2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 * started by Ingo Molnar and Thomas Gleixner.
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
11 * See Documentation/rt-mutex-design.txt for details.
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
20 #include "rtmutex_common.h"
23 * lock->owner state tracking:
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
52 unsigned long val = (unsigned long)owner;
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
57 lock->owner = (struct task_struct *)val;
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
87 # define rt_mutex_cmpxchg(l,c,n) (0)
88 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
90 lock->owner = (struct task_struct *)
91 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
96 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
97 struct rt_mutex_waiter *right)
99 if (left->prio < right->prio)
103 * If both waiters have dl_prio(), we check the deadlines of the
105 * If left waiter has a dl_prio(), and we didn't return 1 above,
106 * then right waiter has a dl_prio() too.
108 if (dl_prio(left->prio))
109 return (left->task->dl.deadline < right->task->dl.deadline);
115 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
117 struct rb_node **link = &lock->waiters.rb_node;
118 struct rb_node *parent = NULL;
119 struct rt_mutex_waiter *entry;
124 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
125 if (rt_mutex_waiter_less(waiter, entry)) {
126 link = &parent->rb_left;
128 link = &parent->rb_right;
134 lock->waiters_leftmost = &waiter->tree_entry;
136 rb_link_node(&waiter->tree_entry, parent, link);
137 rb_insert_color(&waiter->tree_entry, &lock->waiters);
141 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
143 if (RB_EMPTY_NODE(&waiter->tree_entry))
146 if (lock->waiters_leftmost == &waiter->tree_entry)
147 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
149 rb_erase(&waiter->tree_entry, &lock->waiters);
150 RB_CLEAR_NODE(&waiter->tree_entry);
154 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
156 struct rb_node **link = &task->pi_waiters.rb_node;
157 struct rb_node *parent = NULL;
158 struct rt_mutex_waiter *entry;
163 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
164 if (rt_mutex_waiter_less(waiter, entry)) {
165 link = &parent->rb_left;
167 link = &parent->rb_right;
173 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
175 rb_link_node(&waiter->pi_tree_entry, parent, link);
176 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
180 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
182 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
185 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
186 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
188 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
189 RB_CLEAR_NODE(&waiter->pi_tree_entry);
193 * Calculate task priority from the waiter tree priority
195 * Return task->normal_prio when the waiter tree is empty or when
196 * the waiter is not allowed to do priority boosting
198 int rt_mutex_getprio(struct task_struct *task)
200 if (likely(!task_has_pi_waiters(task)))
201 return task->normal_prio;
203 return min(task_top_pi_waiter(task)->prio,
207 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
209 if (likely(!task_has_pi_waiters(task)))
212 return task_top_pi_waiter(task)->task;
216 * Called by sched_setscheduler() to check whether the priority change
217 * is overruled by a possible priority boosting.
219 int rt_mutex_check_prio(struct task_struct *task, int newprio)
221 if (!task_has_pi_waiters(task))
224 return task_top_pi_waiter(task)->task->prio <= newprio;
228 * Adjust the priority of a task, after its pi_waiters got modified.
230 * This can be both boosting and unboosting. task->pi_lock must be held.
232 static void __rt_mutex_adjust_prio(struct task_struct *task)
234 int prio = rt_mutex_getprio(task);
236 if (task->prio != prio || dl_prio(prio))
237 rt_mutex_setprio(task, prio);
241 * Adjust task priority (undo boosting). Called from the exit path of
242 * rt_mutex_slowunlock() and rt_mutex_slowlock().
244 * (Note: We do this outside of the protection of lock->wait_lock to
245 * allow the lock to be taken while or before we readjust the priority
246 * of task. We do not use the spin_xx_mutex() variants here as we are
247 * outside of the debug path.)
249 static void rt_mutex_adjust_prio(struct task_struct *task)
253 raw_spin_lock_irqsave(&task->pi_lock, flags);
254 __rt_mutex_adjust_prio(task);
255 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
259 * Max number of times we'll walk the boosting chain:
261 int max_lock_depth = 1024;
264 * Adjust the priority chain. Also used for deadlock detection.
265 * Decreases task's usage by one - may thus free the task.
267 * @task: the task owning the mutex (owner) for which a chain walk is probably
269 * @deadlock_detect: do we have to carry out deadlock detection?
