]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: change event definition
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42  * Mutex for (sysadmin-configurable) counter reservations:
43  */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47  * Architecture provided APIs - weak aliases:
48  */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52         return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void)           { return 0; }
56 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59                struct perf_cpu_context *cpuctx,
60                struct perf_counter_context *ctx, int cpu)
61 {
62         return 0;
63 }
64
65 void __weak perf_counter_print_debug(void)      { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70         struct perf_counter *group_leader = counter->group_leader;
71
72         /*
73          * Depending on whether it is a standalone or sibling counter,
74          * add it straight to the context's counter list, or to the group
75          * leader's sibling list:
76          */
77         if (counter->group_leader == counter)
78                 list_add_tail(&counter->list_entry, &ctx->counter_list);
79         else {
80                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81                 group_leader->nr_siblings++;
82         }
83
84         list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90         struct perf_counter *sibling, *tmp;
91
92         list_del_init(&counter->list_entry);
93         list_del_rcu(&counter->event_entry);
94
95         if (counter->group_leader != counter)
96                 counter->group_leader->nr_siblings--;
97
98         /*
99          * If this was a group counter with sibling counters then
100          * upgrade the siblings to singleton counters by adding them
101          * to the context list directly:
102          */
103         list_for_each_entry_safe(sibling, tmp,
104                                  &counter->sibling_list, list_entry) {
105
106                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107                 sibling->group_leader = sibling;
108         }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113                   struct perf_cpu_context *cpuctx,
114                   struct perf_counter_context *ctx)
115 {
116         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117                 return;
118
119         counter->state = PERF_COUNTER_STATE_INACTIVE;
120         counter->tstamp_stopped = ctx->time_now;
121         counter->hw_ops->disable(counter);
122         counter->oncpu = -1;
123
124         if (!is_software_counter(counter))
125                 cpuctx->active_oncpu--;
126         ctx->nr_active--;
127         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128                 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133                 struct perf_cpu_context *cpuctx,
134                 struct perf_counter_context *ctx)
135 {
136         struct perf_counter *counter;
137
138         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139                 return;
140
141         counter_sched_out(group_counter, cpuctx, ctx);
142
143         /*
144          * Schedule out siblings (if any):
145          */
146         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147                 counter_sched_out(counter, cpuctx, ctx);
148
149         if (group_counter->hw_event.exclusive)
150                 cpuctx->exclusive = 0;
151 }
152
153 /*
154  * Cross CPU call to remove a performance counter
155  *
156  * We disable the counter on the hardware level first. After that we
157  * remove it from the context list.
158  */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162         struct perf_counter *counter = info;
163         struct perf_counter_context *ctx = counter->ctx;
164         unsigned long flags;
165         u64 perf_flags;
166
167         /*
168          * If this is a task context, we need to check whether it is
169          * the current task context of this cpu. If not it has been
170          * scheduled out before the smp call arrived.
171          */
172         if (ctx->task && cpuctx->task_ctx != ctx)
173                 return;
174
175         curr_rq_lock_irq_save(&flags);
176         spin_lock(&ctx->lock);
177
178         counter_sched_out(counter, cpuctx, ctx);
179
180         counter->task = NULL;
181         ctx->nr_counters--;
182
183         /*
184          * Protect the list operation against NMI by disabling the
185          * counters on a global level. NOP for non NMI based counters.
186          */
187         perf_flags = hw_perf_save_disable();
188         list_del_counter(counter, ctx);
189         hw_perf_restore(perf_flags);
190
191         if (!ctx->task) {
192                 /*
193                  * Allow more per task counters with respect to the
194                  * reservation:
195                  */
196                 cpuctx->max_pertask =
197                         min(perf_max_counters - ctx->nr_counters,
198                             perf_max_counters - perf_reserved_percpu);
199         }
200
201         spin_unlock(&ctx->lock);
202         curr_rq_unlock_irq_restore(&flags);
203 }
204
205
206 /*
207  * Remove the counter from a task's (or a CPU's) list of counters.
208  *
209  * Must be called with counter->mutex and ctx->mutex held.
210  *
211  * CPU counters are removed with a smp call. For task counters we only
212  * call when the task is on a CPU.
213  */
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 {
216         struct perf_counter_context *ctx = counter->ctx;
217         struct task_struct *task = ctx->task;
218
219         if (!task) {
220                 /*
221                  * Per cpu counters are removed via an smp call and
222                  * the removal is always sucessful.
