]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
Merge branch 'core/signal' into perfcounters/core
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
48 /*
49  * Mutex for (sysadmin-configurable) counter reservations:
50  */
51 static DEFINE_MUTEX(perf_resource_mutex);
52
53 /*
54  * Architecture provided APIs - weak aliases:
55  */
56 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
57 {
58         return NULL;
59 }
60
61 u64 __weak hw_perf_save_disable(void)           { return 0; }
62 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
63 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
64 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65                struct perf_cpu_context *cpuctx,
66                struct perf_counter_context *ctx, int cpu)
67 {
68         return 0;
69 }
70
71 void __weak perf_counter_print_debug(void)      { }
72
73 static void
74 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75 {
76         struct perf_counter *group_leader = counter->group_leader;
77
78         /*
79          * Depending on whether it is a standalone or sibling counter,
80          * add it straight to the context's counter list, or to the group
81          * leader's sibling list:
82          */
83         if (counter->group_leader == counter)
84                 list_add_tail(&counter->list_entry, &ctx->counter_list);
85         else {
86                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
87                 group_leader->nr_siblings++;
88         }
89
90         list_add_rcu(&counter->event_entry, &ctx->event_list);
91 }
92
93 static void
94 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95 {
96         struct perf_counter *sibling, *tmp;
97
98         list_del_init(&counter->list_entry);
99         list_del_rcu(&counter->event_entry);
100
101         if (counter->group_leader != counter)
102                 counter->group_leader->nr_siblings--;
103
104         /*
105          * If this was a group counter with sibling counters then
106          * upgrade the siblings to singleton counters by adding them
107          * to the context list directly:
108          */
109         list_for_each_entry_safe(sibling, tmp,
110                                  &counter->sibling_list, list_entry) {
111
112                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
113                 sibling->group_leader = sibling;
114         }
115 }
116
117 static void
118 counter_sched_out(struct perf_counter *counter,
119                   struct perf_cpu_context *cpuctx,
120                   struct perf_counter_context *ctx)
121 {
122         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123                 return;
124
125         counter->state = PERF_COUNTER_STATE_INACTIVE;
126         counter->tstamp_stopped = ctx->time;
127         counter->pmu->disable(counter);
128         counter->oncpu = -1;
129
130         if (!is_software_counter(counter))
131                 cpuctx->active_oncpu--;
132         ctx->nr_active--;
133         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134                 cpuctx->exclusive = 0;
135 }
136
137 static void
138 group_sched_out(struct perf_counter *group_counter,
139                 struct perf_cpu_context *cpuctx,
140                 struct perf_counter_context *ctx)
141 {
142         struct perf_counter *counter;
143
144         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145                 return;
146
147         counter_sched_out(group_counter, cpuctx, ctx);
148
149         /*
150          * Schedule out siblings (if any):
151          */
152         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153                 counter_sched_out(counter, cpuctx, ctx);
154
155         if (group_counter->hw_event.exclusive)
156                 cpuctx->exclusive = 0;
157 }
158
159 /*
160  * Cross CPU call to remove a performance counter
161  *
162  * We disable the counter on the hardware level first. After that we
163  * remove it from the context list.
164  */
165 static void __perf_counter_remove_from_context(void *info)
166 {
167         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168         struct perf_counter *counter = info;
169         struct perf_counter_context *ctx = counter->ctx;
170         unsigned long flags;
171         u64 perf_flags;
172
173         /*
174          * If this is a task context, we need to check whether it is
175          * the current task context of this cpu. If not it has been
176          * scheduled out before the smp call arrived.
177          */
178         if (ctx->task && cpuctx->task_ctx != ctx)
179                 return;
180
181         spin_lock_irqsave(&ctx->lock, flags);
182
183         counter_sched_out(counter, cpuctx, ctx);
184
185         counter->task = NULL;
186         ctx->nr_counters--;
187
188         /*
189          * Protect the list operation against NMI by disabling the
190          * counters on a global level. NOP for non NMI based counters.
191          */
192         perf_flags = hw_perf_save_disable();
193         list_del_counter(counter, ctx);
194         hw_perf_restore(perf_flags);
195
196         if (!ctx->task) {
197                 /*
198                  * Allow more per task counters with respect to the
199                  * reservation:
200                  */
201                 cpuctx->max_pertask =
202                         min(perf_max_counters - ctx->nr_counters,
203                             perf_max_counters - perf_reserved_percpu);
204         }
205
206         spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208
209
210 /*
211  * Remove the counter from a task's (or a CPU's) list of counters.
212  *
213  * Must be called with counter->mutex and ctx->mutex held.
214  *
215  * CPU counters are removed with a smp call. For task counters we only
216  * call when the task is on a CPU.
217  */
218 static void perf_counter_remove_from_context(struct perf_counter *counter)
219 {
220         struct perf_counter_context *ctx = counter->ctx;
221         struct task_struct *task = ctx->task;
222
223         if (!task) {
224                 /*
225                  * Per cpu counters are removed via an smp call and
226                  * the removal is always sucessful.
227                  */
228                 smp_call_function_single(counter->cpu,
229                                          __perf_counter_remove_from_context,
230                                          counter, 1);
231                 return;
232         }
233
234 retry:
235         task_oncpu_function_call(task, __perf_counter_remove_from_context,
236                                  counter);
237
238         spin_lock_irq(&ctx->lock);
239         /*
240          * If the context is active we need to retry the smp call.
241          */
242         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
243                 spin_unlock_irq(&ctx->lock);
244                 goto retry;
245         }
246
247         /*
248          * The lock prevents that this context is scheduled in so we
249          * can remove the counter safely, if the call above did not
250          * succeed.
251          */
252         if (!list_empty(&counter->list_entry)) {
253                 ctx->nr_counters--;
254                 list_del_counter(counter, ctx);
255                 counter->task = NULL;
256         }
257         spin_unlock_irq(&ctx->lock);
258 }
259
260 static inline u64 perf_clock(void)
261 {
262         return cpu_clock(smp_processor_id());
263 }
264
265 /*
266  * Update the record of the current time in a context.
267  */
268 static void update_context_time(struct perf_counter_context *ctx)
269 {
270         u64 now = perf_clock();
271
272         ctx->time += now - ctx->timestamp;
273         ctx->timestamp = now;
274 }
275
276 /*
277  * Update the total_time_enabled and total_time_running fields for a counter.
278  */
279 static void update_counter_times(struct perf_counter *counter)
280 {
281         struct perf_counter_context *ctx = counter->ctx;
282         u64 run_end;
283
284         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285                 return;
286
287         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290                 run_end = counter->tstamp_stopped;
291         else
292                 run_end = ctx->time;
293
294         counter->total_time_running = run_end - counter->tstamp_running;
295 }
296
297 /*
298  * Update total_time_enabled and total_time_running for all counters in a group.
299  */
300 static void update_group_times(struct perf_counter *leader)
301 {
302         struct perf_counter *counter;
303
304         update_counter_times(leader);
305         list_for_each_entry(counter, &leader->sibling_list, list_entry)
306                 update_counter_times(counter);
307 }
308
309 /*
310  * Cross CPU call to disable a performance counter
311  */
312 static void __perf_counter_disable(void *info)
313 {
314         struct perf_counter *counter = info;
315         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316         struct perf_counter_context *ctx = counter->ctx;
317         unsigned long flags;
318
319         /*
320          * If this is a per-task counter, need to check whether this
321          * counter's task is the current task on this cpu.
322          */
323         if (ctx->task && cpuctx->task_ctx != ctx)
324                 return;
325
326         spin_lock_irqsave(&ctx->lock, flags);
327
328         /*
329          * If the counter is on, turn it off.
330          * If it is in error state, leave it in error state.
331          */
332         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333                 update_context_time(ctx);
334                 update_counter_times(counter);
335                 if (counter == counter->group_leader)
336                         group_sched_out(counter, cpuctx, ctx);
337                 else
338                         counter_sched_out(counter, cpuctx, ctx);
339                 counter->state = PERF_COUNTER_STATE_OFF;
340         }
341
342         spin_unlock_irqrestore(&ctx->lock, flags);
343 }
344
345 /*
346  * Disable a counter.
347  */
348 static void perf_counter_disable(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         struct task_struct *task = ctx->task;
352
353         if (!task) {
354                 /*
355                  * Disable the counter on the cpu that it's on
356                  */
357                 smp_call_function_single(counter->cpu, __perf_counter_disable,
358                                          counter, 1);
359                 return;
360         }
361
362  retry:
363         task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365         spin_lock_irq(&ctx->lock);
366         /*
367          * If the counter is still active, we need to retry the cross-call.
368          */
369         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370                 spin_unlock_irq(&ctx->lock);
371                 goto retry;
372         }
373
374         /*
375          * Since we have the lock this context can't be scheduled
376          * in, so we can change the state safely.
377          */
378         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379                 update_counter_times(counter);
380                 counter->state = PERF_COUNTER_STATE_OFF;
381         }
382
383         spin_unlock_irq(&ctx->lock);
384 }
385
386 /*
387  * Disable a counter and all its children.
388  */
389 static void perf_counter_disable_family(struct perf_counter *counter)
390 {
391         struct perf_counter *child;
392
393         perf_counter_disable(counter);
394
395         /*
396          * Lock the mutex to protect the list of children
397          */
398         mutex_lock(&counter->mutex);
399         list_for_each_entry(child, &counter->child_list, child_list)
400                 perf_counter_disable(child);
401         mutex_unlock(&counter->mutex);
402 }
403
404 static int
405 counter_sched_in(struct perf_counter *counter,
406                  struct perf_cpu_context *cpuctx,
407                  struct perf_counter_context *ctx,
408                  int cpu)
409 {
410         if (counter->state <= PERF_COUNTER_STATE_OFF)
411                 return 0;
412
413         counter->state = PERF_COUNTER_STATE_ACTIVE;
414         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
415         /*
416          * The new state must be visible before we turn it on in the hardware:
417          */
418         smp_wmb();
419
420         if (counter->pmu->enable(counter)) {
421                 counter->state = PERF_COUNTER_STATE_INACTIVE;
422                 counter->oncpu = -1;
423                 return -EAGAIN;
424         }
425
426         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427
428         if (!is_software_counter(counter))
429                 cpuctx->active_oncpu++;
430         ctx->nr_active++;
431
432         if (counter->hw_event.exclusive)
433                 cpuctx->exclusive = 1;
434
435         return 0;
436 }
437
438 /*
439  * Return 1 for a group consisting entirely of software counters,
440  * 0 if the group contains any hardware counters.
441  */
442 static int is_software_only_group(struct perf_counter *leader)
443 {
444         struct perf_counter *counter;
445
446         if (!is_software_counter(leader))
447                 return 0;
448
449         list_for_each_entry(counter, &leader->sibling_list, list_entry)
450                 if (!is_software_counter(counter))
451                         return 0;
452
453         return 1;
454 }
455
456 /*
457  * Work out whether we can put this counter group on the CPU now.
458  */
459 static int group_can_go_on(struct perf_counter *counter,
460                            struct perf_cpu_context *cpuctx,
461                            int can_add_hw)
462 {
463         /*
464          * Groups consisting entirely of software counters can always go on.
465          */
466         if (is_software_only_group(counter))
467                 return 1;
468         /*
469          * If an exclusive group is already on, no other hardware
470          * counters can go on.
471          */
472         if (cpuctx->exclusive)
473                 return 0;
474         /*
475          * If this group is exclusive and there are already
476          * counters on the CPU, it can't go on.
477          */
478         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479                 return 0;
480         /*
481          * Otherwise, try to add it if all previous groups were able
482          * to go on.
