]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/locking/rtmutex.c
Merge tag 'hsi-for-3.16-fixes1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         if (!rt_mutex_has_waiters(lock))
69                 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73  * We can speed up the acquire/release, if the architecture
74  * supports cmpxchg and if there's no debugging state to be set up
75  */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80         unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82         do {
83                 owner = *p;
84         } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 #else
87 # define rt_mutex_cmpxchg(l,c,n)        (0)
88 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
89 {
90         lock->owner = (struct task_struct *)
91                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
92 }
93 #endif
94
95 static inline int
96 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
97                      struct rt_mutex_waiter *right)
98 {
99         if (left->prio < right->prio)
100                 return 1;
101
102         /*
103          * If both waiters have dl_prio(), we check the deadlines of the
104          * associated tasks.
105          * If left waiter has a dl_prio(), and we didn't return 1 above,
106          * then right waiter has a dl_prio() too.
107          */
108         if (dl_prio(left->prio))
109                 return (left->task->dl.deadline < right->task->dl.deadline);
110
111         return 0;
112 }
113
114 static void
115 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
116 {
117         struct rb_node **link = &lock->waiters.rb_node;
118         struct rb_node *parent = NULL;
119         struct rt_mutex_waiter *entry;
120         int leftmost = 1;
121
122         while (*link) {
123                 parent = *link;
124                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
125                 if (rt_mutex_waiter_less(waiter, entry)) {
126                         link = &parent->rb_left;
127                 } else {
128                         link = &parent->rb_right;
129                         leftmost = 0;
130                 }
131         }
132
133         if (leftmost)
134                 lock->waiters_leftmost = &waiter->tree_entry;
135
136         rb_link_node(&waiter->tree_entry, parent, link);
137         rb_insert_color(&waiter->tree_entry, &lock->waiters);
138 }
139
140 static void
141 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
142 {
143         if (RB_EMPTY_NODE(&waiter->tree_entry))
144                 return;
145
146         if (lock->waiters_leftmost == &waiter->tree_entry)
147                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
148
149         rb_erase(&waiter->tree_entry, &lock->waiters);
150         RB_CLEAR_NODE(&waiter->tree_entry);
151 }
152
153 static void
154 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
155 {
156         struct rb_node **link = &task->pi_waiters.rb_node;
157         struct rb_node *parent = NULL;
158         struct rt_mutex_waiter *entry;
159         int leftmost = 1;
160
161         while (*link) {
162                 parent = *link;
163                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
164                 if (rt_mutex_waiter_less(waiter, entry)) {
165                         link = &parent->rb_left;
166                 } else {
167                         link = &parent->rb_right;
168                         leftmost = 0;
169                 }
170         }
171
172         if (leftmost)
173                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
174
175         rb_link_node(&waiter->pi_tree_entry, parent, link);
176         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
177 }
178
179 static void
180 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
181 {
182         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
183                 return;
184
185         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
186                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
187
188         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
189         RB_CLEAR_NODE(&waiter->pi_tree_entry);
190 }
191
192 /*
193  * Calculate task priority from the waiter tree priority
194  *
195  * Return task->normal_prio when the waiter tree is empty or when
196  * the waiter is not allowed to do priority boosting
197  */
198 int rt_mutex_getprio(struct task_struct *task)
199 {
200         if (likely(!task_has_pi_waiters(task)))
201                 return task->normal_prio;
202
203         return min(task_top_pi_waiter(task)->prio,
204                    task->normal_prio);
205 }
206
207 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
208 {
209         if (likely(!task_has_pi_waiters(task)))
210                 return NULL;
211
212         return task_top_pi_waiter(task)->task;
213 }
214
215 /*
216  * Called by sched_setscheduler() to check whether the priority change
217  * is overruled by a possible priority boosting.
218  */
219 int rt_mutex_check_prio(struct task_struct *task, int newprio)
220 {
221         if (!task_has_pi_waiters(task))
222                 return 0;
223
224         return task_top_pi_waiter(task)->task->prio <= newprio;
225 }
226
227 /*
228  * Adjust the priority of a task, after its pi_waiters got modified.
229  *
230  * This can be both boosting and unboosting. task->pi_lock must be held.