270 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
271 * things for a task that has just got its priority adjusted, and
272 * is waiting on a mutex)
273 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
274 * its priority to the mutex owner (can be NULL in the case
275 * depicted above or if the top waiter is gone away and we are
276 * actually deboosting the owner)
277 * @top_task: the current top waiter
279 * Returns 0 or -EDEADLK.
281 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
283 struct rt_mutex *orig_lock,
284 struct rt_mutex_waiter *orig_waiter,
285 struct task_struct *top_task)
287 struct rt_mutex *lock;
288 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
289 int detect_deadlock, ret = 0, depth = 0;
292 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
296 * The (de)boosting is a step by step approach with a lot of
297 * pitfalls. We want this to be preemptible and we want hold a
298 * maximum of two locks per step. So we have to check
299 * carefully whether things change under us.
302 if (++depth > max_lock_depth) {
306 * Print this only once. If the admin changes the limit,
307 * print a new message when reaching the limit again.
309 if (prev_max != max_lock_depth) {
310 prev_max = max_lock_depth;
311 printk(KERN_WARNING "Maximum lock depth %d reached "
312 "task: %s (%d)\n", max_lock_depth,
313 top_task->comm, task_pid_nr(top_task));
315 put_task_struct(task);
317 return deadlock_detect ? -EDEADLK : 0;
321 * Task can not go away as we did a get_task() before !
323 raw_spin_lock_irqsave(&task->pi_lock, flags);
325 waiter = task->pi_blocked_on;
327 * Check whether the end of the boosting chain has been
328 * reached or the state of the chain has changed while we
335 * Check the orig_waiter state. After we dropped the locks,
336 * the previous owner of the lock might have released the lock.
338 if (orig_waiter && !rt_mutex_owner(orig_lock))
342 * Drop out, when the task has no waiters. Note,
343 * top_waiter can be NULL, when we are in the deboosting
347 if (!task_has_pi_waiters(task))
350 * If deadlock detection is off, we stop here if we
351 * are not the top pi waiter of the task.
353 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
358 * When deadlock detection is off then we check, if further
359 * priority adjustment is necessary.
361 if (!detect_deadlock && waiter->prio == task->prio)
365 if (!raw_spin_trylock(&lock->wait_lock)) {
366 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
372 * Deadlock detection. If the lock is the same as the original
373 * lock which caused us to walk the lock chain or if the
374 * current lock is owned by the task which initiated the chain
375 * walk, we detected a deadlock.
377 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
378 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
379 raw_spin_unlock(&lock->wait_lock);
380 ret = deadlock_detect ? -EDEADLK : 0;
384 top_waiter = rt_mutex_top_waiter(lock);
386 /* Requeue the waiter */
387 rt_mutex_dequeue(lock, waiter);
388 waiter->prio = task->prio;
389 rt_mutex_enqueue(lock, waiter);
391 /* Release the task */
392 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
393 if (!rt_mutex_owner(lock)) {
395 * If the requeue above changed the top waiter, then we need
396 * to wake the new top waiter up to try to get the lock.
399 if (top_waiter != rt_mutex_top_waiter(lock))
400 wake_up_process(rt_mutex_top_waiter(lock)->task);
401 raw_spin_unlock(&lock->wait_lock);
404 put_task_struct(task);
406 /* Grab the next task */
407 task = rt_mutex_owner(lock);
408 get_task_struct(task);
409 raw_spin_lock_irqsave(&task->pi_lock, flags);
411 if (waiter == rt_mutex_top_waiter(lock)) {
412 /* Boost the owner */
413 rt_mutex_dequeue_pi(task, top_waiter);
414 rt_mutex_enqueue_pi(task, waiter);
415 __rt_mutex_adjust_prio(task);
417 } else if (top_waiter == waiter) {
418 /* Deboost the owner */
419 rt_mutex_dequeue_pi(task, waiter);
420 waiter = rt_mutex_top_waiter(lock);
421 rt_mutex_enqueue_pi(task, waiter);
422 __rt_mutex_adjust_prio(task);
425 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
427 top_waiter = rt_mutex_top_waiter(lock);
428 raw_spin_unlock(&lock->wait_lock);
430 if (!detect_deadlock && waiter != top_waiter)
436 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
438 put_task_struct(task);
444 * Try to take an rt-mutex
446 * Must be called with lock->wait_lock held.
