirq or softirq context, then
2696          * mark the lock as used in these contexts:
2697          */
2698         if (!hlock->trylock) {
2699                 if (hlock->read) {
2700                         if (curr->hardirq_context)
2701                                 if (!mark_lock(curr, hlock,
2702                                                 LOCK_USED_IN_HARDIRQ_READ))
2703                                         return 0;
2704                         if (curr->softirq_context)
2705                                 if (!mark_lock(curr, hlock,
2706                                                 LOCK_USED_IN_SOFTIRQ_READ))
2707                                         return 0;
2708                 } else {
2709                         if (curr->hardirq_context)
2710                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2711                                         return 0;
2712                         if (curr->softirq_context)
2713                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2714                                         return 0;
2715                 }
2716         }
2717         if (!hlock->hardirqs_off) {
2718                 if (hlock->read) {
2719                         if (!mark_lock(curr, hlock,
2720                                         LOCK_ENABLED_HARDIRQ_READ))
2721                                 return 0;
2722                         if (curr->softirqs_enabled)
2723                                 if (!mark_lock(curr, hlock,
2724                                                 LOCK_ENABLED_SOFTIRQ_READ))
2725                                         return 0;
2726                 } else {
2727                         if (!mark_lock(curr, hlock,
2728                                         LOCK_ENABLED_HARDIRQ))
2729                                 return 0;
2730                         if (curr->softirqs_enabled)
2731                                 if (!mark_lock(curr, hlock,
2732                                                 LOCK_ENABLED_SOFTIRQ))
2733                                         return 0;
2734                 }
2735         }
2736
2737         /*
2738          * We reuse the irq context infrastructure more broadly as a general
2739          * context checking code. This tests GFP_FS recursion (a lock taken
2740          * during reclaim for a GFP_FS allocation is held over a GFP_FS
2741          * allocation).
2742          */
2743         if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2744                 if (hlock->read) {
2745                         if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2746                                         return 0;
2747                 } else {
2748                         if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2749                                         return 0;
2750                 }
2751         }
2752
2753         return 1;
2754 }
2755
2756 static int separate_irq_context(struct task_struct *curr,
2757                 struct held_lock *hlock)
2758 {
2759         unsigned int depth = curr->lockdep_depth;
2760
2761         /*
2762          * Keep track of points where we cross into an interrupt context:
2763          */
2764         hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) +
2765                                 curr->softirq_context;
2766         if (depth) {
2767                 struct held_lock *prev_hlock;
2768
2769                 prev_hlock = curr->held_locks + depth-1;
2770                 /*
2771                  * If we cross into another context, reset the
2772                  * hash key (this also prevents the checking and the
2773                  * adding of the dependency to 'prev'):
2774                  */
2775                 if (prev_hlock->irq_context != hlock->irq_context)
2776                         return 1;
2777         }
2778         return 0;
2779 }
2780
2781 #else
2782
2783 static inline
2784 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2785                 enum lock_usage_bit new_bit)
2786 {
2787         WARN_ON(1);
2788         return 1;
2789 }
2790
2791 static inline int mark_irqflags(struct task_struct *curr,
2792                 struct held_lock *hlock)
2793 {
2794         return 1;
2795 }
2796
2797 static inline int separate_irq_context(struct task_struct *curr,
2798                 struct held_lock *hlock)
2799 {
2800         return 0;
2801 }
2802
2803 void lockdep_trace_alloc(gfp_t gfp_mask)
2804 {
2805 }
2806
2807 #endif
2808
2809 /*
2810  * Mark a lock with a usage bit, and validate the state transition:
2811  */
2812 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2813                              enum lock_usage_bit new_bit)
2814 {
2815         unsigned int new_mask = 1 << new_bit, ret = 1;
2816
2817         /*
2818          * If already set then do not dirty the cacheline,
2819          * nor do any checks:
2820          */
2821         if (likely(hlock_class(this)->usage_mask & new_mask))
2822                 return 1;
2823
2824         if (!graph_lock())
2825                 return 0;
2826         /*
2827          * Make sure we didn't race:
2828          */
2829         if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
2830                 graph_unlock();
2831                 return 1;
2832         }
2833
2834         hlock_class(this)->usage_mask |= new_mask;
2835
2836         if (!save_trace(hlock_class(this)->usage_traces + new_bit))
2837                 return 0;
2838
2839         switch (new_bit) {
2840 #define LOCKDEP_STATE(__STATE)                  \
2841         case LOCK_USED_IN_##__STATE:            \
2842         case LOCK_USED_IN_##__STATE##_READ:     \
2843         case LOCK_ENABLED_##__STATE:            \
2844         case LOCK_ENABLED_##__STATE##_READ:
2845 #include "lockdep_states.h"
2846 #undef LOCKDEP_STATE
2847                 ret = mark_lock_irq(curr, this, new_bit);
2848                 if (!ret)
2849                         return 0;
