]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_counter.c
perf_counter: Fix PERF_COUNTER_CONTEXT_SWITCHES for cpu counters
[mv-sheeva.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 /*
115  * Add a counter from the lists for its context.
116  * Must be called with ctx->mutex and ctx->lock held.
117  */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121         struct perf_counter *group_leader = counter->group_leader;
122
123         /*
124          * Depending on whether it is a standalone or sibling counter,
125          * add it straight to the context's counter list, or to the group
126          * leader's sibling list:
127          */
128         if (group_leader == counter)
129                 list_add_tail(&counter->list_entry, &ctx->counter_list);
130         else {
131                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132                 group_leader->nr_siblings++;
133         }
134
135         list_add_rcu(&counter->event_entry, &ctx->event_list);
136         ctx->nr_counters++;
137 }
138
139 /*
140  * Remove a counter from the lists for its context.
141  * Must be called with ctx->mutex and ctx->lock held.
142  */
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
145 {
146         struct perf_counter *sibling, *tmp;
147
148         if (list_empty(&counter->list_entry))
149                 return;
150         ctx->nr_counters--;
151
152         list_del_init(&counter->list_entry);
153         list_del_rcu(&counter->event_entry);
154
155         if (counter->group_leader != counter)
156                 counter->group_leader->nr_siblings--;
157
158         /*
159          * If this was a group counter with sibling counters then
160          * upgrade the siblings to singleton counters by adding them
161          * to the context list directly:
162          */
163         list_for_each_entry_safe(sibling, tmp,
164                                  &counter->sibling_list, list_entry) {
165
166                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167                 sibling->group_leader = sibling;
168         }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173                   struct perf_cpu_context *cpuctx,
174                   struct perf_counter_context *ctx)
175 {
176         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177                 return;
178
179         counter->state = PERF_COUNTER_STATE_INACTIVE;
180         counter->tstamp_stopped = ctx->time;
181         counter->pmu->disable(counter);
182         counter->oncpu = -1;
183
184         if (!is_software_counter(counter))
185                 cpuctx->active_oncpu--;
186         ctx->nr_active--;
187         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188                 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193                 struct perf_cpu_context *cpuctx,
194                 struct perf_counter_context *ctx)
195 {
196         struct perf_counter *counter;
197
198         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199                 return;
200
201         counter_sched_out(group_counter, cpuctx, ctx);
202
203         /*
204          * Schedule out siblings (if any):
205          */
206         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207                 counter_sched_out(counter, cpuctx, ctx);
208
209         if (group_counter->hw_event.exclusive)
210                 cpuctx->exclusive = 0;
211 }
212
213 /*
214  * Mark this context as not being a clone of another.
215  * Called when counters are added to or removed from this context.
216  * We also increment our generation number so that anything that
217  * was cloned from this context before this will not match anything
218  * cloned from this context after this.
219  */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222         ++ctx->generation;
223         if (!ctx->parent_ctx)
224                 return;
225         put_ctx(ctx->parent_ctx);
226         ctx->parent_ctx = NULL;
227 }
228
229 /*
230  * Cross CPU call to remove a performance counter
231  *
232  * We disable the counter on the hardware level first. After that we
233  * remove it from the context list.
234  */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238         struct perf_counter *counter = info;
239         struct perf_counter_context *ctx = counter->ctx;
240         unsigned long flags;
241
242         /*
243          * If this is a task context, we need to check whether it is
244          * the current task context of this cpu. If not it has been
245          * scheduled out before the smp call arrived.
246          */
247         if (ctx->task && cpuctx->task_ctx != ctx)
248                 return;
249
250         spin_lock_irqsave(&ctx->lock, flags);
251         /*
252          * Protect the list operation against NMI by disabling the
253          * counters on a global level.
254          */
255         perf_disable();
256
257         counter_sched_out(counter, cpuctx, ctx);
258
259         list_del_counter(counter, ctx);
260
261         if (!ctx->task) {
262                 /*
263                  * Allow more per task counters with respect to the
264                  * reservation:
265                  */
266                 cpuctx->max_pertask =
267                         min(perf_max_counters - ctx->nr_counters,
268                             perf_max_counters - perf_reserved_percpu);
269         }
270
271         perf_enable();
272         spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277  * Remove the counter from a task's (or a CPU's) list of counters.
278  *
279  * Must be called with ctx->mutex held.
280  *
281  * CPU counters are removed with a smp call. For task counters we only
282  * call when the task is on a CPU.
283  */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286         struct perf_counter_context *ctx = counter->ctx;
287         struct task_struct *task = ctx->task;
288
289         unclone_ctx(ctx);
290         if (!task) {
291                 /*
292                  * Per cpu counters are removed via an smp call and
293                  * the removal is always sucessful.
294                  */
295                 smp_call_function_single(counter->cpu,
296                                          __perf_counter_remove_from_context,
297                                          counter, 1);
298                 return;
299         }
300
301 retry:
302         task_oncpu_function_call(task, __perf_counter_remove_from_context,
303                                  counter);
304
305         spin_lock_irq(&ctx->lock);
306         /*
307          * If the context is active we need to retry the smp call.
308          */
309         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310                 spin_unlock_irq(&ctx->lock);
311                 goto retry;
312         }
313
314         /*
315          * The lock prevents that this context is scheduled in so we
316          * can remove the counter safely, if the call above did not
317          * succeed.
318          */
319         if (!list_empty(&counter->list_entry)) {
320                 list_del_counter(counter, ctx);
321         }
322         spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327         return cpu_clock(smp_processor_id());
328 }
329
330 /*
331  * Update the record of the current time in a context.
332  */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335         u64 now = perf_clock();
336
337         ctx->time += now - ctx->timestamp;
338         ctx->timestamp = now;
339 }
340
341 /*
342  * Update the total_time_enabled and total_time_running fields for a counter.
343  */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346         struct perf_counter_context *ctx = counter->ctx;
347         u64 run_end;
348
349         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350                 return;
351
352         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355                 run_end = counter->tstamp_stopped;
356         else
357                 run_end = ctx->time;
358
359         counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363  * Update total_time_enabled and total_time_running for all counters in a group.
364  */
365 static void update_group_times(struct perf_counter *leader)
366 {
367         struct perf_counter *counter;
368
369         update_counter_times(leader);
370         list_for_each_entry(counter, &leader->sibling_list, list_entry)
371                 update_counter_times(counter);
372 }
373
374 /*
375  * Cross CPU call to disable a performance counter
376  */
377 static void __perf_counter_disable(void *info)
378 {
379         struct perf_counter *counter = info;
380         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381         struct perf_counter_context *ctx = counter->ctx;
382         unsigned long flags;
383
384         /*
385          * If this is a per-task counter, need to check whether this
386          * counter's task is the current task on this cpu.
387          */
388         if (ctx->task && cpuctx->task_ctx != ctx)
389                 return;
390
391         spin_lock_irqsave(&ctx->lock, flags);
392
393         /*
394          * If the counter is on, turn it off.
395          * If it is in error state, leave it in error state.
396          */
397         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398                 update_context_time(ctx);
399                 update_counter_times(counter);
400                 if (counter == counter->group_leader)
401                         group_sched_out(counter, cpuctx, ctx);
402                 else
403                         counter_sched_out(counter, cpuctx, ctx);
404                 counter->state = PERF_COUNTER_STATE_OFF;
405         }
406
407         spin_unlock_irqrestore(&ctx->lock, flags);
408 }
409
410 /*
411  * Disable a counter.
412  */
413 static void perf_counter_disable(struct perf_counter *counter)
414 {
415         struct perf_counter_context *ctx = counter->ctx;
416         struct task_struct *task = ctx->task;
417
418         if (!task) {
419                 /*
420                  * Disable the counter on the cpu that it's on
421                  */
422                 smp_call_function_single(counter->cpu, __perf_counter_disable,
423                                          counter, 1);
424                 return;
425         }
426
427  retry:
428         task_oncpu_function_call(task, __perf_counter_disable, counter);
429
430         spin_lock_irq(&ctx->lock);
431         /*
432          * If the counter is still active, we need to retry the cross-call.
433          */
434         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435                 spin_unlock_irq(&ctx->lock);
436                 goto retry;
437         }
438
439         /*
440          * Since we have the lock this context can't be scheduled
441          * in, so we can change the state safely.
442          */
443         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444                 update_counter_times(counter);
445                 counter->state = PERF_COUNTER_STATE_OFF;
446         }
447
448         spin_unlock_irq(&ctx->lock);
449 }
450
451 static int
452 counter_sched_in(struct perf_counter *counter,
453                  struct perf_cpu_context *cpuctx,
454                  struct perf_counter_context *ctx,
455                  int cpu)
456 {
457         if (counter->state <= PERF_COUNTER_STATE_OFF)
458                 return 0;
459
460         counter->state = PERF_COUNTER_STATE_ACTIVE;
461         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
462         /*
463          * The new state must be visible before we turn it on in the hardware:
464          */
465         smp_wmb();
466
467         if (counter->pmu->enable(counter)) {
468                 counter->state = PERF_COUNTER_STATE_INACTIVE;
469                 counter->oncpu = -1;
470                 return -EAGAIN;
471         }
472
473         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474
475         if (!is_software_counter(counter))
476                 cpuctx->active_oncpu++;
477         ctx->nr_active++;
478
479         if (counter->hw_event.exclusive)
480                 cpuctx->exclusive = 1;
481
482         return 0;
483 }
484
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487                struct perf_cpu_context *cpuctx,
488                struct perf_counter_context *ctx,
489                int cpu)
490 {
491         struct perf_counter *counter, *partial_group;
492         int ret;
493
494         if (group_counter->state == PERF_COUNTER_STATE_OFF)
495                 return 0;
496
497         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498         if (ret)
499                 return ret < 0 ? ret : 0;
500
501         group_counter->prev_state = group_counter->state;
502         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503                 return -EAGAIN;
504
505         /*
506          * Schedule in siblings as one group (if any):
507          */
508         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509                 counter->prev_state = counter->state;
510                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511                         partial_group = counter;
512                         goto group_error;
513                 }
514         }
515
516         return 0;
517
518 group_error:
519         /*
520          * Groups can be scheduled in as one unit only, so undo any
521          * partial group before returning:
522          */
523         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524                 if (counter == partial_group)
525                         break;
526                 counter_sched_out(counter, cpuctx, ctx);
527         }
528         counter_sched_out(group_counter, cpuctx, ctx);
529
530         return -EAGAIN;
531 }
532
533 /*
534  * Return 1 for a group consisting entirely of software counters,
535  * 0 if the group contains any hardware counters.
536  */
537 static int is_software_only_group(struct perf_counter *leader)
538 {
539         struct perf_counter *counter;
540
541         if (!is_software_counter(leader))
542                 return 0;
543
544         list_for_each_entry(counter, &leader->sibling_list, list_entry)
545                 if (!is_software_counter(counter))
546                         return 0;
547
548         return 1;
549 }
550
551 /*
552  * Work out whether we can put this counter group on the CPU now.
553  */
554 static int group_can_go_on(struct perf_counter *counter,
555                            struct perf_cpu_context *cpuctx,
556                            int can_add_hw)
557 {
558         /*
559          * Groups consisting entirely of software counters can always go on.
560          */
561         if (is_software_only_group(counter))
562                 return 1;
563         /*
564          * If an exclusive group is already on, no other hardware
565          * counters can go on.
566          */
567         if (cpuctx->exclusive)
568                 return 0;
569         /*
570          * If this group is exclusive and there are already
571          * counters on the CPU, it can't go on.
572          */
573         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574                 return 0;
575         /*
576          * Otherwise, try to add it if all previous groups were able
577          * to go on.
578          */
579         return can_add_hw;
580 }
581
582 static void add_counter_to_ctx(struct perf_counter *counter,
583                                struct perf_counter_context *ctx)
584 {
585         list_add_counter(counter, ctx);
586         counter->prev_state = PERF_COUNTER_STATE_OFF;
587         counter->tstamp_enabled = ctx->time;
588         counter->tstamp_running = ctx->time;
589         counter->tstamp_stopped = ctx->time;
590 }
591
592 /*
593  * Cross CPU call to install and enable a performance counter
594  *
595  * Must be called with ctx->mutex held
596  */
597 static void __perf_install_in_context(void *info)
598 {
599         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600         struct perf_counter *counter = info;
601         struct perf_counter_context *ctx = counter->ctx;
602         struct perf_counter *leader = counter->group_leader;
603         int cpu = smp_processor_id();
604         unsigned long flags;
605         int err;
606
607         /*
608          * If this is a task context, we need to check whether it is
609          * the current task context of this cpu. If not it has been
610          * scheduled out before the smp call arrived.
611          * Or possibly this is the right context but it isn't
612          * on this cpu because it had no counters.