483          */
484         return can_add_hw;
485 }
486
487 static void add_counter_to_ctx(struct perf_counter *counter,
488                                struct perf_counter_context *ctx)
489 {
490         list_add_counter(counter, ctx);
491         ctx->nr_counters++;
492         counter->prev_state = PERF_COUNTER_STATE_OFF;
493         counter->tstamp_enabled = ctx->time;
494         counter->tstamp_running = ctx->time;
495         counter->tstamp_stopped = ctx->time;
496 }
497
498 /*
499  * Cross CPU call to install and enable a performance counter
500  */
501 static void __perf_install_in_context(void *info)
502 {
503         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504         struct perf_counter *counter = info;
505         struct perf_counter_context *ctx = counter->ctx;
506         struct perf_counter *leader = counter->group_leader;
507         int cpu = smp_processor_id();
508         unsigned long flags;
509         u64 perf_flags;
510         int err;
511
512         /*
513          * If this is a task context, we need to check whether it is
514          * the current task context of this cpu. If not it has been
515          * scheduled out before the smp call arrived.
516          */
517         if (ctx->task && cpuctx->task_ctx != ctx)
518                 return;
519
520         spin_lock_irqsave(&ctx->lock, flags);
521         update_context_time(ctx);
522
523         /*
524          * Protect the list operation against NMI by disabling the
525          * counters on a global level. NOP for non NMI based counters.
526          */
527         perf_flags = hw_perf_save_disable();
528
529         add_counter_to_ctx(counter, ctx);
530
531         /*
532          * Don't put the counter on if it is disabled or if
533          * it is in a group and the group isn't on.
534          */
535         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537                 goto unlock;
538
539         /*
540          * An exclusive counter can't go on if there are already active
541          * hardware counters, and no hardware counter can go on if there
542          * is already an exclusive counter on.
543          */
544         if (!group_can_go_on(counter, cpuctx, 1))
545                 err = -EEXIST;
546         else
547                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
549         if (err) {
550                 /*
551                  * This counter couldn't go on.  If it is in a group
552                  * then we have to pull the whole group off.
553                  * If the counter group is pinned then put it in error state.
554                  */
555                 if (leader != counter)
556                         group_sched_out(leader, cpuctx, ctx);
557                 if (leader->hw_event.pinned) {
558                         update_group_times(leader);
559                         leader->state = PERF_COUNTER_STATE_ERROR;
560                 }
561         }
562
563         if (!err && !ctx->task && cpuctx->max_pertask)
564                 cpuctx->max_pertask--;
565
566  unlock:
567         hw_perf_restore(perf_flags);
568
569         spin_unlock_irqrestore(&ctx->lock, flags);
570 }
571
572 /*
573  * Attach a performance counter to a context
574  *
575  * First we add the counter to the list with the hardware enable bit
576  * in counter->hw_config cleared.
577  *
578  * If the counter is attached to a task which is on a CPU we use a smp
579  * call to enable it in the task context. The task might have been
580  * scheduled away, but we check this in the smp call again.
581  *
582  * Must be called with ctx->mutex held.
583  */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586                         struct perf_counter *counter,
587                         int cpu)
588 {
589         struct task_struct *task = ctx->task;
590
591         if (!task) {
592                 /*
593                  * Per cpu counters are installed via an smp call and
594                  * the install is always sucessful.
595                  */
596                 smp_call_function_single(cpu, __perf_install_in_context,
597                                          counter, 1);
598                 return;
599         }
600
601         counter->task = task;
602 retry:
603         task_oncpu_function_call(task, __perf_install_in_context,
604                                  counter);
605
606         spin_lock_irq(&ctx->lock);
607         /*
608          * we need to retry the smp call.
609          */
610         if (ctx->is_active && list_empty(&counter->list_entry)) {
611                 spin_unlock_irq(&ctx->lock);
612                 goto retry;
613         }
614
615         /*
616          * The lock prevents that this context is scheduled in so we
617          * can add the counter safely, if it the call above did not
618          * succeed.
619          */
620         if (list_empty(&counter->list_entry))
621                 add_counter_to_ctx(counter, ctx);
622         spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626  * Cross CPU call to enable a performance counter
627  */
628 static void __perf_counter_enable(void *info)
629 {
630         struct perf_counter *counter = info;
631         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632         struct perf_counter_context *ctx = counter->ctx;
633         struct perf_counter *leader = counter->group_leader;
634         unsigned long flags;
635         int err;
636
637         /*
638          * If this is a per-task counter, need to check whether this
639          * counter's task is the current task on this cpu.
640          */
641         if (ctx->task && cpuctx->task_ctx != ctx)
642                 return;
643
644         spin_lock_irqsave(&ctx->lock, flags);
645         update_context_time(ctx);
646
647         counter->prev_state = counter->state;
648         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649                 goto unlock;
650         counter->state = PERF_COUNTER_STATE_INACTIVE;
651         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652
653         /*
654          * If the counter is in a group and isn't the group leader,
655          * then don't put it on unless the group is on.
656          */
657         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658                 goto unlock;
659
660         if (!group_can_go_on(counter, cpuctx, 1))
661                 err = -EEXIST;
662         else
663                 err = counter_sched_in(counter, cpuctx, ctx,
664                                        smp_processor_id());
665
666         if (err) {
667                 /*
668                  * If this counter can't go on and it's part of a
669                  * group, then the whole group has to come off.
670                  */
671                 if (leader != counter)
672                         group_sched_out(leader, cpuctx, ctx);
673                 if (leader->hw_event.pinned) {
674                         update_group_times(leader);
675                         leader->state = PERF_COUNTER_STATE_ERROR;
676                 }
677         }
678
679  unlock:
680         spin_unlock_irqrestore(&ctx->lock, flags);
681 }
682
683 /*
684  * Enable a counter.
685  */
686 static void perf_counter_enable(struct perf_counter *counter)
687 {
688         struct perf_counter_context *ctx = counter->ctx;
689         struct task_struct *task = ctx->task;
690
691         if (!task) {
692                 /*
693                  * Enable the counter on the cpu that it's on
694                  */
695                 smp_call_function_single(counter->cpu, __perf_counter_enable,
696                                          counter, 1);
697                 return;
698         }
699
700         spin_lock_irq(&ctx->lock);
701         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702                 goto out;
703
704         /*
705          * If the counter is in error state, clear that first.
706          * That way, if we see the counter in error state below, we
707          * know that it has gone back into error state, as distinct
708          * from the task having been scheduled away before the
709          * cross-call arrived.
710          */
711         if (counter->state == PERF_COUNTER_STATE_ERROR)
712                 counter->state = PERF_COUNTER_STATE_OFF;
713
714  retry:
715         spin_unlock_irq(&ctx->lock);
716         task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718         spin_lock_irq(&ctx->lock);
719
720         /*
721          * If the context is active and the counter is still off,
722          * we need to retry the cross-call.
723          */
724         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725                 goto retry;
726
727         /*
728          * Since we have the lock this context can't be scheduled
729          * in, so we can change the state safely.
730          */
731         if (counter->state == PERF_COUNTER_STATE_OFF) {
732                 counter->state = PERF_COUNTER_STATE_INACTIVE;
733                 counter->tstamp_enabled =
734                         ctx->time - counter->total_time_enabled;
735         }
736  out:
737         spin_unlock_irq(&ctx->lock);
738 }
739
740 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741 {
742         atomic_add(refresh, &counter->event_limit);
743         perf_counter_enable(counter);
744 }
745
746 /*
747  * Enable a counter and all its children.
748  */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751         struct perf_counter *child;
752
753         perf_counter_enable(counter);
754
755         /*
756          * Lock the mutex to protect the list of children
757          */
758         mutex_lock(&counter->mutex);
759         list_for_each_entry(child, &counter->child_list, child_list)
760                 perf_counter_enable(child);
761         mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765                               struct perf_cpu_context *cpuctx)
766 {
767         struct perf_counter *counter;
768         u64 flags;
769
770         spin_lock(&ctx->lock);
771         ctx->is_active = 0;
772         if (likely(!ctx->nr_counters))
773                 goto out;
774         update_context_time(ctx);
775
776         flags = hw_perf_save_disable();
777         if (ctx->nr_active) {
778                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779                         group_sched_out(counter, cpuctx, ctx);
780         }
781         hw_perf_restore(flags);
782  out:
783         spin_unlock(&ctx->lock);
784 }
785
786 /*
787  * Called from scheduler to remove the counters of the current task,
788  * with interrupts disabled.
789  *
790  * We stop each counter and update the counter value in counter->count.
791  *
792  * This does not protect us against NMI, but disable()
793  * sets the disabled bit in the control field of counter _before_
794  * accessing the counter control register. If a NMI hits, then it will
795  * not restart the counter.
796  */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800         struct perf_counter_context *ctx = &task->perf_counter_ctx;
801         struct pt_regs *regs;
802
803         if (likely(!cpuctx->task_ctx))
804                 return;
805
806         update_context_time(ctx);
807
808         regs = task_pt_regs(task);
809         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810         __perf_counter_sched_out(ctx, cpuctx);
811
812         cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822                struct perf_cpu_context *cpuctx,
823                struct perf_counter_context *ctx,
824                int cpu)
825 {
826         struct perf_counter *counter, *partial_group;
827         int ret;
828
829         if (group_counter->state == PERF_COUNTER_STATE_OFF)
830                 return 0;
831
832         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833         if (ret)
834                 return ret < 0 ? ret : 0;
835
836         group_counter->prev_state = group_counter->state;
837         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838                 return -EAGAIN;
839
840         /*
841          * Schedule in siblings as one group (if any):
842          */
843         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844                 counter->prev_state = counter->state;
845                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846                         partial_group = counter;
847                         goto group_error;
848                 }
849         }
850
851         return 0;
852
853 group_error:
854         /*
855          * Groups can be scheduled in as one unit only, so undo any
856          * partial group before returning:
857          */
858         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859                 if (counter == partial_group)
860                         break;
861                 counter_sched_out(counter, cpuctx, ctx);
862         }
863         counter_sched_out(group_counter, cpuctx, ctx);
864
865         return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870                         struct perf_cpu_context *cpuctx, int cpu)
871 {
872         struct perf_counter *counter;
873         u64 flags;
874         int can_add_hw = 1;
875
876         spin_lock(&ctx->lock);
877         ctx->is_active = 1;
878         if (likely(!ctx->nr_counters))
879                 goto out;
880
881         ctx->timestamp = perf_clock();
882
883         flags = hw_perf_save_disable();
884
885         /*
886          * First go through the list and put on any pinned groups
887          * in order to give them the best chance of going on.
888          */
889         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891                     !counter->hw_event.pinned)
892                         continue;
893                 if (counter->cpu != -1 && counter->cpu != cpu)
894                         continue;
895
896                 if (group_can_go_on(counter, cpuctx, 1))
897                         group_sched_in(counter, cpuctx, ctx, cpu);
898
899                 /*
900                  * If this pinned group hasn't been scheduled,
901                  * put it in error state.
902                  */
903                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904                         update_group_times(counter);
905                         counter->state = PERF_COUNTER_STATE_ERROR;
906                 }
907         }
908
909         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910                 /*
911                  * Ignore counters in OFF or ERROR state, and
912                  * ignore pinned counters since we did them already.