2850                 break;
2851         case LOCK_USED:
2852                 debug_atomic_dec(nr_unused_locks);
2853                 break;
2854         default:
2855                 if (!debug_locks_off_graph_unlock())
2856                         return 0;
2857                 WARN_ON(1);
2858                 return 0;
2859         }
2860
2861         graph_unlock();
2862
2863         /*
2864          * We must printk outside of the graph_lock:
2865          */
2866         if (ret == 2) {
2867                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
2868                 print_lock(this);
2869                 print_irqtrace_events(curr);
2870                 dump_stack();
2871         }
2872
2873         return ret;
2874 }
2875
2876 /*
2877  * Initialize a lock instance's lock-class mapping info:
2878  */
2879 void lockdep_init_map(struct lockdep_map *lock, const char *name,
2880                       struct lock_class_key *key, int subclass)
2881 {
2882         memset(lock, 0, sizeof(*lock));
2883
2884 #ifdef CONFIG_LOCK_STAT
2885         lock->cpu = raw_smp_processor_id();
2886 #endif
2887
2888         if (DEBUG_LOCKS_WARN_ON(!name)) {
2889                 lock->name = "NULL";
2890                 return;
2891         }
2892
2893         lock->name = name;
2894
2895         if (DEBUG_LOCKS_WARN_ON(!key))
2896                 return;
2897         /*
2898          * Sanity check, the lock-class key must be persistent:
2899          */
2900         if (!static_obj(key)) {
2901                 printk("BUG: key %p not in .data!\n", key);
2902                 DEBUG_LOCKS_WARN_ON(1);
2903                 return;
2904         }
2905         lock->key = key;
2906
2907         if (unlikely(!debug_locks))
2908                 return;
2909
2910         if (subclass)
2911                 register_lock_class(lock, subclass, 1);
2912 }
2913 EXPORT_SYMBOL_GPL(lockdep_init_map);
2914
2915 struct lock_class_key __lockdep_no_validate__;
2916
2917 /*
2918  * This gets called for every mutex_lock*()/spin_lock*() operation.
2919  * We maintain the dependency maps and validate the locking attempt:
2920  */
2921 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2922                           int trylock, int read, int check, int hardirqs_off,
2923                           struct lockdep_map *nest_lock, unsigned long ip,
2924                           int references)
2925 {
2926         struct task_struct *curr = current;
2927         struct lock_class *class = NULL;
2928         struct held_lock *hlock;
2929         unsigned int depth, id;
2930         int chain_head = 0;
2931         int class_idx;
2932         u64 chain_key;
2933
2934         if (!prove_locking)
2935                 check = 1;
2936
2937         if (unlikely(!debug_locks))
2938                 return 0;
2939
2940         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2941                 return 0;
2942
2943         if (lock->key == &__lockdep_no_validate__)
2944                 check = 1;
2945
2946         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
2947                 class = lock->class_cache[subclass];
2948         /*
2949          * Not cached?
2950          */
2951         if (unlikely(!class)) {
2952                 class = register_lock_class(lock, subclass, 0);
2953                 if (!class)
2954                         return 0;
2955         }
2956         atomic_inc((atomic_t *)&class->ops);
2957         if (very_verbose(class)) {
2958                 printk("\nacquire class [%p] %s", class->key, class->name);
2959                 if (class->name_version > 1)
2960                         printk("#%d", class->name_version);
2961                 printk("\n");
2962                 dump_stack();
2963         }
2964
2965         /*
2966          * Add the lock to the list of currently held locks.
2967          * (we dont increase the depth just yet, up until the
2968          * dependency checks are done)
2969          */
2970         depth = curr->lockdep_depth;
2971         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2972                 return 0;
2973
2974         class_idx = class - lock_classes + 1;
2975
2976         if (depth) {
2977                 hlock = curr->held_locks + depth - 1;
2978                 if (hlock->class_idx == class_idx && nest_lock) {
2979                         if (hlock->references)
2980                                 hlock->references++;
2981                         else
2982                                 hlock->references = 2;
2983
2984                         return 1;
2985                 }
2986         }
2987
2988         hlock = curr->held_locks + depth;
2989         if (DEBUG_LOCKS_WARN_ON(!class))
2990                 return 0;
2991         hlock->class_idx = class_idx;
2992         hlock->acquire_ip = ip;
2993         hlock->instance = lock;
2994         hlock->nest_lock = nest_lock;
2995         hlock->trylock = trylock;
2996         hlock->read = read;
2997         hlock->check = check;
2998         hlock->hardirqs_off = !!hardirqs_off;
2999         hlock->references = references;
3000 #ifdef CONFIG_LOCK_STAT
3001         hlock->waittime_stamp = 0;
3002         hlock->holdtime_stamp = lockstat_clock();
3003 #endif
3004
3005         if (check == 2 && !mark_irqflags(curr, hlock))
3006                 return 0;
3007
3008         /* mark it as used: */
3009         if (!mark_lock(curr, hlock, LOCK_USED))
3010                 return 0;
3011
3012         /*
3013          * Calculate the chain hash: it's the combined hash of all the
3014          * lock keys along the dependency chain. We save the hash value
3015          * at every step so that we can get the current hash easily
3016          * after unlock. The chain hash is then used to cache dependency
3017          * results.
3018          *
3019          * The 'key ID' is what is the most compact key value to drive
3020          * the hash, not class->key.