613          */
614         if (ctx->task && cpuctx->task_ctx != ctx) {
615                 if (cpuctx->task_ctx || ctx->task != current)
616                         return;
617                 cpuctx->task_ctx = ctx;
618         }
619
620         spin_lock_irqsave(&ctx->lock, flags);
621         ctx->is_active = 1;
622         update_context_time(ctx);
623
624         /*
625          * Protect the list operation against NMI by disabling the
626          * counters on a global level. NOP for non NMI based counters.
627          */
628         perf_disable();
629
630         add_counter_to_ctx(counter, ctx);
631
632         /*
633          * Don't put the counter on if it is disabled or if
634          * it is in a group and the group isn't on.
635          */
636         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638                 goto unlock;
639
640         /*
641          * An exclusive counter can't go on if there are already active
642          * hardware counters, and no hardware counter can go on if there
643          * is already an exclusive counter on.
644          */
645         if (!group_can_go_on(counter, cpuctx, 1))
646                 err = -EEXIST;
647         else
648                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650         if (err) {
651                 /*
652                  * This counter couldn't go on.  If it is in a group
653                  * then we have to pull the whole group off.
654                  * If the counter group is pinned then put it in error state.
655                  */
656                 if (leader != counter)
657                         group_sched_out(leader, cpuctx, ctx);
658                 if (leader->hw_event.pinned) {
659                         update_group_times(leader);
660                         leader->state = PERF_COUNTER_STATE_ERROR;
661                 }
662         }
663
664         if (!err && !ctx->task && cpuctx->max_pertask)
665                 cpuctx->max_pertask--;
666
667  unlock:
668         perf_enable();
669
670         spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674  * Attach a performance counter to a context
675  *
676  * First we add the counter to the list with the hardware enable bit
677  * in counter->hw_config cleared.
678  *
679  * If the counter is attached to a task which is on a CPU we use a smp
680  * call to enable it in the task context. The task might have been
681  * scheduled away, but we check this in the smp call again.
682  *
683  * Must be called with ctx->mutex held.
684  */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687                         struct perf_counter *counter,
688                         int cpu)
689 {
690         struct task_struct *task = ctx->task;
691
692         if (!task) {
693                 /*
694                  * Per cpu counters are installed via an smp call and
695                  * the install is always sucessful.
696                  */
697                 smp_call_function_single(cpu, __perf_install_in_context,
698                                          counter, 1);
699                 return;
700         }
701
702 retry:
703         task_oncpu_function_call(task, __perf_install_in_context,
704                                  counter);
705
706         spin_lock_irq(&ctx->lock);
707         /*
708          * we need to retry the smp call.
709          */
710         if (ctx->is_active && list_empty(&counter->list_entry)) {
711                 spin_unlock_irq(&ctx->lock);
712                 goto retry;
713         }
714
715         /*
716          * The lock prevents that this context is scheduled in so we
717          * can add the counter safely, if it the call above did not
718          * succeed.
719          */
720         if (list_empty(&counter->list_entry))
721                 add_counter_to_ctx(counter, ctx);
722         spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726  * Cross CPU call to enable a performance counter
727  */
728 static void __perf_counter_enable(void *info)
729 {
730         struct perf_counter *counter = info;
731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732         struct perf_counter_context *ctx = counter->ctx;
733         struct perf_counter *leader = counter->group_leader;
734         unsigned long flags;
735         int err;
736
737         /*
738          * If this is a per-task counter, need to check whether this
739          * counter's task is the current task on this cpu.
740          */
741         if (ctx->task && cpuctx->task_ctx != ctx) {
742                 if (cpuctx->task_ctx || ctx->task != current)
743                         return;
744                 cpuctx->task_ctx = ctx;
745         }
746
747         spin_lock_irqsave(&ctx->lock, flags);
748         ctx->is_active = 1;
749         update_context_time(ctx);
750
751         counter->prev_state = counter->state;
752         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753                 goto unlock;
754         counter->state = PERF_COUNTER_STATE_INACTIVE;
755         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
757         /*
758          * If the counter is in a group and isn't the group leader,
759          * then don't put it on unless the group is on.
760          */
761         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762                 goto unlock;
763
764         if (!group_can_go_on(counter, cpuctx, 1)) {
765                 err = -EEXIST;
766         } else {
767                 perf_disable();
768                 if (counter == leader)
769                         err = group_sched_in(counter, cpuctx, ctx,
770                                              smp_processor_id());
771                 else
772                         err = counter_sched_in(counter, cpuctx, ctx,
773                                                smp_processor_id());
774                 perf_enable();
775         }
776
777         if (err) {
778                 /*
779                  * If this counter can't go on and it's part of a
780                  * group, then the whole group has to come off.
781                  */
782                 if (leader != counter)
783                         group_sched_out(leader, cpuctx, ctx);
784                 if (leader->hw_event.pinned) {
785                         update_group_times(leader);
786                         leader->state = PERF_COUNTER_STATE_ERROR;
787                 }
788         }
789
790  unlock:
791         spin_unlock_irqrestore(&ctx->lock, flags);
792 }
793
794 /*
795  * Enable a counter.
796  */
797 static void perf_counter_enable(struct perf_counter *counter)
798 {
799         struct perf_counter_context *ctx = counter->ctx;
800         struct task_struct *task = ctx->task;
801
802         if (!task) {
803                 /*
804                  * Enable the counter on the cpu that it's on
805                  */
806                 smp_call_function_single(counter->cpu, __perf_counter_enable,
807                                          counter, 1);
808                 return;
809         }
810
811         spin_lock_irq(&ctx->lock);
812         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813                 goto out;
814
815         /*
816          * If the counter is in error state, clear that first.
817          * That way, if we see the counter in error state below, we
818          * know that it has gone back into error state, as distinct
819          * from the task having been scheduled away before the
820          * cross-call arrived.
821          */
822         if (counter->state == PERF_COUNTER_STATE_ERROR)
823                 counter->state = PERF_COUNTER_STATE_OFF;
824
825  retry:
826         spin_unlock_irq(&ctx->lock);
827         task_oncpu_function_call(task, __perf_counter_enable, counter);
828
829         spin_lock_irq(&ctx->lock);
830
831         /*
832          * If the context is active and the counter is still off,
833          * we need to retry the cross-call.
834          */
835         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836                 goto retry;
837
838         /*
839          * Since we have the lock this context can't be scheduled
840          * in, so we can change the state safely.
841          */
842         if (counter->state == PERF_COUNTER_STATE_OFF) {
843                 counter->state = PERF_COUNTER_STATE_INACTIVE;
844                 counter->tstamp_enabled =
845                         ctx->time - counter->total_time_enabled;
846         }
847  out:
848         spin_unlock_irq(&ctx->lock);
849 }
850
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852 {
853         /*
854          * not supported on inherited counters
855          */
856         if (counter->hw_event.inherit)
857                 return -EINVAL;
858
859         atomic_add(refresh, &counter->event_limit);
860         perf_counter_enable(counter);
861
862         return 0;
863 }
864
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866                               struct perf_cpu_context *cpuctx)
867 {
868         struct perf_counter *counter;
869
870         spin_lock(&ctx->lock);
871         ctx->is_active = 0;
872         if (likely(!ctx->nr_counters))
873                 goto out;
874         update_context_time(ctx);
875
876         perf_disable();
877         if (ctx->nr_active) {
878                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879                         if (counter != counter->group_leader)
880                                 counter_sched_out(counter, cpuctx, ctx);
881                         else
882                                 group_sched_out(counter, cpuctx, ctx);
883                 }
884         }
885         perf_enable();
886  out:
887         spin_unlock(&ctx->lock);
888 }
889
890 /*
891  * Test whether two contexts are equivalent, i.e. whether they
892  * have both been cloned from the same version of the same context
893  * and they both have the same number of enabled counters.
894  * If the number of enabled counters is the same, then the set
895  * of enabled counters should be the same, because these are both
896  * inherited contexts, therefore we can't access individual counters
897  * in them directly with an fd; we can only enable/disable all
898  * counters via prctl, or enable/disable all counters in a family
899  * via ioctl, which will have the same effect on both contexts.
900  */
901 static int context_equiv(struct perf_counter_context *ctx1,
902                          struct perf_counter_context *ctx2)
903 {
904         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905                 && ctx1->parent_gen == ctx2->parent_gen;
906 }
907
908 /*
909  * Called from scheduler to remove the counters of the current task,
910  * with interrupts disabled.
911  *
912  * We stop each counter and update the counter value in counter->count.
913  *
914  * This does not protect us against NMI, but disable()
915  * sets the disabled bit in the control field of counter _before_
916  * accessing the counter control register. If a NMI hits, then it will
917  * not restart the counter.
918  */
919 void perf_counter_task_sched_out(struct task_struct *task,
920                                  struct task_struct *next, int cpu)
921 {
922         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923         struct perf_counter_context *ctx = task->perf_counter_ctxp;
924         struct perf_counter_context *next_ctx;
925         struct pt_regs *regs;
926
927         regs = task_pt_regs(task);
928         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
929
930         if (likely(!ctx || !cpuctx->task_ctx))
931                 return;
932
933         update_context_time(ctx);
934         next_ctx = next->perf_counter_ctxp;
935         if (next_ctx && context_equiv(ctx, next_ctx)) {
936                 task->perf_counter_ctxp = next_ctx;
937                 next->perf_counter_ctxp = ctx;
938                 ctx->task = next;
939                 next_ctx->task = task;
940                 return;
941         }
942
943         __perf_counter_sched_out(ctx, cpuctx);
944
945         cpuctx->task_ctx = NULL;
946 }
947
948 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
949 {
950         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
951
952         if (!cpuctx->task_ctx)
953                 return;
954         __perf_counter_sched_out(ctx, cpuctx);
955         cpuctx->task_ctx = NULL;
956 }
957
958 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
959 {
960         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
961 }
962
963 static void
964 __perf_counter_sched_in(struct perf_counter_context *ctx,
965                         struct perf_cpu_context *cpuctx, int cpu)
966 {
967         struct perf_counter *counter;
968         int can_add_hw = 1;
969
970         spin_lock(&ctx->lock);
971         ctx->is_active = 1;
972         if (likely(!ctx->nr_counters))
973                 goto out;
974
975         ctx->timestamp = perf_clock();
976
977         perf_disable();
978
979         /*
980          * First go through the list and put on any pinned groups
981          * in order to give them the best chance of going on.
982          */
983         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
984                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
985                     !counter->hw_event.pinned)
986                         continue;
987                 if (counter->cpu != -1 && counter->cpu != cpu)
988                         continue;
989
990                 if (counter != counter->group_leader)
991                         counter_sched_in(counter, cpuctx, ctx, cpu);
992                 else {
993                         if (group_can_go_on(counter, cpuctx, 1))
994                                 group_sched_in(counter, cpuctx, ctx, cpu);
995                 }
996
997                 /*
998                  * If this pinned group hasn't been scheduled,
999                  * put it in error state.
1000                  */
1001                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1002                         update_group_times(counter);
1003                         counter->state = PERF_COUNTER_STATE_ERROR;
1004                 }
1005         }
1006
1007         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1008                 /*
1009                  * Ignore counters in OFF or ERROR state, and
1010                  * ignore pinned counters since we did them already.
1011                  */
1012                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1013                     counter->hw_event.pinned)
1014                         continue;
1015
1016                 /*
1017                  * Listen to the 'cpu' scheduling filter constraint
1018                  * of counters:
1019                  */
1020                 if (counter->cpu != -1 && counter->cpu != cpu)
1021                         continue;
1022
1023                 if (counter != counter->group_leader) {
1024                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1025                                 can_add_hw = 0;
1026                 } else {
1027                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1028                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1029                                         can_add_hw = 0;
1030                         }
1031                 }
1032         }
1033         perf_enable();
1034  out:
1035         spin_unlock(&ctx->lock);
1036 }
1037
1038 /*
1039  * Called from scheduler to add the counters of the current task
1040  * with interrupts disabled.
1041  *
1042  * We restore the counter value and then enable it.
1043  *
1044  * This does not protect us against NMI, but enable()
1045  * sets the enabled bit in the control field of counter _before_
1046  * accessing the counter control register. If a NMI hits, then it will
1047  * keep the counter running.