448 * @lock: the lock to be acquired.
449 * @task: the task which wants to acquire the lock
450 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
452 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
453 struct rt_mutex_waiter *waiter)
456 * We have to be careful here if the atomic speedups are
457 * enabled, such that, when
458 * - no other waiter is on the lock
459 * - the lock has been released since we did the cmpxchg
460 * the lock can be released or taken while we are doing the
461 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
463 * The atomic acquire/release aware variant of
464 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
465 * the WAITERS bit, the atomic release / acquire can not
466 * happen anymore and lock->wait_lock protects us from the
469 * Note, that this might set lock->owner =
470 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
471 * any more. This is fixed up when we take the ownership.
472 * This is the transitional state explained at the top of this file.
474 mark_rt_mutex_waiters(lock);
476 if (rt_mutex_owner(lock))
480 * It will get the lock because of one of these conditions:
481 * 1) there is no waiter
482 * 2) higher priority than waiters
483 * 3) it is top waiter
485 if (rt_mutex_has_waiters(lock)) {
486 if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
487 if (!waiter || waiter != rt_mutex_top_waiter(lock))
492 if (waiter || rt_mutex_has_waiters(lock)) {
494 struct rt_mutex_waiter *top;
496 raw_spin_lock_irqsave(&task->pi_lock, flags);
498 /* remove the queued waiter. */
500 rt_mutex_dequeue(lock, waiter);
501 task->pi_blocked_on = NULL;
505 * We have to enqueue the top waiter(if it exists) into
506 * task->pi_waiters list.
508 if (rt_mutex_has_waiters(lock)) {
509 top = rt_mutex_top_waiter(lock);
510 rt_mutex_enqueue_pi(task, top);
512 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
515 /* We got the lock. */
516 debug_rt_mutex_lock(lock);
518 rt_mutex_set_owner(lock, task);
520 rt_mutex_deadlock_account_lock(lock, task);
526 * Task blocks on lock.
528 * Prepare waiter and propagate pi chain
530 * This must be called with lock->wait_lock held.
532 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
533 struct rt_mutex_waiter *waiter,
534 struct task_struct *task,
537 struct task_struct *owner = rt_mutex_owner(lock);
538 struct rt_mutex_waiter *top_waiter = waiter;
540 int chain_walk = 0, res;
543 * Early deadlock detection. We really don't want the task to
544 * enqueue on itself just to untangle the mess later. It's not
545 * only an optimization. We drop the locks, so another waiter
546 * can come in before the chain walk detects the deadlock. So
547 * the other will detect the deadlock and return -EDEADLOCK,
548 * which is wrong, as the other waiter is not in a deadlock
551 if (detect_deadlock && owner == task)
554 raw_spin_lock_irqsave(&task->pi_lock, flags);
555 __rt_mutex_adjust_prio(task);
558 waiter->prio = task->prio;
560 /* Get the top priority waiter on the lock */
561 if (rt_mutex_has_waiters(lock))
562 top_waiter = rt_mutex_top_waiter(lock);
563 rt_mutex_enqueue(lock, waiter);
565 task->pi_blocked_on = waiter;
567 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
572 if (waiter == rt_mutex_top_waiter(lock)) {
573 raw_spin_lock_irqsave(&owner->pi_lock, flags);
574 rt_mutex_dequeue_pi(owner, top_waiter);
575 rt_mutex_enqueue_pi(owner, waiter);
577 __rt_mutex_adjust_prio(owner);
578 if (owner->pi_blocked_on)
580 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
582 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
589 * The owner can't disappear while holding a lock,
590 * so the owner struct is protected by wait_lock.
591 * Gets dropped in rt_mutex_adjust_prio_chain()!
593 get_task_struct(owner);
595 raw_spin_unlock(&lock->wait_lock);
597 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
600 raw_spin_lock(&lock->wait_lock);
606 * Wake up the next waiter on the lock.
608 * Remove the top waiter from the current tasks waiter list and wake it up.
610 * Called with lock->wait_lock held.