913                  */
914                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915                     counter->hw_event.pinned)
916                         continue;
917
918                 /*
919                  * Listen to the 'cpu' scheduling filter constraint
920                  * of counters:
921                  */
922                 if (counter->cpu != -1 && counter->cpu != cpu)
923                         continue;
924
925                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926                         if (group_sched_in(counter, cpuctx, ctx, cpu))
927                                 can_add_hw = 0;
928                 }
929         }
930         hw_perf_restore(flags);
931  out:
932         spin_unlock(&ctx->lock);
933 }
934
935 /*
936  * Called from scheduler to add the counters of the current task
937  * with interrupts disabled.
938  *
939  * We restore the counter value and then enable it.
940  *
941  * This does not protect us against NMI, but enable()
942  * sets the enabled bit in the control field of counter _before_
943  * accessing the counter control register. If a NMI hits, then it will
944  * keep the counter running.
945  */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949         struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951         __perf_counter_sched_in(ctx, cpuctx, cpu);
952         cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957         struct perf_counter_context *ctx = &cpuctx->ctx;
958
959         __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964         struct task_struct *curr = current;
965         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966         struct perf_counter *counter;
967         unsigned long flags;
968         u64 perf_flags;
969         int cpu;
970
971         if (likely(!ctx->nr_counters))
972                 return 0;
973
974         local_irq_save(flags);
975         cpu = smp_processor_id();
976
977         perf_counter_task_sched_out(curr, cpu);
978
979         spin_lock(&ctx->lock);
980
981         /*
982          * Disable all the counters:
983          */
984         perf_flags = hw_perf_save_disable();
985
986         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988                         update_group_times(counter);
989                         counter->state = PERF_COUNTER_STATE_OFF;
990                 }
991         }
992
993         hw_perf_restore(perf_flags);
994
995         spin_unlock_irqrestore(&ctx->lock, flags);
996
997         return 0;
998 }
999
1000 int perf_counter_task_enable(void)
1001 {
1002         struct task_struct *curr = current;
1003         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004         struct perf_counter *counter;
1005         unsigned long flags;
1006         u64 perf_flags;
1007         int cpu;
1008
1009         if (likely(!ctx->nr_counters))
1010                 return 0;
1011
1012         local_irq_save(flags);
1013         cpu = smp_processor_id();
1014
1015         perf_counter_task_sched_out(curr, cpu);
1016
1017         spin_lock(&ctx->lock);
1018
1019         /*
1020          * Disable all the counters:
1021          */
1022         perf_flags = hw_perf_save_disable();
1023
1024         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025                 if (counter->state > PERF_COUNTER_STATE_OFF)
1026                         continue;
1027                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1028                 counter->tstamp_enabled =
1029                         ctx->time - counter->total_time_enabled;
1030                 counter->hw_event.disabled = 0;
1031         }
1032         hw_perf_restore(perf_flags);
1033
1034         spin_unlock(&ctx->lock);
1035
1036         perf_counter_task_sched_in(curr, cpu);
1037
1038         local_irq_restore(flags);
1039
1040         return 0;
1041 }
1042
1043 /*
1044  * Round-robin a context's counters:
1045  */
1046 static void rotate_ctx(struct perf_counter_context *ctx)
1047 {
1048         struct perf_counter *counter;
1049         u64 perf_flags;
1050
1051         if (!ctx->nr_counters)
1052                 return;
1053
1054         spin_lock(&ctx->lock);
1055         /*
1056          * Rotate the first entry last (works just fine for group counters too):
1057          */
1058         perf_flags = hw_perf_save_disable();
1059         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1061                 break;
1062         }
1063         hw_perf_restore(perf_flags);
1064
1065         spin_unlock(&ctx->lock);
1066 }
1067
1068 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069 {
1070         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072         const int rotate_percpu = 0;
1073
1074         if (rotate_percpu)
1075                 perf_counter_cpu_sched_out(cpuctx);
1076         perf_counter_task_sched_out(curr, cpu);
1077
1078         if (rotate_percpu)
1079                 rotate_ctx(&cpuctx->ctx);
1080         rotate_ctx(ctx);
1081
1082         if (rotate_percpu)
1083                 perf_counter_cpu_sched_in(cpuctx, cpu);
1084         perf_counter_task_sched_in(curr, cpu);
1085 }
1086
1087 /*
1088  * Cross CPU call to read the hardware counter
1089  */
1090 static void __read(void *info)
1091 {
1092         struct perf_counter *counter = info;
1093         struct perf_counter_context *ctx = counter->ctx;
1094         unsigned long flags;
1095
1096         local_irq_save(flags);
1097         if (ctx->is_active)
1098                 update_context_time(ctx);
1099         counter->pmu->read(counter);
1100         update_counter_times(counter);
1101         local_irq_restore(flags);
1102 }
1103
1104 static u64 perf_counter_read(struct perf_counter *counter)
1105 {
1106         /*
1107          * If counter is enabled and currently active on a CPU, update the
1108          * value in the counter structure:
1109          */
1110         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1111                 smp_call_function_single(counter->oncpu,
1112                                          __read, counter, 1);
1113         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                 update_counter_times(counter);
1115         }
1116
1117         return atomic64_read(&counter->count);
1118 }
1119
1120 static void put_context(struct perf_counter_context *ctx)
1121 {
1122         if (ctx->task)
1123                 put_task_struct(ctx->task);
1124 }
1125
1126 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1127 {
1128         struct perf_cpu_context *cpuctx;
1129         struct perf_counter_context *ctx;
1130         struct task_struct *task;
1131
1132         /*
1133          * If cpu is not a wildcard then this is a percpu counter:
1134          */
1135         if (cpu != -1) {
1136                 /* Must be root to operate on a CPU counter: */
1137                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1138                         return ERR_PTR(-EACCES);
1139
1140                 if (cpu < 0 || cpu > num_possible_cpus())
1141                         return ERR_PTR(-EINVAL);
1142
1143                 /*
1144                  * We could be clever and allow to attach a counter to an
1145                  * offline CPU and activate it when the CPU comes up, but
1146                  * that's for later.
1147                  */
1148                 if (!cpu_isset(cpu, cpu_online_map))
1149                         return ERR_PTR(-ENODEV);
1150
1151                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1152                 ctx = &cpuctx->ctx;
1153
1154                 return ctx;
1155         }
1156
1157         rcu_read_lock();
1158         if (!pid)
1159                 task = current;
1160         else
1161                 task = find_task_by_vpid(pid);
1162         if (task)
1163                 get_task_struct(task);
1164         rcu_read_unlock();
1165
1166         if (!task)
1167                 return ERR_PTR(-ESRCH);
1168
1169         ctx = &task->perf_counter_ctx;
1170         ctx->task = task;
1171
1172         /* Reuse ptrace permission checks for now. */
1173         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1174                 put_context(ctx);
1175                 return ERR_PTR(-EACCES);
1176         }
1177
1178         return ctx;
1179 }
1180
1181 static void free_counter_rcu(struct rcu_head *head)
1182 {
1183         struct perf_counter *counter;
1184
1185         counter = container_of(head, struct perf_counter, rcu_head);
1186         kfree(counter);
1187 }
1188
1189 static void perf_pending_sync(struct perf_counter *counter);
1190
1191 static void free_counter(struct perf_counter *counter)
1192 {
1193         perf_pending_sync(counter);
1194
1195         if (counter->hw_event.mmap)
1196                 atomic_dec(&nr_mmap_tracking);
1197         if (counter->hw_event.munmap)
1198                 atomic_dec(&nr_munmap_tracking);
1199         if (counter->hw_event.comm)
1200                 atomic_dec(&nr_comm_tracking);
1201
1202         if (counter->destroy)
1203                 counter->destroy(counter);
1204
1205         call_rcu(&counter->rcu_head, free_counter_rcu);
1206 }
1207
1208 /*
1209  * Called when the last reference to the file is gone.
1210  */
1211 static int perf_release(struct inode *inode, struct file *file)
1212 {
1213         struct perf_counter *counter = file->private_data;
1214         struct perf_counter_context *ctx = counter->ctx;
1215
1216         file->private_data = NULL;
1217
1218         mutex_lock(&ctx->mutex);
1219         mutex_lock(&counter->mutex);
1220
1221         perf_counter_remove_from_context(counter);
1222
1223         mutex_unlock(&counter->mutex);
1224         mutex_unlock(&ctx->mutex);
1225
1226         free_counter(counter);
1227         put_context(ctx);
1228
1229         return 0;
1230 }
1231
1232 /*
1233  * Read the performance counter - simple non blocking version for now
1234  */
1235 static ssize_t
1236 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1237 {
1238         u64 values[3];
1239         int n;
1240
1241         /*
1242          * Return end-of-file for a read on a counter that is in
1243          * error state (i.e. because it was pinned but it couldn't be
1244          * scheduled on to the CPU at some point).
1245          */
1246         if (counter->state == PERF_COUNTER_STATE_ERROR)
1247                 return 0;
1248
1249         mutex_lock(&counter->mutex);
1250         values[0] = perf_counter_read(counter);
1251         n = 1;
1252         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253                 values[n++] = counter->total_time_enabled +
1254                         atomic64_read(&counter->child_total_time_enabled);
1255         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256                 values[n++] = counter->total_time_running +
1257                         atomic64_read(&counter->child_total_time_running);
1258         mutex_unlock(&counter->mutex);
1259
1260         if (count < n * sizeof(u64))
1261                 return -EINVAL;
1262         count = n * sizeof(u64);
1263
1264         if (copy_to_user(buf, values, count))
1265                 return -EFAULT;
1266
1267         return count;
1268 }
1269
1270 static ssize_t
1271 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272 {
1273         struct perf_counter *counter = file->private_data;
1274
1275         return perf_read_hw(counter, buf, count);
1276 }
1277
1278 static unsigned int perf_poll(struct file *file, poll_table *wait)
1279 {
1280         struct perf_counter *counter = file->private_data;
1281         struct perf_mmap_data *data;
1282         unsigned int events;
1283
1284         rcu_read_lock();
1285         data = rcu_dereference(counter->data);
1286         if (data)
1287                 events = atomic_xchg(&data->wakeup, 0);
1288         else
1289                 events = POLL_HUP;
1290         rcu_read_unlock();
1291
1292         poll_wait(file, &counter->waitq, wait);
1293
1294         return events;
1295 }
1296
1297 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298 {
1299         struct perf_counter *counter = file->private_data;
1300         int err = 0;
1301
1302         switch (cmd) {
1303         case PERF_COUNTER_IOC_ENABLE:
1304                 perf_counter_enable_family(counter);
1305                 break;
1306         case PERF_COUNTER_IOC_DISABLE:
1307                 perf_counter_disable_family(counter);
1308                 break;
1309         case PERF_COUNTER_IOC_REFRESH:
1310                 perf_counter_refresh(counter, arg);
1311                 break;
1312         default:
1313                 err = -ENOTTY;
1314         }
1315         return err;
1316 }
1317
1318 /*
1319  * Callers need to ensure there can be no nesting of this function, otherwise
1320  * the seqlock logic goes bad. We can not serialize this because the arch
1321  * code calls this from NMI context.
1322  */
1323 void perf_counter_update_userpage(struct perf_counter *counter)
1324 {
1325         struct perf_mmap_data *data;
1326         struct perf_counter_mmap_page *userpg;
1327
1328         rcu_read_lock();
1329         data = rcu_dereference(counter->data);
1330         if (!data)
1331                 goto unlock;
1332
1333         userpg = data->user_page;
1334
1335         /*
1336          * Disable preemption so as to not let the corresponding user-space
1337          * spin too long if we get preempted.