3021          */
3022         id = class - lock_classes;
3023         if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
3024                 return 0;
3025
3026         chain_key = curr->curr_chain_key;
3027         if (!depth) {
3028                 if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
3029                         return 0;
3030                 chain_head = 1;
3031         }
3032
3033         hlock->prev_chain_key = chain_key;
3034         if (separate_irq_context(curr, hlock)) {
3035                 chain_key = 0;
3036                 chain_head = 1;
3037         }
3038         chain_key = iterate_chain_key(chain_key, id);
3039
3040         if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
3041                 return 0;
3042
3043         curr->curr_chain_key = chain_key;
3044         curr->lockdep_depth++;
3045         check_chain_key(curr);
3046 #ifdef CONFIG_DEBUG_LOCKDEP
3047         if (unlikely(!debug_locks))
3048                 return 0;
3049 #endif
3050         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3051                 debug_locks_off();
3052                 printk("BUG: MAX_LOCK_DEPTH too low!\n");
3053                 printk("turning off the locking correctness validator.\n");
3054                 dump_stack();
3055                 return 0;
3056         }
3057
3058         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3059                 max_lockdep_depth = curr->lockdep_depth;
3060
3061         return 1;
3062 }
3063
3064 static int
3065 print_unlock_inbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
3066                            unsigned long ip)
3067 {
3068         if (!debug_locks_off())
3069                 return 0;
3070         if (debug_locks_silent)
3071                 return 0;
3072
3073         printk("\n");
3074         printk("=====================================\n");
3075         printk("[ BUG: bad unlock balance detected! ]\n");
3076         printk("-------------------------------------\n");
3077         printk("%s/%d is trying to release lock (",
3078                 curr->comm, task_pid_nr(curr));
3079         print_lockdep_cache(lock);
3080         printk(") at:\n");
3081         print_ip_sym(ip);
3082         printk("but there are no more locks to release!\n");
3083         printk("\nother info that might help us debug this:\n");
3084         lockdep_print_held_locks(curr);
3085
3086         printk("\nstack backtrace:\n");
3087         dump_stack();
3088
3089         return 0;
3090 }
3091
3092 /*
3093  * Common debugging checks for both nested and non-nested unlock:
3094  */
3095 static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
3096                         unsigned long ip)
3097 {
3098         if (unlikely(!debug_locks))
3099                 return 0;
3100         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3101                 return 0;
3102
3103         if (curr->lockdep_depth <= 0)
3104                 return print_unlock_inbalance_bug(curr, lock, ip);
3105
3106         return 1;
3107 }
3108
3109 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
3110 {
3111         if (hlock->instance == lock)
3112                 return 1;
3113
3114         if (hlock->references) {
3115                 struct lock_class *class = lock->class_cache[0];
3116
3117                 if (!class)
3118                         class = look_up_lock_class(lock, 0);
3119
3120                 /*
3121                  * If look_up_lock_class() failed to find a class, we're trying
3122                  * to test if we hold a lock that has never yet been acquired.
3123                  * Clearly if the lock hasn't been acquired _ever_, we're not
3124                  * holding it either, so report failure.
3125                  */
3126                 if (!class)
3127                         return 0;
3128
3129                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3130                         return 0;
3131
3132                 if (hlock->class_idx == class - lock_classes + 1)
3133                         return 1;
3134         }
3135
3136         return 0;
3137 }
3138
3139 static int
3140 __lock_set_class(struct lockdep_map *lock, const char *name,
3141                  struct lock_class_key *key, unsigned int subclass,
3142                  unsigned long ip)
3143 {
3144         struct task_struct *curr = current;
3145         struct held_lock *hlock, *prev_hlock;
3146         struct lock_class *class;
3147         unsigned int depth;
3148         int i;
3149
3150         depth = curr->lockdep_depth;
3151         if (DEBUG_LOCKS_WARN_ON(!depth))
3152                 return 0;
3153
3154         prev_hlock = NULL;
3155         for (i = depth-1; i >= 0; i--) {
3156                 hlock = curr->held_locks + i;
3157                 /*
3158                  * We must not cross into another context:
3159                  */
3160                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3161                         break;
3162                 if (match_held_lock(hlock, lock))
3163                         goto found_it;
3164                 prev_hlock = hlock;
3165         }
3166         return print_unlock_inbalance_bug(curr, lock, ip);
3167
3168 found_it:
3169         lockdep_init_map(lock, name, key, 0);
3170         class = register_lock_class(lock, subclass, 0);
3171         hlock->class_idx = class - lock_classes + 1;
3172
3173         curr->lockdep_depth = i;
3174         curr->curr_chain_key = hlock->prev_chain_key;
3175
3176         for (; i < depth; i++) {
3177                 hlock = curr->held_locks + i;
3178                 if (!__lock_acquire(hlock->instance,
3179                         hlock_class(hlock)->subclass, hlock->trylock,
3180                                 hlock->read, hlock->check, hlock->hardirqs_off,
3181                                 hlock->nest_lock, hlock->acquire_ip,
3182                                 hlock->references))
3183                         return 0;
3184         }
3185
3186         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3187                 return 0;
3188         return 1;
3189 }
3190
3191 /*
3192  * Remove the lock to the list of currently held locks in a
3193  * potentially non-nested (out of order) manner. This is a
3194  * relatively rare operation, as all the unlock APIs default
3195  * to nested mode (which uses lock_release()):
3196  */
3197 static int
3198 lock_release_non_nested(struct task_struct *curr,
3199                         struct lockdep_map *lock, unsigned long ip)
3200 {
3201         struct held_lock *hlock, *prev_hlock;
3202         unsigned int depth;
3203         int i;
3204
3205         /*
3206          * Check whether the lock exists in the current stack
3207          * of held locks:
3208          */
3209         depth = curr->lockdep_depth;
3210         if (DEBUG_LOCKS_WARN_ON(!depth))
3211                 return 0;
3212
3213         prev_hlock = NULL;
3214         for (i = depth-1; i >= 0; i--) {
3215                 hlock = curr->held_locks + i;
3216                 /*
3217                  * We must not cross into another context:
3218                  */
3219                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3220                         break;
3221                 if (match_held_lock(hlock, lock))
3222                         goto found_it;
3223                 prev_hlock = hlock;
3224         }
3225         return print_unlock_inbalance_bug(curr, lock, ip);
3226
3227 found_it:
3228         if (hlock->instance == lock)
3229                 lock_release_holdtime(hlock);
3230
3231         if (hlock->references) {
3232                 hlock->references--;
3233                 if (hlock->references) {
3234                         /*
3235                          * We had, and after removing one, still have
3236                          * references, the current lock stack is still
3237                          * valid. We're done!