612 static void wakeup_next_waiter(struct rt_mutex *lock)
614 struct rt_mutex_waiter *waiter;
617 raw_spin_lock_irqsave(¤t->pi_lock, flags);
619 waiter = rt_mutex_top_waiter(lock);
622 * Remove it from current->pi_waiters. We do not adjust a
623 * possible priority boost right now. We execute wakeup in the
624 * boosted mode and go back to normal after releasing
627 rt_mutex_dequeue_pi(current, waiter);
629 rt_mutex_set_owner(lock, NULL);
631 raw_spin_unlock_irqrestore(¤t->pi_lock, flags);
633 wake_up_process(waiter->task);
637 * Remove a waiter from a lock and give up
639 * Must be called with lock->wait_lock held and
640 * have just failed to try_to_take_rt_mutex().
642 static void remove_waiter(struct rt_mutex *lock,
643 struct rt_mutex_waiter *waiter)
645 int first = (waiter == rt_mutex_top_waiter(lock));
646 struct task_struct *owner = rt_mutex_owner(lock);
650 raw_spin_lock_irqsave(¤t->pi_lock, flags);
651 rt_mutex_dequeue(lock, waiter);
652 current->pi_blocked_on = NULL;
653 raw_spin_unlock_irqrestore(¤t->pi_lock, flags);
660 raw_spin_lock_irqsave(&owner->pi_lock, flags);
662 rt_mutex_dequeue_pi(owner, waiter);
664 if (rt_mutex_has_waiters(lock)) {
665 struct rt_mutex_waiter *next;
667 next = rt_mutex_top_waiter(lock);
668 rt_mutex_enqueue_pi(owner, next);
670 __rt_mutex_adjust_prio(owner);
672 if (owner->pi_blocked_on)
675 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
681 /* gets dropped in rt_mutex_adjust_prio_chain()! */
682 get_task_struct(owner);
684 raw_spin_unlock(&lock->wait_lock);
686 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
688 raw_spin_lock(&lock->wait_lock);
692 * Recheck the pi chain, in case we got a priority setting
694 * Called from sched_setscheduler
696 void rt_mutex_adjust_pi(struct task_struct *task)
698 struct rt_mutex_waiter *waiter;
701 raw_spin_lock_irqsave(&task->pi_lock, flags);
703 waiter = task->pi_blocked_on;
704 if (!waiter || (waiter->prio == task->prio &&
705 !dl_prio(task->prio))) {
706 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
710 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
712 /* gets dropped in rt_mutex_adjust_prio_chain()! */
713 get_task_struct(task);
714 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
718 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
719 * @lock: the rt_mutex to take
720 * @state: the state the task should block in (TASK_INTERRUPTIBLE
721 * or TASK_UNINTERRUPTIBLE)
722 * @timeout: the pre-initialized and started timer, or NULL for none
723 * @waiter: the pre-initialized rt_mutex_waiter
725 * lock->wait_lock must be held by the caller.
728 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
729 struct hrtimer_sleeper *timeout,
730 struct rt_mutex_waiter *waiter)
735 /* Try to acquire the lock: */
736 if (try_to_take_rt_mutex(lock, current, waiter))
740 * TASK_INTERRUPTIBLE checks for signals and
741 * timeout. Ignored otherwise.
743 if (unlikely(state == TASK_INTERRUPTIBLE)) {
744 /* Signal pending? */
745 if (signal_pending(current))
747 if (timeout && !timeout->task)
753 raw_spin_unlock(&lock->wait_lock);
755 debug_rt_mutex_print_deadlock(waiter);
757 schedule_rt_mutex(lock);
759 raw_spin_lock(&lock->wait_lock);
760 set_current_state(state);
767 * Slow path lock function:
770 rt_mutex_slowlock(struct rt_mutex *lock, int state,
771 struct hrtimer_sleeper *timeout,
774 struct rt_mutex_waiter waiter;
777 debug_rt_mutex_init_waiter(&waiter);
778 RB_CLEAR_NODE(&waiter.pi_tree_entry);
779 RB_CLEAR_NODE(&waiter.tree_entry);
781 raw_spin_lock(&lock->wait_lock);
783 /* Try to acquire the lock again: */
784 if (try_to_take_rt_mutex(lock, current, NULL)) {
785 raw_spin_unlock(&lock->wait_lock);
789 set_current_state(state);
791 /* Setup the timer, when timeout != NULL */
792 if (unlikely(timeout)) {
793 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
794 if (!hrtimer_active(&timeout->timer))
795 timeout->task = NULL;
798 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
801 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
803 set_current_state(TASK_RUNNING);
806 remove_waiter(lock, &waiter);
809 * try_to_take_rt_mutex() sets the waiter bit
810 * unconditionally. We might have to fix that up.