1338          */
1339         preempt_disable();
1340         ++userpg->lock;
1341         barrier();
1342         userpg->index = counter->hw.idx;
1343         userpg->offset = atomic64_read(&counter->count);
1344         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1345                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1346
1347         barrier();
1348         ++userpg->lock;
1349         preempt_enable();
1350 unlock:
1351         rcu_read_unlock();
1352 }
1353
1354 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1355 {
1356         struct perf_counter *counter = vma->vm_file->private_data;
1357         struct perf_mmap_data *data;
1358         int ret = VM_FAULT_SIGBUS;
1359
1360         rcu_read_lock();
1361         data = rcu_dereference(counter->data);
1362         if (!data)
1363                 goto unlock;
1364
1365         if (vmf->pgoff == 0) {
1366                 vmf->page = virt_to_page(data->user_page);
1367         } else {
1368                 int nr = vmf->pgoff - 1;
1369
1370                 if ((unsigned)nr > data->nr_pages)
1371                         goto unlock;
1372
1373                 vmf->page = virt_to_page(data->data_pages[nr]);
1374         }
1375         get_page(vmf->page);
1376         ret = 0;
1377 unlock:
1378         rcu_read_unlock();
1379
1380         return ret;
1381 }
1382
1383 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1384 {
1385         struct perf_mmap_data *data;
1386         unsigned long size;
1387         int i;
1388
1389         WARN_ON(atomic_read(&counter->mmap_count));
1390
1391         size = sizeof(struct perf_mmap_data);
1392         size += nr_pages * sizeof(void *);
1393
1394         data = kzalloc(size, GFP_KERNEL);
1395         if (!data)
1396                 goto fail;
1397
1398         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1399         if (!data->user_page)
1400                 goto fail_user_page;
1401
1402         for (i = 0; i < nr_pages; i++) {
1403                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1404                 if (!data->data_pages[i])
1405                         goto fail_data_pages;
1406         }
1407
1408         data->nr_pages = nr_pages;
1409
1410         rcu_assign_pointer(counter->data, data);
1411
1412         return 0;
1413
1414 fail_data_pages:
1415         for (i--; i >= 0; i--)
1416                 free_page((unsigned long)data->data_pages[i]);
1417
1418         free_page((unsigned long)data->user_page);
1419
1420 fail_user_page:
1421         kfree(data);
1422
1423 fail:
1424         return -ENOMEM;
1425 }
1426
1427 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1428 {
1429         struct perf_mmap_data *data = container_of(rcu_head,
1430                         struct perf_mmap_data, rcu_head);
1431         int i;
1432
1433         free_page((unsigned long)data->user_page);
1434         for (i = 0; i < data->nr_pages; i++)
1435                 free_page((unsigned long)data->data_pages[i]);
1436         kfree(data);
1437 }
1438
1439 static void perf_mmap_data_free(struct perf_counter *counter)
1440 {
1441         struct perf_mmap_data *data = counter->data;
1442
1443         WARN_ON(atomic_read(&counter->mmap_count));
1444
1445         rcu_assign_pointer(counter->data, NULL);
1446         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1447 }
1448
1449 static void perf_mmap_open(struct vm_area_struct *vma)
1450 {
1451         struct perf_counter *counter = vma->vm_file->private_data;
1452
1453         atomic_inc(&counter->mmap_count);
1454 }
1455
1456 static void perf_mmap_close(struct vm_area_struct *vma)
1457 {
1458         struct perf_counter *counter = vma->vm_file->private_data;
1459
1460         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1461                                       &counter->mmap_mutex)) {
1462                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1463                 perf_mmap_data_free(counter);
1464                 mutex_unlock(&counter->mmap_mutex);
1465         }
1466 }
1467
1468 static struct vm_operations_struct perf_mmap_vmops = {
1469         .open  = perf_mmap_open,
1470         .close = perf_mmap_close,
1471         .fault = perf_mmap_fault,
1472 };
1473
1474 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1475 {
1476         struct perf_counter *counter = file->private_data;
1477         unsigned long vma_size;
1478         unsigned long nr_pages;
1479         unsigned long locked, lock_limit;
1480         int ret = 0;
1481
1482         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1483                 return -EINVAL;
1484
1485         vma_size = vma->vm_end - vma->vm_start;
1486         nr_pages = (vma_size / PAGE_SIZE) - 1;
1487
1488         /*
1489          * If we have data pages ensure they're a power-of-two number, so we
1490          * can do bitmasks instead of modulo.
1491          */
1492         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1493                 return -EINVAL;
1494
1495         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1496                 return -EINVAL;
1497
1498         if (vma->vm_pgoff != 0)
1499                 return -EINVAL;
1500
1501         mutex_lock(&counter->mmap_mutex);
1502         if (atomic_inc_not_zero(&counter->mmap_count)) {
1503                 if (nr_pages != counter->data->nr_pages)
1504                         ret = -EINVAL;
1505                 goto unlock;
1506         }
1507
1508         locked = vma->vm_mm->locked_vm;
1509         locked += nr_pages + 1;
1510
1511         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1512         lock_limit >>= PAGE_SHIFT;
1513
1514         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1515                 ret = -EPERM;
1516                 goto unlock;
1517         }
1518
1519         WARN_ON(counter->data);
1520         ret = perf_mmap_data_alloc(counter, nr_pages);
1521         if (ret)
1522                 goto unlock;
1523
1524         atomic_set(&counter->mmap_count, 1);
1525         vma->vm_mm->locked_vm += nr_pages + 1;
1526 unlock:
1527         mutex_unlock(&counter->mmap_mutex);
1528
1529         vma->vm_flags &= ~VM_MAYWRITE;
1530         vma->vm_flags |= VM_RESERVED;
1531         vma->vm_ops = &perf_mmap_vmops;
1532
1533         return ret;
1534 }
1535
1536 static int perf_fasync(int fd, struct file *filp, int on)
1537 {
1538         struct perf_counter *counter = filp->private_data;
1539         struct inode *inode = filp->f_path.dentry->d_inode;
1540         int retval;
1541
1542         mutex_lock(&inode->i_mutex);
1543         retval = fasync_helper(fd, filp, on, &counter->fasync);
1544         mutex_unlock(&inode->i_mutex);
1545
1546         if (retval < 0)
1547                 return retval;
1548
1549         return 0;
1550 }
1551
1552 static const struct file_operations perf_fops = {
1553         .release                = perf_release,
1554         .read                   = perf_read,
1555         .poll                   = perf_poll,
1556         .unlocked_ioctl         = perf_ioctl,
1557         .compat_ioctl           = perf_ioctl,
1558         .mmap                   = perf_mmap,
1559         .fasync                 = perf_fasync,
1560 };
1561
1562 /*
1563  * Perf counter wakeup
1564  *
1565  * If there's data, ensure we set the poll() state and publish everything
1566  * to user-space before waking everybody up.
1567  */
1568
1569 void perf_counter_wakeup(struct perf_counter *counter)
1570 {
1571         struct perf_mmap_data *data;
1572
1573         rcu_read_lock();
1574         data = rcu_dereference(counter->data);
1575         if (data) {
1576                 atomic_set(&data->wakeup, POLL_IN);
1577                 /*
1578                  * Ensure all data writes are issued before updating the
1579                  * user-space data head information. The matching rmb()
1580                  * will be in userspace after reading this value.
1581                  */
1582                 smp_wmb();
1583                 data->user_page->data_head = atomic_read(&data->head);
1584         }
1585         rcu_read_unlock();
1586
1587         wake_up_all(&counter->waitq);
1588
1589         if (counter->pending_kill) {
1590                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1591                 counter->pending_kill = 0;
1592         }
1593 }
1594
1595 /*
1596  * Pending wakeups
1597  *
1598  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1599  *
1600  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1601  * single linked list and use cmpxchg() to add entries lockless.
1602  */
1603
1604 static void perf_pending_counter(struct perf_pending_entry *entry)
1605 {
1606         struct perf_counter *counter = container_of(entry,
1607                         struct perf_counter, pending);
1608
1609         if (counter->pending_disable) {
1610                 counter->pending_disable = 0;
1611                 perf_counter_disable(counter);
1612         }
1613
1614         if (counter->pending_wakeup) {
1615                 counter->pending_wakeup = 0;
1616                 perf_counter_wakeup(counter);
1617         }
1618 }
1619
1620 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1621
1622 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1623         PENDING_TAIL,
1624 };
1625
1626 static void perf_pending_queue(struct perf_pending_entry *entry,
1627                                void (*func)(struct perf_pending_entry *))
1628 {
1629         struct perf_pending_entry **head;
1630
1631         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1632                 return;
1633
1634         entry->func = func;
1635
1636         head = &get_cpu_var(perf_pending_head);
1637
1638         do {
1639                 entry->next = *head;
1640         } while (cmpxchg(head, entry->next, entry) != entry->next);
1641
1642         set_perf_counter_pending();
1643
1644         put_cpu_var(perf_pending_head);
1645 }
1646
1647 static int __perf_pending_run(void)
1648 {
1649         struct perf_pending_entry *list;
1650         int nr = 0;
1651
1652         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1653         while (list != PENDING_TAIL) {
1654                 void (*func)(struct perf_pending_entry *);
1655                 struct perf_pending_entry *entry = list;
1656
1657                 list = list->next;
1658
1659                 func = entry->func;
1660                 entry->next = NULL;
1661                 /*
1662                  * Ensure we observe the unqueue before we issue the wakeup,
1663                  * so that we won't be waiting forever.
1664                  * -- see perf_not_pending().
1665                  */
1666                 smp_wmb();
1667
1668                 func(entry);
1669                 nr++;
1670         }
1671
1672         return nr;
1673 }
1674
1675 static inline int perf_not_pending(struct perf_counter *counter)
1676 {
1677         /*
1678          * If we flush on whatever cpu we run, there is a chance we don't
1679          * need to wait.