3238                          */
3239                         return 1;
3240                 }
3241         }
3242
3243         /*
3244          * We have the right lock to unlock, 'hlock' points to it.
3245          * Now we remove it from the stack, and add back the other
3246          * entries (if any), recalculating the hash along the way:
3247          */
3248
3249         curr->lockdep_depth = i;
3250         curr->curr_chain_key = hlock->prev_chain_key;
3251
3252         for (i++; i < depth; i++) {
3253                 hlock = curr->held_locks + i;
3254                 if (!__lock_acquire(hlock->instance,
3255                         hlock_class(hlock)->subclass, hlock->trylock,
3256                                 hlock->read, hlock->check, hlock->hardirqs_off,
3257                                 hlock->nest_lock, hlock->acquire_ip,
3258                                 hlock->references))
3259                         return 0;
3260         }
3261
3262         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3263                 return 0;
3264         return 1;
3265 }
3266
3267 /*
3268  * Remove the lock to the list of currently held locks - this gets
3269  * called on mutex_unlock()/spin_unlock*() (or on a failed
3270  * mutex_lock_interruptible()). This is done for unlocks that nest
3271  * perfectly. (i.e. the current top of the lock-stack is unlocked)
3272  */
3273 static int lock_release_nested(struct task_struct *curr,
3274                                struct lockdep_map *lock, unsigned long ip)
3275 {
3276         struct held_lock *hlock;
3277         unsigned int depth;
3278
3279         /*
3280          * Pop off the top of the lock stack:
3281          */
3282         depth = curr->lockdep_depth - 1;
3283         hlock = curr->held_locks + depth;
3284
3285         /*
3286          * Is the unlock non-nested:
3287          */
3288         if (hlock->instance != lock || hlock->references)
3289                 return lock_release_non_nested(curr, lock, ip);
3290         curr->lockdep_depth--;
3291
3292         if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0)))
3293                 return 0;
3294
3295         curr->curr_chain_key = hlock->prev_chain_key;
3296
3297         lock_release_holdtime(hlock);
3298
3299 #ifdef CONFIG_DEBUG_LOCKDEP
3300         hlock->prev_chain_key = 0;
3301         hlock->class_idx = 0;
3302         hlock->acquire_ip = 0;
3303         hlock->irq_context = 0;
3304 #endif
3305         return 1;
3306 }
3307
3308 /*
3309  * Remove the lock to the list of currently held locks - this gets
3310  * called on mutex_unlock()/spin_unlock*() (or on a failed
3311  * mutex_lock_interruptible()). This is done for unlocks that nest
3312  * perfectly. (i.e. the current top of the lock-stack is unlocked)
3313  */
3314 static void
3315 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3316 {
3317         struct task_struct *curr = current;
3318
3319         if (!check_unlock(curr, lock, ip))
3320                 return;
3321
3322         if (nested) {
3323                 if (!lock_release_nested(curr, lock, ip))
3324                         return;
3325         } else {
3326                 if (!lock_release_non_nested(curr, lock, ip))
3327                         return;
3328         }
3329
3330         check_chain_key(curr);
3331 }
3332
3333 static int __lock_is_held(struct lockdep_map *lock)
3334 {
3335         struct task_struct *curr = current;
3336         int i;
3337
3338         for (i = 0; i < curr->lockdep_depth; i++) {
3339                 struct held_lock *hlock = curr->held_locks + i;
3340
3341                 if (match_held_lock(hlock, lock))
3342                         return 1;
3343         }
3344
3345         return 0;
3346 }
3347
3348 /*
3349  * Check whether we follow the irq-flags state precisely:
3350  */
3351 static void check_flags(unsigned long flags)
3352 {
3353 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3354     defined(CONFIG_TRACE_IRQFLAGS)
3355         if (!debug_locks)
3356                 return;
3357
3358         if (irqs_disabled_flags(flags)) {
3359                 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3360                         printk("possible reason: unannotated irqs-off.\n");
3361                 }
3362         } else {
3363                 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3364                         printk("possible reason: unannotated irqs-on.\n");
3365                 }
3366         }
3367
3368         /*
3369          * We dont accurately track softirq state in e.g.
