]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
5ea0240adab230a65216ba0b5c137c7c74ed131b
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void)           { return 0; }
64 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67                struct perf_cpu_context *cpuctx,
68                struct perf_counter_context *ctx, int cpu)
69 {
70         return 0;
71 }
72
73 void __weak perf_counter_print_debug(void)      { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78         struct perf_counter *group_leader = counter->group_leader;
79
80         /*
81          * Depending on whether it is a standalone or sibling counter,
82          * add it straight to the context's counter list, or to the group
83          * leader's sibling list:
84          */
85         if (group_leader == counter)
86                 list_add_tail(&counter->list_entry, &ctx->counter_list);
87         else {
88                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89                 group_leader->nr_siblings++;
90         }
91
92         list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98         struct perf_counter *sibling, *tmp;
99
100         list_del_init(&counter->list_entry);
101         list_del_rcu(&counter->event_entry);
102
103         if (counter->group_leader != counter)
104                 counter->group_leader->nr_siblings--;
105
106         /*
107          * If this was a group counter with sibling counters then
108          * upgrade the siblings to singleton counters by adding them
109          * to the context list directly:
110          */
111         list_for_each_entry_safe(sibling, tmp,
112                                  &counter->sibling_list, list_entry) {
113
114                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115                 sibling->group_leader = sibling;
116         }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121                   struct perf_cpu_context *cpuctx,
122                   struct perf_counter_context *ctx)
123 {
124         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125                 return;
126
127         counter->state = PERF_COUNTER_STATE_INACTIVE;
128         counter->tstamp_stopped = ctx->time;
129         counter->pmu->disable(counter);
130         counter->oncpu = -1;
131
132         if (!is_software_counter(counter))
133                 cpuctx->active_oncpu--;
134         ctx->nr_active--;
135         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136                 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141                 struct perf_cpu_context *cpuctx,
142                 struct perf_counter_context *ctx)
143 {
144         struct perf_counter *counter;
145
146         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147                 return;
148
149         counter_sched_out(group_counter, cpuctx, ctx);
150
151         /*
152          * Schedule out siblings (if any):
153          */
154         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155                 counter_sched_out(counter, cpuctx, ctx);
156
157         if (group_counter->hw_event.exclusive)
158                 cpuctx->exclusive = 0;
159 }
160
161 /*
162  * Cross CPU call to remove a performance counter
163  *
164  * We disable the counter on the hardware level first. After that we
165  * remove it from the context list.
166  */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170         struct perf_counter *counter = info;
171         struct perf_counter_context *ctx = counter->ctx;
172         unsigned long flags;
173         u64 perf_flags;
174
175         /*
176          * If this is a task context, we need to check whether it is
177          * the current task context of this cpu. If not it has been
178          * scheduled out before the smp call arrived.
179          */
180         if (ctx->task && cpuctx->task_ctx != ctx)
181                 return;
182
183         spin_lock_irqsave(&ctx->lock, flags);
184
185         counter_sched_out(counter, cpuctx, ctx);
186
187         counter->task = NULL;
188         ctx->nr_counters--;
189
190         /*
191          * Protect the list operation against NMI by disabling the
192          * counters on a global level. NOP for non NMI based counters.
193          */
194         perf_flags = hw_perf_save_disable();
195         list_del_counter(counter, ctx);
196         hw_perf_restore(perf_flags);
197
198         if (!ctx->task) {
199                 /*
200                  * Allow more per task counters with respect to the
201                  * reservation:
202                  */
203                 cpuctx->max_pertask =
204                         min(perf_max_counters - ctx->nr_counters,
205                             perf_max_counters - perf_reserved_percpu);
206         }
207
208         spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213  * Remove the counter from a task's (or a CPU's) list of counters.
214  *
215  * Must be called with counter->mutex and ctx->mutex held.
216  *
217  * CPU counters are removed with a smp call. For task counters we only
218  * call when the task is on a CPU.
219  */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222         struct perf_counter_context *ctx = counter->ctx;
223         struct task_struct *task = ctx->task;
224
225         if (!task) {
226                 /*
227                  * Per cpu counters are removed via an smp call and
228                  * the removal is always sucessful.
229                  */
230                 smp_call_function_single(counter->cpu,
231                                          __perf_counter_remove_from_context,
232                                          counter, 1);
233                 return;
234         }
235
236 retry:
237         task_oncpu_function_call(task, __perf_counter_remove_from_context,
238                                  counter);
239
240         spin_lock_irq(&ctx->lock);
241         /*
242          * If the context is active we need to retry the smp call.
243          */
244         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245                 spin_unlock_irq(&ctx->lock);
246                 goto retry;
247         }
248
249         /*
250          * The lock prevents that this context is scheduled in so we
251          * can remove the counter safely, if the call above did not
252          * succeed.
253          */
254         if (!list_empty(&counter->list_entry)) {
255                 ctx->nr_counters--;
256                 list_del_counter(counter, ctx);
257                 counter->task = NULL;
258         }
259         spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264         return cpu_clock(smp_processor_id());
265 }
266
267 /*
268  * Update the record of the current time in a context.
269  */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272         u64 now = perf_clock();
273
274         ctx->time += now - ctx->timestamp;
275         ctx->timestamp = now;
276 }
277
278 /*
279  * Update the total_time_enabled and total_time_running fields for a counter.
280  */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283         struct perf_counter_context *ctx = counter->ctx;
284         u64 run_end;
285
286         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287                 return;
288
289         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292                 run_end = counter->tstamp_stopped;
293         else
294                 run_end = ctx->time;
295
296         counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300  * Update total_time_enabled and total_time_running for all counters in a group.
301  */
302 static void update_group_times(struct perf_counter *leader)
303 {
304         struct perf_counter *counter;
305
306         update_counter_times(leader);
307         list_for_each_entry(counter, &leader->sibling_list, list_entry)
308                 update_counter_times(counter);
309 }
310
311 /*
312  * Cross CPU call to disable a performance counter
313  */
314 static void __perf_counter_disable(void *info)
315 {
316         struct perf_counter *counter = info;
317         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318         struct perf_counter_context *ctx = counter->ctx;
319         unsigned long flags;
320
321         /*
322          * If this is a per-task counter, need to check whether this
323          * counter's task is the current task on this cpu.
324          */
325         if (ctx->task && cpuctx->task_ctx != ctx)
326                 return;
327
328         spin_lock_irqsave(&ctx->lock, flags);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348  * Disable a counter.
349  */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Disable the counter on the cpu that it's on
358                  */
359                 smp_call_function_single(counter->cpu, __perf_counter_disable,
360                                          counter, 1);
361                 return;
362         }
363
364  retry:
365         task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367         spin_lock_irq(&ctx->lock);
368         /*
369          * If the counter is still active, we need to retry the cross-call.
370          */
371         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372                 spin_unlock_irq(&ctx->lock);
373                 goto retry;
374         }
375
376         /*
377          * Since we have the lock this context can't be scheduled
378          * in, so we can change the state safely.
379          */
380         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381                 update_counter_times(counter);
382                 counter->state = PERF_COUNTER_STATE_OFF;
383         }
384
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390                  struct perf_cpu_context *cpuctx,
391                  struct perf_counter_context *ctx,
392                  int cpu)
393 {
394         if (counter->state <= PERF_COUNTER_STATE_OFF)
395                 return 0;
396
397         counter->state = PERF_COUNTER_STATE_ACTIVE;
398         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
399         /*
400          * The new state must be visible before we turn it on in the hardware:
401          */
402         smp_wmb();
403
404         if (counter->pmu->enable(counter)) {
405                 counter->state = PERF_COUNTER_STATE_INACTIVE;
406                 counter->oncpu = -1;
407                 return -EAGAIN;
408         }
409
410         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412         if (!is_software_counter(counter))
413                 cpuctx->active_oncpu++;
414         ctx->nr_active++;
415
416         if (counter->hw_event.exclusive)
417                 cpuctx->exclusive = 1;
418
419         return 0;
420 }
421
422 static int
423 group_sched_in(struct perf_counter *group_counter,
424                struct perf_cpu_context *cpuctx,
425                struct perf_counter_context *ctx,
426                int cpu)
427 {
428         struct perf_counter *counter, *partial_group;
429         int ret;
430
431         if (group_counter->state == PERF_COUNTER_STATE_OFF)
432                 return 0;
433
434         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
435         if (ret)
436                 return ret < 0 ? ret : 0;
437
438         group_counter->prev_state = group_counter->state;
439         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
440                 return -EAGAIN;
441
442         /*
443          * Schedule in siblings as one group (if any):
444          */
445         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
446                 counter->prev_state = counter->state;
447                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
448                         partial_group = counter;
449                         goto group_error;
450                 }
451         }
452
453         return 0;
454
455 group_error:
456         /*
457          * Groups can be scheduled in as one unit only, so undo any
458          * partial group before returning:
459          */
460         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
461                 if (counter == partial_group)
462                         break;
463                 counter_sched_out(counter, cpuctx, ctx);
464         }
465         counter_sched_out(group_counter, cpuctx, ctx);
466
467         return -EAGAIN;
468 }
469
470 /*
471  * Return 1 for a group consisting entirely of software counters,
472  * 0 if the group contains any hardware counters.
473  */
474 static int is_software_only_group(struct perf_counter *leader)
475 {
476         struct perf_counter *counter;
477
478         if (!is_software_counter(leader))
479                 return 0;
480
481         list_for_each_entry(counter, &leader->sibling_list, list_entry)
482                 if (!is_software_counter(counter))
483                         return 0;
484
485         return 1;
486 }
487
488 /*
489  * Work out whether we can put this counter group on the CPU now.
490  */
491 static int group_can_go_on(struct perf_counter *counter,
492                            struct perf_cpu_context *cpuctx,
493                            int can_add_hw)
494 {
495         /*
496          * Groups consisting entirely of software counters can always go on.
497          */
498         if (is_software_only_group(counter))
499                 return 1;
500         /*
501          * If an exclusive group is already on, no other hardware
502          * counters can go on.
503          */
504         if (cpuctx->exclusive)
505                 return 0;
506         /*
507          * If this group is exclusive and there are already
508          * counters on the CPU, it can't go on.
509          */
510         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
511                 return 0;
512         /*
513          * Otherwise, try to add it if all previous groups were able
514          * to go on.
515          */
516         return can_add_hw;
517 }
518
519 static void add_counter_to_ctx(struct perf_counter *counter,
520                                struct perf_counter_context *ctx)
521 {
522         list_add_counter(counter, ctx);
523         ctx->nr_counters++;
524         counter->prev_state = PERF_COUNTER_STATE_OFF;
525         counter->tstamp_enabled = ctx->time;
526         counter->tstamp_running = ctx->time;
527         counter->tstamp_stopped = ctx->time;
528 }
529
530 /*
531  * Cross CPU call to install and enable a performance counter
532  */
533 static void __perf_install_in_context(void *info)
534 {
535         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
536         struct perf_counter *counter = info;
537         struct perf_counter_context *ctx = counter->ctx;
538         struct perf_counter *leader = counter->group_leader;
539         int cpu = smp_processor_id();
540         unsigned long flags;
541         u64 perf_flags;
542         int err;
543
544         /*
545          * If this is a task context, we need to check whether it is
546          * the current task context of this cpu. If not it has been
547          * scheduled out before the smp call arrived.
548          */
549         if (ctx->task && cpuctx->task_ctx != ctx)
550                 return;
551
552         spin_lock_irqsave(&ctx->lock, flags);
553         update_context_time(ctx);
554
555         /*
556          * Protect the list operation against NMI by disabling the
557          * counters on a global level. NOP for non NMI based counters.
558          */
559         perf_flags = hw_perf_save_disable();
560
561         add_counter_to_ctx(counter, ctx);
562
563         /*
564          * Don't put the counter on if it is disabled or if
565          * it is in a group and the group isn't on.
566          */
567         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
568             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
569                 goto unlock;
570
571         /*
572          * An exclusive counter can't go on if there are already active
573          * hardware counters, and no hardware counter can go on if there
574          * is already an exclusive counter on.