1680          */
1681         get_cpu();
1682         __perf_pending_run();
1683         put_cpu();
1684
1685         /*
1686          * Ensure we see the proper queue state before going to sleep
1687          * so that we do not miss the wakeup. -- see perf_pending_handle()
1688          */
1689         smp_rmb();
1690         return counter->pending.next == NULL;
1691 }
1692
1693 static void perf_pending_sync(struct perf_counter *counter)
1694 {
1695         wait_event(counter->waitq, perf_not_pending(counter));
1696 }
1697
1698 void perf_counter_do_pending(void)
1699 {
1700         __perf_pending_run();
1701 }
1702
1703 /*
1704  * Callchain support -- arch specific
1705  */
1706
1707 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1708 {
1709         return NULL;
1710 }
1711
1712 /*
1713  * Output
1714  */
1715
1716 struct perf_output_handle {
1717         struct perf_counter     *counter;
1718         struct perf_mmap_data   *data;
1719         unsigned int            offset;
1720         unsigned int            head;
1721         int                     wakeup;
1722         int                     nmi;
1723         int                     overflow;
1724 };
1725
1726 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1727 {
1728         if (handle->nmi) {
1729                 handle->counter->pending_wakeup = 1;
1730                 perf_pending_queue(&handle->counter->pending,
1731                                    perf_pending_counter);
1732         } else
1733                 perf_counter_wakeup(handle->counter);
1734 }
1735
1736 static int perf_output_begin(struct perf_output_handle *handle,
1737                              struct perf_counter *counter, unsigned int size,
1738                              int nmi, int overflow)
1739 {
1740         struct perf_mmap_data *data;
1741         unsigned int offset, head;
1742
1743         rcu_read_lock();
1744         data = rcu_dereference(counter->data);
1745         if (!data)
1746                 goto out;
1747
1748         handle->counter  = counter;
1749         handle->nmi      = nmi;
1750         handle->overflow = overflow;
1751
1752         if (!data->nr_pages)
1753                 goto fail;
1754
1755         do {
1756                 offset = head = atomic_read(&data->head);
1757                 head += size;
1758         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1759
1760         handle->data    = data;
1761         handle->offset  = offset;
1762         handle->head    = head;
1763         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1764
1765         return 0;
1766
1767 fail:
1768         __perf_output_wakeup(handle);
1769 out:
1770         rcu_read_unlock();
1771
1772         return -ENOSPC;
1773 }
1774
1775 static void perf_output_copy(struct perf_output_handle *handle,
1776                              void *buf, unsigned int len)
1777 {
1778         unsigned int pages_mask;
1779         unsigned int offset;
1780         unsigned int size;
1781         void **pages;
1782
1783         offset          = handle->offset;
1784         pages_mask      = handle->data->nr_pages - 1;
1785         pages           = handle->data->data_pages;
1786
1787         do {
1788                 unsigned int page_offset;
1789                 int nr;
1790
1791                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1792                 page_offset = offset & (PAGE_SIZE - 1);
1793                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1794
1795                 memcpy(pages[nr] + page_offset, buf, size);
1796
1797                 len         -= size;
1798                 buf         += size;
1799                 offset      += size;
1800         } while (len);
1801
1802         handle->offset = offset;
1803
1804         WARN_ON_ONCE(handle->offset > handle->head);
1805 }
1806
1807 #define perf_output_put(handle, x) \
1808         perf_output_copy((handle), &(x), sizeof(x))
1809
1810 static void perf_output_end(struct perf_output_handle *handle)
1811 {
1812         int wakeup_events = handle->counter->hw_event.wakeup_events;
1813
1814         if (handle->overflow && wakeup_events) {
1815                 int events = atomic_inc_return(&handle->data->events);
1816                 if (events >= wakeup_events) {
1817                         atomic_sub(wakeup_events, &handle->data->events);
1818                         __perf_output_wakeup(handle);
1819                 }
1820         } else if (handle->wakeup)
1821                 __perf_output_wakeup(handle);
1822         rcu_read_unlock();
1823 }
1824
1825 static void perf_counter_output(struct perf_counter *counter,
1826                                 int nmi, struct pt_regs *regs, u64 addr)
1827 {
1828         int ret;
1829         u64 record_type = counter->hw_event.record_type;
1830         struct perf_output_handle handle;
1831         struct perf_event_header header;
1832         u64 ip;
1833         struct {
1834                 u32 pid, tid;
1835         } tid_entry;
1836         struct {
1837                 u64 event;
1838                 u64 counter;
1839         } group_entry;
1840         struct perf_callchain_entry *callchain = NULL;
1841         int callchain_size = 0;
1842         u64 time;
1843
1844         header.type = 0;
1845         header.size = sizeof(header);
1846
1847         header.misc = PERF_EVENT_MISC_OVERFLOW;
1848         header.misc |= user_mode(regs) ?
1849                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1850
1851         if (record_type & PERF_RECORD_IP) {
1852                 ip = instruction_pointer(regs);
1853                 header.type |= PERF_RECORD_IP;
1854                 header.size += sizeof(ip);
1855         }
1856
1857         if (record_type & PERF_RECORD_TID) {
1858                 /* namespace issues */
1859                 tid_entry.pid = current->group_leader->pid;
1860                 tid_entry.tid = current->pid;
1861
1862                 header.type |= PERF_RECORD_TID;
1863                 header.size += sizeof(tid_entry);
1864         }
1865
1866         if (record_type & PERF_RECORD_TIME) {
1867                 /*
1868                  * Maybe do better on x86 and provide cpu_clock_nmi()
1869                  */
1870                 time = sched_clock();
1871
1872                 header.type |= PERF_RECORD_TIME;
1873                 header.size += sizeof(u64);
1874         }
1875
1876         if (record_type & PERF_RECORD_ADDR) {
1877                 header.type |= PERF_RECORD_ADDR;
1878                 header.size += sizeof(u64);
1879         }
1880
1881         if (record_type & PERF_RECORD_GROUP) {
1882                 header.type |= PERF_RECORD_GROUP;
1883                 header.size += sizeof(u64) +
1884                         counter->nr_siblings * sizeof(group_entry);
1885         }
1886
1887         if (record_type & PERF_RECORD_CALLCHAIN) {
1888                 callchain = perf_callchain(regs);
1889
1890                 if (callchain) {
1891                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1892
1893                         header.type |= PERF_RECORD_CALLCHAIN;
1894                         header.size += callchain_size;
1895                 }
1896         }
1897
1898         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1899         if (ret)
1900                 return;
1901
1902         perf_output_put(&handle, header);
1903
1904         if (record_type & PERF_RECORD_IP)
1905                 perf_output_put(&handle, ip);
1906
1907         if (record_type & PERF_RECORD_TID)
1908                 perf_output_put(&handle, tid_entry);
1909
1910         if (record_type & PERF_RECORD_TIME)
1911                 perf_output_put(&handle, time);
1912
1913         if (record_type & PERF_RECORD_ADDR)
1914                 perf_output_put(&handle, addr);
1915
1916         if (record_type & PERF_RECORD_GROUP) {
1917                 struct perf_counter *leader, *sub;
1918                 u64 nr = counter->nr_siblings;
1919
1920                 perf_output_put(&handle, nr);
1921
1922                 leader = counter->group_leader;
1923                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1924                         if (sub != counter)
1925                                 sub->pmu->read(sub);
1926
1927                         group_entry.event = sub->hw_event.config;
1928                         group_entry.counter = atomic64_read(&sub->count);
1929
1930                         perf_output_put(&handle, group_entry);
1931                 }
1932         }
1933
1934         if (callchain)
1935                 perf_output_copy(&handle, callchain, callchain_size);
1936
1937         perf_output_end(&handle);
1938 }
1939
1940 /*
1941  * comm tracking
1942  */
1943
1944 struct perf_comm_event {
1945         struct task_struct      *task;
1946         char                    *comm;
1947         int                     comm_size;
1948
1949         struct {
1950                 struct perf_event_header        header;
1951
1952                 u32                             pid;
1953                 u32                             tid;
1954         } event;
1955 };
1956
1957 static void perf_counter_comm_output(struct perf_counter *counter,
1958                                      struct perf_comm_event *comm_event)
1959 {
1960         struct perf_output_handle handle;
1961         int size = comm_event->event.header.size;
1962         int ret = perf_output_begin(&handle, counter, size, 0, 0);
1963
1964         if (ret)
1965                 return;
1966
1967         perf_output_put(&handle, comm_event->event);
1968         perf_output_copy(&handle, comm_event->comm,
1969                                    comm_event->comm_size);
1970         perf_output_end(&handle);
1971 }
1972
1973 static int perf_counter_comm_match(struct perf_counter *counter,
1974                                    struct perf_comm_event *comm_event)
1975 {
1976         if (counter->hw_event.comm &&
1977             comm_event->event.header.type == PERF_EVENT_COMM)
1978                 return 1;
1979
1980         return 0;
1981 }
1982
1983 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1984                                   struct perf_comm_event *comm_event)
1985 {
1986         struct perf_counter *counter;
1987
1988         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1989                 return;
1990
1991         rcu_read_lock();
1992         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1993                 if (perf_counter_comm_match(counter, comm_event))
1994                         perf_counter_comm_output(counter, comm_event);
1995         }
1996         rcu_read_unlock();
1997 }
1998
1999 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2000 {
2001         struct perf_cpu_context *cpuctx;
2002         unsigned int size;
2003         char *comm = comm_event->task->comm;
2004
2005         size = ALIGN(strlen(comm)+1, sizeof(u64));
2006
2007         comm_event->comm = comm;
2008         comm_event->comm_size = size;
2009
2010         comm_event->event.header.size = sizeof(comm_event->event) + size;
2011
2012         cpuctx = &get_cpu_var(perf_cpu_context);
2013         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2014         put_cpu_var(perf_cpu_context);
2015
2016         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2017 }
2018
2019 void perf_counter_comm(struct task_struct *task)
2020 {
2021         struct perf_comm_event comm_event;
2022
2023         if (!atomic_read(&nr_comm_tracking))
2024                 return;
2025        
2026         comm_event = (struct perf_comm_event){
2027                 .task   = task,
2028                 .event  = {
2029                         .header = { .type = PERF_EVENT_COMM, },
2030                         .pid    = task->group_leader->pid,
2031                         .tid    = task->pid,
2032                 },
2033         };
2034
2035         perf_counter_comm_event(&comm_event);
2036 }
2037
2038 /*
2039  * mmap tracking
2040  */
2041
2042 struct perf_mmap_event {
2043         struct file     *file;
2044         char            *file_name;
2045         int             file_size;
2046
2047         struct {
2048                 struct perf_event_header        header;
2049
2050                 u32                             pid;
2051                 u32                             tid;
2052                 u64                             start;
2053                 u64                             len;
2054                 u64                             pgoff;
2055         } event;
2056 };
2057
2058 static void perf_counter_mmap_output(struct perf_counter *counter,
2059                                      struct perf_mmap_event *mmap_event)
2060 {
2061         struct perf_output_handle handle;
2062         int size = mmap_event->event.header.size;
2063         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2064
2065         if (ret)
2066                 return;
2067
2068         perf_output_put(&handle, mmap_event->event);
2069         perf_output_copy(&handle, mmap_event->file_name,
2070                                    mmap_event->file_size);
2071         perf_output_end(&handle);
2072 }
2073
2074 static int perf_counter_mmap_match(struct perf_counter *counter,
2075                                    struct perf_mmap_event *mmap_event)
2076 {
2077         if (counter->hw_event.mmap &&
2078             mmap_event->event.header.type == PERF_EVENT_MMAP)
2079                 return 1;
2080
2081         if (counter->hw_event.munmap &&
2082             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2083                 return 1;
2084
2085         return 0;
2086 }
2087
2088 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2089                                   struct perf_mmap_event *mmap_event)
2090 {
2091         struct perf_counter *counter;
2092
2093         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2094                 return;
2095
2096         rcu_read_lock();
2097         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2098                 if (perf_counter_mmap_match(counter, mmap_event))
2099                         perf_counter_mmap_output(counter, mmap_event);
2100         }
2101         rcu_read_unlock();
2102 }
2103
2104 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2105 {
2106         struct perf_cpu_context *cpuctx;
2107         struct file *file = mmap_event->file;
2108         unsigned int size;
2109         char tmp[16];
2110         char *buf = NULL;
2111         char *name;
2112
2113         if (file) {
2114                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2115                 if (!buf) {
2116                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2117                         goto got_name;
2118                 }
2119                 name = d_path(&file->f_path, buf, PATH_MAX);
2120                 if (IS_ERR(name)) {
2121                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2122                         goto got_name;
2123                 }
2124         } else {
2125                 name = strncpy(tmp, "//anon", sizeof(tmp));
2126                 goto got_name;
2127         }
2128
2129 got_name:
2130         size = ALIGN(strlen(name)+1, sizeof(u64));
2131
2132         mmap_event->file_name = name;
2133         mmap_event->file_size = size;
2134
2135         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2136
2137         cpuctx = &get_cpu_var(perf_cpu_context);
2138         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2139         put_cpu_var(perf_cpu_context);
2140
2141         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2142
2143         kfree(buf);
2144 }
2145
2146 void perf_counter_mmap(unsigned long addr, unsigned long len,
2147                        unsigned long pgoff, struct file *file)
2148 {
2149         struct perf_mmap_event mmap_event;
2150
2151         if (!atomic_read(&nr_mmap_tracking))
2152                 return;
2153
2154         mmap_event = (struct perf_mmap_event){
2155                 .file   = file,
2156                 .event  = {
2157                         .header = { .type = PERF_EVENT_MMAP, },
2158                         .pid    = current->group_leader->pid,
2159                         .tid    = current->pid,
2160                         .start  = addr,
2161                         .len    = len,
2162                         .pgoff  = pgoff,
2163                 },
2164         };
2165
2166         perf_counter_mmap_event(&mmap_event);
2167 }
2168
2169 void perf_counter_munmap(unsigned long addr, unsigned long len,
2170                          unsigned long pgoff, struct file *file)
2171 {
2172         struct perf_mmap_event mmap_event;
2173
2174         if (!atomic_read(&nr_munmap_tracking))
2175                 return;
2176
2177         mmap_event = (struct perf_mmap_event){
2178                 .file   = file,
2179                 .event  = {
2180                         .header = { .type = PERF_EVENT_MUNMAP, },
2181                         .pid    = current->group_leader->pid,
2182                         .tid    = current->pid,
2183                         .start  = addr,
2184                         .len    = len,
2185                         .pgoff  = pgoff,
2186                 },
2187         };
2188
2189         perf_counter_mmap_event(&mmap_event);
2190 }
2191
2192 /*
2193  * Generic counter overflow handling.