231  */
232 static void __rt_mutex_adjust_prio(struct task_struct *task)
233 {
234         int prio = rt_mutex_getprio(task);
235
236         if (task->prio != prio || dl_prio(prio))
237                 rt_mutex_setprio(task, prio);
238 }
239
240 /*
241  * Adjust task priority (undo boosting). Called from the exit path of
242  * rt_mutex_slowunlock() and rt_mutex_slowlock().
243  *
244  * (Note: We do this outside of the protection of lock->wait_lock to
245  * allow the lock to be taken while or before we readjust the priority
246  * of task. We do not use the spin_xx_mutex() variants here as we are
247  * outside of the debug path.)
248  */
249 static void rt_mutex_adjust_prio(struct task_struct *task)
250 {
251         unsigned long flags;
252
253         raw_spin_lock_irqsave(&task->pi_lock, flags);
254         __rt_mutex_adjust_prio(task);
255         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
256 }
257
258 /*
259  * Max number of times we'll walk the boosting chain:
260  */
261 int max_lock_depth = 1024;
262
263 /*
264  * Adjust the priority chain. Also used for deadlock detection.
265  * Decreases task's usage by one - may thus free the task.
266  *
267  * @task: the task owning the mutex (owner) for which a chain walk is probably
268  *        needed
269  * @deadlock_detect: do we have to carry out deadlock detection?
270  * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
271  *             things for a task that has just got its priority adjusted, and
272  *             is waiting on a mutex)
273  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
274  *               its priority to the mutex owner (can be NULL in the case
275  *               depicted above or if the top waiter is gone away and we are
276  *               actually deboosting the owner)
277  * @top_task: the current top waiter
278  *
279  * Returns 0 or -EDEADLK.
280  */
281 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
282                                       int deadlock_detect,
283                                       struct rt_mutex *orig_lock,
284                                       struct rt_mutex_waiter *orig_waiter,
285                                       struct task_struct *top_task)
286 {
287         struct rt_mutex *lock;
288         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
289         int detect_deadlock, ret = 0, depth = 0;
290         unsigned long flags;
291
292         detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
293                                                          deadlock_detect);
294
295         /*
296          * The (de)boosting is a step by step approach with a lot of
297          * pitfalls. We want this to be preemptible and we want hold a
298          * maximum of two locks per step. So we have to check
299          * carefully whether things change under us.
300          */
301  again:
302         if (++depth > max_lock_depth) {
303                 static int prev_max;
304
305                 /*
306                  * Print this only once. If the admin changes the limit,
307                  * print a new message when reaching the limit again.
308                  */
309                 if (prev_max != max_lock_depth) {
310                         prev_max = max_lock_depth;
311                         printk(KERN_WARNING "Maximum lock depth %d reached "
312                                "task: %s (%d)\n", max_lock_depth,
313                                top_task->comm, task_pid_nr(top_task));
314                 }
315                 put_task_struct(task);
316
317                 return deadlock_detect ? -EDEADLK : 0;
318         }
319  retry:
320         /*
321          * Task can not go away as we did a get_task() before !
322          */
323         raw_spin_lock_irqsave(&task->pi_lock, flags);
324
325         waiter = task->pi_blocked_on;
326         /*
327          * Check whether the end of the boosting chain has been
328          * reached or the state of the chain has changed while we
329          * dropped the locks.
330          */
331         if (!waiter)
332                 goto out_unlock_pi;
333
334         /*
335          * Check the orig_waiter state. After we dropped the locks,
336          * the previous owner of the lock might have released the lock.
337          */
338         if (orig_waiter && !rt_mutex_owner(orig_lock))
339                 goto out_unlock_pi;
340
341         /*
342          * Drop out, when the task has no waiters. Note,
343          * top_waiter can be NULL, when we are in the deboosting
344          * mode!
345          */
346         if (top_waiter) {
347                 if (!task_has_pi_waiters(task))
348                         goto out_unlock_pi;
349                 /*
350                  * If deadlock detection is off, we stop here if we
351                  * are not the top pi waiter of the task.
352                  */
353                 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
354                         goto out_unlock_pi;
355         }
356
357         /*
358          * When deadlock detection is off then we check, if further
359          * priority adjustment is necessary.