3370          * hardirq contexts (such as on 4KSTACKS), so only
3371          * check if not in hardirq contexts:
3372          */
3373         if (!hardirq_count()) {
3374                 if (softirq_count())
3375                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3376                 else
3377                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3378         }
3379
3380         if (!debug_locks)
3381                 print_irqtrace_events(current);
3382 #endif
3383 }
3384
3385 void lock_set_class(struct lockdep_map *lock, const char *name,
3386                     struct lock_class_key *key, unsigned int subclass,
3387                     unsigned long ip)
3388 {
3389         unsigned long flags;
3390
3391         if (unlikely(current->lockdep_recursion))
3392                 return;
3393
3394         raw_local_irq_save(flags);
3395         current->lockdep_recursion = 1;
3396         check_flags(flags);
3397         if (__lock_set_class(lock, name, key, subclass, ip))
3398                 check_chain_key(current);
3399         current->lockdep_recursion = 0;
3400         raw_local_irq_restore(flags);
3401 }
3402 EXPORT_SYMBOL_GPL(lock_set_class);
3403
3404 /*
3405  * We are not always called with irqs disabled - do that here,
3406  * and also avoid lockdep recursion:
3407  */
3408 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3409                           int trylock, int read, int check,
3410                           struct lockdep_map *nest_lock, unsigned long ip)
3411 {
3412         unsigned long flags;
3413
3414         if (unlikely(current->lockdep_recursion))
3415                 return;
3416
3417         raw_local_irq_save(flags);
3418         check_flags(flags);
3419
3420         current->lockdep_recursion = 1;
3421         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3422         __lock_acquire(lock, subclass, trylock, read, check,
3423                        irqs_disabled_flags(flags), nest_lock, ip, 0);
3424         current->lockdep_recursion = 0;
3425         raw_local_irq_restore(flags);
3426 }
3427 EXPORT_SYMBOL_GPL(lock_acquire);
3428
3429 void lock_release(struct lockdep_map *lock, int nested,
3430                           unsigned long ip)
3431 {
3432         unsigned long flags;
3433
3434         if (unlikely(current->lockdep_recursion))
3435                 return;
3436
3437         raw_local_irq_save(flags);
3438         check_flags(flags);
3439         current->lockdep_recursion = 1;
3440         trace_lock_release(lock, ip);
3441         __lock_release(lock, nested, ip);
3442         current->lockdep_recursion = 0;
3443         raw_local_irq_restore(flags);
3444 }
3445 EXPORT_SYMBOL_GPL(lock_release);
3446
3447 int lock_is_held(struct lockdep_map *lock)
3448 {
3449         unsigned long flags;
3450         int ret = 0;
3451
3452         if (unlikely(current->lockdep_recursion))
3453                 return 1; /* avoid false negative lockdep_assert_held() */
3454
3455         raw_local_irq_save(flags);
3456         check_flags(flags);
3457
3458         current->lockdep_recursion = 1;
3459         ret = __lock_is_held(lock);
3460         current->lockdep_recursion = 0;
3461         raw_local_irq_restore(flags);
3462
3463         return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(lock_is_held);
3466
3467 void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3468 {
3469         current->lockdep_reclaim_gfp = gfp_mask;
3470 }
3471
3472 void lockdep_clear_current_reclaim_state(void)
3473 {
3474         current->lockdep_reclaim_gfp = 0;
3475 }
3476
3477 #ifdef CONFIG_LOCK_STAT
3478 static int
3479 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3480                            unsigned long ip)
3481 {
3482         if (!debug_locks_off())
3483                 return 0;
3484         if (debug_locks_silent)
3485                 return 0;
3486
3487         printk("\n");
3488         printk("=================================\n");
3489         printk("[ BUG: bad contention detected! ]\n");
3490         printk("---------------------------------\n");
3491         printk("%s/%d is trying to contend lock (",
3492                 curr->comm, task_pid_nr(curr));
3493         print_lockdep_cache(lock);
3494         printk(") at:\n");
3495         print_ip_sym(ip);
3496         printk("but there are no locks held!\n");
3497         printk("\nother info that might help us debug this:\n");
3498         lockdep_print_held_locks(curr);
3499
3500         printk("\nstack backtrace:\n");
3501         dump_stack();
3502
3503         return 0;
3504 }
3505
3506 static void
3507 __lock_contended(struct lockdep_map *lock, unsigned long ip)
3508 {
3509         struct task_struct *curr = current;
3510         struct held_lock *hlock, *prev_hlock;
3511         struct lock_class_stats *stats;
3512         unsigned int depth;
3513         int i, contention_point, contending_point;
3514
3515         depth = curr->lockdep_depth;
3516         if (DEBUG_LOCKS_WARN_ON(!depth))
3517                 return;
3518
3519         prev_hlock = NULL;
3520         for (i = depth-1; i >= 0; i--) {
3521                 hlock = curr->held_locks + i;
3522                 /*
3523                  * We must not cross into another context:
3524                  */
3525                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3526                         break;
3527                 if (match_held_lock(hlock, lock))
3528                         goto found_it;
3529                 prev_hlock = hlock;
3530         }
3531         print_lock_contention_bug(curr, lock, ip);
3532         return;
3533
3534 found_it:
3535         if (hlock->instance != lock)
3536                 return;
3537
3538         hlock->waittime_stamp = lockstat_clock();
3539
3540         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3541         contending_point = lock_point(hlock_class(hlock)->contending_point,