223                  */
224                 smp_call_function_single(counter->cpu,
225                                          __perf_counter_remove_from_context,
226                                          counter, 1);
227                 return;
228         }
229
230 retry:
231         task_oncpu_function_call(task, __perf_counter_remove_from_context,
232                                  counter);
233
234         spin_lock_irq(&ctx->lock);
235         /*
236          * If the context is active we need to retry the smp call.
237          */
238         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239                 spin_unlock_irq(&ctx->lock);
240                 goto retry;
241         }
242
243         /*
244          * The lock prevents that this context is scheduled in so we
245          * can remove the counter safely, if the call above did not
246          * succeed.
247          */
248         if (!list_empty(&counter->list_entry)) {
249                 ctx->nr_counters--;
250                 list_del_counter(counter, ctx);
251                 counter->task = NULL;
252         }
253         spin_unlock_irq(&ctx->lock);
254 }
255
256 /*
257  * Get the current time for this context.
258  * If this is a task context, we use the task's task clock,
259  * or for a per-cpu context, we use the cpu clock.
260  */
261 static u64 get_context_time(struct perf_counter_context *ctx, int update)
262 {
263         struct task_struct *curr = ctx->task;
264
265         if (!curr)
266                 return cpu_clock(smp_processor_id());
267
268         return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
269 }
270
271 /*
272  * Update the record of the current time in a context.
273  */
274 static void update_context_time(struct perf_counter_context *ctx, int update)
275 {
276         ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
277 }
278
279 /*
280  * Update the total_time_enabled and total_time_running fields for a counter.
281  */
282 static void update_counter_times(struct perf_counter *counter)
283 {
284         struct perf_counter_context *ctx = counter->ctx;
285         u64 run_end;
286
287         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
288                 counter->total_time_enabled = ctx->time_now -
289                         counter->tstamp_enabled;
290                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291                         run_end = counter->tstamp_stopped;
292                 else
293                         run_end = ctx->time_now;
294                 counter->total_time_running = run_end - counter->tstamp_running;
295         }
296 }
297
298 /*
299  * Update total_time_enabled and total_time_running for all counters in a group.
300  */
301 static void update_group_times(struct perf_counter *leader)
302 {
303         struct perf_counter *counter;
304
305         update_counter_times(leader);
306         list_for_each_entry(counter, &leader->sibling_list, list_entry)
307                 update_counter_times(counter);
308 }
309
310 /*
311  * Cross CPU call to disable a performance counter
312  */
313 static void __perf_counter_disable(void *info)
314 {
315         struct perf_counter *counter = info;
316         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317         struct perf_counter_context *ctx = counter->ctx;
318         unsigned long flags;
319
320         /*
321          * If this is a per-task counter, need to check whether this
322          * counter's task is the current task on this cpu.
323          */
324         if (ctx->task && cpuctx->task_ctx != ctx)
325                 return;
326
327         curr_rq_lock_irq_save(&flags);
328         spin_lock(&ctx->lock);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx, 1);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock(&ctx->lock);
345         curr_rq_unlock_irq_restore(&flags);
346 }
347
348 /*
349  * Disable a counter.
350  */
351 static void perf_counter_disable(struct perf_counter *counter)
352 {
353         struct perf_counter_context *ctx = counter->ctx;
354         struct task_struct *task = ctx->task;
355
356         if (!task) {
357                 /*
358                  * Disable the counter on the cpu that it's on
359                  */
360                 smp_call_function_single(counter->cpu, __perf_counter_disable,
361                                          counter, 1);
362                 return;
363         }
364
365  retry:
366         task_oncpu_function_call(task, __perf_counter_disable, counter);
367
368         spin_lock_irq(&ctx->lock);
369         /*
370          * If the counter is still active, we need to retry the cross-call.
371          */
372         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
373                 spin_unlock_irq(&ctx->lock);
374                 goto retry;
375         }
376
377         /*
378          * Since we have the lock this context can't be scheduled
379          * in, so we can change the state safely.
380          */
381         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
382                 update_counter_times(counter);
383                 counter->state = PERF_COUNTER_STATE_OFF;
384         }
385
386         spin_unlock_irq(&ctx->lock);
387 }
388
389 /*
390  * Disable a counter and all its children.