360          */
361         if (!detect_deadlock && waiter->prio == task->prio)
362                 goto out_unlock_pi;
363
364         lock = waiter->lock;
365         if (!raw_spin_trylock(&lock->wait_lock)) {
366                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
367                 cpu_relax();
368                 goto retry;
369         }
370
371         /*
372          * Deadlock detection. If the lock is the same as the original
373          * lock which caused us to walk the lock chain or if the
374          * current lock is owned by the task which initiated the chain
375          * walk, we detected a deadlock.
376          */
377         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
378                 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
379                 raw_spin_unlock(&lock->wait_lock);
380                 ret = deadlock_detect ? -EDEADLK : 0;
381                 goto out_unlock_pi;
382         }
383
384         top_waiter = rt_mutex_top_waiter(lock);
385
386         /* Requeue the waiter */
387         rt_mutex_dequeue(lock, waiter);
388         waiter->prio = task->prio;
389         rt_mutex_enqueue(lock, waiter);
390
391         /* Release the task */
392         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
393         if (!rt_mutex_owner(lock)) {
394                 /*
395                  * If the requeue above changed the top waiter, then we need
396                  * to wake the new top waiter up to try to get the lock.
397                  */
398
399                 if (top_waiter != rt_mutex_top_waiter(lock))
400                         wake_up_process(rt_mutex_top_waiter(lock)->task);
401                 raw_spin_unlock(&lock->wait_lock);
402                 goto out_put_task;
403         }
404         put_task_struct(task);
405
406         /* Grab the next task */
407         task = rt_mutex_owner(lock);
408         get_task_struct(task);
409         raw_spin_lock_irqsave(&task->pi_lock, flags);
410
411         if (waiter == rt_mutex_top_waiter(lock)) {
412                 /* Boost the owner */
413                 rt_mutex_dequeue_pi(task, top_waiter);
414                 rt_mutex_enqueue_pi(task, waiter);
415                 __rt_mutex_adjust_prio(task);
416
417         } else if (top_waiter == waiter) {
418                 /* Deboost the owner */
419                 rt_mutex_dequeue_pi(task, waiter);
420                 waiter = rt_mutex_top_waiter(lock);
421                 rt_mutex_enqueue_pi(task, waiter);
422                 __rt_mutex_adjust_prio(task);
423         }
424
425         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
426
427         top_waiter = rt_mutex_top_waiter(lock);
428         raw_spin_unlock(&lock->wait_lock);
429
430         if (!detect_deadlock && waiter != top_waiter)
431                 goto out_put_task;
432
433         goto again;
434
435  out_unlock_pi:
436         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
437  out_put_task:
438         put_task_struct(task);
439
440         return ret;
441 }
442
443 /*
444  * Try to take an rt-mutex
445  *
446  * Must be called with lock->wait_lock held.
447  *
448  * @lock:   the lock to be acquired.
449  * @task:   the task which wants to acquire the lock
450  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
451  */
452 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
453                 struct rt_mutex_waiter *waiter)
454 {
455         /*
456          * We have to be careful here if the atomic speedups are
457          * enabled, such that, when
458          *  - no other waiter is on the lock
459          *  - the lock has been released since we did the cmpxchg
460          * the lock can be released or taken while we are doing the
461          * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
462          *
463          * The atomic acquire/release aware variant of
464          * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
465          * the WAITERS bit, the atomic release / acquire can not
466          * happen anymore and lock->wait_lock protects us from the
467          * non-atomic case.
468          *
469          * Note, that this might set lock->owner =
470          * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
471          * any more. This is fixed up when we take the ownership.
472          * This is the transitional state explained at the top of this file.
