]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_counter.c
perf_counter: Make pctrl() affect inherited counters too
[mv-sheeva.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 /*
115  * Add a counter from the lists for its context.
116  * Must be called with ctx->mutex and ctx->lock held.
117  */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121         struct perf_counter *group_leader = counter->group_leader;
122
123         /*
124          * Depending on whether it is a standalone or sibling counter,
125          * add it straight to the context's counter list, or to the group
126          * leader's sibling list:
127          */
128         if (group_leader == counter)
129                 list_add_tail(&counter->list_entry, &ctx->counter_list);
130         else {
131                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132                 group_leader->nr_siblings++;
133         }
134
135         list_add_rcu(&counter->event_entry, &ctx->event_list);
136         ctx->nr_counters++;
137 }
138
139 /*
140  * Remove a counter from the lists for its context.
141  * Must be called with ctx->mutex and ctx->lock held.
142  */
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
145 {
146         struct perf_counter *sibling, *tmp;
147
148         if (list_empty(&counter->list_entry))
149                 return;
150         ctx->nr_counters--;
151
152         list_del_init(&counter->list_entry);
153         list_del_rcu(&counter->event_entry);
154
155         if (counter->group_leader != counter)
156                 counter->group_leader->nr_siblings--;
157
158         /*
159          * If this was a group counter with sibling counters then
160          * upgrade the siblings to singleton counters by adding them
161          * to the context list directly:
162          */
163         list_for_each_entry_safe(sibling, tmp,
164                                  &counter->sibling_list, list_entry) {
165
166                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167                 sibling->group_leader = sibling;
168         }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173                   struct perf_cpu_context *cpuctx,
174                   struct perf_counter_context *ctx)
175 {
176         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177                 return;
178
179         counter->state = PERF_COUNTER_STATE_INACTIVE;
180         counter->tstamp_stopped = ctx->time;
181         counter->pmu->disable(counter);
182         counter->oncpu = -1;
183
184         if (!is_software_counter(counter))
185                 cpuctx->active_oncpu--;
186         ctx->nr_active--;
187         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188                 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193                 struct perf_cpu_context *cpuctx,
194                 struct perf_counter_context *ctx)
195 {
196         struct perf_counter *counter;
197
198         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199                 return;
200
201         counter_sched_out(group_counter, cpuctx, ctx);
202
203         /*
204          * Schedule out siblings (if any):
205          */
206         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207                 counter_sched_out(counter, cpuctx, ctx);
208
209         if (group_counter->hw_event.exclusive)
210                 cpuctx->exclusive = 0;
211 }
212
213 /*
214  * Mark this context as not being a clone of another.
215  * Called when counters are added to or removed from this context.
216  * We also increment our generation number so that anything that
217  * was cloned from this context before this will not match anything
218  * cloned from this context after this.
219  */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222         ++ctx->generation;
223         if (!ctx->parent_ctx)
224                 return;
225         put_ctx(ctx->parent_ctx);
226         ctx->parent_ctx = NULL;
227 }
228
229 /*
230  * Cross CPU call to remove a performance counter
231  *
232  * We disable the counter on the hardware level first. After that we
233  * remove it from the context list.
234  */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238         struct perf_counter *counter = info;
239         struct perf_counter_context *ctx = counter->ctx;
240         unsigned long flags;
241
242         /*
243          * If this is a task context, we need to check whether it is
244          * the current task context of this cpu. If not it has been
245          * scheduled out before the smp call arrived.
246          */
247         if (ctx->task && cpuctx->task_ctx != ctx)
248                 return;
249
250         spin_lock_irqsave(&ctx->lock, flags);
251         /*
252          * Protect the list operation against NMI by disabling the
253          * counters on a global level.
254          */
255         perf_disable();
256
257         counter_sched_out(counter, cpuctx, ctx);
258
259         list_del_counter(counter, ctx);
260
261         if (!ctx->task) {
262                 /*
263                  * Allow more per task counters with respect to the
264                  * reservation:
265                  */
266                 cpuctx->max_pertask =
267                         min(perf_max_counters - ctx->nr_counters,
268                             perf_max_counters - perf_reserved_percpu);
269         }
270
271         perf_enable();
272         spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277  * Remove the counter from a task's (or a CPU's) list of counters.
278  *
279  * Must be called with ctx->mutex held.
280  *
281  * CPU counters are removed with a smp call. For task counters we only
282  * call when the task is on a CPU.
283  */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286         struct perf_counter_context *ctx = counter->ctx;
287         struct task_struct *task = ctx->task;
288
289         unclone_ctx(ctx);
290         if (!task) {
291                 /*
292                  * Per cpu counters are removed via an smp call and
293                  * the removal is always sucessful.
294                  */
295                 smp_call_function_single(counter->cpu,
296                                          __perf_counter_remove_from_context,
297                                          counter, 1);
298                 return;
299         }
300
301 retry:
302         task_oncpu_function_call(task, __perf_counter_remove_from_context,
303                                  counter);
304
305         spin_lock_irq(&ctx->lock);
306         /*
307          * If the context is active we need to retry the smp call.
308          */
309         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310                 spin_unlock_irq(&ctx->lock);
311                 goto retry;
312         }
313
314         /*
315          * The lock prevents that this context is scheduled in so we
316          * can remove the counter safely, if the call above did not
317          * succeed.
318          */
319         if (!list_empty(&counter->list_entry)) {
320                 list_del_counter(counter, ctx);
321         }
322         spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327         return cpu_clock(smp_processor_id());
328 }
329
330 /*
331  * Update the record of the current time in a context.
332  */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335         u64 now = perf_clock();
336
337         ctx->time += now - ctx->timestamp;
338         ctx->timestamp = now;
339 }
340
341 /*
342  * Update the total_time_enabled and total_time_running fields for a counter.
343  */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346         struct perf_counter_context *ctx = counter->ctx;
347         u64 run_end;
348
349         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350                 return;
351
352         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355                 run_end = counter->tstamp_stopped;
356         else
357                 run_end = ctx->time;
358
359         counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363  * Update total_time_enabled and total_time_running for all counters in a group.
364  */
365 static void update_group_times(struct perf_counter *leader)
366 {
367         struct perf_counter *counter;
368
369         update_counter_times(leader);
370         list_for_each_entry(counter, &leader->sibling_list, list_entry)
371                 update_counter_times(counter);
372 }
373
374 /*
375  * Cross CPU call to disable a performance counter
376  */
377 static void __perf_counter_disable(void *info)
378 {
379         struct perf_counter *counter = info;
380         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381         struct perf_counter_context *ctx = counter->ctx;
382         unsigned long flags;
383
384         /*
385          * If this is a per-task counter, need to check whether this
386          * counter's task is the current task on this cpu.
387          */
388         if (ctx->task && cpuctx->task_ctx != ctx)
389                 return;
390
391         spin_lock_irqsave(&ctx->lock, flags);
392
393         /*
394          * If the counter is on, turn it off.
395          * If it is in error state, leave it in error state.
396          */
397         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398                 update_context_time(ctx);
399                 update_counter_times(counter);
400                 if (counter == counter->group_leader)
401                         group_sched_out(counter, cpuctx, ctx);
402                 else
403                         counter_sched_out(counter, cpuctx, ctx);
404                 counter->state = PERF_COUNTER_STATE_OFF;
405         }
406
407         spin_unlock_irqrestore(&ctx->lock, flags);
408 }
409
410 /*
411  * Disable a counter.
412  */
413 static void perf_counter_disable(struct perf_counter *counter)
414 {
415         struct perf_counter_context *ctx = counter->ctx;
416         struct task_struct *task = ctx->task;
417
418         if (!task) {
419                 /*
420                  * Disable the counter on the cpu that it's on
421                  */
422                 smp_call_function_single(counter->cpu, __perf_counter_disable,
423                                          counter, 1);
424                 return;
425         }
426
427  retry:
428         task_oncpu_function_call(task, __perf_counter_disable, counter);
429
430         spin_lock_irq(&ctx->lock);
431         /*
432          * If the counter is still active, we need to retry the cross-call.
433          */
434         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435                 spin_unlock_irq(&ctx->lock);
436                 goto retry;
437         }
438
439         /*
440          * Since we have the lock this context can't be scheduled
441          * in, so we can change the state safely.
442          */
443         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444                 update_counter_times(counter);
445                 counter->state = PERF_COUNTER_STATE_OFF;
446         }
447
448         spin_unlock_irq(&ctx->lock);
449 }
450
451 static int
452 counter_sched_in(struct perf_counter *counter,
453                  struct perf_cpu_context *cpuctx,
454                  struct perf_counter_context *ctx,
455                  int cpu)
456 {
457         if (counter->state <= PERF_COUNTER_STATE_OFF)
458                 return 0;
459
460         counter->state = PERF_COUNTER_STATE_ACTIVE;
461         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
462         /*
463          * The new state must be visible before we turn it on in the hardware:
464          */
465         smp_wmb();
466
467         if (counter->pmu->enable(counter)) {
468                 counter->state = PERF_COUNTER_STATE_INACTIVE;
469                 counter->oncpu = -1;
470                 return -EAGAIN;
471         }
472
473         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474
475         if (!is_software_counter(counter))
476                 cpuctx->active_oncpu++;
477         ctx->nr_active++;
478
479         if (counter->hw_event.exclusive)
480                 cpuctx->exclusive = 1;
481
482         return 0;
483 }
484
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487                struct perf_cpu_context *cpuctx,
488                struct perf_counter_context *ctx,
489                int cpu)
490 {
491         struct perf_counter *counter, *partial_group;
492         int ret;
493
494         if (group_counter->state == PERF_COUNTER_STATE_OFF)
495                 return 0;
496
497         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498         if (ret)
499                 return ret < 0 ? ret : 0;
500
501         group_counter->prev_state = group_counter->state;
502         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503                 return -EAGAIN;
504
505         /*
506          * Schedule in siblings as one group (if any):
507          */
508         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509                 counter->prev_state = counter->state;
510                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511                         partial_group = counter;
512                         goto group_error;
513                 }
514         }
515
516         return 0;
517
518 group_error:
519         /*
520          * Groups can be scheduled in as one unit only, so undo any
521          * partial group before returning:
522          */
523         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524                 if (counter == partial_group)
525                         break;
526                 counter_sched_out(counter, cpuctx, ctx);
527         }
528         counter_sched_out(group_counter, cpuctx, ctx);
529
530         return -EAGAIN;
531 }
532
533 /*
534  * Return 1 for a group consisting entirely of software counters,
535  * 0 if the group contains any hardware counters.
536  */
537 static int is_software_only_group(struct perf_counter *leader)
538 {
539         struct perf_counter *counter;
540
541         if (!is_software_counter(leader))
542                 return 0;
543
544         list_for_each_entry(counter, &leader->sibling_list, list_entry)
545                 if (!is_software_counter(counter))
546                         return 0;
547
548         return 1;
549 }
550
551 /*
552  * Work out whether we can put this counter group on the CPU now.
553  */
554 static int group_can_go_on(struct perf_counter *counter,
555                            struct perf_cpu_context *cpuctx,
556                            int can_add_hw)
557 {
558         /*
559          * Groups consisting entirely of software counters can always go on.
560          */
561         if (is_software_only_group(counter))
562                 return 1;
563         /*
564          * If an exclusive group is already on, no other hardware
565          * counters can go on.
566          */
567         if (cpuctx->exclusive)
568                 return 0;
569         /*
570          * If this group is exclusive and there are already
571          * counters on the CPU, it can't go on.
572          */
573         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574                 return 0;
575         /*
576          * Otherwise, try to add it if all previous groups were able
577          * to go on.
578          */
579         return can_add_hw;
580 }
581
582 static void add_counter_to_ctx(struct perf_counter *counter,
583                                struct perf_counter_context *ctx)
584 {
585         list_add_counter(counter, ctx);
586         counter->prev_state = PERF_COUNTER_STATE_OFF;
587         counter->tstamp_enabled = ctx->time;
588         counter->tstamp_running = ctx->time;
589         counter->tstamp_stopped = ctx->time;
590 }
591
592 /*
593  * Cross CPU call to install and enable a performance counter
594  *
595  * Must be called with ctx->mutex held
596  */
597 static void __perf_install_in_context(void *info)
598 {
599         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600         struct perf_counter *counter = info;
601         struct perf_counter_context *ctx = counter->ctx;
602         struct perf_counter *leader = counter->group_leader;
603         int cpu = smp_processor_id();
604         unsigned long flags;
605         int err;
606
607         /*
608          * If this is a task context, we need to check whether it is
609          * the current task context of this cpu. If not it has been
610          * scheduled out before the smp call arrived.
611          * Or possibly this is the right context but it isn't
612          * on this cpu because it had no counters.