391  */
392 static void perf_counter_disable_family(struct perf_counter *counter)
393 {
394         struct perf_counter *child;
395
396         perf_counter_disable(counter);
397
398         /*
399          * Lock the mutex to protect the list of children
400          */
401         mutex_lock(&counter->mutex);
402         list_for_each_entry(child, &counter->child_list, child_list)
403                 perf_counter_disable(child);
404         mutex_unlock(&counter->mutex);
405 }
406
407 static int
408 counter_sched_in(struct perf_counter *counter,
409                  struct perf_cpu_context *cpuctx,
410                  struct perf_counter_context *ctx,
411                  int cpu)
412 {
413         if (counter->state <= PERF_COUNTER_STATE_OFF)
414                 return 0;
415
416         counter->state = PERF_COUNTER_STATE_ACTIVE;
417         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
418         /*
419          * The new state must be visible before we turn it on in the hardware:
420          */
421         smp_wmb();
422
423         if (counter->hw_ops->enable(counter)) {
424                 counter->state = PERF_COUNTER_STATE_INACTIVE;
425                 counter->oncpu = -1;
426                 return -EAGAIN;
427         }
428
429         counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
430
431         if (!is_software_counter(counter))
432                 cpuctx->active_oncpu++;
433         ctx->nr_active++;
434
435         if (counter->hw_event.exclusive)
436                 cpuctx->exclusive = 1;
437
438         return 0;
439 }
440
441 /*
442  * Return 1 for a group consisting entirely of software counters,
443  * 0 if the group contains any hardware counters.
444  */
445 static int is_software_only_group(struct perf_counter *leader)
446 {
447         struct perf_counter *counter;
448
449         if (!is_software_counter(leader))
450                 return 0;
451
452         list_for_each_entry(counter, &leader->sibling_list, list_entry)
453                 if (!is_software_counter(counter))
454                         return 0;
455
456         return 1;
457 }
458
459 /*
460  * Work out whether we can put this counter group on the CPU now.
461  */
462 static int group_can_go_on(struct perf_counter *counter,
463                            struct perf_cpu_context *cpuctx,
464                            int can_add_hw)
465 {
466         /*
467          * Groups consisting entirely of software counters can always go on.
468          */
469         if (is_software_only_group(counter))
470                 return 1;
471         /*
472          * If an exclusive group is already on, no other hardware
473          * counters can go on.
474          */
475         if (cpuctx->exclusive)
476                 return 0;
477         /*
478          * If this group is exclusive and there are already
479          * counters on the CPU, it can't go on.
480          */
481         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
482                 return 0;
483         /*
484          * Otherwise, try to add it if all previous groups were able
485          * to go on.
486          */
487         return can_add_hw;
488 }
489
490 static void add_counter_to_ctx(struct perf_counter *counter,
491                                struct perf_counter_context *ctx)
492 {
493         list_add_counter(counter, ctx);
494         ctx->nr_counters++;
495         counter->prev_state = PERF_COUNTER_STATE_OFF;
496         counter->tstamp_enabled = ctx->time_now;
497         counter->tstamp_running = ctx->time_now;
498         counter->tstamp_stopped = ctx->time_now;
499 }
500
501 /*
502  * Cross CPU call to install and enable a performance counter
503  */
504 static void __perf_install_in_context(void *info)
505 {
506         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
507         struct perf_counter *counter = info;
508         struct perf_counter_context *ctx = counter->ctx;
509         struct perf_counter *leader = counter->group_leader;
510         int cpu = smp_processor_id();
511         unsigned long flags;
512         u64 perf_flags;
513         int err;
514
515         /*
516          * If this is a task context, we need to check whether it is
517          * the current task context of this cpu. If not it has been
518          * scheduled out before the smp call arrived.
519          */
520         if (ctx->task && cpuctx->task_ctx != ctx)
521                 return;
522
523         curr_rq_lock_irq_save(&flags);
524         spin_lock(&ctx->lock);
525         update_context_time(ctx, 1);
526
527         /*
528          * Protect the list operation against NMI by disabling the
529          * counters on a global level. NOP for non NMI based counters.
530          */
531         perf_flags = hw_perf_save_disable();
532
533         add_counter_to_ctx(counter, ctx);
534
535         /*
536          * Don't put the counter on if it is disabled or if
537          * it is in a group and the group isn't on.