473          */
474         mark_rt_mutex_waiters(lock);
475
476         if (rt_mutex_owner(lock))
477                 return 0;
478
479         /*
480          * It will get the lock because of one of these conditions:
481          * 1) there is no waiter
482          * 2) higher priority than waiters
483          * 3) it is top waiter
484          */
485         if (rt_mutex_has_waiters(lock)) {
486                 if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
487                         if (!waiter || waiter != rt_mutex_top_waiter(lock))
488                                 return 0;
489                 }
490         }
491
492         if (waiter || rt_mutex_has_waiters(lock)) {
493                 unsigned long flags;
494                 struct rt_mutex_waiter *top;
495
496                 raw_spin_lock_irqsave(&task->pi_lock, flags);
497
498                 /* remove the queued waiter. */
499                 if (waiter) {
500                         rt_mutex_dequeue(lock, waiter);
501                         task->pi_blocked_on = NULL;
502                 }
503
504                 /*
505                  * We have to enqueue the top waiter(if it exists) into
506                  * task->pi_waiters list.
507                  */
508                 if (rt_mutex_has_waiters(lock)) {
509                         top = rt_mutex_top_waiter(lock);
510                         rt_mutex_enqueue_pi(task, top);
511                 }
512                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
513         }
514
515         /* We got the lock. */
516         debug_rt_mutex_lock(lock);
517
518         rt_mutex_set_owner(lock, task);
519
520         rt_mutex_deadlock_account_lock(lock, task);
521
522         return 1;
523 }
524
525 /*
526  * Task blocks on lock.
527  *
528  * Prepare waiter and propagate pi chain
529  *
530  * This must be called with lock->wait_lock held.
531  */
532 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
533                                    struct rt_mutex_waiter *waiter,
534                                    struct task_struct *task,
535                                    int detect_deadlock)
536 {
537         struct task_struct *owner = rt_mutex_owner(lock);
538         struct rt_mutex_waiter *top_waiter = waiter;
539         unsigned long flags;
540         int chain_walk = 0, res;
541
542         /*
543          * Early deadlock detection. We really don't want the task to
544          * enqueue on itself just to untangle the mess later. It's not
545          * only an optimization. We drop the locks, so another waiter
546          * can come in before the chain walk detects the deadlock. So
547          * the other will detect the deadlock and return -EDEADLOCK,
548          * which is wrong, as the other waiter is not in a deadlock
549          * situation.
550          */
551         if (detect_deadlock && owner == task)
552                 return -EDEADLK;
553
554         raw_spin_lock_irqsave(&task->pi_lock, flags);
555         __rt_mutex_adjust_prio(task);
556         waiter->task = task;
557         waiter->lock = lock;
558         waiter->prio = task->prio;
559
560         /* Get the top priority waiter on the lock */
561         if (rt_mutex_has_waiters(lock))
562                 top_waiter = rt_mutex_top_waiter(lock);
563         rt_mutex_enqueue(lock, waiter);
564
565         task->pi_blocked_on = waiter;
566
567         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
568
569         if (!owner)
570                 return 0;
571
572         if (waiter == rt_mutex_top_waiter(lock)) {
573                 raw_spin_lock_irqsave(&owner->pi_lock, flags);
574                 rt_mutex_dequeue_pi(owner, top_waiter);
575                 rt_mutex_enqueue_pi(owner, waiter);
576
577                 __rt_mutex_adjust_prio(owner);
578                 if (owner->pi_blocked_on)
579                         chain_walk = 1;
580                 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
581         }
582         else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
583                 chain_walk = 1;
584
585         if (!chain_walk)
586                 return 0;
587
588         /*
589          * The owner can't disappear while holding a lock,
590          * so the owner struct is protected by wait_lock.
591          * Gets dropped in rt_mutex_adjust_prio_chain()!
592          */
593         get_task_struct(owner);
594
595         raw_spin_unlock(&lock->wait_lock);
596
597         res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
598                                          task);
599
600         raw_spin_lock(&lock->wait_lock);
601
602         return res;
603 }
604
605 /*
606  * Wake up the next waiter on the lock.
607  *
608  * Remove the top waiter from the current tasks waiter list and wake it up.
609  *
610  * Called with lock->wait_lock held.
611  */
612 static void wakeup_next_waiter(struct rt_mutex *lock)
613 {
614         struct rt_mutex_waiter *waiter;
615         unsigned long flags;
616
617         raw_spin_lock_irqsave(&current->pi_lock, flags);
618
619         waiter = rt_mutex_top_waiter(lock);
620
621         /*
622          * Remove it from current->pi_waiters. We do not adjust a
623          * possible priority boost right now. We execute wakeup in the
624          * boosted mode and go back to normal after releasing
625          * lock->wait_lock.