1048  */
1049 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1050 {
1051         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1052         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1053
1054         if (likely(!ctx))
1055                 return;
1056         if (cpuctx->task_ctx == ctx)
1057                 return;
1058         __perf_counter_sched_in(ctx, cpuctx, cpu);
1059         cpuctx->task_ctx = ctx;
1060 }
1061
1062 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1063 {
1064         struct perf_counter_context *ctx = &cpuctx->ctx;
1065
1066         __perf_counter_sched_in(ctx, cpuctx, cpu);
1067 }
1068
1069 static void perf_log_period(struct perf_counter *counter, u64 period);
1070
1071 static void perf_adjust_freq(struct perf_counter_context *ctx)
1072 {
1073         struct perf_counter *counter;
1074         u64 irq_period;
1075         u64 events, period;
1076         s64 delta;
1077
1078         spin_lock(&ctx->lock);
1079         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1080                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1081                         continue;
1082
1083                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1084                         continue;
1085
1086                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1087                 period = div64_u64(events, counter->hw_event.irq_freq);
1088
1089                 delta = (s64)(1 + period - counter->hw.irq_period);
1090                 delta >>= 1;
1091
1092                 irq_period = counter->hw.irq_period + delta;
1093
1094                 if (!irq_period)
1095                         irq_period = 1;
1096
1097                 perf_log_period(counter, irq_period);
1098
1099                 counter->hw.irq_period = irq_period;
1100                 counter->hw.interrupts = 0;
1101         }
1102         spin_unlock(&ctx->lock);
1103 }
1104
1105 /*
1106  * Round-robin a context's counters:
1107  */
1108 static void rotate_ctx(struct perf_counter_context *ctx)
1109 {
1110         struct perf_counter *counter;
1111
1112         if (!ctx->nr_counters)
1113                 return;
1114
1115         spin_lock(&ctx->lock);
1116         /*
1117          * Rotate the first entry last (works just fine for group counters too):
1118          */
1119         perf_disable();
1120         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1122                 break;
1123         }
1124         perf_enable();
1125
1126         spin_unlock(&ctx->lock);
1127 }
1128
1129 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1130 {
1131         struct perf_cpu_context *cpuctx;
1132         struct perf_counter_context *ctx;
1133
1134         if (!atomic_read(&nr_counters))
1135                 return;
1136
1137         cpuctx = &per_cpu(perf_cpu_context, cpu);
1138         ctx = curr->perf_counter_ctxp;
1139
1140         perf_adjust_freq(&cpuctx->ctx);
1141         if (ctx)
1142                 perf_adjust_freq(ctx);
1143
1144         perf_counter_cpu_sched_out(cpuctx);
1145         if (ctx)
1146                 __perf_counter_task_sched_out(ctx);
1147
1148         rotate_ctx(&cpuctx->ctx);
1149         if (ctx)
1150                 rotate_ctx(ctx);
1151
1152         perf_counter_cpu_sched_in(cpuctx, cpu);
1153         if (ctx)
1154                 perf_counter_task_sched_in(curr, cpu);
1155 }
1156
1157 /*
1158  * Cross CPU call to read the hardware counter
1159  */
1160 static void __read(void *info)
1161 {
1162         struct perf_counter *counter = info;
1163         struct perf_counter_context *ctx = counter->ctx;
1164         unsigned long flags;
1165
1166         local_irq_save(flags);
1167         if (ctx->is_active)
1168                 update_context_time(ctx);
1169         counter->pmu->read(counter);
1170         update_counter_times(counter);
1171         local_irq_restore(flags);
1172 }
1173
1174 static u64 perf_counter_read(struct perf_counter *counter)
1175 {
1176         /*
1177          * If counter is enabled and currently active on a CPU, update the
1178          * value in the counter structure:
1179          */
1180         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1181                 smp_call_function_single(counter->oncpu,
1182                                          __read, counter, 1);
1183         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1184                 update_counter_times(counter);
1185         }
1186
1187         return atomic64_read(&counter->count);
1188 }
1189
1190 /*
1191  * Initialize the perf_counter context in a task_struct:
1192  */
1193 static void
1194 __perf_counter_init_context(struct perf_counter_context *ctx,
1195                             struct task_struct *task)
1196 {
1197         memset(ctx, 0, sizeof(*ctx));
1198         spin_lock_init(&ctx->lock);
1199         mutex_init(&ctx->mutex);
1200         INIT_LIST_HEAD(&ctx->counter_list);
1201         INIT_LIST_HEAD(&ctx->event_list);
1202         atomic_set(&ctx->refcount, 1);
1203         ctx->task = task;
1204 }
1205
1206 static void put_context(struct perf_counter_context *ctx)
1207 {
1208         if (ctx->task)
1209                 put_task_struct(ctx->task);
1210 }
1211
1212 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1213 {
1214         struct perf_cpu_context *cpuctx;
1215         struct perf_counter_context *ctx;
1216         struct perf_counter_context *tctx;
1217         struct task_struct *task;
1218
1219         /*
1220          * If cpu is not a wildcard then this is a percpu counter:
1221          */
1222         if (cpu != -1) {
1223                 /* Must be root to operate on a CPU counter: */
1224                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1225                         return ERR_PTR(-EACCES);
1226
1227                 if (cpu < 0 || cpu > num_possible_cpus())
1228                         return ERR_PTR(-EINVAL);
1229
1230                 /*
1231                  * We could be clever and allow to attach a counter to an
1232                  * offline CPU and activate it when the CPU comes up, but
1233                  * that's for later.
1234                  */
1235                 if (!cpu_isset(cpu, cpu_online_map))
1236                         return ERR_PTR(-ENODEV);
1237
1238                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1239                 ctx = &cpuctx->ctx;
1240
1241                 return ctx;
1242         }
1243
1244         rcu_read_lock();
1245         if (!pid)
1246                 task = current;
1247         else
1248                 task = find_task_by_vpid(pid);
1249         if (task)
1250                 get_task_struct(task);
1251         rcu_read_unlock();
1252
1253         if (!task)
1254                 return ERR_PTR(-ESRCH);
1255
1256         /* Reuse ptrace permission checks for now. */
1257         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1258                 put_task_struct(task);
1259                 return ERR_PTR(-EACCES);
1260         }
1261
1262         ctx = task->perf_counter_ctxp;
1263         if (!ctx) {
1264                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1265                 if (!ctx) {
1266                         put_task_struct(task);
1267                         return ERR_PTR(-ENOMEM);
1268                 }
1269                 __perf_counter_init_context(ctx, task);
1270                 /*
1271                  * Make sure other cpus see correct values for *ctx
1272                  * once task->perf_counter_ctxp is visible to them.
1273                  */
1274                 smp_wmb();
1275                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1276                 if (tctx) {
1277                         /*
1278                          * We raced with some other task; use
1279                          * the context they set.
1280                          */
1281                         kfree(ctx);
1282                         ctx = tctx;
1283                 }
1284         }
1285
1286         return ctx;
1287 }
1288
1289 static void free_counter_rcu(struct rcu_head *head)
1290 {
1291         struct perf_counter *counter;
1292
1293         counter = container_of(head, struct perf_counter, rcu_head);
1294         put_ctx(counter->ctx);
1295         kfree(counter);
1296 }
1297
1298 static void perf_pending_sync(struct perf_counter *counter);
1299
1300 static void free_counter(struct perf_counter *counter)
1301 {
1302         perf_pending_sync(counter);
1303
1304         atomic_dec(&nr_counters);
1305         if (counter->hw_event.mmap)
1306                 atomic_dec(&nr_mmap_tracking);
1307         if (counter->hw_event.munmap)
1308                 atomic_dec(&nr_munmap_tracking);
1309         if (counter->hw_event.comm)
1310                 atomic_dec(&nr_comm_tracking);
1311
1312         if (counter->destroy)
1313                 counter->destroy(counter);
1314
1315         call_rcu(&counter->rcu_head, free_counter_rcu);
1316 }
1317
1318 /*
1319  * Called when the last reference to the file is gone.
1320  */
1321 static int perf_release(struct inode *inode, struct file *file)
1322 {
1323         struct perf_counter *counter = file->private_data;
1324         struct perf_counter_context *ctx = counter->ctx;
1325
1326         file->private_data = NULL;
1327
1328         mutex_lock(&ctx->mutex);
1329         perf_counter_remove_from_context(counter);
1330         mutex_unlock(&ctx->mutex);
1331
1332         mutex_lock(&counter->owner->perf_counter_mutex);
1333         list_del_init(&counter->owner_entry);
1334         mutex_unlock(&counter->owner->perf_counter_mutex);
1335         put_task_struct(counter->owner);
1336
1337         free_counter(counter);
1338         put_context(ctx);
1339
1340         return 0;
1341 }
1342
1343 /*
1344  * Read the performance counter - simple non blocking version for now
1345  */
1346 static ssize_t
1347 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1348 {
1349         u64 values[3];
1350         int n;
1351
1352         /*
1353          * Return end-of-file for a read on a counter that is in
1354          * error state (i.e. because it was pinned but it couldn't be
1355          * scheduled on to the CPU at some point).
1356          */
1357         if (counter->state == PERF_COUNTER_STATE_ERROR)
1358                 return 0;
1359
1360         mutex_lock(&counter->child_mutex);
1361         values[0] = perf_counter_read(counter);
1362         n = 1;
1363         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1364                 values[n++] = counter->total_time_enabled +
1365                         atomic64_read(&counter->child_total_time_enabled);
1366         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1367                 values[n++] = counter->total_time_running +
1368                         atomic64_read(&counter->child_total_time_running);
1369         mutex_unlock(&counter->child_mutex);
1370
1371         if (count < n * sizeof(u64))
1372                 return -EINVAL;
1373         count = n * sizeof(u64);
1374
1375         if (copy_to_user(buf, values, count))
1376                 return -EFAULT;
1377
1378         return count;
1379 }
1380
1381 static ssize_t
1382 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1383 {
1384         struct perf_counter *counter = file->private_data;
1385
1386         return perf_read_hw(counter, buf, count);
1387 }
1388
1389 static unsigned int perf_poll(struct file *file, poll_table *wait)
1390 {
1391         struct perf_counter *counter = file->private_data;
1392         struct perf_mmap_data *data;
1393         unsigned int events = POLL_HUP;
1394
1395         rcu_read_lock();
1396         data = rcu_dereference(counter->data);
1397         if (data)
1398                 events = atomic_xchg(&data->poll, 0);
1399         rcu_read_unlock();
1400
1401         poll_wait(file, &counter->waitq, wait);
1402
1403         return events;
1404 }
1405
1406 static void perf_counter_reset(struct perf_counter *counter)
1407 {
1408         (void)perf_counter_read(counter);
1409         atomic64_set(&counter->count, 0);
1410         perf_counter_update_userpage(counter);
1411 }
1412
1413 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1414                                           void (*func)(struct perf_counter *))
1415 {
1416         struct perf_counter_context *ctx = counter->ctx;
1417         struct perf_counter *sibling;
1418
1419         mutex_lock(&ctx->mutex);
1420         counter = counter->group_leader;
1421
1422         func(counter);
1423         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1424                 func(sibling);
1425         mutex_unlock(&ctx->mutex);
1426 }
1427
1428 static void perf_counter_for_each_child(struct perf_counter *counter,
1429                                         void (*func)(struct perf_counter *))
1430 {
1431         struct perf_counter *child;
1432
1433         mutex_lock(&counter->child_mutex);
1434         func(counter);
1435         list_for_each_entry(child, &counter->child_list, child_list)
1436                 func(child);
1437         mutex_unlock(&counter->child_mutex);
1438 }
1439
1440 static void perf_counter_for_each(struct perf_counter *counter,
1441                                   void (*func)(struct perf_counter *))
1442 {
1443         struct perf_counter *child;
1444
1445         mutex_lock(&counter->child_mutex);
1446         perf_counter_for_each_sibling(counter, func);
1447         list_for_each_entry(child, &counter->child_list, child_list)
1448                 perf_counter_for_each_sibling(child, func);
1449         mutex_unlock(&counter->child_mutex);
1450 }
1451
1452 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1453 {
1454         struct perf_counter *counter = file->private_data;
1455         void (*func)(struct perf_counter *);
1456         u32 flags = arg;
1457
1458         switch (cmd) {
1459         case PERF_COUNTER_IOC_ENABLE:
1460                 func = perf_counter_enable;
1461                 break;
1462         case PERF_COUNTER_IOC_DISABLE:
1463                 func = perf_counter_disable;
1464                 break;
1465         case PERF_COUNTER_IOC_RESET:
1466                 func = perf_counter_reset;
1467                 break;
1468
1469         case PERF_COUNTER_IOC_REFRESH:
1470                 return perf_counter_refresh(counter, arg);
1471         default:
1472                 return -ENOTTY;
1473         }
1474
1475         if (flags & PERF_IOC_FLAG_GROUP)
1476                 perf_counter_for_each(counter, func);
1477         else
1478                 perf_counter_for_each_child(counter, func);
1479
1480         return 0;
1481 }
1482
1483 int perf_counter_task_enable(void)
1484 {
1485         struct perf_counter *counter;
1486
1487         mutex_lock(&current->perf_counter_mutex);
1488         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1489                 perf_counter_for_each_child(counter, perf_counter_enable);
1490         mutex_unlock(&current->perf_counter_mutex);
1491
1492         return 0;
1493 }
1494
1495 int perf_counter_task_disable(void)
1496 {
1497         struct perf_counter *counter;
1498
1499         mutex_lock(&current->perf_counter_mutex);
1500         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1501                 perf_counter_for_each_child(counter, perf_counter_disable);
1502         mutex_unlock(&current->perf_counter_mutex);
1503
1504         return 0;
1505 }
1506
1507 /*
1508  * Callers need to ensure there can be no nesting of this function, otherwise
1509  * the seqlock logic goes bad. We can not serialize this because the arch
1510  * code calls this from NMI context.