613          */
614         if (ctx->task && cpuctx->task_ctx != ctx) {
615                 if (cpuctx->task_ctx || ctx->task != current)
616                         return;
617                 cpuctx->task_ctx = ctx;
618         }
619
620         spin_lock_irqsave(&ctx->lock, flags);
621         ctx->is_active = 1;
622         update_context_time(ctx);
623
624         /*
625          * Protect the list operation against NMI by disabling the
626          * counters on a global level. NOP for non NMI based counters.
627          */
628         perf_disable();
629
630         add_counter_to_ctx(counter, ctx);
631
632         /*
633          * Don't put the counter on if it is disabled or if
634          * it is in a group and the group isn't on.
635          */
636         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638                 goto unlock;
639
640         /*
641          * An exclusive counter can't go on if there are already active
642          * hardware counters, and no hardware counter can go on if there
643          * is already an exclusive counter on.
644          */
645         if (!group_can_go_on(counter, cpuctx, 1))
646                 err = -EEXIST;
647         else
648                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650         if (err) {
651                 /*
652                  * This counter couldn't go on.  If it is in a group
653                  * then we have to pull the whole group off.
654                  * If the counter group is pinned then put it in error state.
655                  */
656                 if (leader != counter)
657                         group_sched_out(leader, cpuctx, ctx);
658                 if (leader->hw_event.pinned) {
659                         update_group_times(leader);
660                         leader->state = PERF_COUNTER_STATE_ERROR;
661                 }
662         }
663
664         if (!err && !ctx->task && cpuctx->max_pertask)
665                 cpuctx->max_pertask--;
666
667  unlock:
668         perf_enable();
669
670         spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674  * Attach a performance counter to a context
675  *
676  * First we add the counter to the list with the hardware enable bit
677  * in counter->hw_config cleared.
678  *
679  * If the counter is attached to a task which is on a CPU we use a smp
680  * call to enable it in the task context. The task might have been
681  * scheduled away, but we check this in the smp call again.
682  *
683  * Must be called with ctx->mutex held.
684  */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687                         struct perf_counter *counter,
688                         int cpu)
689 {
690         struct task_struct *task = ctx->task;
691
692         if (!task) {
693                 /*
694                  * Per cpu counters are installed via an smp call and
695                  * the install is always sucessful.
696                  */
697                 smp_call_function_single(cpu, __perf_install_in_context,
698                                          counter, 1);
699                 return;
700         }
701
702 retry:
703         task_oncpu_function_call(task, __perf_install_in_context,
704                                  counter);
705
706         spin_lock_irq(&ctx->lock);
707         /*
708          * we need to retry the smp call.
709          */
710         if (ctx->is_active && list_empty(&counter->list_entry)) {
711                 spin_unlock_irq(&ctx->lock);
712                 goto retry;
713         }
714
715         /*
716          * The lock prevents that this context is scheduled in so we
717          * can add the counter safely, if it the call above did not
718          * succeed.
719          */
720         if (list_empty(&counter->list_entry))
721                 add_counter_to_ctx(counter, ctx);
722         spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726  * Cross CPU call to enable a performance counter
727  */
728 static void __perf_counter_enable(void *info)
729 {
730         struct perf_counter *counter = info;
731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732         struct perf_counter_context *ctx = counter->ctx;
733         struct perf_counter *leader = counter->group_leader;
734         unsigned long flags;
735         int err;
736
737         /*
738          * If this is a per-task counter, need to check whether this
739          * counter's task is the current task on this cpu.
740          */
741         if (ctx->task && cpuctx->task_ctx != ctx) {
742                 if (cpuctx->task_ctx || ctx->task != current)
743                         return;
744                 cpuctx->task_ctx = ctx;
745         }
746
747         spin_lock_irqsave(&ctx->lock, flags);
748         ctx->is_active = 1;
749         update_context_time(ctx);
750
751         counter->prev_state = counter->state;
752         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753                 goto unlock;
754         counter->state = PERF_COUNTER_STATE_INACTIVE;
755         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
757         /*
758          * If the counter is in a group and isn't the group leader,
759          * then don't put it on unless the group is on.
760          */
761         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762                 goto unlock;
763
764         if (!group_can_go_on(counter, cpuctx, 1)) {
765                 err = -EEXIST;
766         } else {
767                 perf_disable();
768                 if (counter == leader)
769                         err = group_sched_in(counter, cpuctx, ctx,
770                                              smp_processor_id());
771                 else
772                         err = counter_sched_in(counter, cpuctx, ctx,
773                                                smp_processor_id());
774                 perf_enable();
775         }
776
777         if (err) {
778                 /*
779                  * If this counter can't go on and it's part of a
780                  * group, then the whole group has to come off.
781                  */
782                 if (leader != counter)
783                         group_sched_out(leader, cpuctx, ctx);
784                 if (leader->hw_event.pinned) {
785                         update_group_times(leader);
786                         leader->state = PERF_COUNTER_STATE_ERROR;
787                 }
788         }
789
790  unlock:
791         spin_unlock_irqrestore(&ctx->lock, flags);
792 }
793
794 /*
795  * Enable a counter.
796  */
797 static void perf_counter_enable(struct perf_counter *counter)
798 {
799         struct perf_counter_context *ctx = counter->ctx;
800         struct task_struct *task = ctx->task;
801
802         if (!task) {
803                 /*
804                  * Enable the counter on the cpu that it's on
805                  */
806                 smp_call_function_single(counter->cpu, __perf_counter_enable,
807                                          counter, 1);
808                 return;
809         }
810
811         spin_lock_irq(&ctx->lock);
812         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813                 goto out;
814
815         /*
816          * If the counter is in error state, clear that first.
817          * That way, if we see the counter in error state below, we
818          * know that it has gone back into error state, as distinct
819          * from the task having been scheduled away before the
820          * cross-call arrived.
821          */
822         if (counter->state == PERF_COUNTER_STATE_ERROR)
823                 counter->state = PERF_COUNTER_STATE_OFF;
824
825  retry:
826         spin_unlock_irq(&ctx->lock);
827         task_oncpu_function_call(task, __perf_counter_enable, counter);
828
829         spin_lock_irq(&ctx->lock);
830
831         /*
832          * If the context is active and the counter is still off,
833          * we need to retry the cross-call.
834          */
835         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836                 goto retry;
837
838         /*
839          * Since we have the lock this context can't be scheduled
840          * in, so we can change the state safely.
841          */
842         if (counter->state == PERF_COUNTER_STATE_OFF) {
843                 counter->state = PERF_COUNTER_STATE_INACTIVE;
844                 counter->tstamp_enabled =
845                         ctx->time - counter->total_time_enabled;
846         }
847  out:
848         spin_unlock_irq(&ctx->lock);
849 }
850
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852 {
853         /*
854          * not supported on inherited counters
855          */
856         if (counter->hw_event.inherit)
857                 return -EINVAL;
858
859         atomic_add(refresh, &counter->event_limit);
860         perf_counter_enable(counter);
861
862         return 0;
863 }
864
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866                               struct perf_cpu_context *cpuctx)
867 {
868         struct perf_counter *counter;
869
870         spin_lock(&ctx->lock);
871         ctx->is_active = 0;
872         if (likely(!ctx->nr_counters))
873                 goto out;
874         update_context_time(ctx);
875
876         perf_disable();
877         if (ctx->nr_active) {
878                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879                         if (counter != counter->group_leader)
880                                 counter_sched_out(counter, cpuctx, ctx);
881                         else
882                                 group_sched_out(counter, cpuctx, ctx);
883                 }
884         }
885         perf_enable();
886  out:
887         spin_unlock(&ctx->lock);
888 }
889
890 /*
891  * Test whether two contexts are equivalent, i.e. whether they
892  * have both been cloned from the same version of the same context
893  * and they both have the same number of enabled counters.
894  * If the number of enabled counters is the same, then the set
895  * of enabled counters should be the same, because these are both
896  * inherited contexts, therefore we can't access individual counters
897  * in them directly with an fd; we can only enable/disable all
898  * counters via prctl, or enable/disable all counters in a family
899  * via ioctl, which will have the same effect on both contexts.
900  */
901 static int context_equiv(struct perf_counter_context *ctx1,
902                          struct perf_counter_context *ctx2)
903 {
904         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905                 && ctx1->parent_gen == ctx2->parent_gen;
906 }
907
908 /*
909  * Called from scheduler to remove the counters of the current task,
910  * with interrupts disabled.
911  *
912  * We stop each counter and update the counter value in counter->count.
913  *
914  * This does not protect us against NMI, but disable()
915  * sets the disabled bit in the control field of counter _before_
916  * accessing the counter control register. If a NMI hits, then it will
917  * not restart the counter.
918  */
919 void perf_counter_task_sched_out(struct task_struct *task,
920                                  struct task_struct *next, int cpu)
921 {
922         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923         struct perf_counter_context *ctx = task->perf_counter_ctxp;
924         struct perf_counter_context *next_ctx;
925         struct pt_regs *regs;
926
927         if (likely(!ctx || !cpuctx->task_ctx))
928                 return;
929
930         update_context_time(ctx);
931
932         regs = task_pt_regs(task);
933         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
934
935         next_ctx = next->perf_counter_ctxp;
936         if (next_ctx && context_equiv(ctx, next_ctx)) {
937                 task->perf_counter_ctxp = next_ctx;
938                 next->perf_counter_ctxp = ctx;
939                 ctx->task = next;
940                 next_ctx->task = task;
941                 return;
942         }
943
944         __perf_counter_sched_out(ctx, cpuctx);
945
946         cpuctx->task_ctx = NULL;
947 }
948
949 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
950 {
951         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
952
953         if (!cpuctx->task_ctx)
954                 return;
955         __perf_counter_sched_out(ctx, cpuctx);
956         cpuctx->task_ctx = NULL;
957 }
958
959 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
960 {
961         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
962 }
963
964 static void
965 __perf_counter_sched_in(struct perf_counter_context *ctx,
966                         struct perf_cpu_context *cpuctx, int cpu)
967 {
968         struct perf_counter *counter;
969         int can_add_hw = 1;
970
971         spin_lock(&ctx->lock);
972         ctx->is_active = 1;
973         if (likely(!ctx->nr_counters))
974                 goto out;
975
976         ctx->timestamp = perf_clock();
977
978         perf_disable();
979
980         /*
981          * First go through the list and put on any pinned groups
982          * in order to give them the best chance of going on.
983          */
984         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
985                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
986                     !counter->hw_event.pinned)
987                         continue;
988                 if (counter->cpu != -1 && counter->cpu != cpu)
989                         continue;
990
991                 if (counter != counter->group_leader)
992                         counter_sched_in(counter, cpuctx, ctx, cpu);
993                 else {
994                         if (group_can_go_on(counter, cpuctx, 1))
995                                 group_sched_in(counter, cpuctx, ctx, cpu);
996                 }
997
998                 /*
999                  * If this pinned group hasn't been scheduled,
1000                  * put it in error state.
1001                  */
1002                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1003                         update_group_times(counter);
1004                         counter->state = PERF_COUNTER_STATE_ERROR;
1005                 }
1006         }
1007
1008         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1009                 /*
1010                  * Ignore counters in OFF or ERROR state, and
1011                  * ignore pinned counters since we did them already.
1012                  */
1013                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1014                     counter->hw_event.pinned)
1015                         continue;
1016
1017                 /*
1018                  * Listen to the 'cpu' scheduling filter constraint
1019                  * of counters:
1020                  */
1021                 if (counter->cpu != -1 && counter->cpu != cpu)
1022                         continue;
1023
1024                 if (counter != counter->group_leader) {
1025                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1026                                 can_add_hw = 0;
1027                 } else {
1028                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1029                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1030                                         can_add_hw = 0;
1031                         }
1032                 }
1033         }
1034         perf_enable();
1035  out:
1036         spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Called from scheduler to add the counters of the current task
1041  * with interrupts disabled.
1042  *
1043  * We restore the counter value and then enable it.
1044  *
1045  * This does not protect us against NMI, but enable()
1046  * sets the enabled bit in the control field of counter _before_
1047  * accessing the counter control register. If a NMI hits, then it will
1048  * keep the counter running.