2194  */
2195
2196 int perf_counter_overflow(struct perf_counter *counter,
2197                           int nmi, struct pt_regs *regs, u64 addr)
2198 {
2199         int events = atomic_read(&counter->event_limit);
2200         int ret = 0;
2201
2202         counter->pending_kill = POLL_IN;
2203         if (events && atomic_dec_and_test(&counter->event_limit)) {
2204                 ret = 1;
2205                 counter->pending_kill = POLL_HUP;
2206                 if (nmi) {
2207                         counter->pending_disable = 1;
2208                         perf_pending_queue(&counter->pending,
2209                                            perf_pending_counter);
2210                 } else
2211                         perf_counter_disable(counter);
2212         }
2213
2214         perf_counter_output(counter, nmi, regs, addr);
2215         return ret;
2216 }
2217
2218 /*
2219  * Generic software counter infrastructure
2220  */
2221
2222 static void perf_swcounter_update(struct perf_counter *counter)
2223 {
2224         struct hw_perf_counter *hwc = &counter->hw;
2225         u64 prev, now;
2226         s64 delta;
2227
2228 again:
2229         prev = atomic64_read(&hwc->prev_count);
2230         now = atomic64_read(&hwc->count);
2231         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2232                 goto again;
2233
2234         delta = now - prev;
2235
2236         atomic64_add(delta, &counter->count);
2237         atomic64_sub(delta, &hwc->period_left);
2238 }
2239
2240 static void perf_swcounter_set_period(struct perf_counter *counter)
2241 {
2242         struct hw_perf_counter *hwc = &counter->hw;
2243         s64 left = atomic64_read(&hwc->period_left);
2244         s64 period = hwc->irq_period;
2245
2246         if (unlikely(left <= -period)) {
2247                 left = period;
2248                 atomic64_set(&hwc->period_left, left);
2249         }
2250
2251         if (unlikely(left <= 0)) {
2252                 left += period;
2253                 atomic64_add(period, &hwc->period_left);
2254         }
2255
2256         atomic64_set(&hwc->prev_count, -left);
2257         atomic64_set(&hwc->count, -left);
2258 }
2259
2260 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2261 {
2262         enum hrtimer_restart ret = HRTIMER_RESTART;
2263         struct perf_counter *counter;
2264         struct pt_regs *regs;
2265
2266         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2267         counter->pmu->read(counter);
2268
2269         regs = get_irq_regs();
2270         /*
2271          * In case we exclude kernel IPs or are somehow not in interrupt
2272          * context, provide the next best thing, the user IP.
2273          */
2274         if ((counter->hw_event.exclude_kernel || !regs) &&
2275                         !counter->hw_event.exclude_user)
2276                 regs = task_pt_regs(current);
2277
2278         if (regs) {
2279                 if (perf_counter_overflow(counter, 0, regs, 0))
2280                         ret = HRTIMER_NORESTART;
2281         }
2282
2283         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2284
2285         return ret;
2286 }
2287
2288 static void perf_swcounter_overflow(struct perf_counter *counter,
2289                                     int nmi, struct pt_regs *regs, u64 addr)
2290 {
2291         perf_swcounter_update(counter);
2292         perf_swcounter_set_period(counter);
2293         if (perf_counter_overflow(counter, nmi, regs, addr))
2294                 /* soft-disable the counter */
2295                 ;
2296
2297 }
2298
2299 static int perf_swcounter_match(struct perf_counter *counter,
2300                                 enum perf_event_types type,
2301                                 u32 event, struct pt_regs *regs)
2302 {
2303         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2304                 return 0;
2305
2306         if (perf_event_raw(&counter->hw_event))
2307                 return 0;
2308
2309         if (perf_event_type(&counter->hw_event) != type)
2310                 return 0;
2311
2312         if (perf_event_id(&counter->hw_event) != event)
2313                 return 0;
2314
2315         if (counter->hw_event.exclude_user && user_mode(regs))
2316                 return 0;
2317
2318         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2319                 return 0;
2320
2321         return 1;
2322 }
2323
2324 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2325                                int nmi, struct pt_regs *regs, u64 addr)
2326 {
2327         int neg = atomic64_add_negative(nr, &counter->hw.count);
2328         if (counter->hw.irq_period && !neg)
2329                 perf_swcounter_overflow(counter, nmi, regs, addr);
2330 }
2331
2332 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2333                                      enum perf_event_types type, u32 event,
2334                                      u64 nr, int nmi, struct pt_regs *regs,
2335                                      u64 addr)
2336 {
2337         struct perf_counter *counter;
2338
2339         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2340                 return;
2341
2342         rcu_read_lock();
2343         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2344                 if (perf_swcounter_match(counter, type, event, regs))
2345                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2346         }
2347         rcu_read_unlock();
2348 }
2349
2350 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2351 {
2352         if (in_nmi())
2353                 return &cpuctx->recursion[3];
2354
2355         if (in_irq())
2356                 return &cpuctx->recursion[2];
2357
2358         if (in_softirq())
2359                 return &cpuctx->recursion[1];
2360
2361         return &cpuctx->recursion[0];
2362 }
2363
2364 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2365                                    u64 nr, int nmi, struct pt_regs *regs,
2366                                    u64 addr)
2367 {
2368         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2369         int *recursion = perf_swcounter_recursion_context(cpuctx);
2370
2371         if (*recursion)
2372                 goto out;
2373
2374         (*recursion)++;
2375         barrier();
2376
2377         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2378                                  nr, nmi, regs, addr);
2379         if (cpuctx->task_ctx) {
2380                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2381                                          nr, nmi, regs, addr);
2382         }
2383
2384         barrier();
2385         (*recursion)--;
2386
2387 out:
2388         put_cpu_var(perf_cpu_context);
2389 }
2390
2391 void
2392 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2393 {
2394         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2395 }
2396
2397 static void perf_swcounter_read(struct perf_counter *counter)
2398 {
2399         perf_swcounter_update(counter);
2400 }
2401
2402 static int perf_swcounter_enable(struct perf_counter *counter)
2403 {
2404         perf_swcounter_set_period(counter);
2405         return 0;
2406 }
2407
2408 static void perf_swcounter_disable(struct perf_counter *counter)
2409 {
2410         perf_swcounter_update(counter);
2411 }
2412
2413 static const struct pmu perf_ops_generic = {
2414         .enable         = perf_swcounter_enable,
2415         .disable        = perf_swcounter_disable,
2416         .read           = perf_swcounter_read,
2417 };
2418
2419 /*
2420  * Software counter: cpu wall time clock
2421  */
2422
2423 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2424 {
2425         int cpu = raw_smp_processor_id();
2426         s64 prev;
2427         u64 now;
2428
2429         now = cpu_clock(cpu);
2430         prev = atomic64_read(&counter->hw.prev_count);
2431         atomic64_set(&counter->hw.prev_count, now);
2432         atomic64_add(now - prev, &counter->count);
2433 }
2434
2435 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2436 {
2437         struct hw_perf_counter *hwc = &counter->hw;
2438         int cpu = raw_smp_processor_id();
2439
2440         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2441         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2442         hwc->hrtimer.function = perf_swcounter_hrtimer;
2443         if (hwc->irq_period) {
2444                 __hrtimer_start_range_ns(&hwc->hrtimer,
2445                                 ns_to_ktime(hwc->irq_period), 0,
2446                                 HRTIMER_MODE_REL, 0);
2447         }
2448
2449         return 0;
2450 }
2451
2452 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2453 {
2454         hrtimer_cancel(&counter->hw.hrtimer);
2455         cpu_clock_perf_counter_update(counter);
2456 }
2457
2458 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2459 {
2460         cpu_clock_perf_counter_update(counter);
2461 }
2462
2463 static const struct pmu perf_ops_cpu_clock = {
2464         .enable         = cpu_clock_perf_counter_enable,
2465         .disable        = cpu_clock_perf_counter_disable,
2466         .read           = cpu_clock_perf_counter_read,
2467 };
2468
2469 /*
2470  * Software counter: task time clock
2471  */
2472
2473 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2474 {
2475         u64 prev;
2476         s64 delta;
2477
2478         prev = atomic64_xchg(&counter->hw.prev_count, now);
2479         delta = now - prev;
2480         atomic64_add(delta, &counter->count);
2481 }
2482
2483 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2484 {
2485         struct hw_perf_counter *hwc = &counter->hw;
2486         u64 now;
2487
2488         now = counter->ctx->time;
2489
2490         atomic64_set(&hwc->prev_count, now);
2491         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2492         hwc->hrtimer.function = perf_swcounter_hrtimer;
2493         if (hwc->irq_period) {
2494                 __hrtimer_start_range_ns(&hwc->hrtimer,
2495                                 ns_to_ktime(hwc->irq_period), 0,
2496                                 HRTIMER_MODE_REL, 0);
2497         }
2498
2499         return 0;
2500 }
2501
2502 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2503 {
2504         hrtimer_cancel(&counter->hw.hrtimer);
2505         task_clock_perf_counter_update(counter, counter->ctx->time);
2506
2507 }
2508
2509 static void task_clock_perf_counter_read(struct perf_counter *counter)
2510 {
2511         u64 time;
2512
2513         if (!in_nmi()) {
2514                 update_context_time(counter->ctx);
2515                 time = counter->ctx->time;
2516         } else {
2517                 u64 now = perf_clock();
2518                 u64 delta = now - counter->ctx->timestamp;
2519                 time = counter->ctx->time + delta;
2520         }
2521
2522         task_clock_perf_counter_update(counter, time);
2523 }
2524
2525 static const struct pmu perf_ops_task_clock = {
2526         .enable         = task_clock_perf_counter_enable,
2527         .disable        = task_clock_perf_counter_disable,
2528         .read           = task_clock_perf_counter_read,
2529 };
2530
2531 /*
2532  * Software counter: cpu migrations
2533  */
2534
2535 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2536 {
2537         struct task_struct *curr = counter->ctx->task;
2538
2539         if (curr)
2540                 return curr->se.nr_migrations;
2541         return cpu_nr_migrations(smp_processor_id());
2542 }
2543
2544 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2545 {
2546         u64 prev, now;
2547         s64 delta;
2548
2549         prev = atomic64_read(&counter->hw.prev_count);
2550         now = get_cpu_migrations(counter);
2551
2552         atomic64_set(&counter->hw.prev_count, now);
2553
2554         delta = now - prev;
2555
2556         atomic64_add(delta, &counter->count);
2557 }
2558
2559 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2560 {
2561         cpu_migrations_perf_counter_update(counter);
2562 }
2563
2564 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2565 {
2566         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2567                 atomic64_set(&counter->hw.prev_count,
2568                              get_cpu_migrations(counter));
2569         return 0;
2570 }
2571
2572 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2573 {
2574         cpu_migrations_perf_counter_update(counter);
2575 }
2576
2577 static const struct pmu perf_ops_cpu_migrations = {
2578         .enable         = cpu_migrations_perf_counter_enable,
2579         .disable        = cpu_migrations_perf_counter_disable,
2580         .read           = cpu_migrations_perf_counter_read,
2581 };
2582
2583 #ifdef CONFIG_EVENT_PROFILE
2584 void perf_tpcounter_event(int event_id)
2585 {
2586         struct pt_regs *regs = get_irq_regs();
2587
2588         if (!regs)
2589                 regs = task_pt_regs(current);
2590
2591         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2592 }
2593 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2594
2595 extern int ftrace_profile_enable(int);
2596 extern void ftrace_profile_disable(int);
2597
2598 static void tp_perf_counter_destroy(struct perf_counter *counter)
2599 {
2600         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2601 }
2602
2603 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2604 {
2605         int event_id = perf_event_id(&counter->hw_event);
2606         int ret;
2607
2608         ret = ftrace_profile_enable(event_id);
2609         if (ret)
2610                 return NULL;
2611
2612         counter->destroy = tp_perf_counter_destroy;
2613         counter->hw.irq_period = counter->hw_event.irq_period;
2614
2615         return &perf_ops_generic;
2616 }
2617 #else
2618 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2619 {
2620         return NULL;
2621 }
2622 #endif
2623
2624 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2625 {
2626         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2627         const struct pmu *pmu = NULL;
2628         struct hw_perf_counter *hwc = &counter->hw;
2629
2630         /*
2631          * Software counters (currently) can't in general distinguish
2632          * between user, kernel and hypervisor events.