1511  */
1512 void perf_counter_update_userpage(struct perf_counter *counter)
1513 {
1514         struct perf_mmap_data *data;
1515         struct perf_counter_mmap_page *userpg;
1516
1517         rcu_read_lock();
1518         data = rcu_dereference(counter->data);
1519         if (!data)
1520                 goto unlock;
1521
1522         userpg = data->user_page;
1523
1524         /*
1525          * Disable preemption so as to not let the corresponding user-space
1526          * spin too long if we get preempted.
1527          */
1528         preempt_disable();
1529         ++userpg->lock;
1530         barrier();
1531         userpg->index = counter->hw.idx;
1532         userpg->offset = atomic64_read(&counter->count);
1533         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1534                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1535
1536         barrier();
1537         ++userpg->lock;
1538         preempt_enable();
1539 unlock:
1540         rcu_read_unlock();
1541 }
1542
1543 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1544 {
1545         struct perf_counter *counter = vma->vm_file->private_data;
1546         struct perf_mmap_data *data;
1547         int ret = VM_FAULT_SIGBUS;
1548
1549         rcu_read_lock();
1550         data = rcu_dereference(counter->data);
1551         if (!data)
1552                 goto unlock;
1553
1554         if (vmf->pgoff == 0) {
1555                 vmf->page = virt_to_page(data->user_page);
1556         } else {
1557                 int nr = vmf->pgoff - 1;
1558
1559                 if ((unsigned)nr > data->nr_pages)
1560                         goto unlock;
1561
1562                 vmf->page = virt_to_page(data->data_pages[nr]);
1563         }
1564         get_page(vmf->page);
1565         ret = 0;
1566 unlock:
1567         rcu_read_unlock();
1568
1569         return ret;
1570 }
1571
1572 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1573 {
1574         struct perf_mmap_data *data;
1575         unsigned long size;
1576         int i;
1577
1578         WARN_ON(atomic_read(&counter->mmap_count));
1579
1580         size = sizeof(struct perf_mmap_data);
1581         size += nr_pages * sizeof(void *);
1582
1583         data = kzalloc(size, GFP_KERNEL);
1584         if (!data)
1585                 goto fail;
1586
1587         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1588         if (!data->user_page)
1589                 goto fail_user_page;
1590
1591         for (i = 0; i < nr_pages; i++) {
1592                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1593                 if (!data->data_pages[i])
1594                         goto fail_data_pages;
1595         }
1596
1597         data->nr_pages = nr_pages;
1598         atomic_set(&data->lock, -1);
1599
1600         rcu_assign_pointer(counter->data, data);
1601
1602         return 0;
1603
1604 fail_data_pages:
1605         for (i--; i >= 0; i--)
1606                 free_page((unsigned long)data->data_pages[i]);
1607
1608         free_page((unsigned long)data->user_page);
1609
1610 fail_user_page:
1611         kfree(data);
1612
1613 fail:
1614         return -ENOMEM;
1615 }
1616
1617 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1618 {
1619         struct perf_mmap_data *data = container_of(rcu_head,
1620                         struct perf_mmap_data, rcu_head);
1621         int i;
1622
1623         free_page((unsigned long)data->user_page);
1624         for (i = 0; i < data->nr_pages; i++)
1625                 free_page((unsigned long)data->data_pages[i]);
1626         kfree(data);
1627 }
1628
1629 static void perf_mmap_data_free(struct perf_counter *counter)
1630 {
1631         struct perf_mmap_data *data = counter->data;
1632
1633         WARN_ON(atomic_read(&counter->mmap_count));
1634
1635         rcu_assign_pointer(counter->data, NULL);
1636         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1637 }
1638
1639 static void perf_mmap_open(struct vm_area_struct *vma)
1640 {
1641         struct perf_counter *counter = vma->vm_file->private_data;
1642
1643         atomic_inc(&counter->mmap_count);
1644 }
1645
1646 static void perf_mmap_close(struct vm_area_struct *vma)
1647 {
1648         struct perf_counter *counter = vma->vm_file->private_data;
1649
1650         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1651                                       &counter->mmap_mutex)) {
1652                 struct user_struct *user = current_user();
1653
1654                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1655                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1656                 perf_mmap_data_free(counter);
1657                 mutex_unlock(&counter->mmap_mutex);
1658         }
1659 }
1660
1661 static struct vm_operations_struct perf_mmap_vmops = {
1662         .open  = perf_mmap_open,
1663         .close = perf_mmap_close,
1664         .fault = perf_mmap_fault,
1665 };
1666
1667 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1668 {
1669         struct perf_counter *counter = file->private_data;
1670         struct user_struct *user = current_user();
1671         unsigned long vma_size;
1672         unsigned long nr_pages;
1673         unsigned long user_locked, user_lock_limit;
1674         unsigned long locked, lock_limit;
1675         long user_extra, extra;
1676         int ret = 0;
1677
1678         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1679                 return -EINVAL;
1680
1681         vma_size = vma->vm_end - vma->vm_start;
1682         nr_pages = (vma_size / PAGE_SIZE) - 1;
1683
1684         /*
1685          * If we have data pages ensure they're a power-of-two number, so we
1686          * can do bitmasks instead of modulo.
1687          */
1688         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1689                 return -EINVAL;
1690
1691         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1692                 return -EINVAL;
1693
1694         if (vma->vm_pgoff != 0)
1695                 return -EINVAL;
1696
1697         mutex_lock(&counter->mmap_mutex);
1698         if (atomic_inc_not_zero(&counter->mmap_count)) {
1699                 if (nr_pages != counter->data->nr_pages)
1700                         ret = -EINVAL;
1701                 goto unlock;
1702         }
1703
1704         user_extra = nr_pages + 1;
1705         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1706
1707         /*
1708          * Increase the limit linearly with more CPUs:
1709          */
1710         user_lock_limit *= num_online_cpus();
1711
1712         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1713
1714         extra = 0;
1715         if (user_locked > user_lock_limit)
1716                 extra = user_locked - user_lock_limit;
1717
1718         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1719         lock_limit >>= PAGE_SHIFT;
1720         locked = vma->vm_mm->locked_vm + extra;
1721
1722         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1723                 ret = -EPERM;
1724                 goto unlock;
1725         }
1726
1727         WARN_ON(counter->data);
1728         ret = perf_mmap_data_alloc(counter, nr_pages);
1729         if (ret)
1730                 goto unlock;
1731
1732         atomic_set(&counter->mmap_count, 1);
1733         atomic_long_add(user_extra, &user->locked_vm);
1734         vma->vm_mm->locked_vm += extra;
1735         counter->data->nr_locked = extra;
1736 unlock:
1737         mutex_unlock(&counter->mmap_mutex);
1738
1739         vma->vm_flags &= ~VM_MAYWRITE;
1740         vma->vm_flags |= VM_RESERVED;
1741         vma->vm_ops = &perf_mmap_vmops;
1742
1743         return ret;
1744 }
1745
1746 static int perf_fasync(int fd, struct file *filp, int on)
1747 {
1748         struct perf_counter *counter = filp->private_data;
1749         struct inode *inode = filp->f_path.dentry->d_inode;
1750         int retval;
1751
1752         mutex_lock(&inode->i_mutex);
1753         retval = fasync_helper(fd, filp, on, &counter->fasync);
1754         mutex_unlock(&inode->i_mutex);
1755
1756         if (retval < 0)
1757                 return retval;
1758
1759         return 0;
1760 }
1761
1762 static const struct file_operations perf_fops = {
1763         .release                = perf_release,
1764         .read                   = perf_read,
1765         .poll                   = perf_poll,
1766         .unlocked_ioctl         = perf_ioctl,
1767         .compat_ioctl           = perf_ioctl,
1768         .mmap                   = perf_mmap,
1769         .fasync                 = perf_fasync,
1770 };
1771
1772 /*
1773  * Perf counter wakeup
1774  *
1775  * If there's data, ensure we set the poll() state and publish everything
1776  * to user-space before waking everybody up.
1777  */
1778
1779 void perf_counter_wakeup(struct perf_counter *counter)
1780 {
1781         wake_up_all(&counter->waitq);
1782
1783         if (counter->pending_kill) {
1784                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1785                 counter->pending_kill = 0;
1786         }
1787 }
1788
1789 /*
1790  * Pending wakeups
1791  *
1792  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1793  *
1794  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1795  * single linked list and use cmpxchg() to add entries lockless.
1796  */
1797
1798 static void perf_pending_counter(struct perf_pending_entry *entry)
1799 {
1800         struct perf_counter *counter = container_of(entry,
1801                         struct perf_counter, pending);
1802
1803         if (counter->pending_disable) {
1804                 counter->pending_disable = 0;
1805                 perf_counter_disable(counter);
1806         }
1807
1808         if (counter->pending_wakeup) {
1809                 counter->pending_wakeup = 0;
1810                 perf_counter_wakeup(counter);
1811         }
1812 }
1813
1814 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1815
1816 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1817         PENDING_TAIL,
1818 };
1819
1820 static void perf_pending_queue(struct perf_pending_entry *entry,
1821                                void (*func)(struct perf_pending_entry *))
1822 {
1823         struct perf_pending_entry **head;
1824
1825         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1826                 return;
1827
1828         entry->func = func;
1829
1830         head = &get_cpu_var(perf_pending_head);
1831
1832         do {
1833                 entry->next = *head;
1834         } while (cmpxchg(head, entry->next, entry) != entry->next);
1835
1836         set_perf_counter_pending();
1837
1838         put_cpu_var(perf_pending_head);
1839 }
1840
1841 static int __perf_pending_run(void)
1842 {
1843         struct perf_pending_entry *list;
1844         int nr = 0;
1845
1846         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1847         while (list != PENDING_TAIL) {
1848                 void (*func)(struct perf_pending_entry *);
1849                 struct perf_pending_entry *entry = list;
1850
1851                 list = list->next;
1852
1853                 func = entry->func;
1854                 entry->next = NULL;
1855                 /*
1856                  * Ensure we observe the unqueue before we issue the wakeup,
1857                  * so that we won't be waiting forever.
1858                  * -- see perf_not_pending().
1859                  */
1860                 smp_wmb();
1861
1862                 func(entry);
1863                 nr++;
1864         }
1865
1866         return nr;
1867 }
1868
1869 static inline int perf_not_pending(struct perf_counter *counter)
1870 {
1871         /*
1872          * If we flush on whatever cpu we run, there is a chance we don't
1873          * need to wait.
1874          */
1875         get_cpu();
1876         __perf_pending_run();
1877         put_cpu();
1878
1879         /*
1880          * Ensure we see the proper queue state before going to sleep
1881          * so that we do not miss the wakeup. -- see perf_pending_handle()
1882          */
1883         smp_rmb();
1884         return counter->pending.next == NULL;
1885 }
1886
1887 static void perf_pending_sync(struct perf_counter *counter)
1888 {
1889         wait_event(counter->waitq, perf_not_pending(counter));
1890 }
1891
1892 void perf_counter_do_pending(void)
1893 {
1894         __perf_pending_run();
1895 }
1896
1897 /*
1898  * Callchain support -- arch specific
1899  */
1900
1901 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1902 {
1903         return NULL;
1904 }
1905
1906 /*
1907  * Output
1908  */
1909
1910 struct perf_output_handle {
1911         struct perf_counter     *counter;
1912         struct perf_mmap_data   *data;
1913         unsigned int            offset;
1914         unsigned int            head;
1915         int                     nmi;
1916         int                     overflow;
1917         int                     locked;
1918         unsigned long           flags;
1919 };
1920
1921 static void perf_output_wakeup(struct perf_output_handle *handle)
1922 {
1923         atomic_set(&handle->data->poll, POLL_IN);
1924
1925         if (handle->nmi) {
1926                 handle->counter->pending_wakeup = 1;
1927                 perf_pending_queue(&handle->counter->pending,
1928                                    perf_pending_counter);
1929         } else
1930                 perf_counter_wakeup(handle->counter);
1931 }
1932
1933 /*
1934  * Curious locking construct.
1935  *
1936  * We need to ensure a later event doesn't publish a head when a former
1937  * event isn't done writing. However since we need to deal with NMIs we
1938  * cannot fully serialize things.
1939  *
1940  * What we do is serialize between CPUs so we only have to deal with NMI
1941  * nesting on a single CPU.