3542                                       lock->ip);
3543
3544         stats = get_lock_stats(hlock_class(hlock));
3545         if (contention_point < LOCKSTAT_POINTS)
3546                 stats->contention_point[contention_point]++;
3547         if (contending_point < LOCKSTAT_POINTS)
3548                 stats->contending_point[contending_point]++;
3549         if (lock->cpu != smp_processor_id())
3550                 stats->bounces[bounce_contended + !!hlock->read]++;
3551         put_lock_stats(stats);
3552 }
3553
3554 static void
3555 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3556 {
3557         struct task_struct *curr = current;
3558         struct held_lock *hlock, *prev_hlock;
3559         struct lock_class_stats *stats;
3560         unsigned int depth;
3561         u64 now, waittime = 0;
3562         int i, cpu;
3563
3564         depth = curr->lockdep_depth;
3565         if (DEBUG_LOCKS_WARN_ON(!depth))
3566                 return;
3567
3568         prev_hlock = NULL;
3569         for (i = depth-1; i >= 0; i--) {
3570                 hlock = curr->held_locks + i;
3571                 /*
3572                  * We must not cross into another context:
3573                  */
3574                 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3575                         break;
3576                 if (match_held_lock(hlock, lock))
3577                         goto found_it;
3578                 prev_hlock = hlock;
3579         }
3580         print_lock_contention_bug(curr, lock, _RET_IP_);
3581         return;
3582
3583 found_it:
3584         if (hlock->instance != lock)
3585                 return;
3586
3587         cpu = smp_processor_id();
3588         if (hlock->waittime_stamp) {
3589                 now = lockstat_clock();
3590                 waittime = now - hlock->waittime_stamp;
3591                 hlock->holdtime_stamp = now;
3592         }
3593
3594         trace_lock_acquired(lock, ip);
3595
3596         stats = get_lock_stats(hlock_class(hlock));
3597         if (waittime) {
3598                 if (hlock->read)
3599                         lock_time_inc(&stats->read_waittime, waittime);
3600                 else
3601                         lock_time_inc(&stats->write_waittime, waittime);
3602         }
3603         if (lock->cpu != cpu)
3604                 stats->bounces[bounce_acquired + !!hlock->read]++;
3605         put_lock_stats(stats);
3606
3607         lock->cpu = cpu;
3608         lock->ip = ip;
3609 }
3610
3611 void lock_contended(struct lockdep_map *lock, unsigned long ip)
3612 {
3613         unsigned long flags;
3614
3615         if (unlikely(!lock_stat))
3616                 return;
3617
3618         if (unlikely(current->lockdep_recursion))
3619                 return;
3620
3621         raw_local_irq_save(flags);
3622         check_flags(flags);
3623         current->lockdep_recursion = 1;
3624         trace_lock_contended(lock, ip);
3625         __lock_contended(lock, ip);
3626         current->lockdep_recursion = 0;
3627         raw_local_irq_restore(flags);
3628 }
3629 EXPORT_SYMBOL_GPL(lock_contended);
3630
3631 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
3632 {
3633         unsigned long flags;
3634
3635         if (unlikely(!lock_stat))
3636                 return;
3637
3638         if (unlikely(current->lockdep_recursion))
3639                 return;
3640
3641         raw_local_irq_save(flags);
3642         check_flags(flags);
3643         current->lockdep_recursion = 1;
3644         __lock_acquired(lock, ip);
3645         current->lockdep_recursion = 0;
3646         raw_local_irq_restore(flags);
3647 }
3648 EXPORT_SYMBOL_GPL(lock_acquired);
3649 #endif
3650
3651 /*
3652  * Used by the testsuite, sanitize the validator state
3653  * after a simulated failure:
3654  */
3655
3656 void lockdep_reset(void)
3657 {
3658         unsigned long flags;
3659         int i;
3660
3661         raw_local_irq_save(flags);
3662         current->curr_chain_key = 0;
3663         current->lockdep_depth = 0;
3664         current->lockdep_recursion = 0;
3665         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
3666         nr_hardirq_chains = 0;
3667         nr_softirq_chains = 0;
3668         nr_process_chains = 0;
3669         debug_locks = 1;
3670         for (i = 0; i < CHAINHASH_SIZE; i++)
3671                 INIT_LIST_HEAD(chainhash_table + i);
3672         raw_local_irq_restore(flags);
3673 }
3674
3675 static void zap_class(struct lock_class *class)
3676 {
3677         int i;
3678
3679         /*
3680          * Remove all dependencies this lock is
3681          * involved in:
3682          */
3683         for (i = 0; i < nr_list_entries; i++) {
3684                 if (list_entries[i].class == class)
3685                         list_del_rcu(&list_entries[i].entry);
3686         }
3687         /*
3688          * Unhash the class and remove it from the all_lock_classes list:
3689          */
3690         list_del_rcu(&class->hash_entry);
3691         list_del_rcu(&class->lock_entry);
3692
3693         class->key = NULL;
3694 }
3695
3696 static inline int within(const void *addr, void *start, unsigned long size)
3697 {
3698         return addr >= start && addr < start + size;
3699 }
3700
3701 void lockdep_free_key_range(void *start, unsigned long size)
3702 {
3703         struct lock_class *class, *next;
3704         struct list_head *head;
3705         unsigned long flags;
3706         int i;
3707         int locked;
3708
3709         raw_local_irq_save(flags);
3710         locked = graph_lock();
3711
3712         /*
3713          * Unhash all classes that were created by this module:
3714          */
3715         for (i = 0; i < CLASSHASH_SIZE; i++) {
3716                 head = classhash_table + i;
3717                 if (list_empty(head))
3718                         continue;
3719                 list_for_each_entry_safe(class, next, head, hash_entry) {
3720                         if (within(class->key, start, size))