812 fixup_rt_mutex_waiters(lock);
814 raw_spin_unlock(&lock->wait_lock);
816 /* Remove pending timer: */
817 if (unlikely(timeout))
818 hrtimer_cancel(&timeout->timer);
820 debug_rt_mutex_free_waiter(&waiter);
826 * Slow path try-lock function:
829 rt_mutex_slowtrylock(struct rt_mutex *lock)
833 raw_spin_lock(&lock->wait_lock);
835 if (likely(rt_mutex_owner(lock) != current)) {
837 ret = try_to_take_rt_mutex(lock, current, NULL);
839 * try_to_take_rt_mutex() sets the lock waiters
840 * bit unconditionally. Clean this up.
842 fixup_rt_mutex_waiters(lock);
845 raw_spin_unlock(&lock->wait_lock);
851 * Slow path to release a rt-mutex:
854 rt_mutex_slowunlock(struct rt_mutex *lock)
856 raw_spin_lock(&lock->wait_lock);
858 debug_rt_mutex_unlock(lock);
860 rt_mutex_deadlock_account_unlock(current);
862 if (!rt_mutex_has_waiters(lock)) {
864 raw_spin_unlock(&lock->wait_lock);
868 wakeup_next_waiter(lock);
870 raw_spin_unlock(&lock->wait_lock);
872 /* Undo pi boosting if necessary: */
873 rt_mutex_adjust_prio(current);
877 * debug aware fast / slowpath lock,trylock,unlock
879 * The atomic acquire/release ops are compiled away, when either the
880 * architecture does not support cmpxchg or when debugging is enabled.
883 rt_mutex_fastlock(struct rt_mutex *lock, int state,
885 int (*slowfn)(struct rt_mutex *lock, int state,
886 struct hrtimer_sleeper *timeout,
887 int detect_deadlock))
889 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
890 rt_mutex_deadlock_account_lock(lock, current);
893 return slowfn(lock, state, NULL, detect_deadlock);
897 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
898 struct hrtimer_sleeper *timeout, int detect_deadlock,
899 int (*slowfn)(struct rt_mutex *lock, int state,
900 struct hrtimer_sleeper *timeout,
901 int detect_deadlock))
903 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
904 rt_mutex_deadlock_account_lock(lock, current);
907 return slowfn(lock, state, timeout, detect_deadlock);
911 rt_mutex_fasttrylock(struct rt_mutex *lock,
912 int (*slowfn)(struct rt_mutex *lock))
914 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
915 rt_mutex_deadlock_account_lock(lock, current);
922 rt_mutex_fastunlock(struct rt_mutex *lock,
923 void (*slowfn)(struct rt_mutex *lock))
925 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
926 rt_mutex_deadlock_account_unlock(current);
932 * rt_mutex_lock - lock a rt_mutex
934 * @lock: the rt_mutex to be locked
936 void __sched rt_mutex_lock(struct rt_mutex *lock)
940 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
942 EXPORT_SYMBOL_GPL(rt_mutex_lock);
945 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
947 * @lock: the rt_mutex to be locked
948 * @detect_deadlock: deadlock detection on/off
952 * -EINTR when interrupted by a signal
953 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
955 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
960 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
961 detect_deadlock, rt_mutex_slowlock);
963 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
966 * rt_mutex_timed_lock - lock a rt_mutex interruptible
967 * the timeout structure is provided
970 * @lock: the rt_mutex to be locked
971 * @timeout: timeout structure or NULL (no timeout)
972 * @detect_deadlock: deadlock detection on/off
976 * -EINTR when interrupted by a signal
977 * -ETIMEDOUT when the timeout expired
978 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
981 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
986 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
987 detect_deadlock, rt_mutex_slowlock);
989 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
992 * rt_mutex_trylock - try to lock a rt_mutex
994 * @lock: the rt_mutex to be locked
996 * Returns 1 on success and 0 on contention
998 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1000 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1002 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1005 * rt_mutex_unlock - unlock a rt_mutex
1007 * @lock: the rt_mutex to be unlocked
1009 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1011 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1013 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1016 * rt_mutex_destroy - mark a mutex unusable
1017 * @lock: the mutex to be destroyed
1019 * This function marks the mutex uninitialized, and any subsequent
1020 * use of the mutex is forbidden. The mutex must not be locked when
1021 * this function is called.