1942  *
1943  * We only publish the head (and generate a wakeup) when the outer-most
1944  * event completes.
1945  */
1946 static void perf_output_lock(struct perf_output_handle *handle)
1947 {
1948         struct perf_mmap_data *data = handle->data;
1949         int cpu;
1950
1951         handle->locked = 0;
1952
1953         local_irq_save(handle->flags);
1954         cpu = smp_processor_id();
1955
1956         if (in_nmi() && atomic_read(&data->lock) == cpu)
1957                 return;
1958
1959         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1960                 cpu_relax();
1961
1962         handle->locked = 1;
1963 }
1964
1965 static void perf_output_unlock(struct perf_output_handle *handle)
1966 {
1967         struct perf_mmap_data *data = handle->data;
1968         int head, cpu;
1969
1970         data->done_head = data->head;
1971
1972         if (!handle->locked)
1973                 goto out;
1974
1975 again:
1976         /*
1977          * The xchg implies a full barrier that ensures all writes are done
1978          * before we publish the new head, matched by a rmb() in userspace when
1979          * reading this position.
1980          */
1981         while ((head = atomic_xchg(&data->done_head, 0)))
1982                 data->user_page->data_head = head;
1983
1984         /*
1985          * NMI can happen here, which means we can miss a done_head update.
1986          */
1987
1988         cpu = atomic_xchg(&data->lock, -1);
1989         WARN_ON_ONCE(cpu != smp_processor_id());
1990
1991         /*
1992          * Therefore we have to validate we did not indeed do so.
1993          */
1994         if (unlikely(atomic_read(&data->done_head))) {
1995                 /*
1996                  * Since we had it locked, we can lock it again.
1997                  */
1998                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1999                         cpu_relax();
2000
2001                 goto again;
2002         }
2003
2004         if (atomic_xchg(&data->wakeup, 0))
2005                 perf_output_wakeup(handle);
2006 out:
2007         local_irq_restore(handle->flags);
2008 }
2009
2010 static int perf_output_begin(struct perf_output_handle *handle,
2011                              struct perf_counter *counter, unsigned int size,
2012                              int nmi, int overflow)
2013 {
2014         struct perf_mmap_data *data;
2015         unsigned int offset, head;
2016
2017         /*
2018          * For inherited counters we send all the output towards the parent.
2019          */
2020         if (counter->parent)
2021                 counter = counter->parent;
2022
2023         rcu_read_lock();
2024         data = rcu_dereference(counter->data);
2025         if (!data)
2026                 goto out;
2027
2028         handle->data     = data;
2029         handle->counter  = counter;
2030         handle->nmi      = nmi;
2031         handle->overflow = overflow;
2032
2033         if (!data->nr_pages)
2034                 goto fail;
2035
2036         perf_output_lock(handle);
2037
2038         do {
2039                 offset = head = atomic_read(&data->head);
2040                 head += size;
2041         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2042
2043         handle->offset  = offset;
2044         handle->head    = head;
2045
2046         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2047                 atomic_set(&data->wakeup, 1);
2048
2049         return 0;
2050
2051 fail:
2052         perf_output_wakeup(handle);
2053 out:
2054         rcu_read_unlock();
2055
2056         return -ENOSPC;
2057 }
2058
2059 static void perf_output_copy(struct perf_output_handle *handle,
2060                              void *buf, unsigned int len)
2061 {
2062         unsigned int pages_mask;
2063         unsigned int offset;
2064         unsigned int size;
2065         void **pages;
2066
2067         offset          = handle->offset;
2068         pages_mask      = handle->data->nr_pages - 1;
2069         pages           = handle->data->data_pages;
2070
2071         do {
2072                 unsigned int page_offset;
2073                 int nr;
2074
2075                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2076                 page_offset = offset & (PAGE_SIZE - 1);
2077                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2078
2079                 memcpy(pages[nr] + page_offset, buf, size);
2080
2081                 len         -= size;
2082                 buf         += size;
2083                 offset      += size;
2084         } while (len);
2085
2086         handle->offset = offset;
2087
2088         /*
2089          * Check we didn't copy past our reservation window, taking the
2090          * possible unsigned int wrap into account.
2091          */
2092         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2093 }
2094
2095 #define perf_output_put(handle, x) \
2096         perf_output_copy((handle), &(x), sizeof(x))
2097
2098 static void perf_output_end(struct perf_output_handle *handle)
2099 {
2100         struct perf_counter *counter = handle->counter;
2101         struct perf_mmap_data *data = handle->data;
2102
2103         int wakeup_events = counter->hw_event.wakeup_events;
2104
2105         if (handle->overflow && wakeup_events) {
2106                 int events = atomic_inc_return(&data->events);
2107                 if (events >= wakeup_events) {
2108                         atomic_sub(wakeup_events, &data->events);
2109                         atomic_set(&data->wakeup, 1);
2110                 }
2111         }
2112
2113         perf_output_unlock(handle);
2114         rcu_read_unlock();
2115 }
2116
2117 static void perf_counter_output(struct perf_counter *counter,
2118                                 int nmi, struct pt_regs *regs, u64 addr)
2119 {
2120         int ret;
2121         u64 record_type = counter->hw_event.record_type;
2122         struct perf_output_handle handle;
2123         struct perf_event_header header;
2124         u64 ip;
2125         struct {
2126                 u32 pid, tid;
2127         } tid_entry;
2128         struct {
2129                 u64 event;
2130                 u64 counter;
2131         } group_entry;
2132         struct perf_callchain_entry *callchain = NULL;
2133         int callchain_size = 0;
2134         u64 time;
2135         struct {
2136                 u32 cpu, reserved;
2137         } cpu_entry;
2138
2139         header.type = 0;
2140         header.size = sizeof(header);
2141
2142         header.misc = PERF_EVENT_MISC_OVERFLOW;
2143         header.misc |= perf_misc_flags(regs);
2144
2145         if (record_type & PERF_RECORD_IP) {
2146                 ip = perf_instruction_pointer(regs);
2147                 header.type |= PERF_RECORD_IP;
2148                 header.size += sizeof(ip);
2149         }
2150
2151         if (record_type & PERF_RECORD_TID) {
2152                 /* namespace issues */
2153                 tid_entry.pid = current->group_leader->pid;
2154                 tid_entry.tid = current->pid;
2155
2156                 header.type |= PERF_RECORD_TID;
2157                 header.size += sizeof(tid_entry);
2158         }
2159
2160         if (record_type & PERF_RECORD_TIME) {
2161                 /*
2162                  * Maybe do better on x86 and provide cpu_clock_nmi()
2163                  */
2164                 time = sched_clock();
2165
2166                 header.type |= PERF_RECORD_TIME;
2167                 header.size += sizeof(u64);
2168         }
2169
2170         if (record_type & PERF_RECORD_ADDR) {
2171                 header.type |= PERF_RECORD_ADDR;
2172                 header.size += sizeof(u64);
2173         }
2174
2175         if (record_type & PERF_RECORD_CONFIG) {
2176                 header.type |= PERF_RECORD_CONFIG;
2177                 header.size += sizeof(u64);
2178         }
2179
2180         if (record_type & PERF_RECORD_CPU) {
2181                 header.type |= PERF_RECORD_CPU;
2182                 header.size += sizeof(cpu_entry);
2183
2184                 cpu_entry.cpu = raw_smp_processor_id();
2185         }
2186
2187         if (record_type & PERF_RECORD_GROUP) {
2188                 header.type |= PERF_RECORD_GROUP;
2189                 header.size += sizeof(u64) +
2190                         counter->nr_siblings * sizeof(group_entry);
2191         }
2192
2193         if (record_type & PERF_RECORD_CALLCHAIN) {
2194                 callchain = perf_callchain(regs);
2195
2196                 if (callchain) {
2197                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2198
2199                         header.type |= PERF_RECORD_CALLCHAIN;
2200                         header.size += callchain_size;
2201                 }
2202         }
2203
2204         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2205         if (ret)
2206                 return;
2207
2208         perf_output_put(&handle, header);
2209
2210         if (record_type & PERF_RECORD_IP)
2211                 perf_output_put(&handle, ip);
2212
2213         if (record_type & PERF_RECORD_TID)
2214                 perf_output_put(&handle, tid_entry);
2215
2216         if (record_type & PERF_RECORD_TIME)
2217                 perf_output_put(&handle, time);
2218
2219         if (record_type & PERF_RECORD_ADDR)
2220                 perf_output_put(&handle, addr);
2221
2222         if (record_type & PERF_RECORD_CONFIG)
2223                 perf_output_put(&handle, counter->hw_event.config);
2224
2225         if (record_type & PERF_RECORD_CPU)
2226                 perf_output_put(&handle, cpu_entry);
2227
2228         /*
2229          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2230          */
2231         if (record_type & PERF_RECORD_GROUP) {
2232                 struct perf_counter *leader, *sub;
2233                 u64 nr = counter->nr_siblings;
2234
2235                 perf_output_put(&handle, nr);
2236
2237                 leader = counter->group_leader;
2238                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2239                         if (sub != counter)
2240                                 sub->pmu->read(sub);
2241
2242                         group_entry.event = sub->hw_event.config;
2243                         group_entry.counter = atomic64_read(&sub->count);
2244
2245                         perf_output_put(&handle, group_entry);
2246                 }
2247         }
2248
2249         if (callchain)
2250                 perf_output_copy(&handle, callchain, callchain_size);
2251
2252         perf_output_end(&handle);
2253 }
2254
2255 /*
2256  * comm tracking
2257  */
2258
2259 struct perf_comm_event {
2260         struct task_struct      *task;
2261         char                    *comm;
2262         int                     comm_size;
2263
2264         struct {
2265                 struct perf_event_header        header;
2266
2267                 u32                             pid;
2268                 u32                             tid;
2269         } event;
2270 };
2271
2272 static void perf_counter_comm_output(struct perf_counter *counter,
2273                                      struct perf_comm_event *comm_event)
2274 {
2275         struct perf_output_handle handle;
2276         int size = comm_event->event.header.size;
2277         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2278
2279         if (ret)
2280                 return;
2281
2282         perf_output_put(&handle, comm_event->event);
2283         perf_output_copy(&handle, comm_event->comm,
2284                                    comm_event->comm_size);
2285         perf_output_end(&handle);
2286 }
2287
2288 static int perf_counter_comm_match(struct perf_counter *counter,
2289                                    struct perf_comm_event *comm_event)
2290 {
2291         if (counter->hw_event.comm &&
2292             comm_event->event.header.type == PERF_EVENT_COMM)
2293                 return 1;
2294
2295         return 0;
2296 }
2297
2298 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2299                                   struct perf_comm_event *comm_event)
2300 {
2301         struct perf_counter *counter;
2302
2303         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2304                 return;
2305
2306         rcu_read_lock();
2307         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2308                 if (perf_counter_comm_match(counter, comm_event))
2309                         perf_counter_comm_output(counter, comm_event);
2310         }
2311         rcu_read_unlock();
2312 }
2313
2314 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2315 {
2316         struct perf_cpu_context *cpuctx;
2317         unsigned int size;
2318         char *comm = comm_event->task->comm;
2319
2320         size = ALIGN(strlen(comm)+1, sizeof(u64));
2321
2322         comm_event->comm = comm;
2323         comm_event->comm_size = size;
2324
2325         comm_event->event.header.size = sizeof(comm_event->event) + size;
2326
2327         cpuctx = &get_cpu_var(perf_cpu_context);
2328         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2329         put_cpu_var(perf_cpu_context);
2330
2331         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2332 }
2333
2334 void perf_counter_comm(struct task_struct *task)
2335 {
2336         struct perf_comm_event comm_event;
2337
2338         if (!atomic_read(&nr_comm_tracking))
2339                 return;
2340         if (!current->perf_counter_ctxp)
2341                 return;
2342
2343         comm_event = (struct perf_comm_event){
2344                 .task   = task,
2345                 .event  = {
2346                         .header = { .type = PERF_EVENT_COMM, },
2347                         .pid    = task->group_leader->pid,
2348                         .tid    = task->pid,
2349                 },
2350         };
2351
2352         perf_counter_comm_event(&comm_event);
2353 }
2354
2355 /*
2356  * mmap tracking
2357  */
2358
2359 struct perf_mmap_event {
2360         struct file     *file;
2361         char            *file_name;
2362         int             file_size;
2363
2364         struct {
2365                 struct perf_event_header        header;
2366
2367                 u32                             pid;
2368                 u32                             tid;
2369                 u64                             start;
2370                 u64                             len;
2371                 u64                             pgoff;
2372         } event;
2373 };
2374
2375 static void perf_counter_mmap_output(struct perf_counter *counter,
2376                                      struct perf_mmap_event *mmap_event)
2377 {
2378         struct perf_output_handle handle;
2379         int size = mmap_event->event.header.size;
2380         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2381
2382         if (ret)
2383                 return;
2384
2385         perf_output_put(&handle, mmap_event->event);
2386         perf_output_copy(&handle, mmap_event->file_name,
2387                                    mmap_event->file_size);
2388         perf_output_end(&handle);
2389 }
2390
2391 static int perf_counter_mmap_match(struct perf_counter *counter,
2392                                    struct perf_mmap_event *mmap_event)
2393 {
2394         if (counter->hw_event.mmap &&
2395             mmap_event->event.header.type == PERF_EVENT_MMAP)
2396                 return 1;
2397
2398         if (counter->hw_event.munmap &&
2399             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2400                 return 1;
2401
2402         return 0;
2403 }
2404
2405 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2406                                   struct perf_mmap_event *mmap_event)
2407 {
2408         struct perf_counter *counter;
2409
2410         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2411                 return;
2412
2413         rcu_read_lock();
2414         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2415                 if (perf_counter_mmap_match(counter, mmap_event))
2416                         perf_counter_mmap_output(counter, mmap_event);
2417         }
2418         rcu_read_unlock();
2419 }
2420
2421 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2422 {
2423         struct perf_cpu_context *cpuctx;
2424         struct file *file = mmap_event->file;
2425         unsigned int size;
2426         char tmp[16];
2427         char *buf = NULL;
2428         char *name;
2429
2430         if (file) {
2431                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2432                 if (!buf) {
2433                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2434                         goto got_name;
2435                 }
2436                 name = d_path(&file->f_path, buf, PATH_MAX);
2437                 if (IS_ERR(name)) {
2438                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2439                         goto got_name;
2440                 }
2441         } else {
2442                 name = strncpy(tmp, "//anon", sizeof(tmp));
2443                 goto got_name;
2444         }
2445
2446 got_name:
2447         size = ALIGN(strlen(name)+1, sizeof(u64));
2448
2449         mmap_event->file_name = name;
2450         mmap_event->file_size = size;
2451
2452         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2453
2454         cpuctx = &get_cpu_var(perf_cpu_context);
2455         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2456         put_cpu_var(perf_cpu_context);
2457
2458         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2459
2460         kfree(buf);
2461 }
2462
2463 void perf_counter_mmap(unsigned long addr, unsigned long len,
2464                        unsigned long pgoff, struct file *file)
2465 {
2466         struct perf_mmap_event mmap_event;
2467
2468         if (!atomic_read(&nr_mmap_tracking))
2469                 return;
2470         if (!current->perf_counter_ctxp)
2471                 return;
2472
2473         mmap_event = (struct perf_mmap_event){
2474                 .file   = file,
2475                 .event  = {
2476                         .header = { .type = PERF_EVENT_MMAP, },
2477                         .pid    = current->group_leader->pid,
2478                         .tid    = current->pid,
2479                         .start  = addr,
2480                         .len    = len,
2481                         .pgoff  = pgoff,
2482                 },
2483         };
2484
2485         perf_counter_mmap_event(&mmap_event);
2486 }
2487
2488 void perf_counter_munmap(unsigned long addr, unsigned long len,
2489                          unsigned long pgoff, struct file *file)
2490 {
2491         struct perf_mmap_event mmap_event;
2492
2493         if (!atomic_read(&nr_munmap_tracking))
2494                 return;
2495
2496         mmap_event = (struct perf_mmap_event){
2497                 .file   = file,
2498                 .event  = {
2499                         .header = { .type = PERF_EVENT_MUNMAP, },
2500                         .pid    = current->group_leader->pid,
2501                         .tid    = current->pid,
2502                         .start  = addr,
2503                         .len    = len,
2504                         .pgoff  = pgoff,
2505                 },
2506         };
2507
2508         perf_counter_mmap_event(&mmap_event);
2509 }
2510
2511 /*
2512  * Log irq_period changes so that analyzing tools can re-normalize the
2513  * event flow.