1049  */
1050 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1051 {
1052         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1053         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1054
1055         if (likely(!ctx))
1056                 return;
1057         if (cpuctx->task_ctx == ctx)
1058                 return;
1059         __perf_counter_sched_in(ctx, cpuctx, cpu);
1060         cpuctx->task_ctx = ctx;
1061 }
1062
1063 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1064 {
1065         struct perf_counter_context *ctx = &cpuctx->ctx;
1066
1067         __perf_counter_sched_in(ctx, cpuctx, cpu);
1068 }
1069
1070 static void perf_log_period(struct perf_counter *counter, u64 period);
1071
1072 static void perf_adjust_freq(struct perf_counter_context *ctx)
1073 {
1074         struct perf_counter *counter;
1075         u64 irq_period;
1076         u64 events, period;
1077         s64 delta;
1078
1079         spin_lock(&ctx->lock);
1080         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1081                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1082                         continue;
1083
1084                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1085                         continue;
1086
1087                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1088                 period = div64_u64(events, counter->hw_event.irq_freq);
1089
1090                 delta = (s64)(1 + period - counter->hw.irq_period);
1091                 delta >>= 1;
1092
1093                 irq_period = counter->hw.irq_period + delta;
1094
1095                 if (!irq_period)
1096                         irq_period = 1;
1097
1098                 perf_log_period(counter, irq_period);
1099
1100                 counter->hw.irq_period = irq_period;
1101                 counter->hw.interrupts = 0;
1102         }
1103         spin_unlock(&ctx->lock);
1104 }
1105
1106 /*
1107  * Round-robin a context's counters:
1108  */
1109 static void rotate_ctx(struct perf_counter_context *ctx)
1110 {
1111         struct perf_counter *counter;
1112
1113         if (!ctx->nr_counters)
1114                 return;
1115
1116         spin_lock(&ctx->lock);
1117         /*
1118          * Rotate the first entry last (works just fine for group counters too):
1119          */
1120         perf_disable();
1121         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1123                 break;
1124         }
1125         perf_enable();
1126
1127         spin_unlock(&ctx->lock);
1128 }
1129
1130 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         struct perf_counter_context *ctx;
1134
1135         if (!atomic_read(&nr_counters))
1136                 return;
1137
1138         cpuctx = &per_cpu(perf_cpu_context, cpu);
1139         ctx = curr->perf_counter_ctxp;
1140
1141         perf_adjust_freq(&cpuctx->ctx);
1142         if (ctx)
1143                 perf_adjust_freq(ctx);
1144
1145         perf_counter_cpu_sched_out(cpuctx);
1146         if (ctx)
1147                 __perf_counter_task_sched_out(ctx);
1148
1149         rotate_ctx(&cpuctx->ctx);
1150         if (ctx)
1151                 rotate_ctx(ctx);
1152
1153         perf_counter_cpu_sched_in(cpuctx, cpu);
1154         if (ctx)
1155                 perf_counter_task_sched_in(curr, cpu);
1156 }
1157
1158 /*
1159  * Cross CPU call to read the hardware counter
1160  */
1161 static void __read(void *info)
1162 {
1163         struct perf_counter *counter = info;
1164         struct perf_counter_context *ctx = counter->ctx;
1165         unsigned long flags;
1166
1167         local_irq_save(flags);
1168         if (ctx->is_active)
1169                 update_context_time(ctx);
1170         counter->pmu->read(counter);
1171         update_counter_times(counter);
1172         local_irq_restore(flags);
1173 }
1174
1175 static u64 perf_counter_read(struct perf_counter *counter)
1176 {
1177         /*
1178          * If counter is enabled and currently active on a CPU, update the
1179          * value in the counter structure:
1180          */
1181         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1182                 smp_call_function_single(counter->oncpu,
1183                                          __read, counter, 1);
1184         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1185                 update_counter_times(counter);
1186         }
1187
1188         return atomic64_read(&counter->count);
1189 }
1190
1191 /*
1192  * Initialize the perf_counter context in a task_struct:
1193  */
1194 static void
1195 __perf_counter_init_context(struct perf_counter_context *ctx,
1196                             struct task_struct *task)
1197 {
1198         memset(ctx, 0, sizeof(*ctx));
1199         spin_lock_init(&ctx->lock);
1200         mutex_init(&ctx->mutex);
1201         INIT_LIST_HEAD(&ctx->counter_list);
1202         INIT_LIST_HEAD(&ctx->event_list);
1203         atomic_set(&ctx->refcount, 1);
1204         ctx->task = task;
1205 }
1206
1207 static void put_context(struct perf_counter_context *ctx)
1208 {
1209         if (ctx->task)
1210                 put_task_struct(ctx->task);
1211 }
1212
1213 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1214 {
1215         struct perf_cpu_context *cpuctx;
1216         struct perf_counter_context *ctx;
1217         struct perf_counter_context *tctx;
1218         struct task_struct *task;
1219
1220         /*
1221          * If cpu is not a wildcard then this is a percpu counter:
1222          */
1223         if (cpu != -1) {
1224                 /* Must be root to operate on a CPU counter: */
1225                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1226                         return ERR_PTR(-EACCES);
1227
1228                 if (cpu < 0 || cpu > num_possible_cpus())
1229                         return ERR_PTR(-EINVAL);
1230
1231                 /*
1232                  * We could be clever and allow to attach a counter to an
1233                  * offline CPU and activate it when the CPU comes up, but
1234                  * that's for later.
1235                  */
1236                 if (!cpu_isset(cpu, cpu_online_map))
1237                         return ERR_PTR(-ENODEV);
1238
1239                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1240                 ctx = &cpuctx->ctx;
1241
1242                 return ctx;
1243         }
1244
1245         rcu_read_lock();
1246         if (!pid)
1247                 task = current;
1248         else
1249                 task = find_task_by_vpid(pid);
1250         if (task)
1251                 get_task_struct(task);
1252         rcu_read_unlock();
1253
1254         if (!task)
1255                 return ERR_PTR(-ESRCH);
1256
1257         /* Reuse ptrace permission checks for now. */
1258         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1259                 put_task_struct(task);
1260                 return ERR_PTR(-EACCES);
1261         }
1262
1263         ctx = task->perf_counter_ctxp;
1264         if (!ctx) {
1265                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1266                 if (!ctx) {
1267                         put_task_struct(task);
1268                         return ERR_PTR(-ENOMEM);
1269                 }
1270                 __perf_counter_init_context(ctx, task);
1271                 /*
1272                  * Make sure other cpus see correct values for *ctx
1273                  * once task->perf_counter_ctxp is visible to them.
1274                  */
1275                 smp_wmb();
1276                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1277                 if (tctx) {
1278                         /*
1279                          * We raced with some other task; use
1280                          * the context they set.
1281                          */
1282                         kfree(ctx);
1283                         ctx = tctx;
1284                 }
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static void free_counter_rcu(struct rcu_head *head)
1291 {
1292         struct perf_counter *counter;
1293
1294         counter = container_of(head, struct perf_counter, rcu_head);
1295         put_ctx(counter->ctx);
1296         kfree(counter);
1297 }
1298
1299 static void perf_pending_sync(struct perf_counter *counter);
1300
1301 static void free_counter(struct perf_counter *counter)
1302 {
1303         perf_pending_sync(counter);
1304
1305         atomic_dec(&nr_counters);
1306         if (counter->hw_event.mmap)
1307                 atomic_dec(&nr_mmap_tracking);
1308         if (counter->hw_event.munmap)
1309                 atomic_dec(&nr_munmap_tracking);
1310         if (counter->hw_event.comm)
1311                 atomic_dec(&nr_comm_tracking);
1312
1313         if (counter->destroy)
1314                 counter->destroy(counter);
1315
1316         call_rcu(&counter->rcu_head, free_counter_rcu);
1317 }
1318
1319 /*
1320  * Called when the last reference to the file is gone.
1321  */
1322 static int perf_release(struct inode *inode, struct file *file)
1323 {
1324         struct perf_counter *counter = file->private_data;
1325         struct perf_counter_context *ctx = counter->ctx;
1326
1327         file->private_data = NULL;
1328
1329         mutex_lock(&ctx->mutex);
1330         perf_counter_remove_from_context(counter);
1331         mutex_unlock(&ctx->mutex);
1332
1333         mutex_lock(&counter->owner->perf_counter_mutex);
1334         list_del_init(&counter->owner_entry);
1335         mutex_unlock(&counter->owner->perf_counter_mutex);
1336         put_task_struct(counter->owner);
1337
1338         free_counter(counter);
1339         put_context(ctx);
1340
1341         return 0;
1342 }
1343
1344 /*
1345  * Read the performance counter - simple non blocking version for now
1346  */
1347 static ssize_t
1348 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1349 {
1350         u64 values[3];
1351         int n;
1352
1353         /*
1354          * Return end-of-file for a read on a counter that is in
1355          * error state (i.e. because it was pinned but it couldn't be
1356          * scheduled on to the CPU at some point).
1357          */
1358         if (counter->state == PERF_COUNTER_STATE_ERROR)
1359                 return 0;
1360
1361         mutex_lock(&counter->child_mutex);
1362         values[0] = perf_counter_read(counter);
1363         n = 1;
1364         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1365                 values[n++] = counter->total_time_enabled +
1366                         atomic64_read(&counter->child_total_time_enabled);
1367         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1368                 values[n++] = counter->total_time_running +
1369                         atomic64_read(&counter->child_total_time_running);
1370         mutex_unlock(&counter->child_mutex);
1371
1372         if (count < n * sizeof(u64))
1373                 return -EINVAL;
1374         count = n * sizeof(u64);
1375
1376         if (copy_to_user(buf, values, count))
1377                 return -EFAULT;
1378
1379         return count;
1380 }
1381
1382 static ssize_t
1383 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1384 {
1385         struct perf_counter *counter = file->private_data;
1386
1387         return perf_read_hw(counter, buf, count);
1388 }
1389
1390 static unsigned int perf_poll(struct file *file, poll_table *wait)
1391 {
1392         struct perf_counter *counter = file->private_data;
1393         struct perf_mmap_data *data;
1394         unsigned int events = POLL_HUP;
1395
1396         rcu_read_lock();
1397         data = rcu_dereference(counter->data);
1398         if (data)
1399                 events = atomic_xchg(&data->poll, 0);
1400         rcu_read_unlock();
1401
1402         poll_wait(file, &counter->waitq, wait);
1403
1404         return events;
1405 }
1406
1407 static void perf_counter_reset(struct perf_counter *counter)
1408 {
1409         (void)perf_counter_read(counter);
1410         atomic64_set(&counter->count, 0);
1411         perf_counter_update_userpage(counter);
1412 }
1413
1414 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1415                                           void (*func)(struct perf_counter *))
1416 {
1417         struct perf_counter_context *ctx = counter->ctx;
1418         struct perf_counter *sibling;
1419
1420         mutex_lock(&ctx->mutex);
1421         counter = counter->group_leader;
1422
1423         func(counter);
1424         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1425                 func(sibling);
1426         mutex_unlock(&ctx->mutex);
1427 }
1428
1429 static void perf_counter_for_each_child(struct perf_counter *counter,
1430                                         void (*func)(struct perf_counter *))
1431 {
1432         struct perf_counter *child;
1433
1434         mutex_lock(&counter->child_mutex);
1435         func(counter);
1436         list_for_each_entry(child, &counter->child_list, child_list)
1437                 func(child);
1438         mutex_unlock(&counter->child_mutex);
1439 }
1440
1441 static void perf_counter_for_each(struct perf_counter *counter,
1442                                   void (*func)(struct perf_counter *))
1443 {
1444         struct perf_counter *child;
1445
1446         mutex_lock(&counter->child_mutex);
1447         perf_counter_for_each_sibling(counter, func);
1448         list_for_each_entry(child, &counter->child_list, child_list)
1449                 perf_counter_for_each_sibling(child, func);
1450         mutex_unlock(&counter->child_mutex);
1451 }
1452
1453 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1454 {
1455         struct perf_counter *counter = file->private_data;
1456         void (*func)(struct perf_counter *);
1457         u32 flags = arg;
1458
1459         switch (cmd) {
1460         case PERF_COUNTER_IOC_ENABLE:
1461                 func = perf_counter_enable;
1462                 break;
1463         case PERF_COUNTER_IOC_DISABLE:
1464                 func = perf_counter_disable;
1465                 break;
1466         case PERF_COUNTER_IOC_RESET:
1467                 func = perf_counter_reset;
1468                 break;
1469
1470         case PERF_COUNTER_IOC_REFRESH:
1471                 return perf_counter_refresh(counter, arg);
1472         default:
1473                 return -ENOTTY;
1474         }
1475
1476         if (flags & PERF_IOC_FLAG_GROUP)
1477                 perf_counter_for_each(counter, func);
1478         else
1479                 perf_counter_for_each_child(counter, func);
1480
1481         return 0;
1482 }
1483
1484 int perf_counter_task_enable(void)
1485 {
1486         struct perf_counter *counter;
1487
1488         mutex_lock(&current->perf_counter_mutex);
1489         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1490                 perf_counter_for_each_child(counter, perf_counter_enable);
1491         mutex_unlock(&current->perf_counter_mutex);
1492
1493         return 0;
1494 }
1495
1496 int perf_counter_task_disable(void)
1497 {
1498         struct perf_counter *counter;
1499
1500         mutex_lock(&current->perf_counter_mutex);
1501         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1502                 perf_counter_for_each_child(counter, perf_counter_disable);
1503         mutex_unlock(&current->perf_counter_mutex);
1504
1505         return 0;
1506 }
1507
1508 /*
1509  * Callers need to ensure there can be no nesting of this function, otherwise
1510  * the seqlock logic goes bad. We can not serialize this because the arch
1511  * code calls this from NMI context.