538          */
539         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
540             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
541                 goto unlock;
542
543         /*
544          * An exclusive counter can't go on if there are already active
545          * hardware counters, and no hardware counter can go on if there
546          * is already an exclusive counter on.
547          */
548         if (!group_can_go_on(counter, cpuctx, 1))
549                 err = -EEXIST;
550         else
551                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
552
553         if (err) {
554                 /*
555                  * This counter couldn't go on.  If it is in a group
556                  * then we have to pull the whole group off.
557                  * If the counter group is pinned then put it in error state.
558                  */
559                 if (leader != counter)
560                         group_sched_out(leader, cpuctx, ctx);
561                 if (leader->hw_event.pinned) {
562                         update_group_times(leader);
563                         leader->state = PERF_COUNTER_STATE_ERROR;
564                 }
565         }
566
567         if (!err && !ctx->task && cpuctx->max_pertask)
568                 cpuctx->max_pertask--;
569
570  unlock:
571         hw_perf_restore(perf_flags);
572
573         spin_unlock(&ctx->lock);
574         curr_rq_unlock_irq_restore(&flags);
575 }
576
577 /*
578  * Attach a performance counter to a context
579  *
580  * First we add the counter to the list with the hardware enable bit
581  * in counter->hw_config cleared.
582  *
583  * If the counter is attached to a task which is on a CPU we use a smp
584  * call to enable it in the task context. The task might have been
585  * scheduled away, but we check this in the smp call again.
586  *
587  * Must be called with ctx->mutex held.
588  */
589 static void
590 perf_install_in_context(struct perf_counter_context *ctx,
591                         struct perf_counter *counter,
592                         int cpu)
593 {
594         struct task_struct *task = ctx->task;
595
596         if (!task) {
597                 /*
598                  * Per cpu counters are installed via an smp call and
599                  * the install is always sucessful.
600                  */
601                 smp_call_function_single(cpu, __perf_install_in_context,
602                                          counter, 1);
603                 return;
604         }
605
606         counter->task = task;
607 retry:
608         task_oncpu_function_call(task, __perf_install_in_context,
609                                  counter);
610
611         spin_lock_irq(&ctx->lock);
612         /*
613          * we need to retry the smp call.
614          */
615         if (ctx->is_active && list_empty(&counter->list_entry)) {
616                 spin_unlock_irq(&ctx->lock);
617                 goto retry;
618         }
619
620         /*
621          * The lock prevents that this context is scheduled in so we
622          * can add the counter safely, if it the call above did not
623          * succeed.
624          */
625         if (list_empty(&counter->list_entry))
626                 add_counter_to_ctx(counter, ctx);
627         spin_unlock_irq(&ctx->lock);
628 }
629
630 /*
631  * Cross CPU call to enable a performance counter
632  */
633 static void __perf_counter_enable(void *info)
634 {
635         struct perf_counter *counter = info;
636         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
637         struct perf_counter_context *ctx = counter->ctx;
638         struct perf_counter *leader = counter->group_leader;
639         unsigned long flags;
640         int err;
641
642         /*
643          * If this is a per-task counter, need to check whether this
644          * counter's task is the current task on this cpu.
645          */
646         if (ctx->task && cpuctx->task_ctx != ctx)
647                 return;
648
649         curr_rq_lock_irq_save(&flags);
650         spin_lock(&ctx->lock);
651         update_context_time(ctx, 1);
652
653         counter->prev_state = counter->state;
654         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
655                 goto unlock;
656         counter->state = PERF_COUNTER_STATE_INACTIVE;
657         counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658
659         /*
660          * If the counter is in a group and isn't the group leader,
661          * then don't put it on unless the group is on.
662          */
663         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
664                 goto unlock;
665
666         if (!group_can_go_on(counter, cpuctx, 1))
667                 err = -EEXIST;
668         else
669                 err = counter_sched_in(counter, cpuctx, ctx,
670                                        smp_processor_id());
671
672         if (err) {
673                 /*
674                  * If this counter can't go on and it's part of a
675                  * group, then the whole group has to come off.
676                  */
677                 if (leader != counter)
678                         group_sched_out(leader, cpuctx, ctx);
679                 if (leader->hw_event.pinned) {
680                         update_group_times(leader);
681                         leader->state = PERF_COUNTER_STATE_ERROR;
682                 }
683         }
684
685  unlock:
686         spin_unlock(&ctx->lock);
687         curr_rq_unlock_irq_restore(&flags);
688 }
689
690 /*
691  * Enable a counter.