1023 void rt_mutex_destroy(struct rt_mutex *lock)
1025 WARN_ON(rt_mutex_is_locked(lock));
1026 #ifdef CONFIG_DEBUG_RT_MUTEXES
1031 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1034 * __rt_mutex_init - initialize the rt lock
1036 * @lock: the rt lock to be initialized
1038 * Initialize the rt lock to unlocked state.
1040 * Initializing of a locked rt lock is not allowed
1042 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1045 raw_spin_lock_init(&lock->wait_lock);
1046 lock->waiters = RB_ROOT;
1047 lock->waiters_leftmost = NULL;
1049 debug_rt_mutex_init(lock, name);
1051 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1054 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1057 * @lock: the rt_mutex to be locked
1058 * @proxy_owner:the task to set as owner
1060 * No locking. Caller has to do serializing itself
1061 * Special API call for PI-futex support
1063 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1064 struct task_struct *proxy_owner)
1066 __rt_mutex_init(lock, NULL);
1067 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1068 rt_mutex_set_owner(lock, proxy_owner);
1069 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1073 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1075 * @lock: the rt_mutex to be locked
1077 * No locking. Caller has to do serializing itself
1078 * Special API call for PI-futex support
1080 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1081 struct task_struct *proxy_owner)
1083 debug_rt_mutex_proxy_unlock(lock);
1084 rt_mutex_set_owner(lock, NULL);
1085 rt_mutex_deadlock_account_unlock(proxy_owner);
1089 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1090 * @lock: the rt_mutex to take
1091 * @waiter: the pre-initialized rt_mutex_waiter
1092 * @task: the task to prepare
1093 * @detect_deadlock: perform deadlock detection (1) or not (0)
1096 * 0 - task blocked on lock
1097 * 1 - acquired the lock for task, caller should wake it up
1100 * Special API call for FUTEX_REQUEUE_PI support.
1102 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1103 struct rt_mutex_waiter *waiter,
1104 struct task_struct *task, int detect_deadlock)
1108 raw_spin_lock(&lock->wait_lock);
1110 if (try_to_take_rt_mutex(lock, task, NULL)) {
1111 raw_spin_unlock(&lock->wait_lock);
1115 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1117 if (ret && !rt_mutex_owner(lock)) {
1119 * Reset the return value. We might have
1120 * returned with -EDEADLK and the owner
1121 * released the lock while we were walking the
1122 * pi chain. Let the waiter sort it out.
1128 remove_waiter(lock, waiter);
1130 raw_spin_unlock(&lock->wait_lock);
1132 debug_rt_mutex_print_deadlock(waiter);
1138 * rt_mutex_next_owner - return the next owner of the lock
1140 * @lock: the rt lock query
1142 * Returns the next owner of the lock or NULL
1144 * Caller has to serialize against other accessors to the lock
1147 * Special API call for PI-futex support
1149 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1151 if (!rt_mutex_has_waiters(lock))
1154 return rt_mutex_top_waiter(lock)->task;
1158 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1159 * @lock: the rt_mutex we were woken on
1160 * @to: the timeout, null if none. hrtimer should already have
1162 * @waiter: the pre-initialized rt_mutex_waiter
1163 * @detect_deadlock: perform deadlock detection (1) or not (0)
1165 * Complete the lock acquisition started our behalf by another thread.
1169 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1171 * Special API call for PI-futex requeue support
1173 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1174 struct hrtimer_sleeper *to,
1175 struct rt_mutex_waiter *waiter,
1176 int detect_deadlock)
1180 raw_spin_lock(&lock->wait_lock);
1182 set_current_state(TASK_INTERRUPTIBLE);
1184 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1186 set_current_state(TASK_RUNNING);
1189 remove_waiter(lock, waiter);
1192 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1193 * have to fix that up.
1195 fixup_rt_mutex_waiters(lock);
1197 raw_spin_unlock(&lock->wait_lock);