626          */
627         rt_mutex_dequeue_pi(current, waiter);
628
629         rt_mutex_set_owner(lock, NULL);
630
631         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
632
633         wake_up_process(waiter->task);
634 }
635
636 /*
637  * Remove a waiter from a lock and give up
638  *
639  * Must be called with lock->wait_lock held and
640  * have just failed to try_to_take_rt_mutex().
641  */
642 static void remove_waiter(struct rt_mutex *lock,
643                           struct rt_mutex_waiter *waiter)
644 {
645         int first = (waiter == rt_mutex_top_waiter(lock));
646         struct task_struct *owner = rt_mutex_owner(lock);
647         unsigned long flags;
648         int chain_walk = 0;
649
650         raw_spin_lock_irqsave(&current->pi_lock, flags);
651         rt_mutex_dequeue(lock, waiter);
652         current->pi_blocked_on = NULL;
653         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
654
655         if (!owner)
656                 return;
657
658         if (first) {
659
660                 raw_spin_lock_irqsave(&owner->pi_lock, flags);
661
662                 rt_mutex_dequeue_pi(owner, waiter);
663
664                 if (rt_mutex_has_waiters(lock)) {
665                         struct rt_mutex_waiter *next;
666
667                         next = rt_mutex_top_waiter(lock);
668                         rt_mutex_enqueue_pi(owner, next);
669                 }
670                 __rt_mutex_adjust_prio(owner);
671
672                 if (owner->pi_blocked_on)
673                         chain_walk = 1;
674
675                 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
676         }
677
678         if (!chain_walk)
679                 return;
680
681         /* gets dropped in rt_mutex_adjust_prio_chain()! */
682         get_task_struct(owner);
683
684         raw_spin_unlock(&lock->wait_lock);
685
686         rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
687
688         raw_spin_lock(&lock->wait_lock);
689 }
690
691 /*
692  * Recheck the pi chain, in case we got a priority setting
693  *
694  * Called from sched_setscheduler
695  */
696 void rt_mutex_adjust_pi(struct task_struct *task)
697 {
698         struct rt_mutex_waiter *waiter;
699         unsigned long flags;
700
701         raw_spin_lock_irqsave(&task->pi_lock, flags);
702
703         waiter = task->pi_blocked_on;
704         if (!waiter || (waiter->prio == task->prio &&
705                         !dl_prio(task->prio))) {
706                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
707                 return;
708         }
709
710         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
711
712         /* gets dropped in rt_mutex_adjust_prio_chain()! */
713         get_task_struct(task);
714         rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
715 }
716
717 /**
718  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
719  * @lock:                the rt_mutex to take
720  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
721  *                       or TASK_UNINTERRUPTIBLE)
722  * @timeout:             the pre-initialized and started timer, or NULL for none
723  * @waiter:              the pre-initialized rt_mutex_waiter
724  *
725  * lock->wait_lock must be held by the caller.
726  */
727 static int __sched
728 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
729                     struct hrtimer_sleeper *timeout,
730                     struct rt_mutex_waiter *waiter)
731 {
732         int ret = 0;
733
734         for (;;) {
735                 /* Try to acquire the lock: */
736                 if (try_to_take_rt_mutex(lock, current, waiter))
737                         break;
738
739                 /*
740                  * TASK_INTERRUPTIBLE checks for signals and
741                  * timeout. Ignored otherwise.