575          */
576         if (!group_can_go_on(counter, cpuctx, 1))
577                 err = -EEXIST;
578         else
579                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
580
581         if (err) {
582                 /*
583                  * This counter couldn't go on.  If it is in a group
584                  * then we have to pull the whole group off.
585                  * If the counter group is pinned then put it in error state.
586                  */
587                 if (leader != counter)
588                         group_sched_out(leader, cpuctx, ctx);
589                 if (leader->hw_event.pinned) {
590                         update_group_times(leader);
591                         leader->state = PERF_COUNTER_STATE_ERROR;
592                 }
593         }
594
595         if (!err && !ctx->task && cpuctx->max_pertask)
596                 cpuctx->max_pertask--;
597
598  unlock:
599         hw_perf_restore(perf_flags);
600
601         spin_unlock_irqrestore(&ctx->lock, flags);
602 }
603
604 /*
605  * Attach a performance counter to a context
606  *
607  * First we add the counter to the list with the hardware enable bit
608  * in counter->hw_config cleared.
609  *
610  * If the counter is attached to a task which is on a CPU we use a smp
611  * call to enable it in the task context. The task might have been
612  * scheduled away, but we check this in the smp call again.
613  *
614  * Must be called with ctx->mutex held.
615  */
616 static void
617 perf_install_in_context(struct perf_counter_context *ctx,
618                         struct perf_counter *counter,
619                         int cpu)
620 {
621         struct task_struct *task = ctx->task;
622
623         if (!task) {
624                 /*
625                  * Per cpu counters are installed via an smp call and
626                  * the install is always sucessful.
627                  */
628                 smp_call_function_single(cpu, __perf_install_in_context,
629                                          counter, 1);
630                 return;
631         }
632
633         counter->task = task;
634 retry:
635         task_oncpu_function_call(task, __perf_install_in_context,
636                                  counter);
637
638         spin_lock_irq(&ctx->lock);
639         /*
640          * we need to retry the smp call.
641          */
642         if (ctx->is_active && list_empty(&counter->list_entry)) {
643                 spin_unlock_irq(&ctx->lock);
644                 goto retry;
645         }
646
647         /*
648          * The lock prevents that this context is scheduled in so we
649          * can add the counter safely, if it the call above did not
650          * succeed.
651          */
652         if (list_empty(&counter->list_entry))
653                 add_counter_to_ctx(counter, ctx);
654         spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658  * Cross CPU call to enable a performance counter
659  */
660 static void __perf_counter_enable(void *info)
661 {
662         struct perf_counter *counter = info;
663         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
664         struct perf_counter_context *ctx = counter->ctx;
665         struct perf_counter *leader = counter->group_leader;
666         unsigned long flags;
667         int err;
668
669         /*
670          * If this is a per-task counter, need to check whether this
671          * counter's task is the current task on this cpu.
672          */
673         if (ctx->task && cpuctx->task_ctx != ctx)
674                 return;
675
676         spin_lock_irqsave(&ctx->lock, flags);
677         update_context_time(ctx);
678
679         counter->prev_state = counter->state;
680         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
681                 goto unlock;
682         counter->state = PERF_COUNTER_STATE_INACTIVE;
683         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
684
685         /*
686          * If the counter is in a group and isn't the group leader,
687          * then don't put it on unless the group is on.
688          */
689         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
690                 goto unlock;
691
692         if (!group_can_go_on(counter, cpuctx, 1))
693                 err = -EEXIST;
694         else if (counter == leader)
695                 err = group_sched_in(counter, cpuctx, ctx,
696                                      smp_processor_id());
697         else
698                 err = counter_sched_in(counter, cpuctx, ctx,
699                                        smp_processor_id());
700
701         if (err) {
702                 /*
703                  * If this counter can't go on and it's part of a
704                  * group, then the whole group has to come off.
705                  */
706                 if (leader != counter)
707                         group_sched_out(leader, cpuctx, ctx);
708                 if (leader->hw_event.pinned) {
709                         update_group_times(leader);
710                         leader->state = PERF_COUNTER_STATE_ERROR;
711                 }
712         }
713
714  unlock:
715         spin_unlock_irqrestore(&ctx->lock, flags);
716 }
717
718 /*
719  * Enable a counter.
720  */
721 static void perf_counter_enable(struct perf_counter *counter)
722 {
723         struct perf_counter_context *ctx = counter->ctx;
724         struct task_struct *task = ctx->task;
725
726         if (!task) {
727                 /*
728                  * Enable the counter on the cpu that it's on
729                  */
730                 smp_call_function_single(counter->cpu, __perf_counter_enable,
731                                          counter, 1);
732                 return;
733         }
734
735         spin_lock_irq(&ctx->lock);
736         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
737                 goto out;
738
739         /*
740          * If the counter is in error state, clear that first.
741          * That way, if we see the counter in error state below, we
742          * know that it has gone back into error state, as distinct
743          * from the task having been scheduled away before the
744          * cross-call arrived.
745          */
746         if (counter->state == PERF_COUNTER_STATE_ERROR)
747                 counter->state = PERF_COUNTER_STATE_OFF;
748
749  retry:
750         spin_unlock_irq(&ctx->lock);
751         task_oncpu_function_call(task, __perf_counter_enable, counter);
752
753         spin_lock_irq(&ctx->lock);
754
755         /*
756          * If the context is active and the counter is still off,
757          * we need to retry the cross-call.
758          */
759         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
760                 goto retry;
761
762         /*
763          * Since we have the lock this context can't be scheduled
764          * in, so we can change the state safely.
765          */
766         if (counter->state == PERF_COUNTER_STATE_OFF) {
767                 counter->state = PERF_COUNTER_STATE_INACTIVE;
768                 counter->tstamp_enabled =
769                         ctx->time - counter->total_time_enabled;
770         }
771  out:
772         spin_unlock_irq(&ctx->lock);
773 }
774
775 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
776 {
777         /*
778          * not supported on inherited counters
779          */
780         if (counter->hw_event.inherit)
781                 return -EINVAL;
782
783         atomic_add(refresh, &counter->event_limit);
784         perf_counter_enable(counter);
785
786         return 0;
787 }
788
789 void __perf_counter_sched_out(struct perf_counter_context *ctx,
790                               struct perf_cpu_context *cpuctx)
791 {
792         struct perf_counter *counter;
793         u64 flags;
794
795         spin_lock(&ctx->lock);
796         ctx->is_active = 0;
797         if (likely(!ctx->nr_counters))
798                 goto out;
799         update_context_time(ctx);
800
801         flags = hw_perf_save_disable();
802         if (ctx->nr_active) {
803                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
804                         group_sched_out(counter, cpuctx, ctx);
805         }
806         hw_perf_restore(flags);
807  out:
808         spin_unlock(&ctx->lock);
809 }
810
811 /*
812  * Called from scheduler to remove the counters of the current task,
813  * with interrupts disabled.
814  *
815  * We stop each counter and update the counter value in counter->count.
816  *
817  * This does not protect us against NMI, but disable()
818  * sets the disabled bit in the control field of counter _before_
819  * accessing the counter control register. If a NMI hits, then it will
820  * not restart the counter.
821  */
822 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
823 {
824         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
825         struct perf_counter_context *ctx = &task->perf_counter_ctx;
826         struct pt_regs *regs;
827
828         if (likely(!cpuctx->task_ctx))
829                 return;
830
831         update_context_time(ctx);
832
833         regs = task_pt_regs(task);
834         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
835         __perf_counter_sched_out(ctx, cpuctx);
836
837         cpuctx->task_ctx = NULL;
838 }
839
840 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
841 {
842         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
843
844         __perf_counter_sched_out(ctx, cpuctx);
845         cpuctx->task_ctx = NULL;
846 }
847
848 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
849 {
850         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
851 }
852
853 static void
854 __perf_counter_sched_in(struct perf_counter_context *ctx,
855                         struct perf_cpu_context *cpuctx, int cpu)
856 {
857         struct perf_counter *counter;
858         u64 flags;
859         int can_add_hw = 1;
860
861         spin_lock(&ctx->lock);
862         ctx->is_active = 1;
863         if (likely(!ctx->nr_counters))
864                 goto out;
865
866         ctx->timestamp = perf_clock();
867
868         flags = hw_perf_save_disable();
869
870         /*
871          * First go through the list and put on any pinned groups
872          * in order to give them the best chance of going on.
873          */
874         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
875                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
876                     !counter->hw_event.pinned)
877                         continue;
878                 if (counter->cpu != -1 && counter->cpu != cpu)
879                         continue;
880
881                 if (group_can_go_on(counter, cpuctx, 1))
882                         group_sched_in(counter, cpuctx, ctx, cpu);
883
884                 /*
885                  * If this pinned group hasn't been scheduled,
886                  * put it in error state.
887                  */
888                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
889                         update_group_times(counter);
890                         counter->state = PERF_COUNTER_STATE_ERROR;
891                 }
892         }
893
894         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
895                 /*
896                  * Ignore counters in OFF or ERROR state, and
897                  * ignore pinned counters since we did them already.
898                  */
899                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
900                     counter->hw_event.pinned)
901                         continue;
902
903                 /*
904                  * Listen to the 'cpu' scheduling filter constraint
905                  * of counters:
906                  */
907                 if (counter->cpu != -1 && counter->cpu != cpu)
908                         continue;
909
910                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
911                         if (group_sched_in(counter, cpuctx, ctx, cpu))
912                                 can_add_hw = 0;
913                 }
914         }
915         hw_perf_restore(flags);
916  out:
917         spin_unlock(&ctx->lock);
918 }
919
920 /*
921  * Called from scheduler to add the counters of the current task
922  * with interrupts disabled.
923  *
924  * We restore the counter value and then enable it.
925  *
926  * This does not protect us against NMI, but enable()
927  * sets the enabled bit in the control field of counter _before_
928  * accessing the counter control register. If a NMI hits, then it will
929  * keep the counter running.