1512  */
1513 void perf_counter_update_userpage(struct perf_counter *counter)
1514 {
1515         struct perf_mmap_data *data;
1516         struct perf_counter_mmap_page *userpg;
1517
1518         rcu_read_lock();
1519         data = rcu_dereference(counter->data);
1520         if (!data)
1521                 goto unlock;
1522
1523         userpg = data->user_page;
1524
1525         /*
1526          * Disable preemption so as to not let the corresponding user-space
1527          * spin too long if we get preempted.
1528          */
1529         preempt_disable();
1530         ++userpg->lock;
1531         barrier();
1532         userpg->index = counter->hw.idx;
1533         userpg->offset = atomic64_read(&counter->count);
1534         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1535                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1536
1537         barrier();
1538         ++userpg->lock;
1539         preempt_enable();
1540 unlock:
1541         rcu_read_unlock();
1542 }
1543
1544 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1545 {
1546         struct perf_counter *counter = vma->vm_file->private_data;
1547         struct perf_mmap_data *data;
1548         int ret = VM_FAULT_SIGBUS;
1549
1550         rcu_read_lock();
1551         data = rcu_dereference(counter->data);
1552         if (!data)
1553                 goto unlock;
1554
1555         if (vmf->pgoff == 0) {
1556                 vmf->page = virt_to_page(data->user_page);
1557         } else {
1558                 int nr = vmf->pgoff - 1;
1559
1560                 if ((unsigned)nr > data->nr_pages)
1561                         goto unlock;
1562
1563                 vmf->page = virt_to_page(data->data_pages[nr]);
1564         }
1565         get_page(vmf->page);
1566         ret = 0;
1567 unlock:
1568         rcu_read_unlock();
1569
1570         return ret;
1571 }
1572
1573 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1574 {
1575         struct perf_mmap_data *data;
1576         unsigned long size;
1577         int i;
1578
1579         WARN_ON(atomic_read(&counter->mmap_count));
1580
1581         size = sizeof(struct perf_mmap_data);
1582         size += nr_pages * sizeof(void *);
1583
1584         data = kzalloc(size, GFP_KERNEL);
1585         if (!data)
1586                 goto fail;
1587
1588         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1589         if (!data->user_page)
1590                 goto fail_user_page;
1591
1592         for (i = 0; i < nr_pages; i++) {
1593                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1594                 if (!data->data_pages[i])
1595                         goto fail_data_pages;
1596         }
1597
1598         data->nr_pages = nr_pages;
1599         atomic_set(&data->lock, -1);
1600
1601         rcu_assign_pointer(counter->data, data);
1602
1603         return 0;
1604
1605 fail_data_pages:
1606         for (i--; i >= 0; i--)
1607                 free_page((unsigned long)data->data_pages[i]);
1608
1609         free_page((unsigned long)data->user_page);
1610
1611 fail_user_page:
1612         kfree(data);
1613
1614 fail:
1615         return -ENOMEM;
1616 }
1617
1618 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1619 {
1620         struct perf_mmap_data *data = container_of(rcu_head,
1621                         struct perf_mmap_data, rcu_head);
1622         int i;
1623
1624         free_page((unsigned long)data->user_page);
1625         for (i = 0; i < data->nr_pages; i++)
1626                 free_page((unsigned long)data->data_pages[i]);
1627         kfree(data);
1628 }
1629
1630 static void perf_mmap_data_free(struct perf_counter *counter)
1631 {
1632         struct perf_mmap_data *data = counter->data;
1633
1634         WARN_ON(atomic_read(&counter->mmap_count));
1635
1636         rcu_assign_pointer(counter->data, NULL);
1637         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1638 }
1639
1640 static void perf_mmap_open(struct vm_area_struct *vma)
1641 {
1642         struct perf_counter *counter = vma->vm_file->private_data;
1643
1644         atomic_inc(&counter->mmap_count);
1645 }
1646
1647 static void perf_mmap_close(struct vm_area_struct *vma)
1648 {
1649         struct perf_counter *counter = vma->vm_file->private_data;
1650
1651         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1652                                       &counter->mmap_mutex)) {
1653                 struct user_struct *user = current_user();
1654
1655                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1656                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1657                 perf_mmap_data_free(counter);
1658                 mutex_unlock(&counter->mmap_mutex);
1659         }
1660 }
1661
1662 static struct vm_operations_struct perf_mmap_vmops = {
1663         .open  = perf_mmap_open,
1664         .close = perf_mmap_close,
1665         .fault = perf_mmap_fault,
1666 };
1667
1668 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1669 {
1670         struct perf_counter *counter = file->private_data;
1671         struct user_struct *user = current_user();
1672         unsigned long vma_size;
1673         unsigned long nr_pages;
1674         unsigned long user_locked, user_lock_limit;
1675         unsigned long locked, lock_limit;
1676         long user_extra, extra;
1677         int ret = 0;
1678
1679         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1680                 return -EINVAL;
1681
1682         vma_size = vma->vm_end - vma->vm_start;
1683         nr_pages = (vma_size / PAGE_SIZE) - 1;
1684
1685         /*
1686          * If we have data pages ensure they're a power-of-two number, so we
1687          * can do bitmasks instead of modulo.
1688          */
1689         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1690                 return -EINVAL;
1691
1692         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1693                 return -EINVAL;
1694
1695         if (vma->vm_pgoff != 0)
1696                 return -EINVAL;
1697
1698         mutex_lock(&counter->mmap_mutex);
1699         if (atomic_inc_not_zero(&counter->mmap_count)) {
1700                 if (nr_pages != counter->data->nr_pages)
1701                         ret = -EINVAL;
1702                 goto unlock;
1703         }
1704
1705         user_extra = nr_pages + 1;
1706         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1707
1708         /*
1709          * Increase the limit linearly with more CPUs:
1710          */
1711         user_lock_limit *= num_online_cpus();
1712
1713         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1714
1715         extra = 0;
1716         if (user_locked > user_lock_limit)
1717                 extra = user_locked - user_lock_limit;
1718
1719         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1720         lock_limit >>= PAGE_SHIFT;
1721         locked = vma->vm_mm->locked_vm + extra;
1722
1723         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1724                 ret = -EPERM;
1725                 goto unlock;
1726         }
1727
1728         WARN_ON(counter->data);
1729         ret = perf_mmap_data_alloc(counter, nr_pages);
1730         if (ret)
1731                 goto unlock;
1732
1733         atomic_set(&counter->mmap_count, 1);
1734         atomic_long_add(user_extra, &user->locked_vm);
1735         vma->vm_mm->locked_vm += extra;
1736         counter->data->nr_locked = extra;
1737 unlock:
1738         mutex_unlock(&counter->mmap_mutex);
1739
1740         vma->vm_flags &= ~VM_MAYWRITE;
1741         vma->vm_flags |= VM_RESERVED;
1742         vma->vm_ops = &perf_mmap_vmops;
1743
1744         return ret;
1745 }
1746
1747 static int perf_fasync(int fd, struct file *filp, int on)
1748 {
1749         struct perf_counter *counter = filp->private_data;
1750         struct inode *inode = filp->f_path.dentry->d_inode;
1751         int retval;
1752
1753         mutex_lock(&inode->i_mutex);
1754         retval = fasync_helper(fd, filp, on, &counter->fasync);
1755         mutex_unlock(&inode->i_mutex);
1756
1757         if (retval < 0)
1758                 return retval;
1759
1760         return 0;
1761 }
1762
1763 static const struct file_operations perf_fops = {
1764         .release                = perf_release,
1765         .read                   = perf_read,
1766         .poll                   = perf_poll,
1767         .unlocked_ioctl         = perf_ioctl,
1768         .compat_ioctl           = perf_ioctl,
1769         .mmap                   = perf_mmap,
1770         .fasync                 = perf_fasync,
1771 };
1772
1773 /*
1774  * Perf counter wakeup
1775  *
1776  * If there's data, ensure we set the poll() state and publish everything
1777  * to user-space before waking everybody up.
1778  */
1779
1780 void perf_counter_wakeup(struct perf_counter *counter)
1781 {
1782         wake_up_all(&counter->waitq);
1783
1784         if (counter->pending_kill) {
1785                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1786                 counter->pending_kill = 0;
1787         }
1788 }
1789
1790 /*
1791  * Pending wakeups
1792  *
1793  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1794  *
1795  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1796  * single linked list and use cmpxchg() to add entries lockless.
1797  */
1798
1799 static void perf_pending_counter(struct perf_pending_entry *entry)
1800 {
1801         struct perf_counter *counter = container_of(entry,
1802                         struct perf_counter, pending);
1803
1804         if (counter->pending_disable) {
1805                 counter->pending_disable = 0;
1806                 perf_counter_disable(counter);
1807         }
1808
1809         if (counter->pending_wakeup) {
1810                 counter->pending_wakeup = 0;
1811                 perf_counter_wakeup(counter);
1812         }
1813 }
1814
1815 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1816
1817 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1818         PENDING_TAIL,
1819 };
1820
1821 static void perf_pending_queue(struct perf_pending_entry *entry,
1822                                void (*func)(struct perf_pending_entry *))
1823 {
1824         struct perf_pending_entry **head;
1825
1826         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1827                 return;
1828
1829         entry->func = func;
1830
1831         head = &get_cpu_var(perf_pending_head);
1832
1833         do {
1834                 entry->next = *head;
1835         } while (cmpxchg(head, entry->next, entry) != entry->next);
1836
1837         set_perf_counter_pending();
1838
1839         put_cpu_var(perf_pending_head);
1840 }
1841
1842 static int __perf_pending_run(void)
1843 {
1844         struct perf_pending_entry *list;
1845         int nr = 0;
1846
1847         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1848         while (list != PENDING_TAIL) {
1849                 void (*func)(struct perf_pending_entry *);
1850                 struct perf_pending_entry *entry = list;
1851
1852                 list = list->next;
1853
1854                 func = entry->func;
1855                 entry->next = NULL;
1856                 /*
1857                  * Ensure we observe the unqueue before we issue the wakeup,
1858                  * so that we won't be waiting forever.
1859                  * -- see perf_not_pending().
1860                  */
1861                 smp_wmb();
1862
1863                 func(entry);
1864                 nr++;
1865         }
1866
1867         return nr;
1868 }
1869
1870 static inline int perf_not_pending(struct perf_counter *counter)
1871 {
1872         /*
1873          * If we flush on whatever cpu we run, there is a chance we don't
1874          * need to wait.
1875          */
1876         get_cpu();
1877         __perf_pending_run();
1878         put_cpu();
1879
1880         /*
1881          * Ensure we see the proper queue state before going to sleep
1882          * so that we do not miss the wakeup. -- see perf_pending_handle()
1883          */
1884         smp_rmb();
1885         return counter->pending.next == NULL;
1886 }
1887
1888 static void perf_pending_sync(struct perf_counter *counter)
1889 {
1890         wait_event(counter->waitq, perf_not_pending(counter));
1891 }
1892
1893 void perf_counter_do_pending(void)
1894 {
1895         __perf_pending_run();
1896 }
1897
1898 /*
1899  * Callchain support -- arch specific
1900  */
1901
1902 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1903 {
1904         return NULL;
1905 }
1906
1907 /*
1908  * Output
1909  */
1910
1911 struct perf_output_handle {
1912         struct perf_counter     *counter;
1913         struct perf_mmap_data   *data;
1914         unsigned int            offset;
1915         unsigned int            head;
1916         int                     nmi;
1917         int                     overflow;
1918         int                     locked;
1919         unsigned long           flags;
1920 };
1921
1922 static void perf_output_wakeup(struct perf_output_handle *handle)
1923 {
1924         atomic_set(&handle->data->poll, POLL_IN);
1925
1926         if (handle->nmi) {
1927                 handle->counter->pending_wakeup = 1;
1928                 perf_pending_queue(&handle->counter->pending,
1929                                    perf_pending_counter);
1930         } else
1931                 perf_counter_wakeup(handle->counter);
1932 }
1933
1934 /*
1935  * Curious locking construct.
1936  *
1937  * We need to ensure a later event doesn't publish a head when a former
1938  * event isn't done writing. However since we need to deal with NMIs we
1939  * cannot fully serialize things.
1940  *
1941  * What we do is serialize between CPUs so we only have to deal with NMI
1942  * nesting on a single CPU.
1943  *
1944  * We only publish the head (and generate a wakeup) when the outer-most
1945  * event completes.