692  */
693 static void perf_counter_enable(struct perf_counter *counter)
694 {
695         struct perf_counter_context *ctx = counter->ctx;
696         struct task_struct *task = ctx->task;
697
698         if (!task) {
699                 /*
700                  * Enable the counter on the cpu that it's on
701                  */
702                 smp_call_function_single(counter->cpu, __perf_counter_enable,
703                                          counter, 1);
704                 return;
705         }
706
707         spin_lock_irq(&ctx->lock);
708         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
709                 goto out;
710
711         /*
712          * If the counter is in error state, clear that first.
713          * That way, if we see the counter in error state below, we
714          * know that it has gone back into error state, as distinct
715          * from the task having been scheduled away before the
716          * cross-call arrived.
717          */
718         if (counter->state == PERF_COUNTER_STATE_ERROR)
719                 counter->state = PERF_COUNTER_STATE_OFF;
720
721  retry:
722         spin_unlock_irq(&ctx->lock);
723         task_oncpu_function_call(task, __perf_counter_enable, counter);
724
725         spin_lock_irq(&ctx->lock);
726
727         /*
728          * If the context is active and the counter is still off,
729          * we need to retry the cross-call.
730          */
731         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
732                 goto retry;
733
734         /*
735          * Since we have the lock this context can't be scheduled
736          * in, so we can change the state safely.
737          */
738         if (counter->state == PERF_COUNTER_STATE_OFF) {
739                 counter->state = PERF_COUNTER_STATE_INACTIVE;
740                 counter->tstamp_enabled = ctx->time_now -
741                         counter->total_time_enabled;
742         }
743  out:
744         spin_unlock_irq(&ctx->lock);
745 }
746
747 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
748 {
749         atomic_add(refresh, &counter->event_limit);
750         perf_counter_enable(counter);
751 }
752
753 /*
754  * Enable a counter and all its children.
755  */
756 static void perf_counter_enable_family(struct perf_counter *counter)
757 {
758         struct perf_counter *child;
759
760         perf_counter_enable(counter);
761
762         /*
763          * Lock the mutex to protect the list of children
764          */
765         mutex_lock(&counter->mutex);
766         list_for_each_entry(child, &counter->child_list, child_list)
767                 perf_counter_enable(child);
768         mutex_unlock(&counter->mutex);
769 }
770
771 void __perf_counter_sched_out(struct perf_counter_context *ctx,
772                               struct perf_cpu_context *cpuctx)
773 {
774         struct perf_counter *counter;
775         u64 flags;
776
777         spin_lock(&ctx->lock);
778         ctx->is_active = 0;
779         if (likely(!ctx->nr_counters))
780                 goto out;
781         update_context_time(ctx, 0);
782
783         flags = hw_perf_save_disable();
784         if (ctx->nr_active) {
785                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
786                         group_sched_out(counter, cpuctx, ctx);
787         }
788         hw_perf_restore(flags);
789  out:
790         spin_unlock(&ctx->lock);
791 }
792
793 /*
794  * Called from scheduler to remove the counters of the current task,
795  * with interrupts disabled.
796  *
797  * We stop each counter and update the counter value in counter->count.
798  *
799  * This does not protect us against NMI, but disable()
800  * sets the disabled bit in the control field of counter _before_
801  * accessing the counter control register. If a NMI hits, then it will
802  * not restart the counter.