742                  */
743                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
744                         /* Signal pending? */
745                         if (signal_pending(current))
746                                 ret = -EINTR;
747                         if (timeout && !timeout->task)
748                                 ret = -ETIMEDOUT;
749                         if (ret)
750                                 break;
751                 }
752
753                 raw_spin_unlock(&lock->wait_lock);
754
755                 debug_rt_mutex_print_deadlock(waiter);
756
757                 schedule_rt_mutex(lock);
758
759                 raw_spin_lock(&lock->wait_lock);
760                 set_current_state(state);
761         }
762
763         return ret;
764 }
765
766 /*
767  * Slow path lock function:
768  */
769 static int __sched
770 rt_mutex_slowlock(struct rt_mutex *lock, int state,
771                   struct hrtimer_sleeper *timeout,
772                   int detect_deadlock)
773 {
774         struct rt_mutex_waiter waiter;
775         int ret = 0;
776
777         debug_rt_mutex_init_waiter(&waiter);
778         RB_CLEAR_NODE(&waiter.pi_tree_entry);
779         RB_CLEAR_NODE(&waiter.tree_entry);
780
781         raw_spin_lock(&lock->wait_lock);
782
783         /* Try to acquire the lock again: */
784         if (try_to_take_rt_mutex(lock, current, NULL)) {
785                 raw_spin_unlock(&lock->wait_lock);
786                 return 0;
787         }
788
789         set_current_state(state);
790
791         /* Setup the timer, when timeout != NULL */
792         if (unlikely(timeout)) {
793                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
794                 if (!hrtimer_active(&timeout->timer))
795                         timeout->task = NULL;
796         }
797
798         ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
799
800         if (likely(!ret))
801                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
802
803         set_current_state(TASK_RUNNING);
804
805         if (unlikely(ret))
806                 remove_waiter(lock, &waiter);
807
808         /*
809          * try_to_take_rt_mutex() sets the waiter bit
810          * unconditionally. We might have to fix that up.
811          */
812         fixup_rt_mutex_waiters(lock);
813
814         raw_spin_unlock(&lock->wait_lock);
815
816         /* Remove pending timer: */
817         if (unlikely(timeout))
818                 hrtimer_cancel(&timeout->timer);
819
820         debug_rt_mutex_free_waiter(&waiter);
821
822         return ret;
823 }
824
825 /*
826  * Slow path try-lock function:
827  */
828 static inline int
829 rt_mutex_slowtrylock(struct rt_mutex *lock)
830 {
831         int ret = 0;
832
833         raw_spin_lock(&lock->wait_lock);
834
835         if (likely(rt_mutex_owner(lock) != current)) {
836
837                 ret = try_to_take_rt_mutex(lock, current, NULL);
838                 /*
839                  * try_to_take_rt_mutex() sets the lock waiters
840                  * bit unconditionally. Clean this up.
841                  */
842                 fixup_rt_mutex_waiters(lock);
843         }
844
845         raw_spin_unlock(&lock->wait_lock);
846
847         return ret;
848 }
849
850 /*
851  * Slow path to release a rt-mutex:
852  */
853 static void __sched
854 rt_mutex_slowunlock(struct rt_mutex *lock)
855 {
856         raw_spin_lock(&lock->wait_lock);
857
858         debug_rt_mutex_unlock(lock);
859
860         rt_mutex_deadlock_account_unlock(current);
861
862         if (!rt_mutex_has_waiters(lock)) {
863                 lock->owner = NULL;
864                 raw_spin_unlock(&lock->wait_lock);
865                 return;
866         }
867
868         wakeup_next_waiter(lock);
869
870         raw_spin_unlock(&lock->wait_lock);
871
872         /* Undo pi boosting if necessary: */
873         rt_mutex_adjust_prio(current);
874 }
875
876 /*
877  * debug aware fast / slowpath lock,trylock,unlock
878  *
879  * The atomic acquire/release ops are compiled away, when either the
880  * architecture does not support cmpxchg or when debugging is enabled.