1946  */
1947 static void perf_output_lock(struct perf_output_handle *handle)
1948 {
1949         struct perf_mmap_data *data = handle->data;
1950         int cpu;
1951
1952         handle->locked = 0;
1953
1954         local_irq_save(handle->flags);
1955         cpu = smp_processor_id();
1956
1957         if (in_nmi() && atomic_read(&data->lock) == cpu)
1958                 return;
1959
1960         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1961                 cpu_relax();
1962
1963         handle->locked = 1;
1964 }
1965
1966 static void perf_output_unlock(struct perf_output_handle *handle)
1967 {
1968         struct perf_mmap_data *data = handle->data;
1969         int head, cpu;
1970
1971         data->done_head = data->head;
1972
1973         if (!handle->locked)
1974                 goto out;
1975
1976 again:
1977         /*
1978          * The xchg implies a full barrier that ensures all writes are done
1979          * before we publish the new head, matched by a rmb() in userspace when
1980          * reading this position.
1981          */
1982         while ((head = atomic_xchg(&data->done_head, 0)))
1983                 data->user_page->data_head = head;
1984
1985         /*
1986          * NMI can happen here, which means we can miss a done_head update.
1987          */
1988
1989         cpu = atomic_xchg(&data->lock, -1);
1990         WARN_ON_ONCE(cpu != smp_processor_id());
1991
1992         /*
1993          * Therefore we have to validate we did not indeed do so.
1994          */
1995         if (unlikely(atomic_read(&data->done_head))) {
1996                 /*
1997                  * Since we had it locked, we can lock it again.
1998                  */
1999                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2000                         cpu_relax();
2001
2002                 goto again;
2003         }
2004
2005         if (atomic_xchg(&data->wakeup, 0))
2006                 perf_output_wakeup(handle);
2007 out:
2008         local_irq_restore(handle->flags);
2009 }
2010
2011 static int perf_output_begin(struct perf_output_handle *handle,
2012                              struct perf_counter *counter, unsigned int size,
2013                              int nmi, int overflow)
2014 {
2015         struct perf_mmap_data *data;
2016         unsigned int offset, head;
2017
2018         /*
2019          * For inherited counters we send all the output towards the parent.
2020          */
2021         if (counter->parent)
2022                 counter = counter->parent;
2023
2024         rcu_read_lock();
2025         data = rcu_dereference(counter->data);
2026         if (!data)
2027                 goto out;
2028
2029         handle->data     = data;
2030         handle->counter  = counter;
2031         handle->nmi      = nmi;
2032         handle->overflow = overflow;
2033
2034         if (!data->nr_pages)
2035                 goto fail;
2036
2037         perf_output_lock(handle);
2038
2039         do {
2040                 offset = head = atomic_read(&data->head);
2041                 head += size;
2042         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2043
2044         handle->offset  = offset;
2045         handle->head    = head;
2046
2047         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2048                 atomic_set(&data->wakeup, 1);
2049
2050         return 0;
2051
2052 fail:
2053         perf_output_wakeup(handle);
2054 out:
2055         rcu_read_unlock();
2056
2057         return -ENOSPC;
2058 }
2059
2060 static void perf_output_copy(struct perf_output_handle *handle,
2061                              void *buf, unsigned int len)
2062 {
2063         unsigned int pages_mask;
2064         unsigned int offset;
2065         unsigned int size;
2066         void **pages;
2067
2068         offset          = handle->offset;
2069         pages_mask      = handle->data->nr_pages - 1;
2070         pages           = handle->data->data_pages;
2071
2072         do {
2073                 unsigned int page_offset;
2074                 int nr;
2075
2076                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2077                 page_offset = offset & (PAGE_SIZE - 1);
2078                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2079
2080                 memcpy(pages[nr] + page_offset, buf, size);
2081
2082                 len         -= size;
2083                 buf         += size;
2084                 offset      += size;
2085         } while (len);
2086
2087         handle->offset = offset;
2088
2089         /*
2090          * Check we didn't copy past our reservation window, taking the
2091          * possible unsigned int wrap into account.
2092          */
2093         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2094 }
2095
2096 #define perf_output_put(handle, x) \
2097         perf_output_copy((handle), &(x), sizeof(x))
2098
2099 static void perf_output_end(struct perf_output_handle *handle)
2100 {
2101         struct perf_counter *counter = handle->counter;
2102         struct perf_mmap_data *data = handle->data;
2103
2104         int wakeup_events = counter->hw_event.wakeup_events;
2105
2106         if (handle->overflow && wakeup_events) {
2107                 int events = atomic_inc_return(&data->events);
2108                 if (events >= wakeup_events) {
2109                         atomic_sub(wakeup_events, &data->events);
2110                         atomic_set(&data->wakeup, 1);
2111                 }
2112         }
2113
2114         perf_output_unlock(handle);
2115         rcu_read_unlock();
2116 }
2117
2118 static void perf_counter_output(struct perf_counter *counter,
2119                                 int nmi, struct pt_regs *regs, u64 addr)
2120 {
2121         int ret;
2122         u64 record_type = counter->hw_event.record_type;
2123         struct perf_output_handle handle;
2124         struct perf_event_header header;
2125         u64 ip;
2126         struct {
2127                 u32 pid, tid;
2128         } tid_entry;
2129         struct {
2130                 u64 event;
2131                 u64 counter;
2132         } group_entry;
2133         struct perf_callchain_entry *callchain = NULL;
2134         int callchain_size = 0;
2135         u64 time;
2136         struct {
2137                 u32 cpu, reserved;
2138         } cpu_entry;
2139
2140         header.type = 0;
2141         header.size = sizeof(header);
2142
2143         header.misc = PERF_EVENT_MISC_OVERFLOW;
2144         header.misc |= perf_misc_flags(regs);
2145
2146         if (record_type & PERF_RECORD_IP) {
2147                 ip = perf_instruction_pointer(regs);
2148                 header.type |= PERF_RECORD_IP;
2149                 header.size += sizeof(ip);
2150         }
2151
2152         if (record_type & PERF_RECORD_TID) {
2153                 /* namespace issues */
2154                 tid_entry.pid = current->group_leader->pid;
2155                 tid_entry.tid = current->pid;
2156
2157                 header.type |= PERF_RECORD_TID;
2158                 header.size += sizeof(tid_entry);
2159         }
2160
2161         if (record_type & PERF_RECORD_TIME) {
2162                 /*
2163                  * Maybe do better on x86 and provide cpu_clock_nmi()
2164                  */
2165                 time = sched_clock();
2166
2167                 header.type |= PERF_RECORD_TIME;
2168                 header.size += sizeof(u64);
2169         }
2170
2171         if (record_type & PERF_RECORD_ADDR) {
2172                 header.type |= PERF_RECORD_ADDR;
2173                 header.size += sizeof(u64);
2174         }
2175
2176         if (record_type & PERF_RECORD_CONFIG) {
2177                 header.type |= PERF_RECORD_CONFIG;
2178                 header.size += sizeof(u64);
2179         }
2180
2181         if (record_type & PERF_RECORD_CPU) {
2182                 header.type |= PERF_RECORD_CPU;
2183                 header.size += sizeof(cpu_entry);
2184
2185                 cpu_entry.cpu = raw_smp_processor_id();
2186         }
2187
2188         if (record_type & PERF_RECORD_GROUP) {
2189                 header.type |= PERF_RECORD_GROUP;
2190                 header.size += sizeof(u64) +
2191                         counter->nr_siblings * sizeof(group_entry);
2192         }
2193
2194         if (record_type & PERF_RECORD_CALLCHAIN) {
2195                 callchain = perf_callchain(regs);
2196
2197                 if (callchain) {
2198                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2199
2200                         header.type |= PERF_RECORD_CALLCHAIN;
2201                         header.size += callchain_size;
2202                 }
2203         }
2204
2205         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2206         if (ret)
2207                 return;
2208
2209         perf_output_put(&handle, header);
2210
2211         if (record_type & PERF_RECORD_IP)
2212                 perf_output_put(&handle, ip);
2213
2214         if (record_type & PERF_RECORD_TID)
2215                 perf_output_put(&handle, tid_entry);
2216
2217         if (record_type & PERF_RECORD_TIME)
2218                 perf_output_put(&handle, time);
2219
2220         if (record_type & PERF_RECORD_ADDR)
2221                 perf_output_put(&handle, addr);
2222
2223         if (record_type & PERF_RECORD_CONFIG)
2224                 perf_output_put(&handle, counter->hw_event.config);
2225
2226         if (record_type & PERF_RECORD_CPU)
2227                 perf_output_put(&handle, cpu_entry);
2228
2229         /*
2230          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2231          */
2232         if (record_type & PERF_RECORD_GROUP) {
2233                 struct perf_counter *leader, *sub;
2234                 u64 nr = counter->nr_siblings;
2235
2236                 perf_output_put(&handle, nr);
2237
2238                 leader = counter->group_leader;
2239                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2240                         if (sub != counter)
2241                                 sub->pmu->read(sub);
2242
2243                         group_entry.event = sub->hw_event.config;
2244                         group_entry.counter = atomic64_read(&sub->count);
2245
2246                         perf_output_put(&handle, group_entry);
2247                 }
2248         }
2249
2250         if (callchain)
2251                 perf_output_copy(&handle, callchain, callchain_size);
2252
2253         perf_output_end(&handle);
2254 }
2255
2256 /*
2257  * comm tracking
2258  */
2259
2260 struct perf_comm_event {
2261         struct task_struct      *task;
2262         char                    *comm;
2263         int                     comm_size;
2264
2265         struct {
2266                 struct perf_event_header        header;
2267
2268                 u32                             pid;
2269                 u32                             tid;
2270         } event;
2271 };
2272
2273 static void perf_counter_comm_output(struct perf_counter *counter,
2274                                      struct perf_comm_event *comm_event)
2275 {
2276         struct perf_output_handle handle;
2277         int size = comm_event->event.header.size;
2278         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2279
2280         if (ret)
2281                 return;
2282
2283         perf_output_put(&handle, comm_event->event);
2284         perf_output_copy(&handle, comm_event->comm,
2285                                    comm_event->comm_size);
2286         perf_output_end(&handle);
2287 }
2288
2289 static int perf_counter_comm_match(struct perf_counter *counter,
2290                                    struct perf_comm_event *comm_event)
2291 {
2292         if (counter->hw_event.comm &&
2293             comm_event->event.header.type == PERF_EVENT_COMM)
2294                 return 1;
2295
2296         return 0;
2297 }
2298
2299 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2300                                   struct perf_comm_event *comm_event)
2301 {
2302         struct perf_counter *counter;
2303
2304         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2305                 return;
2306
2307         rcu_read_lock();
2308         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2309                 if (perf_counter_comm_match(counter, comm_event))
2310                         perf_counter_comm_output(counter, comm_event);
2311         }
2312         rcu_read_unlock();
2313 }
2314
2315 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2316 {
2317         struct perf_cpu_context *cpuctx;
2318         unsigned int size;
2319         char *comm = comm_event->task->comm;
2320
2321         size = ALIGN(strlen(comm)+1, sizeof(u64));
2322
2323         comm_event->comm = comm;
2324         comm_event->comm_size = size;
2325
2326         comm_event->event.header.size = sizeof(comm_event->event) + size;
2327
2328         cpuctx = &get_cpu_var(perf_cpu_context);
2329         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2330         put_cpu_var(perf_cpu_context);
2331
2332         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2333 }
2334
2335 void perf_counter_comm(struct task_struct *task)
2336 {
2337         struct perf_comm_event comm_event;
2338
2339         if (!atomic_read(&nr_comm_tracking))
2340                 return;
2341         if (!current->perf_counter_ctxp)
2342                 return;
2343
2344         comm_event = (struct perf_comm_event){
2345                 .task   = task,
2346                 .event  = {
2347                         .header = { .type = PERF_EVENT_COMM, },
2348                         .pid    = task->group_leader->pid,
2349                         .tid    = task->pid,
2350                 },
2351         };
2352
2353         perf_counter_comm_event(&comm_event);
2354 }
2355
2356 /*
2357  * mmap tracking
2358  */
2359
2360 struct perf_mmap_event {
2361         struct file     *file;
2362         char            *file_name;
2363         int             file_size;
2364
2365         struct {
2366                 struct perf_event_header        header;
2367
2368                 u32                             pid;
2369                 u32                             tid;
2370                 u64                             start;
2371                 u64                             len;
2372                 u64                             pgoff;
2373         } event;
2374 };
2375
2376 static void perf_counter_mmap_output(struct perf_counter *counter,
2377                                      struct perf_mmap_event *mmap_event)
2378 {
2379         struct perf_output_handle handle;
2380         int size = mmap_event->event.header.size;
2381         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2382
2383         if (ret)
2384                 return;
2385
2386         perf_output_put(&handle, mmap_event->event);
2387         perf_output_copy(&handle, mmap_event->file_name,
2388                                    mmap_event->file_size);
2389         perf_output_end(&handle);
2390 }
2391
2392 static int perf_counter_mmap_match(struct perf_counter *counter,
2393                                    struct perf_mmap_event *mmap_event)
2394 {
2395         if (counter->hw_event.mmap &&
2396             mmap_event->event.header.type == PERF_EVENT_MMAP)
2397                 return 1;
2398
2399         if (counter->hw_event.munmap &&
2400             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2401                 return 1;
2402
2403         return 0;
2404 }
2405
2406 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2407                                   struct perf_mmap_event *mmap_event)
2408 {
2409         struct perf_counter *counter;
2410
2411         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2412                 return;
2413
2414         rcu_read_lock();
2415         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2416                 if (perf_counter_mmap_match(counter, mmap_event))
2417                         perf_counter_mmap_output(counter, mmap_event);
2418         }
2419         rcu_read_unlock();
2420 }
2421
2422 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2423 {
2424         struct perf_cpu_context *cpuctx;
2425         struct file *file = mmap_event->file;
2426         unsigned int size;
2427         char tmp[16];
2428         char *buf = NULL;
2429         char *name;
2430
2431         if (file) {
2432                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2433                 if (!buf) {
2434                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2435                         goto got_name;
2436                 }
2437                 name = d_path(&file->f_path, buf, PATH_MAX);
2438                 if (IS_ERR(name)) {
2439                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2440                         goto got_name;
2441                 }
2442         } else {
2443                 name = strncpy(tmp, "//anon", sizeof(tmp));
2444                 goto got_name;
2445         }
2446
2447 got_name:
2448         size = ALIGN(strlen(name)+1, sizeof(u64));
2449
2450         mmap_event->file_name = name;
2451         mmap_event->file_size = size;
2452
2453         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2454
2455         cpuctx = &get_cpu_var(perf_cpu_context);
2456         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2457         put_cpu_var(perf_cpu_context);
2458
2459         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2460
2461         kfree(buf);
2462 }
2463
2464 void perf_counter_mmap(unsigned long addr, unsigned long len,
2465                        unsigned long pgoff, struct file *file)
2466 {
2467         struct perf_mmap_event mmap_event;
2468
2469         if (!atomic_read(&nr_mmap_tracking))
2470                 return;
2471         if (!current->perf_counter_ctxp)
2472                 return;
2473
2474         mmap_event = (struct perf_mmap_event){
2475                 .file   = file,
2476                 .event  = {
2477                         .header = { .type = PERF_EVENT_MMAP, },
2478                         .pid    = current->group_leader->pid,
2479                         .tid    = current->pid,
2480                         .start  = addr,
2481                         .len    = len,
2482                         .pgoff  = pgoff,
2483                 },
2484         };
2485
2486         perf_counter_mmap_event(&mmap_event);
2487 }
2488
2489 void perf_counter_munmap(unsigned long addr, unsigned long len,
2490                          unsigned long pgoff, struct file *file)
2491 {
2492         struct perf_mmap_event mmap_event;
2493
2494         if (!atomic_read(&nr_munmap_tracking))
2495                 return;
2496
2497         mmap_event = (struct perf_mmap_event){
2498                 .file   = file,
2499                 .event  = {
2500                         .header = { .type = PERF_EVENT_MUNMAP, },
2501                         .pid    = current->group_leader->pid,
2502                         .tid    = current->pid,
2503                         .start  = addr,
2504                         .len    = len,
2505                         .pgoff  = pgoff,
2506                 },
2507         };
2508
2509         perf_counter_mmap_event(&mmap_event);
2510 }
2511
2512 /*
2513  * Log irq_period changes so that analyzing tools can re-normalize the
2514  * event flow.