2514  */
2515
2516 static void perf_log_period(struct perf_counter *counter, u64 period)
2517 {
2518         struct perf_output_handle handle;
2519         int ret;
2520
2521         struct {
2522                 struct perf_event_header        header;
2523                 u64                             time;
2524                 u64                             period;
2525         } freq_event = {
2526                 .header = {
2527                         .type = PERF_EVENT_PERIOD,
2528                         .misc = 0,
2529                         .size = sizeof(freq_event),
2530                 },
2531                 .time = sched_clock(),
2532                 .period = period,
2533         };
2534
2535         if (counter->hw.irq_period == period)
2536                 return;
2537
2538         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2539         if (ret)
2540                 return;
2541
2542         perf_output_put(&handle, freq_event);
2543         perf_output_end(&handle);
2544 }
2545
2546 /*
2547  * Generic counter overflow handling.
2548  */
2549
2550 int perf_counter_overflow(struct perf_counter *counter,
2551                           int nmi, struct pt_regs *regs, u64 addr)
2552 {
2553         int events = atomic_read(&counter->event_limit);
2554         int ret = 0;
2555
2556         counter->hw.interrupts++;
2557
2558         /*
2559          * XXX event_limit might not quite work as expected on inherited
2560          * counters
2561          */
2562
2563         counter->pending_kill = POLL_IN;
2564         if (events && atomic_dec_and_test(&counter->event_limit)) {
2565                 ret = 1;
2566                 counter->pending_kill = POLL_HUP;
2567                 if (nmi) {
2568                         counter->pending_disable = 1;
2569                         perf_pending_queue(&counter->pending,
2570                                            perf_pending_counter);
2571                 } else
2572                         perf_counter_disable(counter);
2573         }
2574
2575         perf_counter_output(counter, nmi, regs, addr);
2576         return ret;
2577 }
2578
2579 /*
2580  * Generic software counter infrastructure
2581  */
2582
2583 static void perf_swcounter_update(struct perf_counter *counter)
2584 {
2585         struct hw_perf_counter *hwc = &counter->hw;
2586         u64 prev, now;
2587         s64 delta;
2588
2589 again:
2590         prev = atomic64_read(&hwc->prev_count);
2591         now = atomic64_read(&hwc->count);
2592         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2593                 goto again;
2594
2595         delta = now - prev;
2596
2597         atomic64_add(delta, &counter->count);
2598         atomic64_sub(delta, &hwc->period_left);
2599 }
2600
2601 static void perf_swcounter_set_period(struct perf_counter *counter)
2602 {
2603         struct hw_perf_counter *hwc = &counter->hw;
2604         s64 left = atomic64_read(&hwc->period_left);
2605         s64 period = hwc->irq_period;
2606
2607         if (unlikely(left <= -period)) {
2608                 left = period;
2609                 atomic64_set(&hwc->period_left, left);
2610         }
2611
2612         if (unlikely(left <= 0)) {
2613                 left += period;
2614                 atomic64_add(period, &hwc->period_left);
2615         }
2616
2617         atomic64_set(&hwc->prev_count, -left);
2618         atomic64_set(&hwc->count, -left);
2619 }
2620
2621 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2622 {
2623         enum hrtimer_restart ret = HRTIMER_RESTART;
2624         struct perf_counter *counter;
2625         struct pt_regs *regs;
2626         u64 period;
2627
2628         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2629         counter->pmu->read(counter);
2630
2631         regs = get_irq_regs();
2632         /*
2633          * In case we exclude kernel IPs or are somehow not in interrupt
2634          * context, provide the next best thing, the user IP.
2635          */
2636         if ((counter->hw_event.exclude_kernel || !regs) &&
2637                         !counter->hw_event.exclude_user)
2638                 regs = task_pt_regs(current);
2639
2640         if (regs) {
2641                 if (perf_counter_overflow(counter, 0, regs, 0))
2642                         ret = HRTIMER_NORESTART;
2643         }
2644
2645         period = max_t(u64, 10000, counter->hw.irq_period);
2646         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2647
2648         return ret;
2649 }
2650
2651 static void perf_swcounter_overflow(struct perf_counter *counter,
2652                                     int nmi, struct pt_regs *regs, u64 addr)
2653 {
2654         perf_swcounter_update(counter);
2655         perf_swcounter_set_period(counter);
2656         if (perf_counter_overflow(counter, nmi, regs, addr))
2657                 /* soft-disable the counter */
2658                 ;
2659
2660 }
2661
2662 static int perf_swcounter_match(struct perf_counter *counter,
2663                                 enum perf_event_types type,
2664                                 u32 event, struct pt_regs *regs)
2665 {
2666         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2667                 return 0;
2668
2669         if (perf_event_raw(&counter->hw_event))
2670                 return 0;
2671
2672         if (perf_event_type(&counter->hw_event) != type)
2673                 return 0;
2674
2675         if (perf_event_id(&counter->hw_event) != event)
2676                 return 0;
2677
2678         if (counter->hw_event.exclude_user && user_mode(regs))
2679                 return 0;
2680
2681         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2682                 return 0;
2683
2684         return 1;
2685 }
2686
2687 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2688                                int nmi, struct pt_regs *regs, u64 addr)
2689 {
2690         int neg = atomic64_add_negative(nr, &counter->hw.count);
2691         if (counter->hw.irq_period && !neg)
2692                 perf_swcounter_overflow(counter, nmi, regs, addr);
2693 }
2694
2695 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2696                                      enum perf_event_types type, u32 event,
2697                                      u64 nr, int nmi, struct pt_regs *regs,
2698                                      u64 addr)
2699 {
2700         struct perf_counter *counter;
2701
2702         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2703                 return;
2704
2705         rcu_read_lock();
2706         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2707                 if (perf_swcounter_match(counter, type, event, regs))
2708                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2709         }
2710         rcu_read_unlock();
2711 }
2712
2713 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2714 {
2715         if (in_nmi())
2716                 return &cpuctx->recursion[3];
2717
2718         if (in_irq())
2719                 return &cpuctx->recursion[2];
2720
2721         if (in_softirq())
2722                 return &cpuctx->recursion[1];
2723
2724         return &cpuctx->recursion[0];
2725 }
2726
2727 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2728                                    u64 nr, int nmi, struct pt_regs *regs,
2729                                    u64 addr)
2730 {
2731         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2732         int *recursion = perf_swcounter_recursion_context(cpuctx);
2733
2734         if (*recursion)
2735                 goto out;
2736
2737         (*recursion)++;
2738         barrier();
2739
2740         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2741                                  nr, nmi, regs, addr);
2742         if (cpuctx->task_ctx) {
2743                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2744                                          nr, nmi, regs, addr);
2745         }
2746
2747         barrier();
2748         (*recursion)--;
2749
2750 out:
2751         put_cpu_var(perf_cpu_context);
2752 }
2753
2754 void
2755 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2756 {
2757         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2758 }
2759
2760 static void perf_swcounter_read(struct perf_counter *counter)
2761 {
2762         perf_swcounter_update(counter);
2763 }
2764
2765 static int perf_swcounter_enable(struct perf_counter *counter)
2766 {
2767         perf_swcounter_set_period(counter);
2768         return 0;
2769 }
2770
2771 static void perf_swcounter_disable(struct perf_counter *counter)
2772 {
2773         perf_swcounter_update(counter);
2774 }
2775
2776 static const struct pmu perf_ops_generic = {
2777         .enable         = perf_swcounter_enable,
2778         .disable        = perf_swcounter_disable,
2779         .read           = perf_swcounter_read,
2780 };
2781
2782 /*
2783  * Software counter: cpu wall time clock
2784  */
2785
2786 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2787 {
2788         int cpu = raw_smp_processor_id();
2789         s64 prev;
2790         u64 now;
2791
2792         now = cpu_clock(cpu);
2793         prev = atomic64_read(&counter->hw.prev_count);
2794         atomic64_set(&counter->hw.prev_count, now);
2795         atomic64_add(now - prev, &counter->count);
2796 }
2797
2798 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2799 {
2800         struct hw_perf_counter *hwc = &counter->hw;
2801         int cpu = raw_smp_processor_id();
2802
2803         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2804         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2805         hwc->hrtimer.function = perf_swcounter_hrtimer;
2806         if (hwc->irq_period) {
2807                 u64 period = max_t(u64, 10000, hwc->irq_period);
2808                 __hrtimer_start_range_ns(&hwc->hrtimer,
2809                                 ns_to_ktime(period), 0,
2810                                 HRTIMER_MODE_REL, 0);
2811         }
2812
2813         return 0;
2814 }
2815
2816 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2817 {
2818         if (counter->hw.irq_period)
2819                 hrtimer_cancel(&counter->hw.hrtimer);
2820         cpu_clock_perf_counter_update(counter);
2821 }
2822
2823 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2824 {
2825         cpu_clock_perf_counter_update(counter);
2826 }
2827
2828 static const struct pmu perf_ops_cpu_clock = {
2829         .enable         = cpu_clock_perf_counter_enable,
2830         .disable        = cpu_clock_perf_counter_disable,
2831         .read           = cpu_clock_perf_counter_read,
2832 };
2833
2834 /*
2835  * Software counter: task time clock
2836  */
2837
2838 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2839 {
2840         u64 prev;
2841         s64 delta;
2842
2843         prev = atomic64_xchg(&counter->hw.prev_count, now);
2844         delta = now - prev;
2845         atomic64_add(delta, &counter->count);
2846 }
2847
2848 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2849 {
2850         struct hw_perf_counter *hwc = &counter->hw;
2851         u64 now;
2852
2853         now = counter->ctx->time;
2854
2855         atomic64_set(&hwc->prev_count, now);
2856         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2857         hwc->hrtimer.function = perf_swcounter_hrtimer;
2858         if (hwc->irq_period) {
2859                 u64 period = max_t(u64, 10000, hwc->irq_period);
2860                 __hrtimer_start_range_ns(&hwc->hrtimer,
2861                                 ns_to_ktime(period), 0,
2862                                 HRTIMER_MODE_REL, 0);
2863         }
2864
2865         return 0;
2866 }
2867
2868 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2869 {
2870         if (counter->hw.irq_period)
2871                 hrtimer_cancel(&counter->hw.hrtimer);
2872         task_clock_perf_counter_update(counter, counter->ctx->time);
2873
2874 }
2875
2876 static void task_clock_perf_counter_read(struct perf_counter *counter)
2877 {
2878         u64 time;
2879
2880         if (!in_nmi()) {
2881                 update_context_time(counter->ctx);
2882                 time = counter->ctx->time;
2883         } else {
2884                 u64 now = perf_clock();
2885                 u64 delta = now - counter->ctx->timestamp;
2886                 time = counter->ctx->time + delta;
2887         }
2888
2889         task_clock_perf_counter_update(counter, time);
2890 }
2891
2892 static const struct pmu perf_ops_task_clock = {
2893         .enable         = task_clock_perf_counter_enable,
2894         .disable        = task_clock_perf_counter_disable,
2895         .read           = task_clock_perf_counter_read,
2896 };
2897
2898 /*
2899  * Software counter: cpu migrations
2900  */
2901
2902 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2903 {
2904         struct task_struct *curr = counter->ctx->task;
2905