881  */
882 static inline int
883 rt_mutex_fastlock(struct rt_mutex *lock, int state,
884                   int detect_deadlock,
885                   int (*slowfn)(struct rt_mutex *lock, int state,
886                                 struct hrtimer_sleeper *timeout,
887                                 int detect_deadlock))
888 {
889         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
890                 rt_mutex_deadlock_account_lock(lock, current);
891                 return 0;
892         } else
893                 return slowfn(lock, state, NULL, detect_deadlock);
894 }
895
896 static inline int
897 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
898                         struct hrtimer_sleeper *timeout, int detect_deadlock,
899                         int (*slowfn)(struct rt_mutex *lock, int state,
900                                       struct hrtimer_sleeper *timeout,
901                                       int detect_deadlock))
902 {
903         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
904                 rt_mutex_deadlock_account_lock(lock, current);
905                 return 0;
906         } else
907                 return slowfn(lock, state, timeout, detect_deadlock);
908 }
909
910 static inline int
911 rt_mutex_fasttrylock(struct rt_mutex *lock,
912                      int (*slowfn)(struct rt_mutex *lock))
913 {
914         if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
915                 rt_mutex_deadlock_account_lock(lock, current);
916                 return 1;
917         }
918         return slowfn(lock);
919 }
920
921 static inline void
922 rt_mutex_fastunlock(struct rt_mutex *lock,
923                     void (*slowfn)(struct rt_mutex *lock))
924 {
925         if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
926                 rt_mutex_deadlock_account_unlock(current);
927         else
928                 slowfn(lock);
929 }
930
931 /**
932  * rt_mutex_lock - lock a rt_mutex
933  *
934  * @lock: the rt_mutex to be locked
935  */
936 void __sched rt_mutex_lock(struct rt_mutex *lock)
937 {
938         might_sleep();
939
940         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
941 }
942 EXPORT_SYMBOL_GPL(rt_mutex_lock);
943
944 /**
945  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
946  *
947  * @lock:               the rt_mutex to be locked
948  * @detect_deadlock:    deadlock detection on/off
949  *
950  * Returns:
951  *  0           on success
952  * -EINTR       when interrupted by a signal
953  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
954  */
955 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
956                                                  int detect_deadlock)
957 {
958         might_sleep();
959
960         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
961                                  detect_deadlock, rt_mutex_slowlock);
962 }
963 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
964
965 /**
966  * rt_mutex_timed_lock - lock a rt_mutex interruptible
967  *                      the timeout structure is provided
968  *                      by the caller
969  *
970  * @lock:               the rt_mutex to be locked
971  * @timeout:            timeout structure or NULL (no timeout)
972  * @detect_deadlock:    deadlock detection on/off
973  *
974  * Returns:
975  *  0           on success
976  * -EINTR       when interrupted by a signal
977  * -ETIMEDOUT   when the timeout expired
978  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
979  */
980 int
981 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
982                     int detect_deadlock)
983 {
984         might_sleep();
985
986         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
987                                        detect_deadlock, rt_mutex_slowlock);
988 }
989 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
990
991 /**
992  * rt_mutex_trylock - try to lock a rt_mutex
993  *
994  * @lock:       the rt_mutex to be locked
995  *
996  * Returns 1 on success and 0 on contention
997  */
998 int __sched rt_mutex_trylock(struct rt_mutex *lock)
999 {
1000         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1001 }
1002 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1003
1004 /**
1005  * rt_mutex_unlock - unlock a rt_mutex
1006  *
1007  * @lock: the rt_mutex to be unlocked
1008  */
1009 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1010 {
1011         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1012 }
1013 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1014
1015 /**
1016  * rt_mutex_destroy - mark a mutex unusable
1017  * @lock: the mutex to be destroyed
1018  *
1019  * This function marks the mutex uninitialized, and any subsequent
1020  * use of the mutex is forbidden. The mutex must not be locked when
1021  * this function is called.
1022  */
1023 void rt_mutex_destroy(struct rt_mutex *lock)
1024 {
1025         WARN_ON(rt_mutex_is_locked(lock));
1026 #ifdef CONFIG_DEBUG_RT_MUTEXES
1027         lock->magic = NULL;
1028 #endif
1029 }
1030
1031 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1032
1033 /**
1034  * __rt_mutex_init - initialize the rt lock
1035  *
1036  * @lock: the rt lock to be initialized
1037  *
1038  * Initialize the rt lock to unlocked state.