930  */
931 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
932 {
933         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
934         struct perf_counter_context *ctx = &task->perf_counter_ctx;
935
936         __perf_counter_sched_in(ctx, cpuctx, cpu);
937         cpuctx->task_ctx = ctx;
938 }
939
940 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
941 {
942         struct perf_counter_context *ctx = &cpuctx->ctx;
943
944         __perf_counter_sched_in(ctx, cpuctx, cpu);
945 }
946
947 int perf_counter_task_disable(void)
948 {
949         struct task_struct *curr = current;
950         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
951         struct perf_counter *counter;
952         unsigned long flags;
953         u64 perf_flags;
954
955         if (likely(!ctx->nr_counters))
956                 return 0;
957
958         local_irq_save(flags);
959
960         __perf_counter_task_sched_out(ctx);
961
962         spin_lock(&ctx->lock);
963
964         /*
965          * Disable all the counters:
966          */
967         perf_flags = hw_perf_save_disable();
968
969         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
971                         update_group_times(counter);
972                         counter->state = PERF_COUNTER_STATE_OFF;
973                 }
974         }
975
976         hw_perf_restore(perf_flags);
977
978         spin_unlock_irqrestore(&ctx->lock, flags);
979
980         return 0;
981 }
982
983 int perf_counter_task_enable(void)
984 {
985         struct task_struct *curr = current;
986         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
987         struct perf_counter *counter;
988         unsigned long flags;
989         u64 perf_flags;
990         int cpu;
991
992         if (likely(!ctx->nr_counters))
993                 return 0;
994
995         local_irq_save(flags);
996         cpu = smp_processor_id();
997
998         __perf_counter_task_sched_out(ctx);
999
1000         spin_lock(&ctx->lock);
1001
1002         /*
1003          * Disable all the counters:
1004          */
1005         perf_flags = hw_perf_save_disable();
1006
1007         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1008                 if (counter->state > PERF_COUNTER_STATE_OFF)
1009                         continue;
1010                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1011                 counter->tstamp_enabled =
1012                         ctx->time - counter->total_time_enabled;
1013                 counter->hw_event.disabled = 0;
1014         }
1015         hw_perf_restore(perf_flags);
1016
1017         spin_unlock(&ctx->lock);
1018
1019         perf_counter_task_sched_in(curr, cpu);
1020
1021         local_irq_restore(flags);
1022
1023         return 0;
1024 }
1025
1026 /*
1027  * Round-robin a context's counters:
1028  */
1029 static void rotate_ctx(struct perf_counter_context *ctx)
1030 {
1031         struct perf_counter *counter;
1032         u64 perf_flags;
1033
1034         if (!ctx->nr_counters)
1035                 return;
1036
1037         spin_lock(&ctx->lock);
1038         /*
1039          * Rotate the first entry last (works just fine for group counters too):
1040          */
1041         perf_flags = hw_perf_save_disable();
1042         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1043                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1044                 break;
1045         }
1046         hw_perf_restore(perf_flags);
1047
1048         spin_unlock(&ctx->lock);
1049 }
1050
1051 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1052 {
1053         struct perf_cpu_context *cpuctx;
1054         struct perf_counter_context *ctx;
1055
1056         if (!atomic_read(&nr_counters))
1057                 return;
1058
1059         cpuctx = &per_cpu(perf_cpu_context, cpu);
1060         ctx = &curr->perf_counter_ctx;
1061
1062         perf_counter_cpu_sched_out(cpuctx);
1063         __perf_counter_task_sched_out(ctx);
1064
1065         rotate_ctx(&cpuctx->ctx);
1066         rotate_ctx(ctx);
1067
1068         perf_counter_cpu_sched_in(cpuctx, cpu);
1069         perf_counter_task_sched_in(curr, cpu);
1070 }
1071
1072 /*
1073  * Cross CPU call to read the hardware counter
1074  */
1075 static void __read(void *info)
1076 {
1077         struct perf_counter *counter = info;
1078         struct perf_counter_context *ctx = counter->ctx;
1079         unsigned long flags;
1080
1081         local_irq_save(flags);
1082         if (ctx->is_active)
1083                 update_context_time(ctx);
1084         counter->pmu->read(counter);
1085         update_counter_times(counter);
1086         local_irq_restore(flags);
1087 }
1088
1089 static u64 perf_counter_read(struct perf_counter *counter)
1090 {
1091         /*
1092          * If counter is enabled and currently active on a CPU, update the
1093          * value in the counter structure:
1094          */
1095         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1096                 smp_call_function_single(counter->oncpu,
1097                                          __read, counter, 1);
1098         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1099                 update_counter_times(counter);
1100         }
1101
1102         return atomic64_read(&counter->count);
1103 }
1104
1105 static void put_context(struct perf_counter_context *ctx)
1106 {
1107         if (ctx->task)
1108                 put_task_struct(ctx->task);
1109 }
1110
1111 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1112 {
1113         struct perf_cpu_context *cpuctx;
1114         struct perf_counter_context *ctx;
1115         struct task_struct *task;
1116
1117         /*
1118          * If cpu is not a wildcard then this is a percpu counter:
1119          */
1120         if (cpu != -1) {
1121                 /* Must be root to operate on a CPU counter: */
1122                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1123                         return ERR_PTR(-EACCES);
1124
1125                 if (cpu < 0 || cpu > num_possible_cpus())
1126                         return ERR_PTR(-EINVAL);
1127
1128                 /*
1129                  * We could be clever and allow to attach a counter to an
1130                  * offline CPU and activate it when the CPU comes up, but
1131                  * that's for later.
1132                  */
1133                 if (!cpu_isset(cpu, cpu_online_map))
1134                         return ERR_PTR(-ENODEV);
1135
1136                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1137                 ctx = &cpuctx->ctx;
1138
1139                 return ctx;
1140         }
1141
1142         rcu_read_lock();
1143         if (!pid)
1144                 task = current;
1145         else
1146                 task = find_task_by_vpid(pid);
1147         if (task)
1148                 get_task_struct(task);
1149         rcu_read_unlock();
1150
1151         if (!task)
1152                 return ERR_PTR(-ESRCH);
1153
1154         ctx = &task->perf_counter_ctx;
1155         ctx->task = task;
1156
1157         /* Reuse ptrace permission checks for now. */
1158         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1159                 put_context(ctx);
1160                 return ERR_PTR(-EACCES);
1161         }
1162
1163         return ctx;
1164 }
1165
1166 static void free_counter_rcu(struct rcu_head *head)
1167 {
1168         struct perf_counter *counter;
1169
1170         counter = container_of(head, struct perf_counter, rcu_head);
1171         kfree(counter);
1172 }
1173
1174 static void perf_pending_sync(struct perf_counter *counter);
1175
1176 static void free_counter(struct perf_counter *counter)
1177 {
1178         perf_pending_sync(counter);
1179
1180         atomic_dec(&nr_counters);
1181         if (counter->hw_event.mmap)
1182                 atomic_dec(&nr_mmap_tracking);
1183         if (counter->hw_event.munmap)
1184                 atomic_dec(&nr_munmap_tracking);
1185         if (counter->hw_event.comm)
1186                 atomic_dec(&nr_comm_tracking);
1187
1188         if (counter->destroy)
1189                 counter->destroy(counter);
1190
1191         call_rcu(&counter->rcu_head, free_counter_rcu);
1192 }
1193
1194 /*
1195  * Called when the last reference to the file is gone.
1196  */
1197 static int perf_release(struct inode *inode, struct file *file)
1198 {
1199         struct perf_counter *counter = file->private_data;
1200         struct perf_counter_context *ctx = counter->ctx;
1201
1202         file->private_data = NULL;
1203
1204         mutex_lock(&ctx->mutex);
1205         mutex_lock(&counter->mutex);
1206
1207         perf_counter_remove_from_context(counter);
1208
1209         mutex_unlock(&counter->mutex);
1210         mutex_unlock(&ctx->mutex);
1211
1212         free_counter(counter);
1213         put_context(ctx);
1214
1215         return 0;
1216 }
1217
1218 /*
1219  * Read the performance counter - simple non blocking version for now
1220  */
1221 static ssize_t
1222 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1223 {
1224         u64 values[3];
1225         int n;
1226
1227         /*
1228          * Return end-of-file for a read on a counter that is in
1229          * error state (i.e. because it was pinned but it couldn't be
1230          * scheduled on to the CPU at some point).
1231          */
1232         if (counter->state == PERF_COUNTER_STATE_ERROR)
1233                 return 0;
1234
1235         mutex_lock(&counter->mutex);
1236         values[0] = perf_counter_read(counter);
1237         n = 1;
1238         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1239                 values[n++] = counter->total_time_enabled +
1240                         atomic64_read(&counter->child_total_time_enabled);
1241         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1242                 values[n++] = counter->total_time_running +
1243                         atomic64_read(&counter->child_total_time_running);
1244         mutex_unlock(&counter->mutex);
1245
1246         if (count < n * sizeof(u64))
1247                 return -EINVAL;
1248         count = n * sizeof(u64);
1249
1250         if (copy_to_user(buf, values, count))
1251                 return -EFAULT;
1252
1253         return count;
1254 }
1255
1256 static ssize_t
1257 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1258 {
1259         struct perf_counter *counter = file->private_data;
1260
1261         return perf_read_hw(counter, buf, count);
1262 }
1263
1264 static unsigned int perf_poll(struct file *file, poll_table *wait)
1265 {
1266         struct perf_counter *counter = file->private_data;
1267         struct perf_mmap_data *data;
1268         unsigned int events = POLL_HUP;
1269
1270         rcu_read_lock();
1271         data = rcu_dereference(counter->data);
1272         if (data)
1273                 events = atomic_xchg(&data->poll, 0);
1274         rcu_read_unlock();
1275
1276         poll_wait(file, &counter->waitq, wait);
1277
1278         return events;
1279 }
1280
1281 static void perf_counter_reset(struct perf_counter *counter)
1282 {
1283         (void)perf_counter_read(counter);
1284         atomic64_set(&counter->count, 0);
1285         perf_counter_update_userpage(counter);
1286 }
1287
1288 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1289                                           void (*func)(struct perf_counter *))
1290 {
1291         struct perf_counter_context *ctx = counter->ctx;
1292         struct perf_counter *sibling;
1293
1294         spin_lock_irq(&ctx->lock);
1295         counter = counter->group_leader;
1296
1297         func(counter);
1298         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1299                 func(sibling);
1300         spin_unlock_irq(&ctx->lock);
1301 }
1302
1303 static void perf_counter_for_each_child(struct perf_counter *counter,
1304                                         void (*func)(struct perf_counter *))
1305 {
1306         struct perf_counter *child;
1307
1308         mutex_lock(&counter->mutex);
1309         func(counter);
1310         list_for_each_entry(child, &counter->child_list, child_list)
1311                 func(child);
1312         mutex_unlock(&counter->mutex);
1313 }
1314
1315 static void perf_counter_for_each(struct perf_counter *counter,
1316                                   void (*func)(struct perf_counter *))
1317 {
1318         struct perf_counter *child;
1319
1320         mutex_lock(&counter->mutex);
1321         perf_counter_for_each_sibling(counter, func);
1322         list_for_each_entry(child, &counter->child_list, child_list)
1323                 perf_counter_for_each_sibling(child, func);
1324         mutex_unlock(&counter->mutex);
1325 }
1326
1327 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1328 {
1329         struct perf_counter *counter = file->private_data;
1330         void (*func)(struct perf_counter *);
1331         u32 flags = arg;
1332
1333         switch (cmd) {
1334         case PERF_COUNTER_IOC_ENABLE:
1335                 func = perf_counter_enable;
1336                 break;
1337         case PERF_COUNTER_IOC_DISABLE:
1338                 func = perf_counter_disable;
1339                 break;
1340         case PERF_COUNTER_IOC_RESET:
1341                 func = perf_counter_reset;
1342                 break;
1343
1344         case PERF_COUNTER_IOC_REFRESH:
1345                 return perf_counter_refresh(counter, arg);
1346         default:
1347                 return -ENOTTY;
1348         }
1349
1350         if (flags & PERF_IOC_FLAG_GROUP)
1351                 perf_counter_for_each(counter, func);
1352         else
1353                 perf_counter_for_each_child(counter, func);
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Callers need to ensure there can be no nesting of this function, otherwise
1360  * the seqlock logic goes bad. We can not serialize this because the arch
1361  * code calls this from NMI context.
1362  */
1363 void perf_counter_update_userpage(struct perf_counter *counter)
1364 {
1365         struct perf_mmap_data *data;
1366         struct perf_counter_mmap_page *userpg;
1367
1368         rcu_read_lock();
1369         data = rcu_dereference(counter->data);
1370         if (!data)
1371                 goto unlock;
1372
1373         userpg = data->user_page;
1374
1375         /*
1376          * Disable preemption so as to not let the corresponding user-space
1377          * spin too long if we get preempted.