3721                                 zap_class(class);
3722                         else if (within(class->name, start, size))
3723                                 zap_class(class);
3724                 }
3725         }
3726
3727         if (locked)
3728                 graph_unlock();
3729         raw_local_irq_restore(flags);
3730 }
3731
3732 void lockdep_reset_lock(struct lockdep_map *lock)
3733 {
3734         struct lock_class *class, *next;
3735         struct list_head *head;
3736         unsigned long flags;
3737         int i, j;
3738         int locked;
3739
3740         raw_local_irq_save(flags);
3741
3742         /*
3743          * Remove all classes this lock might have:
3744          */
3745         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
3746                 /*
3747                  * If the class exists we look it up and zap it:
3748                  */
3749                 class = look_up_lock_class(lock, j);
3750                 if (class)
3751                         zap_class(class);
3752         }
3753         /*
3754          * Debug check: in the end all mapped classes should
3755          * be gone.
3756          */
3757         locked = graph_lock();
3758         for (i = 0; i < CLASSHASH_SIZE; i++) {
3759                 head = classhash_table + i;
3760                 if (list_empty(head))
3761                         continue;
3762                 list_for_each_entry_safe(class, next, head, hash_entry) {
3763                         int match = 0;
3764
3765                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
3766                                 match |= class == lock->class_cache[j];
3767
3768                         if (unlikely(match)) {
3769                                 if (debug_locks_off_graph_unlock())
3770                                         WARN_ON(1);
3771                                 goto out_restore;
3772                         }
3773                 }
3774         }
3775         if (locked)
3776                 graph_unlock();
3777
3778 out_restore:
3779         raw_local_irq_restore(flags);
3780 }
3781
3782 void lockdep_init(void)
3783 {
3784         int i;
3785
3786         /*
3787          * Some architectures have their own start_kernel()
3788          * code which calls lockdep_init(), while we also
3789          * call lockdep_init() from the start_kernel() itself,
3790          * and we want to initialize the hashes only once:
3791          */
3792         if (lockdep_initialized)
3793                 return;
3794
3795         for (i = 0; i < CLASSHASH_SIZE; i++)
3796                 INIT_LIST_HEAD(classhash_table + i);
3797
3798         for (i = 0; i < CHAINHASH_SIZE; i++)
3799                 INIT_LIST_HEAD(chainhash_table + i);
3800
3801         lockdep_initialized = 1;
3802 }
3803
3804 void __init lockdep_info(void)
3805 {
3806         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
3807
3808         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
3809         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
3810         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
3811         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
3812         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
3813         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
3814         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
3815
3816         printk(" memory used by lock dependency info: %lu kB\n",
3817                 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
3818                 sizeof(struct list_head) * CLASSHASH_SIZE +
3819                 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3820                 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3821                 sizeof(struct list_head) * CHAINHASH_SIZE
3822 #ifdef CONFIG_PROVE_LOCKING
3823                 + sizeof(struct circular_queue)
3824 #endif
3825                 ) / 1024
3826                 );
3827
3828         printk(" per task-struct memory footprint: %lu bytes\n",
3829                 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
3830
3831 #ifdef CONFIG_DEBUG_LOCKDEP
3832         if (lockdep_init_error) {
3833                 printk("WARNING: lockdep init error! Arch code didn't call lockdep_init() early enough?\n");
3834                 printk("Call stack leading to lockdep invocation was:\n");
3835                 print_stack_trace(&lockdep_init_trace, 0);
3836         }
3837 #endif
3838 }
3839
3840 static void
3841 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
3842                      const void *mem_to, struct held_lock *hlock)
3843 {
3844         if (!debug_locks_off())
3845                 return;
3846         if (debug_locks_silent)
3847                 return;
3848
3849         printk("\n");
3850         printk("=========================\n");
3851         printk("[ BUG: held lock freed! ]\n");
3852         printk("-------------------------\n");
3853         printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
3854                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
3855         print_lock(hlock);
3856         lockdep_print_held_locks(curr);
3857
3858         printk("\nstack backtrace:\n");
3859         dump_stack();
3860 }
3861
3862 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
3863                                 const void* lock_from, unsigned long lock_len)
3864 {
3865         return lock_from + lock_len <= mem_from ||
3866                 mem_from + mem_len <= lock_from;
3867 }
3868
3869 /*
3870  * Called when kernel memory is freed (or unmapped), or if a lock
3871  * is destroyed or reinitialized - this code checks whether there is
3872  * any held lock in the memory range of <from> to <to>:
3873  */
3874 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
3875 {
3876         struct task_struct *curr = current;
3877         struct held_lock *hlock;