1039  *
1040  * Initializing of a locked rt lock is not allowed
1041  */
1042 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1043 {
1044         lock->owner = NULL;
1045         raw_spin_lock_init(&lock->wait_lock);
1046         lock->waiters = RB_ROOT;
1047         lock->waiters_leftmost = NULL;
1048
1049         debug_rt_mutex_init(lock, name);
1050 }
1051 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1052
1053 /**
1054  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1055  *                              proxy owner
1056  *
1057  * @lock:       the rt_mutex to be locked
1058  * @proxy_owner:the task to set as owner
1059  *
1060  * No locking. Caller has to do serializing itself
1061  * Special API call for PI-futex support
1062  */
1063 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1064                                 struct task_struct *proxy_owner)
1065 {
1066         __rt_mutex_init(lock, NULL);
1067         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1068         rt_mutex_set_owner(lock, proxy_owner);
1069         rt_mutex_deadlock_account_lock(lock, proxy_owner);
1070 }
1071
1072 /**
1073  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1074  *
1075  * @lock:       the rt_mutex to be locked
1076  *
1077  * No locking. Caller has to do serializing itself
1078  * Special API call for PI-futex support
1079  */
1080 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1081                            struct task_struct *proxy_owner)
1082 {
1083         debug_rt_mutex_proxy_unlock(lock);
1084         rt_mutex_set_owner(lock, NULL);
1085         rt_mutex_deadlock_account_unlock(proxy_owner);
1086 }
1087
1088 /**
1089  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1090  * @lock:               the rt_mutex to take
1091  * @waiter:             the pre-initialized rt_mutex_waiter
1092  * @task:               the task to prepare
1093  * @detect_deadlock:    perform deadlock detection (1) or not (0)
1094  *
1095  * Returns:
1096  *  0 - task blocked on lock
1097  *  1 - acquired the lock for task, caller should wake it up
1098  * <0 - error
1099  *
1100  * Special API call for FUTEX_REQUEUE_PI support.
1101  */
1102 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1103                               struct rt_mutex_waiter *waiter,
1104                               struct task_struct *task, int detect_deadlock)
1105 {
1106         int ret;
1107
1108         raw_spin_lock(&lock->wait_lock);
1109
1110         if (try_to_take_rt_mutex(lock, task, NULL)) {
1111                 raw_spin_unlock(&lock->wait_lock);
1112                 return 1;
1113         }
1114
1115         ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1116
1117         if (ret && !rt_mutex_owner(lock)) {
1118                 /*
1119                  * Reset the return value. We might have
1120                  * returned with -EDEADLK and the owner
1121                  * released the lock while we were walking the
1122                  * pi chain.  Let the waiter sort it out.
1123                  */
1124                 ret = 0;
1125         }
1126
1127         if (unlikely(ret))
1128                 remove_waiter(lock, waiter);
1129
1130         raw_spin_unlock(&lock->wait_lock);
1131
1132         debug_rt_mutex_print_deadlock(waiter);
1133
1134         return ret;
1135 }
1136
1137 /**
1138  * rt_mutex_next_owner - return the next owner of the lock
1139  *
1140  * @lock: the rt lock query
1141  *
1142  * Returns the next owner of the lock or NULL
1143  *
1144  * Caller has to serialize against other accessors to the lock
1145  * itself.
1146  *
1147  * Special API call for PI-futex support
1148  */
1149 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1150 {
1151         if (!rt_mutex_has_waiters(lock))
1152                 return NULL;
1153
1154         return rt_mutex_top_waiter(lock)->task;
1155 }
1156
1157 /**
1158  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1159  * @lock:               the rt_mutex we were woken on
1160  * @to:                 the timeout, null if none. hrtimer should already have
1161  *                      been started.
1162  * @waiter:             the pre-initialized rt_mutex_waiter
1163  * @detect_deadlock:    perform deadlock detection (1) or not (0)
1164  *
1165  * Complete the lock acquisition started our behalf by another thread.
1166  *
1167  * Returns:
1168  *  0 - success
1169  * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1170  *
1171  * Special API call for PI-futex requeue support
1172  */
1173 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1174                                struct hrtimer_sleeper *to,
1175                                struct rt_mutex_waiter *waiter,
1176                                int detect_deadlock)
1177 {
1178         int ret;
1179
1180         raw_spin_lock(&lock->wait_lock);
1181
1182         set_current_state(TASK_INTERRUPTIBLE);
1183
1184         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1185
1186         set_current_state(TASK_RUNNING);
1187
1188         if (unlikely(ret))
1189                 remove_waiter(lock, waiter);
1190
1191         /*
1192          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1193          * have to fix that up.
1194          */
1195         fixup_rt_mutex_waiters(lock);
1196
1197         raw_spin_unlock(&lock->wait_lock);
1198
1199         return ret;
1200 }