1378          */
1379         preempt_disable();
1380         ++userpg->lock;
1381         barrier();
1382         userpg->index = counter->hw.idx;
1383         userpg->offset = atomic64_read(&counter->count);
1384         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1385                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1386
1387         barrier();
1388         ++userpg->lock;
1389         preempt_enable();
1390 unlock:
1391         rcu_read_unlock();
1392 }
1393
1394 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396         struct perf_counter *counter = vma->vm_file->private_data;
1397         struct perf_mmap_data *data;
1398         int ret = VM_FAULT_SIGBUS;
1399
1400         rcu_read_lock();
1401         data = rcu_dereference(counter->data);
1402         if (!data)
1403                 goto unlock;
1404
1405         if (vmf->pgoff == 0) {
1406                 vmf->page = virt_to_page(data->user_page);
1407         } else {
1408                 int nr = vmf->pgoff - 1;
1409
1410                 if ((unsigned)nr > data->nr_pages)
1411                         goto unlock;
1412
1413                 vmf->page = virt_to_page(data->data_pages[nr]);
1414         }
1415         get_page(vmf->page);
1416         ret = 0;
1417 unlock:
1418         rcu_read_unlock();
1419
1420         return ret;
1421 }
1422
1423 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1424 {
1425         struct perf_mmap_data *data;
1426         unsigned long size;
1427         int i;
1428
1429         WARN_ON(atomic_read(&counter->mmap_count));
1430
1431         size = sizeof(struct perf_mmap_data);
1432         size += nr_pages * sizeof(void *);
1433
1434         data = kzalloc(size, GFP_KERNEL);
1435         if (!data)
1436                 goto fail;
1437
1438         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1439         if (!data->user_page)
1440                 goto fail_user_page;
1441
1442         for (i = 0; i < nr_pages; i++) {
1443                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1444                 if (!data->data_pages[i])
1445                         goto fail_data_pages;
1446         }
1447
1448         data->nr_pages = nr_pages;
1449         atomic_set(&data->lock, -1);
1450
1451         rcu_assign_pointer(counter->data, data);
1452
1453         return 0;
1454
1455 fail_data_pages:
1456         for (i--; i >= 0; i--)
1457                 free_page((unsigned long)data->data_pages[i]);
1458
1459         free_page((unsigned long)data->user_page);
1460
1461 fail_user_page:
1462         kfree(data);
1463
1464 fail:
1465         return -ENOMEM;
1466 }
1467
1468 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1469 {
1470         struct perf_mmap_data *data = container_of(rcu_head,
1471                         struct perf_mmap_data, rcu_head);
1472         int i;
1473
1474         free_page((unsigned long)data->user_page);
1475         for (i = 0; i < data->nr_pages; i++)
1476                 free_page((unsigned long)data->data_pages[i]);
1477         kfree(data);
1478 }
1479
1480 static void perf_mmap_data_free(struct perf_counter *counter)
1481 {
1482         struct perf_mmap_data *data = counter->data;
1483
1484         WARN_ON(atomic_read(&counter->mmap_count));
1485
1486         rcu_assign_pointer(counter->data, NULL);
1487         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1488 }
1489
1490 static void perf_mmap_open(struct vm_area_struct *vma)
1491 {
1492         struct perf_counter *counter = vma->vm_file->private_data;
1493
1494         atomic_inc(&counter->mmap_count);
1495 }
1496
1497 static void perf_mmap_close(struct vm_area_struct *vma)
1498 {
1499         struct perf_counter *counter = vma->vm_file->private_data;
1500
1501         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1502                                       &counter->mmap_mutex)) {
1503                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1504                 perf_mmap_data_free(counter);
1505                 mutex_unlock(&counter->mmap_mutex);
1506         }
1507 }
1508
1509 static struct vm_operations_struct perf_mmap_vmops = {
1510         .open  = perf_mmap_open,
1511         .close = perf_mmap_close,
1512         .fault = perf_mmap_fault,
1513 };
1514
1515 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1516 {
1517         struct perf_counter *counter = file->private_data;
1518         unsigned long vma_size;
1519         unsigned long nr_pages;
1520         unsigned long locked, lock_limit;
1521         int ret = 0;
1522         long extra;
1523
1524         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1525                 return -EINVAL;
1526
1527         vma_size = vma->vm_end - vma->vm_start;
1528         nr_pages = (vma_size / PAGE_SIZE) - 1;
1529
1530         /*
1531          * If we have data pages ensure they're a power-of-two number, so we
1532          * can do bitmasks instead of modulo.
1533          */
1534         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1535                 return -EINVAL;
1536
1537         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1538                 return -EINVAL;
1539
1540         if (vma->vm_pgoff != 0)
1541                 return -EINVAL;
1542
1543         mutex_lock(&counter->mmap_mutex);
1544         if (atomic_inc_not_zero(&counter->mmap_count)) {
1545                 if (nr_pages != counter->data->nr_pages)
1546                         ret = -EINVAL;
1547                 goto unlock;
1548         }
1549
1550         extra = nr_pages /* + 1 only account the data pages */;
1551         extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1552         if (extra < 0)
1553                 extra = 0;
1554
1555         locked = vma->vm_mm->locked_vm + extra;
1556
1557         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1558         lock_limit >>= PAGE_SHIFT;
1559
1560         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1561                 ret = -EPERM;
1562                 goto unlock;
1563         }
1564
1565         WARN_ON(counter->data);
1566         ret = perf_mmap_data_alloc(counter, nr_pages);
1567         if (ret)
1568                 goto unlock;
1569
1570         atomic_set(&counter->mmap_count, 1);
1571         vma->vm_mm->locked_vm += extra;
1572         counter->data->nr_locked = extra;
1573 unlock:
1574         mutex_unlock(&counter->mmap_mutex);
1575
1576         vma->vm_flags &= ~VM_MAYWRITE;
1577         vma->vm_flags |= VM_RESERVED;
1578         vma->vm_ops = &perf_mmap_vmops;
1579
1580         return ret;
1581 }
1582
1583 static int perf_fasync(int fd, struct file *filp, int on)
1584 {
1585         struct perf_counter *counter = filp->private_data;
1586         struct inode *inode = filp->f_path.dentry->d_inode;
1587         int retval;
1588
1589         mutex_lock(&inode->i_mutex);
1590         retval = fasync_helper(fd, filp, on, &counter->fasync);
1591         mutex_unlock(&inode->i_mutex);
1592
1593         if (retval < 0)
1594                 return retval;
1595
1596         return 0;
1597 }
1598
1599 static const struct file_operations perf_fops = {
1600         .release                = perf_release,
1601         .read                   = perf_read,
1602         .poll                   = perf_poll,
1603         .unlocked_ioctl         = perf_ioctl,
1604         .compat_ioctl           = perf_ioctl,
1605         .mmap                   = perf_mmap,
1606         .fasync                 = perf_fasync,
1607 };
1608
1609 /*
1610  * Perf counter wakeup
1611  *
1612  * If there's data, ensure we set the poll() state and publish everything
1613  * to user-space before waking everybody up.
1614  */
1615
1616 void perf_counter_wakeup(struct perf_counter *counter)
1617 {
1618         wake_up_all(&counter->waitq);
1619
1620         if (counter->pending_kill) {
1621                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1622                 counter->pending_kill = 0;
1623         }
1624 }
1625
1626 /*
1627  * Pending wakeups
1628  *
1629  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1630  *
1631  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1632  * single linked list and use cmpxchg() to add entries lockless.
1633  */
1634
1635 static void perf_pending_counter(struct perf_pending_entry *entry)
1636 {
1637         struct perf_counter *counter = container_of(entry,
1638                         struct perf_counter, pending);
1639
1640         if (counter->pending_disable) {
1641                 counter->pending_disable = 0;
1642                 perf_counter_disable(counter);
1643         }
1644
1645         if (counter->pending_wakeup) {
1646                 counter->pending_wakeup = 0;
1647                 perf_counter_wakeup(counter);
1648         }
1649 }
1650
1651 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1652
1653 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1654         PENDING_TAIL,
1655 };
1656
1657 static void perf_pending_queue(struct perf_pending_entry *entry,
1658                                void (*func)(struct perf_pending_entry *))
1659 {
1660         struct perf_pending_entry **head;
1661
1662         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1663                 return;
1664
1665         entry->func = func;
1666
1667         head = &get_cpu_var(perf_pending_head);
1668
1669         do {
1670                 entry->next = *head;
1671         } while (cmpxchg(head, entry->next, entry) != entry->next);
1672
1673         set_perf_counter_pending();
1674
1675         put_cpu_var(perf_pending_head);
1676 }
1677
1678 static int __perf_pending_run(void)
1679 {
1680         struct perf_pending_entry *list;
1681         int nr = 0;
1682
1683         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1684         while (list != PENDING_TAIL) {
1685                 void (*func)(struct perf_pending_entry *);
1686                 struct perf_pending_entry *entry = list;
1687
1688                 list = list->next;
1689
1690                 func = entry->func;
1691                 entry->next = NULL;
1692                 /*
1693                  * Ensure we observe the unqueue before we issue the wakeup,
1694                  * so that we won't be waiting forever.
1695                  * -- see perf_not_pending().
1696                  */
1697                 smp_wmb();
1698
1699                 func(entry);
1700                 nr++;
1701         }
1702
1703         return nr;
1704 }
1705
1706 static inline int perf_not_pending(struct perf_counter *counter)
1707 {
1708         /*
1709          * If we flush on whatever cpu we run, there is a chance we don't
1710          * need to wait.
1711          */
1712         get_cpu();
1713         __perf_pending_run();
1714         put_cpu();
1715
1716         /*
1717          * Ensure we see the proper queue state before going to sleep
1718          * so that we do not miss the wakeup. -- see perf_pending_handle()
1719          */
1720         smp_rmb();
1721         return counter->pending.next == NULL;
1722 }
1723
1724 static void perf_pending_sync(struct perf_counter *counter)
1725 {
1726         wait_event(counter->waitq, perf_not_pending(counter));
1727 }
1728
1729 void perf_counter_do_pending(void)
1730 {
1731         __perf_pending_run();
1732 }
1733
1734 /*
1735  * Callchain support -- arch specific
1736  */
1737
1738 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1739 {
1740         return NULL;
1741 }
1742
1743 /*
1744  * Output
1745  */
1746
1747 struct perf_output_handle {
1748         struct perf_counter     *counter;
1749         struct perf_mmap_data   *data;
1750         unsigned int            offset;
1751         unsigned int            head;
1752         int                     nmi;
1753         int                     overflow;
1754         int                     locked;
1755         unsigned long           flags;
1756 };
1757
1758 static void perf_output_wakeup(struct perf_output_handle *handle)
1759 {
1760         atomic_set(&handle->data->poll, POLL_IN);
1761
1762         if (handle->nmi) {
1763                 handle->counter->pending_wakeup = 1;
1764                 perf_pending_queue(&handle->counter->pending,
1765                                    perf_pending_counter);
1766         } else
1767                 perf_counter_wakeup(handle->counter);
1768 }
1769
1770 /*
1771  * Curious locking construct.
1772  *
1773  * We need to ensure a later event doesn't publish a head when a former
1774  * event isn't done writing. However since we need to deal with NMIs we
1775  * cannot fully serialize things.
1776  *
1777  * What we do is serialize between CPUs so we only have to deal with NMI
1778  * nesting on a single CPU.
1779  *
1780  * We only publish the head (and generate a wakeup) when the outer-most
1781  * event completes.
1782  */
1783 static void perf_output_lock(struct perf_output_handle *handle)
1784 {
1785         struct perf_mmap_data *data = handle->data;
1786         int cpu;
1787
1788         handle->locked = 0;
1789
1790         local_irq_save(handle->flags);
1791         cpu = smp_processor_id();
1792
1793         if (in_nmi() && atomic_read(&data->lock) == cpu)
1794                 return;
1795
1796         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1797                 cpu_relax();
1798
1799         handle->locked = 1;
1800 }
1801
1802 static void perf_output_unlock(struct perf_output_handle *handle)
1803 {
1804         struct perf_mmap_data *data = handle->data;
1805         int head, cpu;
1806
1807         data->done_head = data->head;
1808
1809         if (!handle->locked)
1810                 goto out;
1811
1812 again:
1813         /*
1814          * The xchg implies a full barrier that ensures all writes are done
1815          * before we publish the new head, matched by a rmb() in userspace when
1816          * reading this position.
1817          */
1818         while ((head = atomic_xchg(&data->done_head, 0)))
1819                 data->user_page->data_head = head;
1820
1821         /*
1822          * NMI can happen here, which means we can miss a done_head update.
1823          */
1824
1825         cpu = atomic_xchg(&data->lock, -1);
1826         WARN_ON_ONCE(cpu != smp_processor_id());
1827
1828         /*
1829          * Therefore we have to validate we did not indeed do so.
1830          */
1831         if (unlikely(atomic_read(&data->done_head))) {
1832                 /*
1833                  * Since we had it locked, we can lock it again.