2906         if (curr)
2907                 return curr->se.nr_migrations;
2908         return cpu_nr_migrations(smp_processor_id());
2909 }
2910
2911 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2912 {
2913         u64 prev, now;
2914         s64 delta;
2915
2916         prev = atomic64_read(&counter->hw.prev_count);
2917         now = get_cpu_migrations(counter);
2918
2919         atomic64_set(&counter->hw.prev_count, now);
2920
2921         delta = now - prev;
2922
2923         atomic64_add(delta, &counter->count);
2924 }
2925
2926 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2927 {
2928         cpu_migrations_perf_counter_update(counter);
2929 }
2930
2931 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2932 {
2933         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2934                 atomic64_set(&counter->hw.prev_count,
2935                              get_cpu_migrations(counter));
2936         return 0;
2937 }
2938
2939 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2940 {
2941         cpu_migrations_perf_counter_update(counter);
2942 }
2943
2944 static const struct pmu perf_ops_cpu_migrations = {
2945         .enable         = cpu_migrations_perf_counter_enable,
2946         .disable        = cpu_migrations_perf_counter_disable,
2947         .read           = cpu_migrations_perf_counter_read,
2948 };
2949
2950 #ifdef CONFIG_EVENT_PROFILE
2951 void perf_tpcounter_event(int event_id)
2952 {
2953         struct pt_regs *regs = get_irq_regs();
2954
2955         if (!regs)
2956                 regs = task_pt_regs(current);
2957
2958         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2959 }
2960 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2961
2962 extern int ftrace_profile_enable(int);
2963 extern void ftrace_profile_disable(int);
2964
2965 static void tp_perf_counter_destroy(struct perf_counter *counter)
2966 {
2967         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2968 }
2969
2970 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2971 {
2972         int event_id = perf_event_id(&counter->hw_event);
2973         int ret;
2974
2975         ret = ftrace_profile_enable(event_id);
2976         if (ret)
2977                 return NULL;
2978
2979         counter->destroy = tp_perf_counter_destroy;
2980         counter->hw.irq_period = counter->hw_event.irq_period;
2981
2982         return &perf_ops_generic;
2983 }
2984 #else
2985 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2986 {
2987         return NULL;
2988 }
2989 #endif
2990
2991 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2992 {
2993         const struct pmu *pmu = NULL;
2994
2995         /*
2996          * Software counters (currently) can't in general distinguish
2997          * between user, kernel and hypervisor events.
2998          * However, context switches and cpu migrations are considered
2999          * to be kernel events, and page faults are never hypervisor
3000          * events.
3001          */
3002         switch (perf_event_id(&counter->hw_event)) {
3003         case PERF_COUNT_CPU_CLOCK:
3004                 pmu = &perf_ops_cpu_clock;
3005
3006                 break;
3007         case PERF_COUNT_TASK_CLOCK:
3008                 /*
3009                  * If the user instantiates this as a per-cpu counter,
3010                  * use the cpu_clock counter instead.
3011                  */
3012                 if (counter->ctx->task)
3013                         pmu = &perf_ops_task_clock;
3014                 else
3015                         pmu = &perf_ops_cpu_clock;
3016
3017                 break;
3018         case PERF_COUNT_PAGE_FAULTS:
3019         case PERF_COUNT_PAGE_FAULTS_MIN:
3020         case PERF_COUNT_PAGE_FAULTS_MAJ:
3021         case PERF_COUNT_CONTEXT_SWITCHES:
3022                 pmu = &perf_ops_generic;
3023                 break;
3024         case PERF_COUNT_CPU_MIGRATIONS:
3025                 if (!counter->hw_event.exclude_kernel)
3026                         pmu = &perf_ops_cpu_migrations;
3027                 break;
3028         }
3029
3030         return pmu;
3031 }
3032
3033 /*
3034  * Allocate and initialize a counter structure
3035  */
3036 static struct perf_counter *
3037 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3038                    int cpu,
3039                    struct perf_counter_context *ctx,
3040                    struct perf_counter *group_leader,
3041                    gfp_t gfpflags)
3042 {
3043         const struct pmu *pmu;
3044         struct perf_counter *counter;
3045         struct hw_perf_counter *hwc;
3046         long err;
3047
3048         counter = kzalloc(sizeof(*counter), gfpflags);
3049         if (!counter)
3050                 return ERR_PTR(-ENOMEM);
3051
3052         /*
3053          * Single counters are their own group leaders, with an
3054          * empty sibling list:
3055          */
3056         if (!group_leader)
3057                 group_leader = counter;
3058
3059         mutex_init(&counter->child_mutex);
3060         INIT_LIST_HEAD(&counter->child_list);
3061
3062         INIT_LIST_HEAD(&counter->list_entry);
3063         INIT_LIST_HEAD(&counter->event_entry);
3064         INIT_LIST_HEAD(&counter->sibling_list);
3065         init_waitqueue_head(&counter->waitq);
3066
3067         mutex_init(&counter->mmap_mutex);
3068
3069         counter->cpu                    = cpu;
3070         counter->hw_event               = *hw_event;
3071         counter->group_leader           = group_leader;
3072         counter->pmu                    = NULL;
3073         counter->ctx                    = ctx;
3074         get_ctx(ctx);
3075
3076         counter->state = PERF_COUNTER_STATE_INACTIVE;
3077         if (hw_event->disabled)
3078                 counter->state = PERF_COUNTER_STATE_OFF;
3079
3080         pmu = NULL;
3081
3082         hwc = &counter->hw;
3083         if (hw_event->freq && hw_event->irq_freq)
3084                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3085         else
3086                 hwc->irq_period = hw_event->irq_period;
3087
3088         /*
3089          * we currently do not support PERF_RECORD_GROUP on inherited counters
3090          */
3091         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3092                 goto done;
3093
3094         if (perf_event_raw(hw_event)) {
3095                 pmu = hw_perf_counter_init(counter);
3096                 goto done;
3097         }
3098
3099         switch (perf_event_type(hw_event)) {
3100         case PERF_TYPE_HARDWARE:
3101                 pmu = hw_perf_counter_init(counter);
3102                 break;
3103
3104         case PERF_TYPE_SOFTWARE:
3105                 pmu = sw_perf_counter_init(counter);
3106                 break;
3107
3108         case PERF_TYPE_TRACEPOINT:
3109                 pmu = tp_perf_counter_init(counter);
3110                 break;
3111         }
3112 done:
3113         err = 0;
3114         if (!pmu)
3115                 err = -EINVAL;
3116         else if (IS_ERR(pmu))
3117                 err = PTR_ERR(pmu);
3118
3119         if (err) {
3120                 kfree(counter);
3121                 return ERR_PTR(err);
3122         }
3123
3124         counter->pmu = pmu;
3125
3126         atomic_inc(&nr_counters);
3127         if (counter->hw_event.mmap)
3128                 atomic_inc(&nr_mmap_tracking);
3129         if (counter->hw_event.munmap)
3130                 atomic_inc(&nr_munmap_tracking);
3131         if (counter->hw_event.comm)
3132                 atomic_inc(&nr_comm_tracking);
3133
3134         return counter;
3135 }
3136
3137 /**
3138  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3139  *
3140  * @hw_event_uptr:      event type attributes for monitoring/sampling
3141  * @pid:                target pid
3142  * @cpu:                target cpu
3143  * @group_fd:           group leader counter fd
3144  */
3145 SYSCALL_DEFINE5(perf_counter_open,
3146                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3147                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3148 {
3149         struct perf_counter *counter, *group_leader;
3150         struct perf_counter_hw_event hw_event;
3151         struct perf_counter_context *ctx;
3152         struct file *counter_file = NULL;
3153         struct file *group_file = NULL;
3154         int fput_needed = 0;
3155         int fput_needed2 = 0;
3156         int ret;
3157
3158         /* for future expandability... */
3159         if (flags)
3160                 return -EINVAL;
3161
3162         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3163                 return -EFAULT;
3164
3165         /*
3166          * Get the target context (task or percpu):
3167          */
3168         ctx = find_get_context(pid, cpu);
3169         if (IS_ERR(ctx))
3170                 return PTR_ERR(ctx);
3171
3172         /*
3173          * Look up the group leader (we will attach this counter to it):
3174          */
3175         group_leader = NULL;
3176         if (group_fd != -1) {
3177                 ret = -EINVAL;
3178                 group_file = fget_light(group_fd, &fput_needed);
3179                 if (!group_file)
3180                         goto err_put_context;
3181                 if (group_file->f_op != &perf_fops)
3182                         goto err_put_context;
3183
3184                 group_leader = group_file->private_data;
3185                 /*
3186                  * Do not allow a recursive hierarchy (this new sibling
3187                  * becoming part of another group-sibling):
3188                  */
3189                 if (group_leader->group_leader != group_leader)
3190                         goto err_put_context;
3191                 /*
3192                  * Do not allow to attach to a group in a different
3193                  * task or CPU context:
3194                  */
3195                 if (group_leader->ctx != ctx)
3196                         goto err_put_context;
3197                 /*
3198                  * Only a group leader can be exclusive or pinned
3199                  */
3200                 if (hw_event.exclusive || hw_event.pinned)
3201                         goto err_put_context;
3202         }
3203
3204         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3205                                      GFP_KERNEL);
3206         ret = PTR_ERR(counter);
3207         if (IS_ERR(counter))
3208                 goto err_put_context;
3209
3210         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3211         if (ret < 0)
3212                 goto err_free_put_context;
3213
3214         counter_file = fget_light(ret, &fput_needed2);
3215         if (!counter_file)
3216                 goto err_free_put_context;
3217
3218         counter->filp = counter_file;
3219         mutex_lock(&ctx->mutex);
3220         perf_install_in_context(ctx, counter, cpu);
3221         mutex_unlock(&ctx->mutex);
3222
3223         counter->owner = current;
3224         get_task_struct(current);
3225         mutex_lock(&current->perf_counter_mutex);
3226         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3227         mutex_unlock(&current->perf_counter_mutex);
3228
3229         fput_light(counter_file, fput_needed2);
3230
3231 out_fput:
3232         fput_light(group_file, fput_needed);
3233
3234         return ret;
3235
3236 err_free_put_context:
3237         kfree(counter);
3238
3239 err_put_context:
3240         put_context(ctx);
3241
3242         goto out_fput;
3243 }
3244
3245 /*
3246  * inherit a counter from parent task to child task:
3247  */
3248 static struct perf_counter *
3249 inherit_counter(struct perf_counter *parent_counter,
3250               struct task_struct *parent,
3251               struct perf_counter_context *parent_ctx,
3252               struct task_struct *child,
3253               struct perf_counter *group_leader,
3254               struct perf_counter_context *child_ctx)
3255 {
3256         struct perf_counter *child_counter;
3257
3258         /*
3259          * Instead of creating recursive hierarchies of counters,
3260          * we link inherited counters back to the original parent,
3261          * which has a filp for sure, which we use as the reference
3262          * count:
3263          */
3264         if (parent_counter->parent)
3265                 parent_counter = parent_counter->parent;
3266
3267         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3268                                            parent_counter->cpu, child_ctx,
3269                                            group_leader, GFP_KERNEL);
3270         if (IS_ERR(child_counter))
3271                 return child_counter;
3272
3273         /*
3274          * Make the child state follow the state of the parent counter,
3275          * not its hw_event.disabled bit.  We hold the parent's mutex,
3276          * so we won't race with perf_counter_{en,dis}able_family.