3878         unsigned long flags;
3879         int i;
3880
3881         if (unlikely(!debug_locks))
3882                 return;
3883
3884         local_irq_save(flags);
3885         for (i = 0; i < curr->lockdep_depth; i++) {
3886                 hlock = curr->held_locks + i;
3887
3888                 if (not_in_range(mem_from, mem_len, hlock->instance,
3889                                         sizeof(*hlock->instance)))
3890                         continue;
3891
3892                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
3893                 break;
3894         }
3895         local_irq_restore(flags);
3896 }
3897 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
3898
3899 static void print_held_locks_bug(struct task_struct *curr)
3900 {
3901         if (!debug_locks_off())
3902                 return;
3903         if (debug_locks_silent)
3904                 return;
3905
3906         printk("\n");
3907         printk("=====================================\n");
3908         printk("[ BUG: lock held at task exit time! ]\n");
3909         printk("-------------------------------------\n");
3910         printk("%s/%d is exiting with locks still held!\n",
3911                 curr->comm, task_pid_nr(curr));
3912         lockdep_print_held_locks(curr);
3913
3914         printk("\nstack backtrace:\n");
3915         dump_stack();
3916 }
3917
3918 void debug_check_no_locks_held(struct task_struct *task)
3919 {
3920         if (unlikely(task->lockdep_depth > 0))
3921                 print_held_locks_bug(task);
3922 }
3923
3924 void debug_show_all_locks(void)
3925 {
3926         struct task_struct *g, *p;
3927         int count = 10;
3928         int unlock = 1;
3929
3930         if (unlikely(!debug_locks)) {
3931                 printk("INFO: lockdep is turned off.\n");
3932                 return;
3933         }
3934         printk("\nShowing all locks held in the system:\n");
3935
3936         /*
3937          * Here we try to get the tasklist_lock as hard as possible,
3938          * if not successful after 2 seconds we ignore it (but keep
3939          * trying). This is to enable a debug printout even if a
3940          * tasklist_lock-holding task deadlocks or crashes.
3941          */
3942 retry:
3943         if (!read_trylock(&tasklist_lock)) {
3944                 if (count == 10)
3945                         printk("hm, tasklist_lock locked, retrying... ");
3946                 if (count) {
3947                         count--;
3948                         printk(" #%d", 10-count);
3949                         mdelay(200);
3950                         goto retry;
3951                 }
3952                 printk(" ignoring it.\n");
3953                 unlock = 0;
3954         } else {
3955                 if (count != 10)
3956                         printk(KERN_CONT " locked it.\n");
3957         }
3958
3959         do_each_thread(g, p) {
3960                 /*
3961                  * It's not reliable to print a task's held locks
3962                  * if it's not sleeping (or if it's not the current
3963                  * task):
3964                  */
3965                 if (p->state == TASK_RUNNING && p != current)
3966                         continue;
3967                 if (p->lockdep_depth)
3968                         lockdep_print_held_locks(p);
3969                 if (!unlock)
3970                         if (read_trylock(&tasklist_lock))
3971                                 unlock = 1;
3972         } while_each_thread(g, p);
3973
3974         printk("\n");
3975         printk("=============================================\n\n");
3976
3977         if (unlock)
3978                 read_unlock(&tasklist_lock);
3979 }
3980 EXPORT_SYMBOL_GPL(debug_show_all_locks);
3981
3982 /*
3983  * Careful: only use this function if you are sure that
3984  * the task cannot run in parallel!
3985  */
3986 void debug_show_held_locks(struct task_struct *task)
3987 {
3988         if (unlikely(!debug_locks)) {
3989                 printk("INFO: lockdep is turned off.\n");
3990                 return;
3991         }
3992         lockdep_print_held_locks(task);
3993 }
3994 EXPORT_SYMBOL_GPL(debug_show_held_locks);
3995
3996 void lockdep_sys_exit(void)
3997 {
3998         struct task_struct *curr = current;
3999
4000         if (unlikely(curr->lockdep_depth)) {
4001                 if (!debug_locks_off())
4002                         return;
4003                 printk("\n");
4004                 printk("================================================\n");
4005                 printk("[ BUG: lock held when returning to user space! ]\n");
4006                 printk("------------------------------------------------\n");
4007                 printk("%s/%d is leaving the kernel with locks still held!\n",
4008                                 curr->comm, curr->pid);
4009                 lockdep_print_held_locks(curr);
4010         }
4011 }
4012
4013 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
4014 {
4015         struct task_struct *curr = current;
4016
4017 #ifndef CONFIG_PROVE_RCU_REPEATEDLY
4018         if (!debug_locks_off())
4019                 return;
4020 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */
4021         /* Note: the following can be executed concurrently, so be careful. */
4022         printk("\n");
4023         printk("===============================\n");
4024         printk("[ INFO: suspicious RCU usage. ]\n");
4025         printk("-------------------------------\n");
4026         printk("%s:%d %s!\n", file, line, s);
4027         printk("\nother info that might help us debug this:\n\n");
4028         printk("\nrcu_scheduler_active = %d, debug_locks = %d\n", rcu_scheduler_active, debug_locks);
4029         lockdep_print_held_locks(curr);
4030         printk("\nstack backtrace:\n");
4031         dump_stack();
4032 }
4033 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);