2633          * However, context switches and cpu migrations are considered
2634          * to be kernel events, and page faults are never hypervisor
2635          * events.
2636          */
2637         switch (perf_event_id(&counter->hw_event)) {
2638         case PERF_COUNT_CPU_CLOCK:
2639                 pmu = &perf_ops_cpu_clock;
2640
2641                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2642                         hw_event->irq_period = 10000;
2643                 break;
2644         case PERF_COUNT_TASK_CLOCK:
2645                 /*
2646                  * If the user instantiates this as a per-cpu counter,
2647                  * use the cpu_clock counter instead.
2648                  */
2649                 if (counter->ctx->task)
2650                         pmu = &perf_ops_task_clock;
2651                 else
2652                         pmu = &perf_ops_cpu_clock;
2653
2654                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2655                         hw_event->irq_period = 10000;
2656                 break;
2657         case PERF_COUNT_PAGE_FAULTS:
2658         case PERF_COUNT_PAGE_FAULTS_MIN:
2659         case PERF_COUNT_PAGE_FAULTS_MAJ:
2660         case PERF_COUNT_CONTEXT_SWITCHES:
2661                 pmu = &perf_ops_generic;
2662                 break;
2663         case PERF_COUNT_CPU_MIGRATIONS:
2664                 if (!counter->hw_event.exclude_kernel)
2665                         pmu = &perf_ops_cpu_migrations;
2666                 break;
2667         }
2668
2669         if (pmu)
2670                 hwc->irq_period = hw_event->irq_period;
2671
2672         return pmu;
2673 }
2674
2675 /*
2676  * Allocate and initialize a counter structure
2677  */
2678 static struct perf_counter *
2679 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2680                    int cpu,
2681                    struct perf_counter_context *ctx,
2682                    struct perf_counter *group_leader,
2683                    gfp_t gfpflags)
2684 {
2685         const struct pmu *pmu;
2686         struct perf_counter *counter;
2687         long err;
2688
2689         counter = kzalloc(sizeof(*counter), gfpflags);
2690         if (!counter)
2691                 return ERR_PTR(-ENOMEM);
2692
2693         /*
2694          * Single counters are their own group leaders, with an
2695          * empty sibling list:
2696          */
2697         if (!group_leader)
2698                 group_leader = counter;
2699
2700         mutex_init(&counter->mutex);
2701         INIT_LIST_HEAD(&counter->list_entry);
2702         INIT_LIST_HEAD(&counter->event_entry);
2703         INIT_LIST_HEAD(&counter->sibling_list);
2704         init_waitqueue_head(&counter->waitq);
2705
2706         mutex_init(&counter->mmap_mutex);
2707
2708         INIT_LIST_HEAD(&counter->child_list);
2709
2710         counter->cpu                    = cpu;
2711         counter->hw_event               = *hw_event;
2712         counter->group_leader           = group_leader;
2713         counter->pmu                    = NULL;
2714         counter->ctx                    = ctx;
2715
2716         counter->state = PERF_COUNTER_STATE_INACTIVE;
2717         if (hw_event->disabled)
2718                 counter->state = PERF_COUNTER_STATE_OFF;
2719
2720         pmu = NULL;
2721
2722         if (perf_event_raw(hw_event)) {
2723                 pmu = hw_perf_counter_init(counter);
2724                 goto done;
2725         }
2726
2727         switch (perf_event_type(hw_event)) {
2728         case PERF_TYPE_HARDWARE:
2729                 pmu = hw_perf_counter_init(counter);
2730                 break;
2731
2732         case PERF_TYPE_SOFTWARE:
2733                 pmu = sw_perf_counter_init(counter);
2734                 break;
2735
2736         case PERF_TYPE_TRACEPOINT:
2737                 pmu = tp_perf_counter_init(counter);
2738                 break;
2739         }
2740 done:
2741         err = 0;
2742         if (!pmu)
2743                 err = -EINVAL;
2744         else if (IS_ERR(pmu))
2745                 err = PTR_ERR(pmu);
2746
2747         if (err) {
2748                 kfree(counter);
2749                 return ERR_PTR(err);
2750         }
2751
2752         counter->pmu = pmu;
2753
2754         if (counter->hw_event.mmap)
2755                 atomic_inc(&nr_mmap_tracking);
2756         if (counter->hw_event.munmap)
2757                 atomic_inc(&nr_munmap_tracking);
2758         if (counter->hw_event.comm)
2759                 atomic_inc(&nr_comm_tracking);
2760
2761         return counter;
2762 }
2763
2764 /**
2765  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2766  *
2767  * @hw_event_uptr:      event type attributes for monitoring/sampling
2768  * @pid:                target pid
2769  * @cpu:                target cpu
2770  * @group_fd:           group leader counter fd
2771  */
2772 SYSCALL_DEFINE5(perf_counter_open,
2773                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2774                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2775 {
2776         struct perf_counter *counter, *group_leader;
2777         struct perf_counter_hw_event hw_event;
2778         struct perf_counter_context *ctx;
2779         struct file *counter_file = NULL;
2780         struct file *group_file = NULL;
2781         int fput_needed = 0;
2782         int fput_needed2 = 0;
2783         int ret;
2784
2785         /* for future expandability... */
2786         if (flags)
2787                 return -EINVAL;
2788
2789         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2790                 return -EFAULT;
2791
2792         /*
2793          * Get the target context (task or percpu):
2794          */
2795         ctx = find_get_context(pid, cpu);
2796         if (IS_ERR(ctx))
2797                 return PTR_ERR(ctx);
2798
2799         /*
2800          * Look up the group leader (we will attach this counter to it):
2801          */
2802         group_leader = NULL;
2803         if (group_fd != -1) {
2804                 ret = -EINVAL;
2805                 group_file = fget_light(group_fd, &fput_needed);
2806                 if (!group_file)
2807                         goto err_put_context;
2808                 if (group_file->f_op != &perf_fops)
2809                         goto err_put_context;
2810
2811                 group_leader = group_file->private_data;
2812                 /*
2813                  * Do not allow a recursive hierarchy (this new sibling
2814                  * becoming part of another group-sibling):
2815                  */
2816                 if (group_leader->group_leader != group_leader)
2817                         goto err_put_context;
2818                 /*
2819                  * Do not allow to attach to a group in a different
2820                  * task or CPU context:
2821                  */
2822                 if (group_leader->ctx != ctx)
2823                         goto err_put_context;
2824                 /*
2825                  * Only a group leader can be exclusive or pinned
2826                  */
2827                 if (hw_event.exclusive || hw_event.pinned)
2828                         goto err_put_context;
2829         }
2830
2831         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2832                                      GFP_KERNEL);
2833         ret = PTR_ERR(counter);
2834         if (IS_ERR(counter))
2835                 goto err_put_context;
2836
2837         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2838         if (ret < 0)
2839                 goto err_free_put_context;
2840
2841         counter_file = fget_light(ret, &fput_needed2);
2842         if (!counter_file)
2843                 goto err_free_put_context;
2844
2845         counter->filp = counter_file;
2846         mutex_lock(&ctx->mutex);
2847         perf_install_in_context(ctx, counter, cpu);
2848         mutex_unlock(&ctx->mutex);
2849
2850         fput_light(counter_file, fput_needed2);
2851
2852 out_fput:
2853         fput_light(group_file, fput_needed);
2854
2855         return ret;
2856
2857 err_free_put_context:
2858         kfree(counter);
2859
2860 err_put_context:
2861         put_context(ctx);
2862
2863         goto out_fput;
2864 }
2865
2866 /*
2867  * Initialize the perf_counter context in a task_struct:
2868  */
2869 static void
2870 __perf_counter_init_context(struct perf_counter_context *ctx,
2871                             struct task_struct *task)
2872 {
2873         memset(ctx, 0, sizeof(*ctx));
2874         spin_lock_init(&ctx->lock);
2875         mutex_init(&ctx->mutex);
2876         INIT_LIST_HEAD(&ctx->counter_list);
2877         INIT_LIST_HEAD(&ctx->event_list);
2878         ctx->task = task;
2879 }
2880
2881 /*
2882  * inherit a counter from parent task to child task:
2883  */
2884 static struct perf_counter *
2885 inherit_counter(struct perf_counter *parent_counter,
2886               struct task_struct *parent,
2887               struct perf_counter_context *parent_ctx,
2888               struct task_struct *child,
2889               struct perf_counter *group_leader,
2890               struct perf_counter_context *child_ctx)
2891 {
2892         struct perf_counter *child_counter;
2893
2894         /*
2895          * Instead of creating recursive hierarchies of counters,
2896          * we link inherited counters back to the original parent,
2897          * which has a filp for sure, which we use as the reference
2898          * count:
2899          */
2900         if (parent_counter->parent)
2901                 parent_counter = parent_counter->parent;
2902
2903         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2904                                            parent_counter->cpu, child_ctx,
2905                                            group_leader, GFP_KERNEL);
2906         if (IS_ERR(child_counter))
2907                 return child_counter;
2908
2909         /*
2910          * Link it up in the child's context:
2911          */
2912         child_counter->task = child;
2913         add_counter_to_ctx(child_counter, child_ctx);
2914
2915         child_counter->parent = parent_counter;
2916         /*
2917          * inherit into child's child as well:
2918          */
2919         child_counter->hw_event.inherit = 1;
2920
2921         /*
2922          * Get a reference to the parent filp - we will fput it
2923          * when the child counter exits. This is safe to do because
2924          * we are in the parent and we know that the filp still
2925          * exists and has a nonzero count:
2926          */
2927         atomic_long_inc(&parent_counter->filp->f_count);
2928
2929         /*
2930          * Link this into the parent counter's child list
2931          */
2932         mutex_lock(&parent_counter->mutex);
2933         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2934
2935         /*
2936          * Make the child state follow the state of the parent counter,
2937          * not its hw_event.disabled bit.  We hold the parent's mutex,
2938          * so we won't race with perf_counter_{en,dis}able_family.