2515  */
2516
2517 static void perf_log_period(struct perf_counter *counter, u64 period)
2518 {
2519         struct perf_output_handle handle;
2520         int ret;
2521
2522         struct {
2523                 struct perf_event_header        header;
2524                 u64                             time;
2525                 u64                             period;
2526         } freq_event = {
2527                 .header = {
2528                         .type = PERF_EVENT_PERIOD,
2529                         .misc = 0,
2530                         .size = sizeof(freq_event),
2531                 },
2532                 .time = sched_clock(),
2533                 .period = period,
2534         };
2535
2536         if (counter->hw.irq_period == period)
2537                 return;
2538
2539         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2540         if (ret)
2541                 return;
2542
2543         perf_output_put(&handle, freq_event);
2544         perf_output_end(&handle);
2545 }
2546
2547 /*
2548  * Generic counter overflow handling.
2549  */
2550
2551 int perf_counter_overflow(struct perf_counter *counter,
2552                           int nmi, struct pt_regs *regs, u64 addr)
2553 {
2554         int events = atomic_read(&counter->event_limit);
2555         int ret = 0;
2556
2557         counter->hw.interrupts++;
2558
2559         /*
2560          * XXX event_limit might not quite work as expected on inherited
2561          * counters
2562          */
2563
2564         counter->pending_kill = POLL_IN;
2565         if (events && atomic_dec_and_test(&counter->event_limit)) {
2566                 ret = 1;
2567                 counter->pending_kill = POLL_HUP;
2568                 if (nmi) {
2569                         counter->pending_disable = 1;
2570                         perf_pending_queue(&counter->pending,
2571                                            perf_pending_counter);
2572                 } else
2573                         perf_counter_disable(counter);
2574         }
2575
2576         perf_counter_output(counter, nmi, regs, addr);
2577         return ret;
2578 }
2579
2580 /*
2581  * Generic software counter infrastructure
2582  */
2583
2584 static void perf_swcounter_update(struct perf_counter *counter)
2585 {
2586         struct hw_perf_counter *hwc = &counter->hw;
2587         u64 prev, now;
2588         s64 delta;
2589
2590 again:
2591         prev = atomic64_read(&hwc->prev_count);
2592         now = atomic64_read(&hwc->count);
2593         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2594                 goto again;
2595
2596         delta = now - prev;
2597
2598         atomic64_add(delta, &counter->count);
2599         atomic64_sub(delta, &hwc->period_left);
2600 }
2601
2602 static void perf_swcounter_set_period(struct perf_counter *counter)
2603 {
2604         struct hw_perf_counter *hwc = &counter->hw;
2605         s64 left = atomic64_read(&hwc->period_left);
2606         s64 period = hwc->irq_period;
2607
2608         if (unlikely(left <= -period)) {
2609                 left = period;
2610                 atomic64_set(&hwc->period_left, left);
2611         }
2612
2613         if (unlikely(left <= 0)) {
2614                 left += period;
2615                 atomic64_add(period, &hwc->period_left);
2616         }
2617
2618         atomic64_set(&hwc->prev_count, -left);
2619         atomic64_set(&hwc->count, -left);
2620 }
2621
2622 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2623 {
2624         enum hrtimer_restart ret = HRTIMER_RESTART;
2625         struct perf_counter *counter;
2626         struct pt_regs *regs;
2627         u64 period;
2628
2629         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2630         counter->pmu->read(counter);
2631
2632         regs = get_irq_regs();
2633         /*
2634          * In case we exclude kernel IPs or are somehow not in interrupt
2635          * context, provide the next best thing, the user IP.
2636          */
2637         if ((counter->hw_event.exclude_kernel || !regs) &&
2638                         !counter->hw_event.exclude_user)
2639                 regs = task_pt_regs(current);
2640
2641         if (regs) {
2642                 if (perf_counter_overflow(counter, 0, regs, 0))
2643                         ret = HRTIMER_NORESTART;
2644         }
2645
2646         period = max_t(u64, 10000, counter->hw.irq_period);
2647         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2648
2649         return ret;
2650 }
2651
2652 static void perf_swcounter_overflow(struct perf_counter *counter,
2653                                     int nmi, struct pt_regs *regs, u64 addr)
2654 {
2655         perf_swcounter_update(counter);
2656         perf_swcounter_set_period(counter);
2657         if (perf_counter_overflow(counter, nmi, regs, addr))
2658                 /* soft-disable the counter */
2659                 ;
2660
2661 }
2662
2663 static int perf_swcounter_match(struct perf_counter *counter,
2664                                 enum perf_event_types type,
2665                                 u32 event, struct pt_regs *regs)
2666 {
2667         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2668                 return 0;
2669
2670         if (perf_event_raw(&counter->hw_event))
2671                 return 0;
2672
2673         if (perf_event_type(&counter->hw_event) != type)
2674                 return 0;
2675
2676         if (perf_event_id(&counter->hw_event) != event)
2677                 return 0;
2678
2679         if (counter->hw_event.exclude_user && user_mode(regs))
2680                 return 0;
2681
2682         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2683                 return 0;
2684
2685         return 1;
2686 }
2687
2688 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2689                                int nmi, struct pt_regs *regs, u64 addr)
2690 {
2691         int neg = atomic64_add_negative(nr, &counter->hw.count);
2692         if (counter->hw.irq_period && !neg)
2693                 perf_swcounter_overflow(counter, nmi, regs, addr);
2694 }
2695
2696 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2697                                      enum perf_event_types type, u32 event,
2698                                      u64 nr, int nmi, struct pt_regs *regs,
2699                                      u64 addr)
2700 {
2701         struct perf_counter *counter;
2702
2703         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2704                 return;
2705
2706         rcu_read_lock();
2707         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2708                 if (perf_swcounter_match(counter, type, event, regs))
2709                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2710         }
2711         rcu_read_unlock();
2712 }
2713
2714 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2715 {
2716         if (in_nmi())
2717                 return &cpuctx->recursion[3];
2718
2719         if (in_irq())
2720                 return &cpuctx->recursion[2];
2721
2722         if (in_softirq())
2723                 return &cpuctx->recursion[1];
2724
2725         return &cpuctx->recursion[0];
2726 }
2727
2728 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2729                                    u64 nr, int nmi, struct pt_regs *regs,
2730                                    u64 addr)
2731 {
2732         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2733         int *recursion = perf_swcounter_recursion_context(cpuctx);
2734
2735         if (*recursion)
2736                 goto out;
2737
2738         (*recursion)++;
2739         barrier();
2740
2741         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2742                                  nr, nmi, regs, addr);
2743         if (cpuctx->task_ctx) {
2744                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2745                                          nr, nmi, regs, addr);
2746         }
2747
2748         barrier();
2749         (*recursion)--;
2750
2751 out:
2752         put_cpu_var(perf_cpu_context);
2753 }
2754
2755 void
2756 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2757 {
2758         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2759 }
2760
2761 static void perf_swcounter_read(struct perf_counter *counter)
2762 {
2763         perf_swcounter_update(counter);
2764 }
2765
2766 static int perf_swcounter_enable(struct perf_counter *counter)
2767 {
2768         perf_swcounter_set_period(counter);
2769         return 0;
2770 }
2771
2772 static void perf_swcounter_disable(struct perf_counter *counter)
2773 {
2774         perf_swcounter_update(counter);
2775 }
2776
2777 static const struct pmu perf_ops_generic = {
2778         .enable         = perf_swcounter_enable,
2779         .disable        = perf_swcounter_disable,
2780         .read           = perf_swcounter_read,
2781 };
2782
2783 /*
2784  * Software counter: cpu wall time clock
2785  */
2786
2787 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2788 {
2789         int cpu = raw_smp_processor_id();
2790         s64 prev;
2791         u64 now;
2792
2793         now = cpu_clock(cpu);
2794         prev = atomic64_read(&counter->hw.prev_count);
2795         atomic64_set(&counter->hw.prev_count, now);
2796         atomic64_add(now - prev, &counter->count);
2797 }
2798
2799 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2800 {
2801         struct hw_perf_counter *hwc = &counter->hw;
2802         int cpu = raw_smp_processor_id();
2803
2804         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2805         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2806         hwc->hrtimer.function = perf_swcounter_hrtimer;
2807         if (hwc->irq_period) {
2808                 u64 period = max_t(u64, 10000, hwc->irq_period);
2809                 __hrtimer_start_range_ns(&hwc->hrtimer,
2810                                 ns_to_ktime(period), 0,
2811                                 HRTIMER_MODE_REL, 0);
2812         }
2813
2814         return 0;
2815 }
2816
2817 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2818 {
2819         if (counter->hw.irq_period)
2820                 hrtimer_cancel(&counter->hw.hrtimer);
2821         cpu_clock_perf_counter_update(counter);
2822 }
2823
2824 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2825 {
2826         cpu_clock_perf_counter_update(counter);
2827 }
2828
2829 static const struct pmu perf_ops_cpu_clock = {
2830         .enable         = cpu_clock_perf_counter_enable,
2831         .disable        = cpu_clock_perf_counter_disable,
2832         .read           = cpu_clock_perf_counter_read,
2833 };
2834
2835 /*
2836  * Software counter: task time clock
2837  */
2838
2839 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2840 {
2841         u64 prev;
2842         s64 delta;
2843
2844         prev = atomic64_xchg(&counter->hw.prev_count, now);
2845         delta = now - prev;
2846         atomic64_add(delta, &counter->count);
2847 }
2848
2849 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2850 {
2851         struct hw_perf_counter *hwc = &counter->hw;
2852         u64 now;
2853
2854         now = counter->ctx->time;
2855
2856         atomic64_set(&hwc->prev_count, now);
2857         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2858         hwc->hrtimer.function = perf_swcounter_hrtimer;
2859         if (hwc->irq_period) {
2860                 u64 period = max_t(u64, 10000, hwc->irq_period);
2861                 __hrtimer_start_range_ns(&hwc->hrtimer,
2862                                 ns_to_ktime(period), 0,
2863                                 HRTIMER_MODE_REL, 0);
2864         }
2865
2866         return 0;
2867 }
2868
2869 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2870 {
2871         if (counter->hw.irq_period)
2872                 hrtimer_cancel(&counter->hw.hrtimer);
2873         task_clock_perf_counter_update(counter, counter->ctx->time);
2874
2875 }
2876
2877 static void task_clock_perf_counter_read(struct perf_counter *counter)
2878 {
2879         u64 time;
2880
2881         if (!in_nmi()) {
2882                 update_context_time(counter->ctx);
2883                 time = counter->ctx->time;
2884         } else {
2885                 u64 now = perf_clock();
2886                 u64 delta = now - counter->ctx->timestamp;
2887                 time = counter->ctx->time + delta;
2888         }
2889
2890         task_clock_perf_counter_update(counter, time);
2891 }
2892
2893 static const struct pmu perf_ops_task_clock = {
2894         .enable         = task_clock_perf_counter_enable,
2895         .disable        = task_clock_perf_counter_disable,
2896         .read           = task_clock_perf_counter_read,
2897 };
2898
2899 /*
2900  * Software counter: cpu migrations
2901  */
2902
2903 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2904 {
2905         struct task_struct *curr = counter->ctx->task;
2906