1834                  */
1835                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1836                         cpu_relax();
1837
1838                 goto again;
1839         }
1840
1841         if (atomic_xchg(&data->wakeup, 0))
1842                 perf_output_wakeup(handle);
1843 out:
1844         local_irq_restore(handle->flags);
1845 }
1846
1847 static int perf_output_begin(struct perf_output_handle *handle,
1848                              struct perf_counter *counter, unsigned int size,
1849                              int nmi, int overflow)
1850 {
1851         struct perf_mmap_data *data;
1852         unsigned int offset, head;
1853
1854         /*
1855          * For inherited counters we send all the output towards the parent.
1856          */
1857         if (counter->parent)
1858                 counter = counter->parent;
1859
1860         rcu_read_lock();
1861         data = rcu_dereference(counter->data);
1862         if (!data)
1863                 goto out;
1864
1865         handle->data     = data;
1866         handle->counter  = counter;
1867         handle->nmi      = nmi;
1868         handle->overflow = overflow;
1869
1870         if (!data->nr_pages)
1871                 goto fail;
1872
1873         perf_output_lock(handle);
1874
1875         do {
1876                 offset = head = atomic_read(&data->head);
1877                 head += size;
1878         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1879
1880         handle->offset  = offset;
1881         handle->head    = head;
1882
1883         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1884                 atomic_set(&data->wakeup, 1);
1885
1886         return 0;
1887
1888 fail:
1889         perf_output_wakeup(handle);
1890 out:
1891         rcu_read_unlock();
1892
1893         return -ENOSPC;
1894 }
1895
1896 static void perf_output_copy(struct perf_output_handle *handle,
1897                              void *buf, unsigned int len)
1898 {
1899         unsigned int pages_mask;
1900         unsigned int offset;
1901         unsigned int size;
1902         void **pages;
1903
1904         offset          = handle->offset;
1905         pages_mask      = handle->data->nr_pages - 1;
1906         pages           = handle->data->data_pages;
1907
1908         do {
1909                 unsigned int page_offset;
1910                 int nr;
1911
1912                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1913                 page_offset = offset & (PAGE_SIZE - 1);
1914                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1915
1916                 memcpy(pages[nr] + page_offset, buf, size);
1917
1918                 len         -= size;
1919                 buf         += size;
1920                 offset      += size;
1921         } while (len);
1922
1923         handle->offset = offset;
1924
1925         WARN_ON_ONCE(handle->offset > handle->head);
1926 }
1927
1928 #define perf_output_put(handle, x) \
1929         perf_output_copy((handle), &(x), sizeof(x))
1930
1931 static void perf_output_end(struct perf_output_handle *handle)
1932 {
1933         struct perf_counter *counter = handle->counter;
1934         struct perf_mmap_data *data = handle->data;
1935
1936         int wakeup_events = counter->hw_event.wakeup_events;
1937
1938         if (handle->overflow && wakeup_events) {
1939                 int events = atomic_inc_return(&data->events);
1940                 if (events >= wakeup_events) {
1941                         atomic_sub(wakeup_events, &data->events);
1942                         atomic_set(&data->wakeup, 1);
1943                 }
1944         }
1945
1946         perf_output_unlock(handle);
1947         rcu_read_unlock();
1948 }
1949
1950 static void perf_counter_output(struct perf_counter *counter,
1951                                 int nmi, struct pt_regs *regs, u64 addr)
1952 {
1953         int ret;
1954         u64 record_type = counter->hw_event.record_type;
1955         struct perf_output_handle handle;
1956         struct perf_event_header header;
1957         u64 ip;
1958         struct {
1959                 u32 pid, tid;
1960         } tid_entry;
1961         struct {
1962                 u64 event;
1963                 u64 counter;
1964         } group_entry;
1965         struct perf_callchain_entry *callchain = NULL;
1966         int callchain_size = 0;
1967         u64 time;
1968         struct {
1969                 u32 cpu, reserved;
1970         } cpu_entry;
1971
1972         header.type = 0;
1973         header.size = sizeof(header);
1974
1975         header.misc = PERF_EVENT_MISC_OVERFLOW;
1976         header.misc |= user_mode(regs) ?
1977                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1978
1979         if (record_type & PERF_RECORD_IP) {
1980                 ip = instruction_pointer(regs);
1981                 header.type |= PERF_RECORD_IP;
1982                 header.size += sizeof(ip);
1983         }
1984
1985         if (record_type & PERF_RECORD_TID) {
1986                 /* namespace issues */
1987                 tid_entry.pid = current->group_leader->pid;
1988                 tid_entry.tid = current->pid;
1989
1990                 header.type |= PERF_RECORD_TID;
1991                 header.size += sizeof(tid_entry);
1992         }
1993
1994         if (record_type & PERF_RECORD_TIME) {
1995                 /*
1996                  * Maybe do better on x86 and provide cpu_clock_nmi()
1997                  */
1998                 time = sched_clock();
1999
2000                 header.type |= PERF_RECORD_TIME;
2001                 header.size += sizeof(u64);
2002         }
2003
2004         if (record_type & PERF_RECORD_ADDR) {
2005                 header.type |= PERF_RECORD_ADDR;
2006                 header.size += sizeof(u64);
2007         }
2008
2009         if (record_type & PERF_RECORD_CONFIG) {
2010                 header.type |= PERF_RECORD_CONFIG;
2011                 header.size += sizeof(u64);
2012         }
2013
2014         if (record_type & PERF_RECORD_CPU) {
2015                 header.type |= PERF_RECORD_CPU;
2016                 header.size += sizeof(cpu_entry);
2017
2018                 cpu_entry.cpu = raw_smp_processor_id();
2019         }
2020
2021         if (record_type & PERF_RECORD_GROUP) {
2022                 header.type |= PERF_RECORD_GROUP;
2023                 header.size += sizeof(u64) +
2024                         counter->nr_siblings * sizeof(group_entry);
2025         }
2026
2027         if (record_type & PERF_RECORD_CALLCHAIN) {
2028                 callchain = perf_callchain(regs);
2029
2030                 if (callchain) {
2031                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2032
2033                         header.type |= PERF_RECORD_CALLCHAIN;
2034                         header.size += callchain_size;
2035                 }
2036         }
2037
2038         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2039         if (ret)
2040                 return;
2041
2042         perf_output_put(&handle, header);
2043
2044         if (record_type & PERF_RECORD_IP)
2045                 perf_output_put(&handle, ip);
2046
2047         if (record_type & PERF_RECORD_TID)
2048                 perf_output_put(&handle, tid_entry);
2049
2050         if (record_type & PERF_RECORD_TIME)
2051                 perf_output_put(&handle, time);
2052
2053         if (record_type & PERF_RECORD_ADDR)
2054                 perf_output_put(&handle, addr);
2055
2056         if (record_type & PERF_RECORD_CONFIG)
2057                 perf_output_put(&handle, counter->hw_event.config);
2058
2059         if (record_type & PERF_RECORD_CPU)
2060                 perf_output_put(&handle, cpu_entry);
2061
2062         /*
2063          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2064          */
2065         if (record_type & PERF_RECORD_GROUP) {
2066                 struct perf_counter *leader, *sub;
2067                 u64 nr = counter->nr_siblings;
2068
2069                 perf_output_put(&handle, nr);
2070
2071                 leader = counter->group_leader;
2072                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2073                         if (sub != counter)
2074                                 sub->pmu->read(sub);
2075
2076                         group_entry.event = sub->hw_event.config;
2077                         group_entry.counter = atomic64_read(&sub->count);
2078
2079                         perf_output_put(&handle, group_entry);
2080                 }
2081         }
2082
2083         if (callchain)
2084                 perf_output_copy(&handle, callchain, callchain_size);
2085
2086         perf_output_end(&handle);
2087 }
2088
2089 /*
2090  * comm tracking
2091  */
2092
2093 struct perf_comm_event {
2094         struct task_struct      *task;
2095         char                    *comm;
2096         int                     comm_size;
2097
2098         struct {
2099                 struct perf_event_header        header;
2100
2101                 u32                             pid;
2102                 u32                             tid;
2103         } event;
2104 };
2105
2106 static void perf_counter_comm_output(struct perf_counter *counter,
2107                                      struct perf_comm_event *comm_event)
2108 {
2109         struct perf_output_handle handle;
2110         int size = comm_event->event.header.size;
2111         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2112
2113         if (ret)
2114                 return;
2115
2116         perf_output_put(&handle, comm_event->event);
2117         perf_output_copy(&handle, comm_event->comm,
2118                                    comm_event->comm_size);
2119         perf_output_end(&handle);
2120 }
2121
2122 static int perf_counter_comm_match(struct perf_counter *counter,
2123                                    struct perf_comm_event *comm_event)
2124 {
2125         if (counter->hw_event.comm &&
2126             comm_event->event.header.type == PERF_EVENT_COMM)
2127                 return 1;
2128
2129         return 0;
2130 }
2131
2132 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2133                                   struct perf_comm_event *comm_event)
2134 {
2135         struct perf_counter *counter;
2136
2137         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2138                 return;
2139
2140         rcu_read_lock();
2141         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2142                 if (perf_counter_comm_match(counter, comm_event))
2143                         perf_counter_comm_output(counter, comm_event);
2144         }
2145         rcu_read_unlock();
2146 }
2147
2148 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2149 {
2150         struct perf_cpu_context *cpuctx;
2151         unsigned int size;
2152         char *comm = comm_event->task->comm;
2153
2154         size = ALIGN(strlen(comm)+1, sizeof(u64));
2155
2156         comm_event->comm = comm;
2157         comm_event->comm_size = size;
2158
2159         comm_event->event.header.size = sizeof(comm_event->event) + size;
2160
2161         cpuctx = &get_cpu_var(perf_cpu_context);
2162         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2163         put_cpu_var(perf_cpu_context);
2164
2165         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2166 }
2167
2168 void perf_counter_comm(struct task_struct *task)
2169 {
2170         struct perf_comm_event comm_event;
2171
2172         if (!atomic_read(&nr_comm_tracking))
2173                 return;
2174        
2175         comm_event = (struct perf_comm_event){
2176                 .task   = task,
2177                 .event  = {
2178                         .header = { .type = PERF_EVENT_COMM, },
2179                         .pid    = task->group_leader->pid,
2180                         .tid    = task->pid,
2181                 },
2182         };
2183
2184         perf_counter_comm_event(&comm_event);
2185 }
2186
2187 /*
2188  * mmap tracking
2189  */
2190
2191 struct perf_mmap_event {
2192         struct file     *file;
2193         char            *file_name;
2194         int             file_size;
2195
2196         struct {
2197                 struct perf_event_header        header;
2198
2199                 u32                             pid;
2200                 u32                             tid;
2201                 u64                             start;
2202                 u64                             len;
2203                 u64                             pgoff;
2204         } event;
2205 };
2206
2207 static void perf_counter_mmap_output(struct perf_counter *counter,
2208                                      struct perf_mmap_event *mmap_event)
2209 {
2210         struct perf_output_handle handle;
2211         int size = mmap_event->event.header.size;
2212         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2213
2214         if (ret)
2215                 return;
2216
2217         perf_output_put(&handle, mmap_event->event);
2218         perf_output_copy(&handle, mmap_event->file_name,
2219                                    mmap_event->file_size);
2220         perf_output_end(&handle);
2221 }
2222
2223 static int perf_counter_mmap_match(struct perf_counter *counter,
2224                                    struct perf_mmap_event *mmap_event)
2225 {
2226         if (counter->hw_event.mmap &&
2227             mmap_event->event.header.type == PERF_EVENT_MMAP)
2228                 return 1;
2229
2230         if (counter->hw_event.munmap &&
2231             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2232                 return 1;
2233
2234         return 0;
2235 }
2236
2237 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2238                                   struct perf_mmap_event *mmap_event)
2239 {
2240         struct perf_counter *counter;
2241
2242         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2243                 return;
2244
2245         rcu_read_lock();
2246         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2247                 if (perf_counter_mmap_match(counter, mmap_event))
2248                         perf_counter_mmap_output(counter, mmap_event);
2249         }
2250         rcu_read_unlock();
2251 }
2252
2253 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2254 {
2255         struct perf_cpu_context *cpuctx;
2256         struct file *file = mmap_event->file;
2257         unsigned int size;
2258         char tmp[16];
2259         char *buf = NULL;
2260         char *name;
2261
2262         if (file) {
2263                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2264                 if (!buf) {
2265                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2266                         goto got_name;
2267                 }
2268                 name = d_path(&file->f_path, buf, PATH_MAX);
2269                 if (IS_ERR(name)) {
2270                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2271                         goto got_name;
2272                 }
2273         } else {
2274                 name = strncpy(tmp, "//anon", sizeof(tmp));
2275                 goto got_name;
2276         }
2277
2278 got_name:
2279         size = ALIGN(strlen(name)+1, sizeof(u64));
2280
2281         mmap_event->file_name = name;
2282         mmap_event->file_size = size;
2283
2284         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2285
2286         cpuctx = &get_cpu_var(perf_cpu_context);
2287         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2288         put_cpu_var(perf_cpu_context);
2289
2290         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2291
2292         kfree(buf);
2293 }
2294
2295 void perf_counter_mmap(unsigned long addr, unsigned long len,
2296                        unsigned long pgoff, struct file *file)
2297 {
2298         struct perf_mmap_event mmap_event;
2299
2300         if (!atomic_read(&nr_mmap_tracking))
2301                 return;
2302
2303         mmap_event = (struct perf_mmap_event){
2304                 .file   = file,
2305                 .event  = {
2306                         .header = { .type = PERF_EVENT_MMAP, },
2307                         .pid    = current->group_leader->pid,
2308                         .tid    = current->pid,
2309                         .start  = addr,
2310                         .len    = len,
2311                         .pgoff  = pgoff,
2312                 },
2313         };
2314
2315         perf_counter_mmap_event(&mmap_event);
2316 }
2317
2318 void perf_counter_munmap(unsigned long addr, unsigned long len,
2319                          unsigned long pgoff, struct file *file)
2320 {
2321         struct perf_mmap_event mmap_event;
2322
2323         if (!atomic_read(&nr_munmap_tracking))
2324                 return;
2325
2326         mmap_event = (struct perf_mmap_event){
2327                 .file   = file,
2328                 .event  = {
2329                         .header = { .type = PERF_EVENT_MUNMAP, },
2330                         .pid    = current->group_leader->pid,
2331                         .tid    = current->pid,
2332                         .start  = addr,
2333                         .len    = len,
2334                         .pgoff  = pgoff,
2335                 },
2336         };
2337
2338         perf_counter_mmap_event(&mmap_event);
2339 }
2340
2341 /*
2342  * Generic counter overflow handling.