2939          */
2940         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2941                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2942         else
2943                 child_counter->state = PERF_COUNTER_STATE_OFF;
2944
2945         mutex_unlock(&parent_counter->mutex);
2946
2947         return child_counter;
2948 }
2949
2950 static int inherit_group(struct perf_counter *parent_counter,
2951               struct task_struct *parent,
2952               struct perf_counter_context *parent_ctx,
2953               struct task_struct *child,
2954               struct perf_counter_context *child_ctx)
2955 {
2956         struct perf_counter *leader;
2957         struct perf_counter *sub;
2958         struct perf_counter *child_ctr;
2959
2960         leader = inherit_counter(parent_counter, parent, parent_ctx,
2961                                  child, NULL, child_ctx);
2962         if (IS_ERR(leader))
2963                 return PTR_ERR(leader);
2964         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2965                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2966                                             child, leader, child_ctx);
2967                 if (IS_ERR(child_ctr))
2968                         return PTR_ERR(child_ctr);
2969         }
2970         return 0;
2971 }
2972
2973 static void sync_child_counter(struct perf_counter *child_counter,
2974                                struct perf_counter *parent_counter)
2975 {
2976         u64 parent_val, child_val;
2977
2978         parent_val = atomic64_read(&parent_counter->count);
2979         child_val = atomic64_read(&child_counter->count);
2980
2981         /*
2982          * Add back the child's count to the parent's count:
2983          */
2984         atomic64_add(child_val, &parent_counter->count);
2985         atomic64_add(child_counter->total_time_enabled,
2986                      &parent_counter->child_total_time_enabled);
2987         atomic64_add(child_counter->total_time_running,
2988                      &parent_counter->child_total_time_running);
2989
2990         /*
2991          * Remove this counter from the parent's list
2992          */
2993         mutex_lock(&parent_counter->mutex);
2994         list_del_init(&child_counter->child_list);
2995         mutex_unlock(&parent_counter->mutex);
2996
2997         /*
2998          * Release the parent counter, if this was the last
2999          * reference to it.
3000          */
3001         fput(parent_counter->filp);
3002 }
3003
3004 static void
3005 __perf_counter_exit_task(struct task_struct *child,
3006                          struct perf_counter *child_counter,
3007                          struct perf_counter_context *child_ctx)
3008 {
3009         struct perf_counter *parent_counter;
3010         struct perf_counter *sub, *tmp;
3011
3012         /*
3013          * If we do not self-reap then we have to wait for the
3014          * child task to unschedule (it will happen for sure),
3015          * so that its counter is at its final count. (This
3016          * condition triggers rarely - child tasks usually get
3017          * off their CPU before the parent has a chance to
3018          * get this far into the reaping action)
3019          */
3020         if (child != current) {
3021                 wait_task_inactive(child, 0);
3022                 list_del_init(&child_counter->list_entry);
3023                 update_counter_times(child_counter);
3024         } else {
3025                 struct perf_cpu_context *cpuctx;
3026                 unsigned long flags;
3027                 u64 perf_flags;
3028
3029                 /*
3030                  * Disable and unlink this counter.
3031                  *
3032                  * Be careful about zapping the list - IRQ/NMI context
3033                  * could still be processing it:
3034                  */
3035                 local_irq_save(flags);
3036                 perf_flags = hw_perf_save_disable();
3037
3038                 cpuctx = &__get_cpu_var(perf_cpu_context);
3039
3040                 group_sched_out(child_counter, cpuctx, child_ctx);
3041                 update_counter_times(child_counter);
3042
3043                 list_del_init(&child_counter->list_entry);
3044
3045                 child_ctx->nr_counters--;
3046
3047                 hw_perf_restore(perf_flags);
3048                 local_irq_restore(flags);
3049         }
3050
3051         parent_counter = child_counter->parent;
3052         /*
3053          * It can happen that parent exits first, and has counters
3054          * that are still around due to the child reference. These
3055          * counters need to be zapped - but otherwise linger.
3056          */
3057         if (parent_counter) {
3058                 sync_child_counter(child_counter, parent_counter);
3059                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3060                                          list_entry) {
3061                         if (sub->parent) {
3062                                 sync_child_counter(sub, sub->parent);
3063                                 free_counter(sub);
3064                         }
3065                 }
3066                 free_counter(child_counter);
3067         }
3068 }
3069
3070 /*
3071  * When a child task exits, feed back counter values to parent counters.
3072  *
3073  * Note: we may be running in child context, but the PID is not hashed
3074  * anymore so new counters will not be added.
3075  */
3076 void perf_counter_exit_task(struct task_struct *child)
3077 {
3078         struct perf_counter *child_counter, *tmp;
3079         struct perf_counter_context *child_ctx;
3080
3081         child_ctx = &child->perf_counter_ctx;
3082
3083         if (likely(!child_ctx->nr_counters))
3084                 return;
3085
3086         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3087                                  list_entry)
3088                 __perf_counter_exit_task(child, child_counter, child_ctx);
3089 }
3090
3091 /*
3092  * Initialize the perf_counter context in task_struct
3093  */
3094 void perf_counter_init_task(struct task_struct *child)
3095 {
3096         struct perf_counter_context *child_ctx, *parent_ctx;
3097         struct perf_counter *counter;
3098         struct task_struct *parent = current;
3099
3100         child_ctx  =  &child->perf_counter_ctx;
3101         parent_ctx = &parent->perf_counter_ctx;
3102
3103         __perf_counter_init_context(child_ctx, child);
3104
3105         /*
3106          * This is executed from the parent task context, so inherit
3107          * counters that have been marked for cloning:
3108          */
3109
3110         if (likely(!parent_ctx->nr_counters))
3111                 return;
3112
3113         /*
3114          * Lock the parent list. No need to lock the child - not PID
3115          * hashed yet and not running, so nobody can access it.
3116          */
3117         mutex_lock(&parent_ctx->mutex);
3118
3119         /*
3120          * We dont have to disable NMIs - we are only looking at
3121          * the list, not manipulating it:
3122          */
3123         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3124                 if (!counter->hw_event.inherit)
3125                         continue;
3126
3127                 if (inherit_group(counter, parent,
3128                                   parent_ctx, child, child_ctx))
3129                         break;
3130         }
3131
3132         mutex_unlock(&parent_ctx->mutex);
3133 }
3134
3135 static void __cpuinit perf_counter_init_cpu(int cpu)
3136 {
3137         struct perf_cpu_context *cpuctx;
3138
3139         cpuctx = &per_cpu(perf_cpu_context, cpu);
3140         __perf_counter_init_context(&cpuctx->ctx, NULL);
3141
3142         mutex_lock(&perf_resource_mutex);
3143         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3144         mutex_unlock(&perf_resource_mutex);
3145
3146         hw_perf_counter_setup(cpu);
3147 }
3148
3149 #ifdef CONFIG_HOTPLUG_CPU
3150 static void __perf_counter_exit_cpu(void *info)
3151 {
3152         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3153         struct perf_counter_context *ctx = &cpuctx->ctx;
3154         struct perf_counter *counter, *tmp;
3155
3156         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3157                 __perf_counter_remove_from_context(counter);
3158 }
3159 static void perf_counter_exit_cpu(int cpu)
3160 {
3161         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3162         struct perf_counter_context *ctx = &cpuctx->ctx;
3163
3164         mutex_lock(&ctx->mutex);
3165         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3166         mutex_unlock(&ctx->mutex);
3167 }
3168 #else
3169 static inline void perf_counter_exit_cpu(int cpu) { }
3170 #endif
3171
3172 static int __cpuinit
3173 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3174 {
3175         unsigned int cpu = (long)hcpu;
3176
3177         switch (action) {
3178
3179         case CPU_UP_PREPARE:
3180         case CPU_UP_PREPARE_FROZEN:
3181                 perf_counter_init_cpu(cpu);
3182                 break;
3183
3184         case CPU_DOWN_PREPARE:
3185         case CPU_DOWN_PREPARE_FROZEN:
3186                 perf_counter_exit_cpu(cpu);
3187                 break;
3188
3189         default:
3190                 break;
3191         }
3192
3193         return NOTIFY_OK;
3194 }
3195
3196 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3197         .notifier_call          = perf_cpu_notify,
3198 };
3199
3200 static int __init perf_counter_init(void)
3201 {
3202         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3203                         (void *)(long)smp_processor_id());
3204         register_cpu_notifier(&perf_cpu_nb);
3205
3206         return 0;
3207 }
3208 early_initcall(perf_counter_init);
3209
3210 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3211 {
3212         return sprintf(buf, "%d\n", perf_reserved_percpu);
3213 }
3214
3215 static ssize_t
3216 perf_set_reserve_percpu(struct sysdev_class *class,
3217                         const char *buf,
3218                         size_t count)
3219 {
3220         struct perf_cpu_context *cpuctx;
3221         unsigned long val;
3222         int err, cpu, mpt;
3223
3224         err = strict_strtoul(buf, 10, &val);
3225         if (err)
3226                 return err;
3227         if (val > perf_max_counters)
3228                 return -EINVAL;
3229
3230         mutex_lock(&perf_resource_mutex);
3231         perf_reserved_percpu = val;
3232         for_each_online_cpu(cpu) {
3233                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3234                 spin_lock_irq(&cpuctx->ctx.lock);
3235                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3236                           perf_max_counters - perf_reserved_percpu);
3237                 cpuctx->max_pertask = mpt;
3238                 spin_unlock_irq(&cpuctx->ctx.lock);
3239         }
3240         mutex_unlock(&perf_resource_mutex);
3241
3242         return count;
3243 }
3244
3245 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3246 {
3247         return sprintf(buf, "%d\n", perf_overcommit);
3248 }
3249
3250 static ssize_t
3251 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3252 {
3253         unsigned long val;
3254         int err;
3255
3256         err = strict_strtoul(buf, 10, &val);
3257         if (err)
3258                 return err;
3259         if (val > 1)
3260                 return -EINVAL;
3261
3262         mutex_lock(&perf_resource_mutex);
3263         perf_overcommit = val;
3264         mutex_unlock(&perf_resource_mutex);
3265
3266         return count;
3267 }
3268
3269 static SYSDEV_CLASS_ATTR(
3270                                 reserve_percpu,
3271                                 0644,
3272                                 perf_show_reserve_percpu,
3273                                 perf_set_reserve_percpu
3274                         );
3275
3276 static SYSDEV_CLASS_ATTR(
3277                                 overcommit,
3278                                 0644,
3279                                 perf_show_overcommit,
3280                                 perf_set_overcommit
3281                         );
3282
3283 static struct attribute *perfclass_attrs[] = {
3284         &attr_reserve_percpu.attr,
3285         &attr_overcommit.attr,
3286         NULL
3287 };
3288
3289 static struct attribute_group perfclass_attr_group = {
3290         .attrs                  = perfclass_attrs,
3291         .name                   = "perf_counters",
3292 };
3293
3294 static int __init perf_counter_sysfs_init(void)
3295 {
3296         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3297                                   &perfclass_attr_group);
3298 }
3299 device_initcall(perf_counter_sysfs_init);