3277          */
3278         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3279                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3280         else
3281                 child_counter->state = PERF_COUNTER_STATE_OFF;
3282
3283         /*
3284          * Link it up in the child's context:
3285          */
3286         add_counter_to_ctx(child_counter, child_ctx);
3287
3288         child_counter->parent = parent_counter;
3289         /*
3290          * inherit into child's child as well:
3291          */
3292         child_counter->hw_event.inherit = 1;
3293
3294         /*
3295          * Get a reference to the parent filp - we will fput it
3296          * when the child counter exits. This is safe to do because
3297          * we are in the parent and we know that the filp still
3298          * exists and has a nonzero count:
3299          */
3300         atomic_long_inc(&parent_counter->filp->f_count);
3301
3302         /*
3303          * Link this into the parent counter's child list
3304          */
3305         mutex_lock(&parent_counter->child_mutex);
3306         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3307         mutex_unlock(&parent_counter->child_mutex);
3308
3309         return child_counter;
3310 }
3311
3312 static int inherit_group(struct perf_counter *parent_counter,
3313               struct task_struct *parent,
3314               struct perf_counter_context *parent_ctx,
3315               struct task_struct *child,
3316               struct perf_counter_context *child_ctx)
3317 {
3318         struct perf_counter *leader;
3319         struct perf_counter *sub;
3320         struct perf_counter *child_ctr;
3321
3322         leader = inherit_counter(parent_counter, parent, parent_ctx,
3323                                  child, NULL, child_ctx);
3324         if (IS_ERR(leader))
3325                 return PTR_ERR(leader);
3326         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3327                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3328                                             child, leader, child_ctx);
3329                 if (IS_ERR(child_ctr))
3330                         return PTR_ERR(child_ctr);
3331         }
3332         return 0;
3333 }
3334
3335 static void sync_child_counter(struct perf_counter *child_counter,
3336                                struct perf_counter *parent_counter)
3337 {
3338         u64 child_val;
3339
3340         child_val = atomic64_read(&child_counter->count);
3341
3342         /*
3343          * Add back the child's count to the parent's count:
3344          */
3345         atomic64_add(child_val, &parent_counter->count);
3346         atomic64_add(child_counter->total_time_enabled,
3347                      &parent_counter->child_total_time_enabled);
3348         atomic64_add(child_counter->total_time_running,
3349                      &parent_counter->child_total_time_running);
3350
3351         /*
3352          * Remove this counter from the parent's list
3353          */
3354         mutex_lock(&parent_counter->child_mutex);
3355         list_del_init(&child_counter->child_list);
3356         mutex_unlock(&parent_counter->child_mutex);
3357
3358         /*
3359          * Release the parent counter, if this was the last
3360          * reference to it.
3361          */
3362         fput(parent_counter->filp);
3363 }
3364
3365 static void
3366 __perf_counter_exit_task(struct task_struct *child,
3367                          struct perf_counter *child_counter,
3368                          struct perf_counter_context *child_ctx)
3369 {
3370         struct perf_counter *parent_counter;
3371
3372         update_counter_times(child_counter);
3373         perf_counter_remove_from_context(child_counter);
3374
3375         parent_counter = child_counter->parent;
3376         /*
3377          * It can happen that parent exits first, and has counters
3378          * that are still around due to the child reference. These
3379          * counters need to be zapped - but otherwise linger.
3380          */
3381         if (parent_counter) {
3382                 sync_child_counter(child_counter, parent_counter);
3383                 free_counter(child_counter);
3384         }
3385 }
3386
3387 /*
3388  * When a child task exits, feed back counter values to parent counters.
3389  *
3390  * Note: we may be running in child context, but the PID is not hashed
3391  * anymore so new counters will not be added.
3392  * (XXX not sure that is true when we get called from flush_old_exec.
3393  *  -- paulus)
3394  */
3395 void perf_counter_exit_task(struct task_struct *child)
3396 {
3397         struct perf_counter *child_counter, *tmp;
3398         struct perf_counter_context *child_ctx;
3399         unsigned long flags;
3400
3401         WARN_ON_ONCE(child != current);
3402
3403         child_ctx = child->perf_counter_ctxp;
3404
3405         if (likely(!child_ctx))
3406                 return;
3407
3408         local_irq_save(flags);
3409         __perf_counter_task_sched_out(child_ctx);
3410         child->perf_counter_ctxp = NULL;
3411         local_irq_restore(flags);
3412
3413         mutex_lock(&child_ctx->mutex);
3414
3415 again:
3416         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3417                                  list_entry)
3418                 __perf_counter_exit_task(child, child_counter, child_ctx);
3419
3420         /*
3421          * If the last counter was a group counter, it will have appended all
3422          * its siblings to the list, but we obtained 'tmp' before that which
3423          * will still point to the list head terminating the iteration.
3424          */
3425         if (!list_empty(&child_ctx->counter_list))
3426                 goto again;
3427
3428         mutex_unlock(&child_ctx->mutex);
3429
3430         put_ctx(child_ctx);
3431 }
3432
3433 /*
3434  * Initialize the perf_counter context in task_struct
3435  */
3436 int perf_counter_init_task(struct task_struct *child)
3437 {
3438         struct perf_counter_context *child_ctx, *parent_ctx;
3439         struct perf_counter *counter;
3440         struct task_struct *parent = current;
3441         int inherited_all = 1;
3442         int ret = 0;
3443
3444         child->perf_counter_ctxp = NULL;
3445
3446         mutex_init(&child->perf_counter_mutex);
3447         INIT_LIST_HEAD(&child->perf_counter_list);
3448
3449         parent_ctx = parent->perf_counter_ctxp;
3450         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3451                 return 0;
3452
3453         /*
3454          * This is executed from the parent task context, so inherit
3455          * counters that have been marked for cloning.
3456          * First allocate and initialize a context for the child.
3457          */
3458
3459         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3460         if (!child_ctx)
3461                 return -ENOMEM;
3462
3463         __perf_counter_init_context(child_ctx, child);
3464         child->perf_counter_ctxp = child_ctx;
3465
3466         /*
3467          * Lock the parent list. No need to lock the child - not PID
3468          * hashed yet and not running, so nobody can access it.
3469          */
3470         mutex_lock(&parent_ctx->mutex);
3471
3472         /*
3473          * We dont have to disable NMIs - we are only looking at
3474          * the list, not manipulating it:
3475          */
3476         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3477                 if (counter != counter->group_leader)
3478                         continue;
3479
3480                 if (!counter->hw_event.inherit) {
3481                         inherited_all = 0;
3482                         continue;
3483                 }
3484
3485                 ret = inherit_group(counter, parent, parent_ctx,
3486                                              child, child_ctx);
3487                 if (ret) {
3488                         inherited_all = 0;
3489                         break;
3490                 }
3491         }
3492
3493         if (inherited_all) {
3494                 /*
3495                  * Mark the child context as a clone of the parent
3496                  * context, or of whatever the parent is a clone of.
3497                  */
3498                 if (parent_ctx->parent_ctx) {
3499                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3500                         child_ctx->parent_gen = parent_ctx->parent_gen;
3501                 } else {
3502                         child_ctx->parent_ctx = parent_ctx;
3503                         child_ctx->parent_gen = parent_ctx->generation;
3504                 }
3505                 get_ctx(child_ctx->parent_ctx);
3506         }
3507
3508         mutex_unlock(&parent_ctx->mutex);
3509
3510         return ret;
3511 }
3512
3513 static void __cpuinit perf_counter_init_cpu(int cpu)
3514 {
3515         struct perf_cpu_context *cpuctx;
3516
3517         cpuctx = &per_cpu(perf_cpu_context, cpu);
3518         __perf_counter_init_context(&cpuctx->ctx, NULL);
3519
3520         spin_lock(&perf_resource_lock);
3521         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3522         spin_unlock(&perf_resource_lock);
3523
3524         hw_perf_counter_setup(cpu);
3525 }
3526
3527 #ifdef CONFIG_HOTPLUG_CPU
3528 static void __perf_counter_exit_cpu(void *info)
3529 {
3530         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3531         struct perf_counter_context *ctx = &cpuctx->ctx;
3532         struct perf_counter *counter, *tmp;
3533
3534         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3535                 __perf_counter_remove_from_context(counter);
3536 }
3537 static void perf_counter_exit_cpu(int cpu)
3538 {
3539         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3540         struct perf_counter_context *ctx = &cpuctx->ctx;
3541
3542         mutex_lock(&ctx->mutex);
3543         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3544         mutex_unlock(&ctx->mutex);
3545 }
3546 #else
3547 static inline void perf_counter_exit_cpu(int cpu) { }
3548 #endif
3549
3550 static int __cpuinit
3551 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3552 {
3553         unsigned int cpu = (long)hcpu;
3554
3555         switch (action) {
3556
3557         case CPU_UP_PREPARE:
3558         case CPU_UP_PREPARE_FROZEN:
3559                 perf_counter_init_cpu(cpu);
3560                 break;
3561
3562         case CPU_DOWN_PREPARE:
3563         case CPU_DOWN_PREPARE_FROZEN:
3564                 perf_counter_exit_cpu(cpu);
3565                 break;
3566
3567         default:
3568                 break;
3569         }
3570
3571         return NOTIFY_OK;
3572 }
3573
3574 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3575         .notifier_call          = perf_cpu_notify,
3576 };
3577
3578 void __init perf_counter_init(void)
3579 {
3580         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3581                         (void *)(long)smp_processor_id());
3582         register_cpu_notifier(&perf_cpu_nb);
3583 }
3584
3585 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3586 {
3587         return sprintf(buf, "%d\n", perf_reserved_percpu);
3588 }
3589
3590 static ssize_t
3591 perf_set_reserve_percpu(struct sysdev_class *class,
3592                         const char *buf,
3593                         size_t count)
3594 {
3595         struct perf_cpu_context *cpuctx;
3596         unsigned long val;
3597         int err, cpu, mpt;
3598
3599         err = strict_strtoul(buf, 10, &val);
3600         if (err)
3601                 return err;
3602         if (val > perf_max_counters)
3603                 return -EINVAL;
3604
3605         spin_lock(&perf_resource_lock);
3606         perf_reserved_percpu = val;
3607         for_each_online_cpu(cpu) {
3608                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3609                 spin_lock_irq(&cpuctx->ctx.lock);
3610                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3611                           perf_max_counters - perf_reserved_percpu);
3612                 cpuctx->max_pertask = mpt;
3613                 spin_unlock_irq(&cpuctx->ctx.lock);
3614         }
3615         spin_unlock(&perf_resource_lock);
3616
3617         return count;
3618 }
3619
3620 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3621 {
3622         return sprintf(buf, "%d\n", perf_overcommit);
3623 }
3624
3625 static ssize_t
3626 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3627 {
3628         unsigned long val;
3629         int err;
3630
3631         err = strict_strtoul(buf, 10, &val);
3632         if (err)
3633                 return err;
3634         if (val > 1)
3635                 return -EINVAL;
3636
3637         spin_lock(&perf_resource_lock);
3638         perf_overcommit = val;
3639         spin_unlock(&perf_resource_lock);
3640
3641         return count;
3642 }
3643
3644 static SYSDEV_CLASS_ATTR(
3645                                 reserve_percpu,
3646                                 0644,
3647                                 perf_show_reserve_percpu,
3648                                 perf_set_reserve_percpu
3649                         );
3650
3651 static SYSDEV_CLASS_ATTR(
3652                                 overcommit,
3653                                 0644,
3654                                 perf_show_overcommit,
3655                                 perf_set_overcommit
3656                         );
3657
3658 static struct attribute *perfclass_attrs[] = {
3659         &attr_reserve_percpu.attr,
3660         &attr_overcommit.attr,
3661         NULL
3662 };
3663
3664 static struct attribute_group perfclass_attr_group = {
3665         .attrs                  = perfclass_attrs,
3666         .name                   = "perf_counters",
3667 };
3668
3669 static int __init perf_counter_sysfs_init(void)
3670 {
3671         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3672                                   &perfclass_attr_group);
3673 }
3674 device_initcall(perf_counter_sysfs_init);