2343  */
2344
2345 int perf_counter_overflow(struct perf_counter *counter,
2346                           int nmi, struct pt_regs *regs, u64 addr)
2347 {
2348         int events = atomic_read(&counter->event_limit);
2349         int ret = 0;
2350
2351         /*
2352          * XXX event_limit might not quite work as expected on inherited
2353          * counters
2354          */
2355
2356         counter->pending_kill = POLL_IN;
2357         if (events && atomic_dec_and_test(&counter->event_limit)) {
2358                 ret = 1;
2359                 counter->pending_kill = POLL_HUP;
2360                 if (nmi) {
2361                         counter->pending_disable = 1;
2362                         perf_pending_queue(&counter->pending,
2363                                            perf_pending_counter);
2364                 } else
2365                         perf_counter_disable(counter);
2366         }
2367
2368         perf_counter_output(counter, nmi, regs, addr);
2369         return ret;
2370 }
2371
2372 /*
2373  * Generic software counter infrastructure
2374  */
2375
2376 static void perf_swcounter_update(struct perf_counter *counter)
2377 {
2378         struct hw_perf_counter *hwc = &counter->hw;
2379         u64 prev, now;
2380         s64 delta;
2381
2382 again:
2383         prev = atomic64_read(&hwc->prev_count);
2384         now = atomic64_read(&hwc->count);
2385         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2386                 goto again;
2387
2388         delta = now - prev;
2389
2390         atomic64_add(delta, &counter->count);
2391         atomic64_sub(delta, &hwc->period_left);
2392 }
2393
2394 static void perf_swcounter_set_period(struct perf_counter *counter)
2395 {
2396         struct hw_perf_counter *hwc = &counter->hw;
2397         s64 left = atomic64_read(&hwc->period_left);
2398         s64 period = hwc->irq_period;
2399
2400         if (unlikely(left <= -period)) {
2401                 left = period;
2402                 atomic64_set(&hwc->period_left, left);
2403         }
2404
2405         if (unlikely(left <= 0)) {
2406                 left += period;
2407                 atomic64_add(period, &hwc->period_left);
2408         }
2409
2410         atomic64_set(&hwc->prev_count, -left);
2411         atomic64_set(&hwc->count, -left);
2412 }
2413
2414 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2415 {
2416         enum hrtimer_restart ret = HRTIMER_RESTART;
2417         struct perf_counter *counter;
2418         struct pt_regs *regs;
2419
2420         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2421         counter->pmu->read(counter);
2422
2423         regs = get_irq_regs();
2424         /*
2425          * In case we exclude kernel IPs or are somehow not in interrupt
2426          * context, provide the next best thing, the user IP.
2427          */
2428         if ((counter->hw_event.exclude_kernel || !regs) &&
2429                         !counter->hw_event.exclude_user)
2430                 regs = task_pt_regs(current);
2431
2432         if (regs) {
2433                 if (perf_counter_overflow(counter, 0, regs, 0))
2434                         ret = HRTIMER_NORESTART;
2435         }
2436
2437         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2438
2439         return ret;
2440 }
2441
2442 static void perf_swcounter_overflow(struct perf_counter *counter,
2443                                     int nmi, struct pt_regs *regs, u64 addr)
2444 {
2445         perf_swcounter_update(counter);
2446         perf_swcounter_set_period(counter);
2447         if (perf_counter_overflow(counter, nmi, regs, addr))
2448                 /* soft-disable the counter */
2449                 ;
2450
2451 }
2452
2453 static int perf_swcounter_match(struct perf_counter *counter,
2454                                 enum perf_event_types type,
2455                                 u32 event, struct pt_regs *regs)
2456 {
2457         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2458                 return 0;
2459
2460         if (perf_event_raw(&counter->hw_event))
2461                 return 0;
2462
2463         if (perf_event_type(&counter->hw_event) != type)
2464                 return 0;
2465
2466         if (perf_event_id(&counter->hw_event) != event)
2467                 return 0;
2468
2469         if (counter->hw_event.exclude_user && user_mode(regs))
2470                 return 0;
2471
2472         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2473                 return 0;
2474
2475         return 1;
2476 }
2477
2478 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2479                                int nmi, struct pt_regs *regs, u64 addr)
2480 {
2481         int neg = atomic64_add_negative(nr, &counter->hw.count);
2482         if (counter->hw.irq_period && !neg)
2483                 perf_swcounter_overflow(counter, nmi, regs, addr);
2484 }
2485
2486 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2487                                      enum perf_event_types type, u32 event,
2488                                      u64 nr, int nmi, struct pt_regs *regs,
2489                                      u64 addr)
2490 {
2491         struct perf_counter *counter;
2492
2493         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2494                 return;
2495
2496         rcu_read_lock();
2497         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2498                 if (perf_swcounter_match(counter, type, event, regs))
2499                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2500         }
2501         rcu_read_unlock();
2502 }
2503
2504 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2505 {
2506         if (in_nmi())
2507                 return &cpuctx->recursion[3];
2508
2509         if (in_irq())
2510                 return &cpuctx->recursion[2];
2511
2512         if (in_softirq())
2513                 return &cpuctx->recursion[1];
2514
2515         return &cpuctx->recursion[0];
2516 }
2517
2518 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2519                                    u64 nr, int nmi, struct pt_regs *regs,
2520                                    u64 addr)
2521 {
2522         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2523         int *recursion = perf_swcounter_recursion_context(cpuctx);
2524
2525         if (*recursion)
2526                 goto out;
2527
2528         (*recursion)++;
2529         barrier();
2530
2531         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2532                                  nr, nmi, regs, addr);
2533         if (cpuctx->task_ctx) {
2534                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2535                                          nr, nmi, regs, addr);
2536         }
2537
2538         barrier();
2539         (*recursion)--;
2540
2541 out:
2542         put_cpu_var(perf_cpu_context);
2543 }
2544
2545 void
2546 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2547 {
2548         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2549 }
2550
2551 static void perf_swcounter_read(struct perf_counter *counter)
2552 {
2553         perf_swcounter_update(counter);
2554 }
2555
2556 static int perf_swcounter_enable(struct perf_counter *counter)
2557 {
2558         perf_swcounter_set_period(counter);
2559         return 0;
2560 }
2561
2562 static void perf_swcounter_disable(struct perf_counter *counter)
2563 {
2564         perf_swcounter_update(counter);
2565 }
2566
2567 static const struct pmu perf_ops_generic = {
2568         .enable         = perf_swcounter_enable,
2569         .disable        = perf_swcounter_disable,
2570         .read           = perf_swcounter_read,
2571 };
2572
2573 /*
2574  * Software counter: cpu wall time clock
2575  */
2576
2577 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2578 {
2579         int cpu = raw_smp_processor_id();
2580         s64 prev;
2581         u64 now;
2582
2583         now = cpu_clock(cpu);
2584         prev = atomic64_read(&counter->hw.prev_count);
2585         atomic64_set(&counter->hw.prev_count, now);
2586         atomic64_add(now - prev, &counter->count);
2587 }
2588
2589 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2590 {
2591         struct hw_perf_counter *hwc = &counter->hw;
2592         int cpu = raw_smp_processor_id();
2593
2594         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2595         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2596         hwc->hrtimer.function = perf_swcounter_hrtimer;
2597         if (hwc->irq_period) {
2598                 __hrtimer_start_range_ns(&hwc->hrtimer,
2599                                 ns_to_ktime(hwc->irq_period), 0,
2600                                 HRTIMER_MODE_REL, 0);
2601         }
2602
2603         return 0;
2604 }
2605
2606 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2607 {
2608         hrtimer_cancel(&counter->hw.hrtimer);
2609         cpu_clock_perf_counter_update(counter);
2610 }
2611
2612 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2613 {
2614         cpu_clock_perf_counter_update(counter);
2615 }
2616
2617 static const struct pmu perf_ops_cpu_clock = {
2618         .enable         = cpu_clock_perf_counter_enable,
2619         .disable        = cpu_clock_perf_counter_disable,
2620         .read           = cpu_clock_perf_counter_read,
2621 };
2622
2623 /*
2624  * Software counter: task time clock
2625  */
2626
2627 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2628 {
2629         u64 prev;
2630         s64 delta;
2631
2632         prev = atomic64_xchg(&counter->hw.prev_count, now);
2633         delta = now - prev;
2634         atomic64_add(delta, &counter->count);
2635 }
2636
2637 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2638 {
2639         struct hw_perf_counter *hwc = &counter->hw;
2640         u64 now;
2641
2642         now = counter->ctx->time;
2643
2644         atomic64_set(&hwc->prev_count, now);
2645         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2646         hwc->hrtimer.function = perf_swcounter_hrtimer;
2647         if (hwc->irq_period) {
2648                 __hrtimer_start_range_ns(&hwc->hrtimer,
2649                                 ns_to_ktime(hwc->irq_period), 0,
2650                                 HRTIMER_MODE_REL, 0);
2651         }
2652
2653         return 0;
2654 }
2655
2656 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2657 {
2658         hrtimer_cancel(&counter->hw.hrtimer);
2659         task_clock_perf_counter_update(counter, counter->ctx->time);
2660
2661 }
2662
2663 static void task_clock_perf_counter_read(struct perf_counter *counter)
2664 {
2665         u64 time;
2666
2667         if (!in_nmi()) {
2668                 update_context_time(counter->ctx);
2669                 time = counter->ctx->time;
2670         } else {
2671                 u64 now = perf_clock();
2672                 u64 delta = now - counter->ctx->timestamp;
2673                 time = counter->ctx->time + delta;
2674         }
2675
2676         task_clock_perf_counter_update(counter, time);
2677 }
2678
2679 static const struct pmu perf_ops_task_clock = {
2680         .enable         = task_clock_perf_counter_enable,
2681         .disable        = task_clock_perf_counter_disable,
2682         .read           = task_clock_perf_counter_read,
2683 };
2684
2685 /*
2686  * Software counter: cpu migrations
2687  */
2688
2689 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2690 {
2691         struct task_struct *curr = counter->ctx->task;
2692
2693         if (curr)
2694                 return curr->se.nr_migrations;
2695         return cpu_nr_migrations(smp_processor_id());
2696 }
2697
2698 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2699 {
2700         u64 prev, now;
2701         s64 delta;
2702
2703         prev = atomic64_read(&counter->hw.prev_count);
2704         now = get_cpu_migrations(counter);
2705
2706         atomic64_set(&counter->hw.prev_count, now);
2707
2708         delta = now - prev;
2709
2710         atomic64_add(delta, &counter->count);
2711 }
2712
2713 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2714 {
2715         cpu_migrations_perf_counter_update(counter);
2716 }
2717
2718 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2719 {
2720         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2721                 atomic64_set(&counter->hw.prev_count,
2722                              get_cpu_migrations(counter));
2723         return 0;
2724 }
2725
2726 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2727 {
2728         cpu_migrations_perf_counter_update(counter);
2729 }
2730
2731 static const struct pmu perf_ops_cpu_migrations = {
2732         .enable         = cpu_migrations_perf_counter_enable,
2733         .disable        = cpu_migrations_perf_counter_disable,
2734         .read           = cpu_migrations_perf_counter_read,
2735 };
2736
2737 #ifdef CONFIG_EVENT_PROFILE
2738 void perf_tpcounter_event(int event_id)
2739 {
2740         struct pt_regs *regs = get_irq_regs();
2741
2742         if (!regs)
2743                 regs = task_pt_regs(current);
2744
2745         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2746 }
2747 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2748
2749 extern int ftrace_profile_enable(int);
2750 extern void ftrace_profile_disable(int);
2751
2752 static void tp_perf_counter_destroy(struct perf_counter *counter)
2753 {
2754         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2755 }
2756
2757 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2758 {
2759         int event_id = perf_event_id(&counter->hw_event);
2760         int ret;
2761
2762         ret = ftrace_profile_enable(event_id);
2763         if (ret)
2764                 return NULL;
2765
2766         counter->destroy = tp_perf_counter_destroy;
2767         counter->hw.irq_period = counter->hw_event.irq_period;
2768
2769         return &perf_ops_generic;
2770 }
2771 #else
2772 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2773 {
2774         return NULL;
2775 }
2776 #endif
2777
2778 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2779 {
2780         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2781         const struct pmu *pmu = NULL;
2782         struct hw_perf_counter *hwc = &counter->hw;
2783
2784         /*
2785          * Software counters (currently) can't in general distinguish
2786          * between user, kernel and hypervisor events.