2907         if (curr)
2908                 return curr->se.nr_migrations;
2909         return cpu_nr_migrations(smp_processor_id());
2910 }
2911
2912 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2913 {
2914         u64 prev, now;
2915         s64 delta;
2916
2917         prev = atomic64_read(&counter->hw.prev_count);
2918         now = get_cpu_migrations(counter);
2919
2920         atomic64_set(&counter->hw.prev_count, now);
2921
2922         delta = now - prev;
2923
2924         atomic64_add(delta, &counter->count);
2925 }
2926
2927 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2928 {
2929         cpu_migrations_perf_counter_update(counter);
2930 }
2931
2932 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2933 {
2934         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2935                 atomic64_set(&counter->hw.prev_count,
2936                              get_cpu_migrations(counter));
2937         return 0;
2938 }
2939
2940 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2941 {
2942         cpu_migrations_perf_counter_update(counter);
2943 }
2944
2945 static const struct pmu perf_ops_cpu_migrations = {
2946         .enable         = cpu_migrations_perf_counter_enable,
2947         .disable        = cpu_migrations_perf_counter_disable,
2948         .read           = cpu_migrations_perf_counter_read,
2949 };
2950
2951 #ifdef CONFIG_EVENT_PROFILE
2952 void perf_tpcounter_event(int event_id)
2953 {
2954         struct pt_regs *regs = get_irq_regs();
2955
2956         if (!regs)
2957                 regs = task_pt_regs(current);
2958
2959         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2960 }
2961 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2962
2963 extern int ftrace_profile_enable(int);
2964 extern void ftrace_profile_disable(int);
2965
2966 static void tp_perf_counter_destroy(struct perf_counter *counter)
2967 {
2968         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2969 }
2970
2971 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2972 {
2973         int event_id = perf_event_id(&counter->hw_event);
2974         int ret;
2975
2976         ret = ftrace_profile_enable(event_id);
2977         if (ret)
2978                 return NULL;
2979
2980         counter->destroy = tp_perf_counter_destroy;
2981         counter->hw.irq_period = counter->hw_event.irq_period;
2982
2983         return &perf_ops_generic;
2984 }
2985 #else
2986 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2987 {
2988         return NULL;
2989 }
2990 #endif
2991
2992 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2993 {
2994         const struct pmu *pmu = NULL;
2995
2996         /*
2997          * Software counters (currently) can't in general distinguish
2998          * between user, kernel and hypervisor events.
2999          * However, context switches and cpu migrations are considered
3000          * to be kernel events, and page faults are never hypervisor
3001          * events.
3002          */
3003         switch (perf_event_id(&counter->hw_event)) {
3004         case PERF_COUNT_CPU_CLOCK:
3005                 pmu = &perf_ops_cpu_clock;
3006
3007                 break;
3008         case PERF_COUNT_TASK_CLOCK:
3009                 /*
3010                  * If the user instantiates this as a per-cpu counter,
3011                  * use the cpu_clock counter instead.
3012                  */
3013                 if (counter->ctx->task)
3014                         pmu = &perf_ops_task_clock;
3015                 else
3016                         pmu = &perf_ops_cpu_clock;
3017
3018                 break;
3019         case PERF_COUNT_PAGE_FAULTS:
3020         case PERF_COUNT_PAGE_FAULTS_MIN:
3021         case PERF_COUNT_PAGE_FAULTS_MAJ:
3022         case PERF_COUNT_CONTEXT_SWITCHES:
3023                 pmu = &perf_ops_generic;
3024                 break;
3025         case PERF_COUNT_CPU_MIGRATIONS:
3026                 if (!counter->hw_event.exclude_kernel)
3027                         pmu = &perf_ops_cpu_migrations;
3028                 break;
3029         }
3030
3031         return pmu;
3032 }
3033
3034 /*
3035  * Allocate and initialize a counter structure
3036  */
3037 static struct perf_counter *
3038 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3039                    int cpu,
3040                    struct perf_counter_context *ctx,
3041                    struct perf_counter *group_leader,
3042                    gfp_t gfpflags)
3043 {
3044         const struct pmu *pmu;
3045         struct perf_counter *counter;
3046         struct hw_perf_counter *hwc;
3047         long err;
3048
3049         counter = kzalloc(sizeof(*counter), gfpflags);
3050         if (!counter)
3051                 return ERR_PTR(-ENOMEM);
3052
3053         /*
3054          * Single counters are their own group leaders, with an
3055          * empty sibling list:
3056          */
3057         if (!group_leader)
3058                 group_leader = counter;
3059
3060         mutex_init(&counter->child_mutex);
3061         INIT_LIST_HEAD(&counter->child_list);
3062
3063         INIT_LIST_HEAD(&counter->list_entry);
3064         INIT_LIST_HEAD(&counter->event_entry);
3065         INIT_LIST_HEAD(&counter->sibling_list);
3066         init_waitqueue_head(&counter->waitq);
3067
3068         mutex_init(&counter->mmap_mutex);
3069
3070         counter->cpu                    = cpu;
3071         counter->hw_event               = *hw_event;
3072         counter->group_leader           = group_leader;
3073         counter->pmu                    = NULL;
3074         counter->ctx                    = ctx;
3075         get_ctx(ctx);
3076
3077         counter->state = PERF_COUNTER_STATE_INACTIVE;
3078         if (hw_event->disabled)
3079                 counter->state = PERF_COUNTER_STATE_OFF;
3080
3081         pmu = NULL;
3082
3083         hwc = &counter->hw;
3084         if (hw_event->freq && hw_event->irq_freq)
3085                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3086         else
3087                 hwc->irq_period = hw_event->irq_period;
3088
3089         /*
3090          * we currently do not support PERF_RECORD_GROUP on inherited counters
3091          */
3092         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3093                 goto done;
3094
3095         if (perf_event_raw(hw_event)) {
3096                 pmu = hw_perf_counter_init(counter);
3097                 goto done;
3098         }
3099
3100         switch (perf_event_type(hw_event)) {
3101         case PERF_TYPE_HARDWARE:
3102                 pmu = hw_perf_counter_init(counter);
3103                 break;
3104
3105         case PERF_TYPE_SOFTWARE:
3106                 pmu = sw_perf_counter_init(counter);
3107                 break;
3108
3109         case PERF_TYPE_TRACEPOINT:
3110                 pmu = tp_perf_counter_init(counter);
3111                 break;
3112         }
3113 done:
3114         err = 0;
3115         if (!pmu)
3116                 err = -EINVAL;
3117         else if (IS_ERR(pmu))
3118                 err = PTR_ERR(pmu);
3119
3120         if (err) {
3121                 kfree(counter);
3122                 return ERR_PTR(err);
3123         }
3124
3125         counter->pmu = pmu;
3126
3127         atomic_inc(&nr_counters);
3128         if (counter->hw_event.mmap)
3129                 atomic_inc(&nr_mmap_tracking);
3130         if (counter->hw_event.munmap)
3131                 atomic_inc(&nr_munmap_tracking);
3132         if (counter->hw_event.comm)
3133                 atomic_inc(&nr_comm_tracking);
3134
3135         return counter;
3136 }
3137
3138 /**
3139  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3140  *
3141  * @hw_event_uptr:      event type attributes for monitoring/sampling
3142  * @pid:                target pid
3143  * @cpu:                target cpu
3144  * @group_fd:           group leader counter fd
3145  */
3146 SYSCALL_DEFINE5(perf_counter_open,
3147                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3148                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3149 {
3150         struct perf_counter *counter, *group_leader;
3151         struct perf_counter_hw_event hw_event;
3152         struct perf_counter_context *ctx;
3153         struct file *counter_file = NULL;
3154         struct file *group_file = NULL;
3155         int fput_needed = 0;
3156         int fput_needed2 = 0;
3157         int ret;
3158
3159         /* for future expandability... */
3160         if (flags)
3161                 return -EINVAL;
3162
3163         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3164                 return -EFAULT;
3165
3166         /*
3167          * Get the target context (task or percpu):
3168          */
3169         ctx = find_get_context(pid, cpu);
3170         if (IS_ERR(ctx))
3171                 return PTR_ERR(ctx);
3172
3173         /*
3174          * Look up the group leader (we will attach this counter to it):
3175          */
3176         group_leader = NULL;
3177         if (group_fd != -1) {
3178                 ret = -EINVAL;
3179                 group_file = fget_light(group_fd, &fput_needed);
3180                 if (!group_file)
3181                         goto err_put_context;
3182                 if (group_file->f_op != &perf_fops)
3183                         goto err_put_context;
3184
3185                 group_leader = group_file->private_data;
3186                 /*
3187                  * Do not allow a recursive hierarchy (this new sibling
3188                  * becoming part of another group-sibling):
3189                  */
3190                 if (group_leader->group_leader != group_leader)
3191                         goto err_put_context;
3192                 /*
3193                  * Do not allow to attach to a group in a different
3194                  * task or CPU context:
3195                  */
3196                 if (group_leader->ctx != ctx)
3197                         goto err_put_context;
3198                 /*
3199                  * Only a group leader can be exclusive or pinned
3200                  */
3201                 if (hw_event.exclusive || hw_event.pinned)
3202                         goto err_put_context;
3203         }
3204
3205         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3206                                      GFP_KERNEL);
3207         ret = PTR_ERR(counter);
3208         if (IS_ERR(counter))
3209                 goto err_put_context;
3210
3211         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3212         if (ret < 0)
3213                 goto err_free_put_context;
3214
3215         counter_file = fget_light(ret, &fput_needed2);
3216         if (!counter_file)
3217                 goto err_free_put_context;
3218
3219         counter->filp = counter_file;
3220         mutex_lock(&ctx->mutex);
3221         perf_install_in_context(ctx, counter, cpu);
3222         mutex_unlock(&ctx->mutex);
3223
3224         counter->owner = current;
3225         get_task_struct(current);
3226         mutex_lock(&current->perf_counter_mutex);
3227         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3228         mutex_unlock(&current->perf_counter_mutex);
3229
3230         fput_light(counter_file, fput_needed2);
3231
3232 out_fput:
3233         fput_light(group_file, fput_needed);
3234
3235         return ret;
3236
3237 err_free_put_context:
3238         kfree(counter);
3239
3240 err_put_context:
3241         put_context(ctx);
3242
3243         goto out_fput;
3244 }
3245
3246 /*
3247  * inherit a counter from parent task to child task:
3248  */
3249 static struct perf_counter *
3250 inherit_counter(struct perf_counter *parent_counter,
3251               struct task_struct *parent,
3252               struct perf_counter_context *parent_ctx,
3253               struct task_struct *child,
3254               struct perf_counter *group_leader,
3255               struct perf_counter_context *child_ctx)
3256 {
3257         struct perf_counter *child_counter;
3258
3259         /*
3260          * Instead of creating recursive hierarchies of counters,
3261          * we link inherited counters back to the original parent,
3262          * which has a filp for sure, which we use as the reference
3263          * count:
3264          */
3265         if (parent_counter->parent)
3266                 parent_counter = parent_counter->parent;
3267
3268         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3269                                            parent_counter->cpu, child_ctx,
3270                                            group_leader, GFP_KERNEL);
3271         if (IS_ERR(child_counter))
3272                 return child_counter;
3273
3274         /*
3275          * Make the child state follow the state of the parent counter,
3276          * not its hw_event.disabled bit.  We hold the parent's mutex,
3277          * so we won't race with perf_counter_{en,dis}able_family.