2787          * However, context switches and cpu migrations are considered
2788          * to be kernel events, and page faults are never hypervisor
2789          * events.
2790          */
2791         switch (perf_event_id(&counter->hw_event)) {
2792         case PERF_COUNT_CPU_CLOCK:
2793                 pmu = &perf_ops_cpu_clock;
2794
2795                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2796                         hw_event->irq_period = 10000;
2797                 break;
2798         case PERF_COUNT_TASK_CLOCK:
2799                 /*
2800                  * If the user instantiates this as a per-cpu counter,
2801                  * use the cpu_clock counter instead.
2802                  */
2803                 if (counter->ctx->task)
2804                         pmu = &perf_ops_task_clock;
2805                 else
2806                         pmu = &perf_ops_cpu_clock;
2807
2808                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2809                         hw_event->irq_period = 10000;
2810                 break;
2811         case PERF_COUNT_PAGE_FAULTS:
2812         case PERF_COUNT_PAGE_FAULTS_MIN:
2813         case PERF_COUNT_PAGE_FAULTS_MAJ:
2814         case PERF_COUNT_CONTEXT_SWITCHES:
2815                 pmu = &perf_ops_generic;
2816                 break;
2817         case PERF_COUNT_CPU_MIGRATIONS:
2818                 if (!counter->hw_event.exclude_kernel)
2819                         pmu = &perf_ops_cpu_migrations;
2820                 break;
2821         }
2822
2823         if (pmu)
2824                 hwc->irq_period = hw_event->irq_period;
2825
2826         return pmu;
2827 }
2828
2829 /*
2830  * Allocate and initialize a counter structure
2831  */
2832 static struct perf_counter *
2833 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2834                    int cpu,
2835                    struct perf_counter_context *ctx,
2836                    struct perf_counter *group_leader,
2837                    gfp_t gfpflags)
2838 {
2839         const struct pmu *pmu;
2840         struct perf_counter *counter;
2841         long err;
2842
2843         counter = kzalloc(sizeof(*counter), gfpflags);
2844         if (!counter)
2845                 return ERR_PTR(-ENOMEM);
2846
2847         /*
2848          * Single counters are their own group leaders, with an
2849          * empty sibling list:
2850          */
2851         if (!group_leader)
2852                 group_leader = counter;
2853
2854         mutex_init(&counter->mutex);
2855         INIT_LIST_HEAD(&counter->list_entry);
2856         INIT_LIST_HEAD(&counter->event_entry);
2857         INIT_LIST_HEAD(&counter->sibling_list);
2858         init_waitqueue_head(&counter->waitq);
2859
2860         mutex_init(&counter->mmap_mutex);
2861
2862         INIT_LIST_HEAD(&counter->child_list);
2863
2864         counter->cpu                    = cpu;
2865         counter->hw_event               = *hw_event;
2866         counter->group_leader           = group_leader;
2867         counter->pmu                    = NULL;
2868         counter->ctx                    = ctx;
2869
2870         counter->state = PERF_COUNTER_STATE_INACTIVE;
2871         if (hw_event->disabled)
2872                 counter->state = PERF_COUNTER_STATE_OFF;
2873
2874         pmu = NULL;
2875
2876         /*
2877          * we currently do not support PERF_RECORD_GROUP on inherited counters
2878          */
2879         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2880                 goto done;
2881
2882         if (perf_event_raw(hw_event)) {
2883                 pmu = hw_perf_counter_init(counter);
2884                 goto done;
2885         }
2886
2887         switch (perf_event_type(hw_event)) {
2888         case PERF_TYPE_HARDWARE:
2889                 pmu = hw_perf_counter_init(counter);
2890                 break;
2891
2892         case PERF_TYPE_SOFTWARE:
2893                 pmu = sw_perf_counter_init(counter);
2894                 break;
2895
2896         case PERF_TYPE_TRACEPOINT:
2897                 pmu = tp_perf_counter_init(counter);
2898                 break;
2899         }
2900 done:
2901         err = 0;
2902         if (!pmu)
2903                 err = -EINVAL;
2904         else if (IS_ERR(pmu))
2905                 err = PTR_ERR(pmu);
2906
2907         if (err) {
2908                 kfree(counter);
2909                 return ERR_PTR(err);
2910         }
2911
2912         counter->pmu = pmu;
2913
2914         atomic_inc(&nr_counters);
2915         if (counter->hw_event.mmap)
2916                 atomic_inc(&nr_mmap_tracking);
2917         if (counter->hw_event.munmap)
2918                 atomic_inc(&nr_munmap_tracking);
2919         if (counter->hw_event.comm)
2920                 atomic_inc(&nr_comm_tracking);
2921
2922         return counter;
2923 }
2924
2925 /**
2926  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2927  *
2928  * @hw_event_uptr:      event type attributes for monitoring/sampling
2929  * @pid:                target pid
2930  * @cpu:                target cpu
2931  * @group_fd:           group leader counter fd
2932  */
2933 SYSCALL_DEFINE5(perf_counter_open,
2934                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2935                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2936 {
2937         struct perf_counter *counter, *group_leader;
2938         struct perf_counter_hw_event hw_event;
2939         struct perf_counter_context *ctx;
2940         struct file *counter_file = NULL;
2941         struct file *group_file = NULL;
2942         int fput_needed = 0;
2943         int fput_needed2 = 0;
2944         int ret;
2945
2946         /* for future expandability... */
2947         if (flags)
2948                 return -EINVAL;
2949
2950         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2951                 return -EFAULT;
2952
2953         /*
2954          * Get the target context (task or percpu):
2955          */
2956         ctx = find_get_context(pid, cpu);
2957         if (IS_ERR(ctx))
2958                 return PTR_ERR(ctx);
2959
2960         /*
2961          * Look up the group leader (we will attach this counter to it):
2962          */
2963         group_leader = NULL;
2964         if (group_fd != -1) {
2965                 ret = -EINVAL;
2966                 group_file = fget_light(group_fd, &fput_needed);
2967                 if (!group_file)
2968                         goto err_put_context;
2969                 if (group_file->f_op != &perf_fops)
2970                         goto err_put_context;
2971
2972                 group_leader = group_file->private_data;
2973                 /*
2974                  * Do not allow a recursive hierarchy (this new sibling
2975                  * becoming part of another group-sibling):
2976                  */
2977                 if (group_leader->group_leader != group_leader)
2978                         goto err_put_context;
2979                 /*
2980                  * Do not allow to attach to a group in a different
2981                  * task or CPU context:
2982                  */
2983                 if (group_leader->ctx != ctx)
2984                         goto err_put_context;
2985                 /*
2986                  * Only a group leader can be exclusive or pinned
2987                  */
2988                 if (hw_event.exclusive || hw_event.pinned)
2989                         goto err_put_context;
2990         }
2991
2992         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2993                                      GFP_KERNEL);
2994         ret = PTR_ERR(counter);
2995         if (IS_ERR(counter))
2996                 goto err_put_context;
2997
2998         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2999         if (ret < 0)
3000                 goto err_free_put_context;
3001
3002         counter_file = fget_light(ret, &fput_needed2);
3003         if (!counter_file)
3004                 goto err_free_put_context;
3005
3006         counter->filp = counter_file;
3007         mutex_lock(&ctx->mutex);
3008         perf_install_in_context(ctx, counter, cpu);
3009         mutex_unlock(&ctx->mutex);
3010
3011         fput_light(counter_file, fput_needed2);
3012
3013 out_fput:
3014         fput_light(group_file, fput_needed);
3015
3016         return ret;
3017
3018 err_free_put_context:
3019         kfree(counter);
3020
3021 err_put_context:
3022         put_context(ctx);
3023
3024         goto out_fput;
3025 }
3026
3027 /*
3028  * Initialize the perf_counter context in a task_struct:
3029  */
3030 static void
3031 __perf_counter_init_context(struct perf_counter_context *ctx,
3032                             struct task_struct *task)
3033 {
3034         memset(ctx, 0, sizeof(*ctx));
3035         spin_lock_init(&ctx->lock);
3036         mutex_init(&ctx->mutex);
3037         INIT_LIST_HEAD(&ctx->counter_list);
3038         INIT_LIST_HEAD(&ctx->event_list);
3039         ctx->task = task;
3040 }
3041
3042 /*
3043  * inherit a counter from parent task to child task:
3044  */
3045 static struct perf_counter *
3046 inherit_counter(struct perf_counter *parent_counter,
3047               struct task_struct *parent,
3048               struct perf_counter_context *parent_ctx,
3049               struct task_struct *child,
3050               struct perf_counter *group_leader,
3051               struct perf_counter_context *child_ctx)
3052 {
3053         struct perf_counter *child_counter;
3054
3055         /*
3056          * Instead of creating recursive hierarchies of counters,
3057          * we link inherited counters back to the original parent,
3058          * which has a filp for sure, which we use as the reference
3059          * count:
3060          */
3061         if (parent_counter->parent)
3062                 parent_counter = parent_counter->parent;
3063
3064         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3065                                            parent_counter->cpu, child_ctx,
3066                                            group_leader, GFP_KERNEL);
3067         if (IS_ERR(child_counter))
3068                 return child_counter;
3069
3070         /*
3071          * Link it up in the child's context:
3072          */
3073         child_counter->task = child;
3074         add_counter_to_ctx(child_counter, child_ctx);
3075
3076         child_counter->parent = parent_counter;
3077         /*
3078          * inherit into child's child as well:
3079          */
3080         child_counter->hw_event.inherit = 1;
3081
3082         /*
3083          * Get a reference to the parent filp - we will fput it
3084          * when the child counter exits. This is safe to do because
3085          * we are in the parent and we know that the filp still
3086          * exists and has a nonzero count:
3087          */
3088         atomic_long_inc(&parent_counter->filp->f_count);
3089
3090         /*
3091          * Link this into the parent counter's child list
3092          */
3093         mutex_lock(&parent_counter->mutex);
3094         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3095
3096         /*
3097          * Make the child state follow the state of the parent counter,
3098          * not its hw_event.disabled bit.  We hold the parent's mutex,
3099          * so we won't race with perf_counter_{en,dis}able_family.
3100          */
3101         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3102                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3103         else
3104                 child_counter->state = PERF_COUNTER_STATE_OFF;
3105
3106         mutex_unlock(&parent_counter->mutex);
3107
3108         return child_counter;
3109 }
3110
3111 static int inherit_group(struct perf_counter *parent_counter,
3112               struct task_struct *parent,
3113               struct perf_counter_context *parent_ctx,
3114               struct task_struct *child,
3115               struct perf_counter_context *child_ctx)
3116 {
3117         struct perf_counter *leader;
3118         struct perf_counter *sub;
3119         struct perf_counter *child_ctr;
3120
3121         leader = inherit_counter(parent_counter, parent, parent_ctx,
3122                                  child, NULL, child_ctx);
3123         if (IS_ERR(leader))
3124                 return PTR_ERR(leader);
3125         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3126                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3127                                             child, leader, child_ctx);
3128                 if (IS_ERR(child_ctr))
3129                         return PTR_ERR(child_ctr);
3130         }
3131         return 0;
3132 }
3133
3134 static void sync_child_counter(struct perf_counter *child_counter,
3135                                struct perf_counter *parent_counter)
3136 {
3137         u64 parent_val, child_val;
3138
3139         parent_val = atomic64_read(&parent_counter->count);
3140         child_val = atomic64_read(&child_counter->count);
3141
3142         /*
3143          * Add back the child's count to the parent's count:
3144          */
3145         atomic64_add(child_val, &parent_counter->count);
3146         atomic64_add(child_counter->total_time_enabled,
3147                      &parent_counter->child_total_time_enabled);
3148         atomic64_add(child_counter->total_time_running,
3149                      &parent_counter->child_total_time_running);
3150
3151         /*
3152          * Remove this counter from the parent's list
3153          */
3154         mutex_lock(&parent_counter->mutex);
3155         list_del_init(&child_counter->child_list);
3156         mutex_unlock(&parent_counter->mutex);
3157
3158         /*
3159          * Release the parent counter, if this was the last
3160          * reference to it.
3161          */
3162         fput(parent_counter->filp);
3163 }
3164
3165 static void
3166 __perf_counter_exit_task(struct task_struct *child,
3167                          struct perf_counter *child_counter,
3168                          struct perf_counter_context *child_ctx)
3169 {
3170         struct perf_counter *parent_counter;
3171         struct perf_counter *sub, *tmp;
3172
3173         /*
3174          * If we do not self-reap then we have to wait for the
3175          * child task to unschedule (it will happen for sure),
3176          * so that its counter is at its final count. (This
3177          * condition triggers rarely - child tasks usually get
3178          * off their CPU before the parent has a chance to
3179          * get this far into the reaping action)
3180          */
3181         if (child != current) {
3182                 wait_task_inactive(child, 0);
3183                 list_del_init(&child_counter->list_entry);
3184                 update_counter_times(child_counter);
3185         } else {
3186                 struct perf_cpu_context *cpuctx;
3187                 unsigned long flags;
3188                 u64 perf_flags;
3189
3190                 /*
3191                  * Disable and unlink this counter.
3192                  *
3193                  * Be careful about zapping the list - IRQ/NMI context
3194                  * could still be processing it:
3195                  */
3196                 local_irq_save(flags);
3197                 perf_flags = hw_perf_save_disable();
3198
3199                 cpuctx = &__get_cpu_var(perf_cpu_context);
3200
3201                 group_sched_out(child_counter, cpuctx, child_ctx);
3202                 update_counter_times(child_counter);
3203
3204                 list_del_init(&child_counter->list_entry);
3205
3206                 child_ctx->nr_counters--;
3207
3208                 hw_perf_restore(perf_flags);
3209                 local_irq_restore(flags);
3210         }
3211
3212         parent_counter = child_counter->parent;
3213         /*
3214          * It can happen that parent exits first, and has counters
3215          * that are still around due to the child reference. These
3216          * counters need to be zapped - but otherwise linger.
3217          */
3218         if (parent_counter) {
3219                 sync_child_counter(child_counter, parent_counter);
3220                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3221                                          list_entry) {
3222                         if (sub->parent) {
3223                                 sync_child_counter(sub, sub->parent);
3224                                 free_counter(sub);
3225                         }
3226                 }
3227                 free_counter(child_counter);
3228         }
3229 }
3230
3231 /*
3232  * When a child task exits, feed back counter values to parent counters.
3233  *
3234  * Note: we may be running in child context, but the PID is not hashed
3235  * anymore so new counters will not be added.
3236  */
3237 void perf_counter_exit_task(struct task_struct *child)
3238 {
3239         struct perf_counter *child_counter, *tmp;
3240         struct perf_counter_context *child_ctx;
3241
3242         child_ctx = &child->perf_counter_ctx;
3243
3244         if (likely(!child_ctx->nr_counters))
3245                 return;
3246
3247         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3248                                  list_entry)
3249                 __perf_counter_exit_task(child, child_counter, child_ctx);
3250 }
3251
3252 /*
3253  * Initialize the perf_counter context in task_struct
3254  */
3255 void perf_counter_init_task(struct task_struct *child)
3256 {
3257         struct perf_counter_context *child_ctx, *parent_ctx;
3258         struct perf_counter *counter;
3259         struct task_struct *parent = current;
3260
3261         child_ctx  =  &child->perf_counter_ctx;
3262         parent_ctx = &parent->perf_counter_ctx;
3263
3264         __perf_counter_init_context(child_ctx, child);
3265
3266         /*
3267          * This is executed from the parent task context, so inherit
3268          * counters that have been marked for cloning:
3269          */
3270
3271         if (likely(!parent_ctx->nr_counters))
3272                 return;
3273
3274         /*
3275          * Lock the parent list. No need to lock the child - not PID
3276          * hashed yet and not running, so nobody can access it.
3277          */
3278         mutex_lock(&parent_ctx->mutex);
3279
3280         /*
3281          * We dont have to disable NMIs - we are only looking at
3282          * the list, not manipulating it:
3283          */
3284         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3285                 if (!counter->hw_event.inherit)
3286                         continue;
3287
3288                 if (inherit_group(counter, parent,
3289                                   parent_ctx, child, child_ctx))
3290                         break;
3291         }
3292
3293         mutex_unlock(&parent_ctx->mutex);
3294 }
3295
3296 static void __cpuinit perf_counter_init_cpu(int cpu)
3297 {
3298         struct perf_cpu_context *cpuctx;
3299
3300         cpuctx = &per_cpu(perf_cpu_context, cpu);
3301         __perf_counter_init_context(&cpuctx->ctx, NULL);
3302
3303         spin_lock(&perf_resource_lock);
3304         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3305         spin_unlock(&perf_resource_lock);
3306
3307         hw_perf_counter_setup(cpu);
3308 }
3309
3310 #ifdef CONFIG_HOTPLUG_CPU
3311 static void __perf_counter_exit_cpu(void *info)
3312 {
3313         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3314         struct perf_counter_context *ctx = &cpuctx->ctx;
3315         struct perf_counter *counter, *tmp;
3316
3317         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3318                 __perf_counter_remove_from_context(counter);
3319 }
3320 static void perf_counter_exit_cpu(int cpu)
3321 {
3322         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3323         struct perf_counter_context *ctx = &cpuctx->ctx;
3324
3325         mutex_lock(&ctx->mutex);
3326         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3327         mutex_unlock(&ctx->mutex);
3328 }
3329 #else
3330 static inline void perf_counter_exit_cpu(int cpu) { }
3331 #endif
3332
3333 static int __cpuinit
3334 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3335 {
3336         unsigned int cpu = (long)hcpu;
3337
3338         switch (action) {
3339
3340         case CPU_UP_PREPARE:
3341         case CPU_UP_PREPARE_FROZEN:
3342                 perf_counter_init_cpu(cpu);
3343                 break;
3344
3345         case CPU_DOWN_PREPARE:
3346         case CPU_DOWN_PREPARE_FROZEN:
3347                 perf_counter_exit_cpu(cpu);
3348                 break;
3349
3350         default:
3351                 break;
3352         }
3353
3354         return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3358         .notifier_call          = perf_cpu_notify,
3359 };
3360
3361 void __init perf_counter_init(void)
3362 {
3363         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3364                         (void *)(long)smp_processor_id());
3365         register_cpu_notifier(&perf_cpu_nb);
3366 }
3367
3368 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3369 {
3370         return sprintf(buf, "%d\n", perf_reserved_percpu);
3371 }
3372
3373 static ssize_t
3374 perf_set_reserve_percpu(struct sysdev_class *class,
3375                         const char *buf,
3376                         size_t count)
3377 {
3378         struct perf_cpu_context *cpuctx;
3379         unsigned long val;
3380         int err, cpu, mpt;
3381
3382         err = strict_strtoul(buf, 10, &val);
3383         if (err)
3384                 return err;
3385         if (val > perf_max_counters)
3386                 return -EINVAL;
3387
3388         spin_lock(&perf_resource_lock);
3389         perf_reserved_percpu = val;
3390         for_each_online_cpu(cpu) {
3391                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3392                 spin_lock_irq(&cpuctx->ctx.lock);
3393                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3394                           perf_max_counters - perf_reserved_percpu);
3395                 cpuctx->max_pertask = mpt;
3396                 spin_unlock_irq(&cpuctx->ctx.lock);
3397         }
3398         spin_unlock(&perf_resource_lock);
3399
3400         return count;
3401 }
3402
3403 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3404 {
3405         return sprintf(buf, "%d\n", perf_overcommit);
3406 }
3407
3408 static ssize_t
3409 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3410 {
3411         unsigned long val;
3412         int err;
3413
3414         err = strict_strtoul(buf, 10, &val);
3415         if (err)
3416                 return err;
3417         if (val > 1)
3418                 return -EINVAL;
3419
3420         spin_lock(&perf_resource_lock);
3421         perf_overcommit = val;
3422         spin_unlock(&perf_resource_lock);
3423
3424         return count;
3425 }
3426
3427 static SYSDEV_CLASS_ATTR(
3428                                 reserve_percpu,
3429                                 0644,
3430                                 perf_show_reserve_percpu,
3431                                 perf_set_reserve_percpu
3432                         );
3433
3434 static SYSDEV_CLASS_ATTR(
3435                                 overcommit,
3436                                 0644,
3437                                 perf_show_overcommit,
3438                                 perf_set_overcommit
3439                         );
3440
3441 static struct attribute *perfclass_attrs[] = {
3442         &attr_reserve_percpu.attr,
3443         &attr_overcommit.attr,
3444         NULL
3445 };
3446
3447 static struct attribute_group perfclass_attr_group = {
3448         .attrs                  = perfclass_attrs,
3449         .name                   = "perf_counters",
3450 };
3451
3452 static int __init perf_counter_sysfs_init(void)
3453 {
3454         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3455                                   &perfclass_attr_group);
3456 }
3457 device_initcall(perf_counter_sysfs_init);