3278          */
3279         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3280                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3281         else
3282                 child_counter->state = PERF_COUNTER_STATE_OFF;
3283
3284         /*
3285          * Link it up in the child's context:
3286          */
3287         add_counter_to_ctx(child_counter, child_ctx);
3288
3289         child_counter->parent = parent_counter;
3290         /*
3291          * inherit into child's child as well:
3292          */
3293         child_counter->hw_event.inherit = 1;
3294
3295         /*
3296          * Get a reference to the parent filp - we will fput it
3297          * when the child counter exits. This is safe to do because
3298          * we are in the parent and we know that the filp still
3299          * exists and has a nonzero count:
3300          */
3301         atomic_long_inc(&parent_counter->filp->f_count);
3302
3303         /*
3304          * Link this into the parent counter's child list
3305          */
3306         mutex_lock(&parent_counter->child_mutex);
3307         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3308         mutex_unlock(&parent_counter->child_mutex);
3309
3310         return child_counter;
3311 }
3312
3313 static int inherit_group(struct perf_counter *parent_counter,
3314               struct task_struct *parent,
3315               struct perf_counter_context *parent_ctx,
3316               struct task_struct *child,
3317               struct perf_counter_context *child_ctx)
3318 {
3319         struct perf_counter *leader;
3320         struct perf_counter *sub;
3321         struct perf_counter *child_ctr;
3322
3323         leader = inherit_counter(parent_counter, parent, parent_ctx,
3324                                  child, NULL, child_ctx);
3325         if (IS_ERR(leader))
3326                 return PTR_ERR(leader);
3327         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3328                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3329                                             child, leader, child_ctx);
3330                 if (IS_ERR(child_ctr))
3331                         return PTR_ERR(child_ctr);
3332         }
3333         return 0;
3334 }
3335
3336 static void sync_child_counter(struct perf_counter *child_counter,
3337                                struct perf_counter *parent_counter)
3338 {
3339         u64 child_val;
3340
3341         child_val = atomic64_read(&child_counter->count);
3342
3343         /*
3344          * Add back the child's count to the parent's count:
3345          */
3346         atomic64_add(child_val, &parent_counter->count);
3347         atomic64_add(child_counter->total_time_enabled,
3348                      &parent_counter->child_total_time_enabled);
3349         atomic64_add(child_counter->total_time_running,
3350                      &parent_counter->child_total_time_running);
3351
3352         /*
3353          * Remove this counter from the parent's list
3354          */
3355         mutex_lock(&parent_counter->child_mutex);
3356         list_del_init(&child_counter->child_list);
3357         mutex_unlock(&parent_counter->child_mutex);
3358
3359         /*
3360          * Release the parent counter, if this was the last
3361          * reference to it.
3362          */
3363         fput(parent_counter->filp);
3364 }
3365
3366 static void
3367 __perf_counter_exit_task(struct task_struct *child,
3368                          struct perf_counter *child_counter,
3369                          struct perf_counter_context *child_ctx)
3370 {
3371         struct perf_counter *parent_counter;
3372
3373         update_counter_times(child_counter);
3374         perf_counter_remove_from_context(child_counter);
3375
3376         parent_counter = child_counter->parent;
3377         /*
3378          * It can happen that parent exits first, and has counters
3379          * that are still around due to the child reference. These
3380          * counters need to be zapped - but otherwise linger.
3381          */
3382         if (parent_counter) {
3383                 sync_child_counter(child_counter, parent_counter);
3384                 free_counter(child_counter);
3385         }
3386 }
3387
3388 /*
3389  * When a child task exits, feed back counter values to parent counters.
3390  *
3391  * Note: we may be running in child context, but the PID is not hashed
3392  * anymore so new counters will not be added.
3393  * (XXX not sure that is true when we get called from flush_old_exec.
3394  *  -- paulus)
3395  */
3396 void perf_counter_exit_task(struct task_struct *child)
3397 {
3398         struct perf_counter *child_counter, *tmp;
3399         struct perf_counter_context *child_ctx;
3400         unsigned long flags;
3401
3402         WARN_ON_ONCE(child != current);
3403
3404         child_ctx = child->perf_counter_ctxp;
3405
3406         if (likely(!child_ctx))
3407                 return;
3408
3409         local_irq_save(flags);
3410         __perf_counter_task_sched_out(child_ctx);
3411         child->perf_counter_ctxp = NULL;
3412         local_irq_restore(flags);
3413
3414         mutex_lock(&child_ctx->mutex);
3415
3416 again:
3417         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3418                                  list_entry)
3419                 __perf_counter_exit_task(child, child_counter, child_ctx);
3420
3421         /*
3422          * If the last counter was a group counter, it will have appended all
3423          * its siblings to the list, but we obtained 'tmp' before that which
3424          * will still point to the list head terminating the iteration.
3425          */
3426         if (!list_empty(&child_ctx->counter_list))
3427                 goto again;
3428
3429         mutex_unlock(&child_ctx->mutex);
3430
3431         put_ctx(child_ctx);
3432 }
3433
3434 /*
3435  * Initialize the perf_counter context in task_struct
3436  */
3437 void perf_counter_init_task(struct task_struct *child)
3438 {
3439         struct perf_counter_context *child_ctx, *parent_ctx;
3440         struct perf_counter *counter;
3441         struct task_struct *parent = current;
3442         int inherited_all = 1;
3443
3444         child->perf_counter_ctxp = NULL;
3445
3446         mutex_init(&child->perf_counter_mutex);
3447         INIT_LIST_HEAD(&child->perf_counter_list);
3448
3449         /*
3450          * This is executed from the parent task context, so inherit
3451          * counters that have been marked for cloning.
3452          * First allocate and initialize a context for the child.
3453          */
3454
3455         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3456         if (!child_ctx)
3457                 return;
3458
3459         parent_ctx = parent->perf_counter_ctxp;
3460         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3461                 return;
3462
3463         __perf_counter_init_context(child_ctx, child);
3464         child->perf_counter_ctxp = child_ctx;
3465
3466         /*
3467          * Lock the parent list. No need to lock the child - not PID
3468          * hashed yet and not running, so nobody can access it.
3469          */
3470         mutex_lock(&parent_ctx->mutex);
3471
3472         /*
3473          * We dont have to disable NMIs - we are only looking at
3474          * the list, not manipulating it:
3475          */
3476         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3477                 if (counter != counter->group_leader)
3478                         continue;
3479
3480                 if (!counter->hw_event.inherit) {
3481                         inherited_all = 0;
3482                         continue;
3483                 }
3484
3485                 if (inherit_group(counter, parent,
3486                                   parent_ctx, child, child_ctx)) {
3487                         inherited_all = 0;
3488                         break;
3489                 }
3490         }
3491
3492         if (inherited_all) {
3493                 /*
3494                  * Mark the child context as a clone of the parent
3495                  * context, or of whatever the parent is a clone of.
3496                  */
3497                 if (parent_ctx->parent_ctx) {
3498                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3499                         child_ctx->parent_gen = parent_ctx->parent_gen;
3500                 } else {
3501                         child_ctx->parent_ctx = parent_ctx;
3502                         child_ctx->parent_gen = parent_ctx->generation;
3503                 }
3504                 get_ctx(child_ctx->parent_ctx);
3505         }
3506
3507         mutex_unlock(&parent_ctx->mutex);
3508 }
3509
3510 static void __cpuinit perf_counter_init_cpu(int cpu)
3511 {
3512         struct perf_cpu_context *cpuctx;
3513
3514         cpuctx = &per_cpu(perf_cpu_context, cpu);
3515         __perf_counter_init_context(&cpuctx->ctx, NULL);
3516
3517         spin_lock(&perf_resource_lock);
3518         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3519         spin_unlock(&perf_resource_lock);
3520
3521         hw_perf_counter_setup(cpu);
3522 }
3523
3524 #ifdef CONFIG_HOTPLUG_CPU
3525 static void __perf_counter_exit_cpu(void *info)
3526 {
3527         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3528         struct perf_counter_context *ctx = &cpuctx->ctx;
3529         struct perf_counter *counter, *tmp;
3530
3531         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3532                 __perf_counter_remove_from_context(counter);
3533 }
3534 static void perf_counter_exit_cpu(int cpu)
3535 {
3536         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3537         struct perf_counter_context *ctx = &cpuctx->ctx;
3538
3539         mutex_lock(&ctx->mutex);
3540         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3541         mutex_unlock(&ctx->mutex);
3542 }
3543 #else
3544 static inline void perf_counter_exit_cpu(int cpu) { }
3545 #endif
3546
3547 static int __cpuinit
3548 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3549 {
3550         unsigned int cpu = (long)hcpu;
3551
3552         switch (action) {
3553
3554         case CPU_UP_PREPARE:
3555         case CPU_UP_PREPARE_FROZEN:
3556                 perf_counter_init_cpu(cpu);
3557                 break;
3558
3559         case CPU_DOWN_PREPARE:
3560         case CPU_DOWN_PREPARE_FROZEN:
3561                 perf_counter_exit_cpu(cpu);
3562                 break;
3563
3564         default:
3565                 break;
3566         }
3567
3568         return NOTIFY_OK;
3569 }
3570
3571 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3572         .notifier_call          = perf_cpu_notify,
3573 };
3574
3575 void __init perf_counter_init(void)
3576 {
3577         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3578                         (void *)(long)smp_processor_id());
3579         register_cpu_notifier(&perf_cpu_nb);
3580 }
3581
3582 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3583 {
3584         return sprintf(buf, "%d\n", perf_reserved_percpu);
3585 }
3586
3587 static ssize_t
3588 perf_set_reserve_percpu(struct sysdev_class *class,
3589                         const char *buf,
3590                         size_t count)
3591 {
3592         struct perf_cpu_context *cpuctx;
3593         unsigned long val;
3594         int err, cpu, mpt;
3595
3596         err = strict_strtoul(buf, 10, &val);
3597         if (err)
3598                 return err;
3599         if (val > perf_max_counters)
3600                 return -EINVAL;
3601
3602         spin_lock(&perf_resource_lock);
3603         perf_reserved_percpu = val;
3604         for_each_online_cpu(cpu) {
3605                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3606                 spin_lock_irq(&cpuctx->ctx.lock);
3607                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3608                           perf_max_counters - perf_reserved_percpu);
3609                 cpuctx->max_pertask = mpt;
3610                 spin_unlock_irq(&cpuctx->ctx.lock);
3611         }
3612         spin_unlock(&perf_resource_lock);
3613
3614         return count;
3615 }
3616
3617 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3618 {
3619         return sprintf(buf, "%d\n", perf_overcommit);
3620 }
3621
3622 static ssize_t
3623 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3624 {
3625         unsigned long val;
3626         int err;
3627
3628         err = strict_strtoul(buf, 10, &val);
3629         if (err)
3630                 return err;
3631         if (val > 1)
3632                 return -EINVAL;
3633
3634         spin_lock(&perf_resource_lock);
3635         perf_overcommit = val;
3636         spin_unlock(&perf_resource_lock);
3637
3638         return count;
3639 }
3640
3641 static SYSDEV_CLASS_ATTR(
3642                                 reserve_percpu,
3643                                 0644,
3644                                 perf_show_reserve_percpu,
3645                                 perf_set_reserve_percpu
3646                         );
3647
3648 static SYSDEV_CLASS_ATTR(
3649                                 overcommit,
3650                                 0644,
3651                                 perf_show_overcommit,
3652                                 perf_set_overcommit
3653                         );
3654
3655 static struct attribute *perfclass_attrs[] = {
3656         &attr_reserve_percpu.attr,
3657         &attr_overcommit.attr,
3658         NULL
3659 };
3660
3661 static struct attribute_group perfclass_attr_group = {
3662         .attrs                  = perfclass_attrs,
3663         .name                   = "perf_counters",
3664 };
3665
3666 static int __init perf_counter_sysfs_init(void)
3667 {
3668         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3669                                   &perfclass_attr_group);
3670 }
3671 device_initcall(perf_counter_sysfs_init);