803  */
804 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
805 {
806         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
807         struct perf_counter_context *ctx = &task->perf_counter_ctx;
808         struct pt_regs *regs;
809
810         if (likely(!cpuctx->task_ctx))
811                 return;
812
813         regs = task_pt_regs(task);
814         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
815         __perf_counter_sched_out(ctx, cpuctx);
816
817         cpuctx->task_ctx = NULL;
818 }
819
820 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
821 {
822         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
823 }
824
825 static int
826 group_sched_in(struct perf_counter *group_counter,
827                struct perf_cpu_context *cpuctx,
828                struct perf_counter_context *ctx,
829                int cpu)
830 {
831         struct perf_counter *counter, *partial_group;
832         int ret;
833
834         if (group_counter->state == PERF_COUNTER_STATE_OFF)
835                 return 0;
836
837         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
838         if (ret)
839                 return ret < 0 ? ret : 0;
840
841         group_counter->prev_state = group_counter->state;
842         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
843                 return -EAGAIN;
844
845         /*
846          * Schedule in siblings as one group (if any):
847          */
848         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
849                 counter->prev_state = counter->state;
850                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
851                         partial_group = counter;
852                         goto group_error;
853                 }
854         }
855
856         return 0;
857
858 group_error:
859         /*
860          * Groups can be scheduled in as one unit only, so undo any
861          * partial group before returning:
862          */
863         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
864                 if (counter == partial_group)
865                         break;
866                 counter_sched_out(counter, cpuctx, ctx);
867         }
868         counter_sched_out(group_counter, cpuctx, ctx);
869
870         return -EAGAIN;
871 }
872
873 static void
874 __perf_counter_sched_in(struct perf_counter_context *ctx,
875                         struct perf_cpu_context *cpuctx, int cpu)
876 {
877         struct perf_counter *counter;
878         u64 flags;
879         int can_add_hw = 1;
880
881         spin_lock(&ctx->lock);
882         ctx->is_active = 1;
883         if (likely(!ctx->nr_counters))
884                 goto out;
885
886         /*
887          * Add any time since the last sched_out to the lost time
888          * so it doesn't get included in the total_time_enabled and
889          * total_time_running measures for counters in the context.
890          */
891         ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
892
893         flags = hw_perf_save_disable();
894
895         /*
896          * First go through the list and put on any pinned groups
897          * in order to give them the best chance of going on.
898          */
899         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901                     !counter->hw_event.pinned)
902                         continue;
903                 if (counter->cpu != -1 && counter->cpu != cpu)
904                         continue;
905
906                 if (group_can_go_on(counter, cpuctx, 1))
907                         group_sched_in(counter, cpuctx, ctx, cpu);
908
909                 /*
910                  * If this pinned group hasn't been scheduled,
911                  * put it in error state.
912                  */
913                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914                         update_group_times(counter);
915                         counter->state = PERF_COUNTER_STATE_ERROR;
916                 }
917         }
918
919         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920                 /*
921                  * Ignore counters in OFF or ERROR state, and
922                  * ignore pinned counters since we did them already.
923                  */
924                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925                     counter->hw_event.pinned)
926                         continue;
927
928                 /*
929                  * Listen to the 'cpu' scheduling filter constraint
930                  * of counters:
931                  */
932                 if (counter->cpu != -1 && counter->cpu != cpu)
933                         continue;
934
935                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936                         if (group_sched_in(counter, cpuctx, ctx, cpu))
937                                 can_add_hw = 0;
938                 }
939         }
940         hw_perf_restore(flags);
941  out:
942         spin_unlock(&ctx->lock);
943 }
944
945 /*
946  * Called from scheduler to add the counters of the current task
947  * with interrupts disabled.
948  *
949  * We restore the counter value and then enable it.
950  *
951  * This does not protect us against NMI, but enable()
952  * sets the enabled bit in the control field of counter _before_
953  * accessing the counter control register. If a NMI hits, then it will
954  * keep the counter running.
955  */
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
957 {
958         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959         struct perf_counter_context *ctx = &task->perf_counter_ctx;
960
961         __perf_counter_sched_in(ctx, cpuctx, cpu);
962         cpuctx->task_ctx = ctx;
963 }
964
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
966 {
967         struct perf_counter_context *ctx = &cpuctx->ctx;
968
969         __perf_counter_sched_in(ctx, cpuctx, cpu);
970 }
971
972 int perf_counter_task_disable(void)
973 {
974         struct task_struct *curr = current;
975         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976         struct perf_counter *counter;
977         unsigned long flags;
978         u64 perf_flags;
979         int cpu;
980
981         if (likely(!ctx->nr_counters))
982                 return 0;
983
984         curr_rq_lock_irq_save(&flags);
985         cpu = smp_processor_id();
986
987         /* force the update of the task clock: */
988         __task_delta_exec(curr, 1);
989
990         perf_counter_task_sched_out(curr, cpu);
991
992         spin_lock(&ctx->lock);
993
994         /*
995          * Disable all the counters:
996          */
997         perf_flags = hw_perf_save_disable();
998
999         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1000                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1001                         update_group_times(counter);
1002                         counter->state = PERF_COUNTER_STATE_OFF;
1003                 }
1004         }
1005
1006         hw_perf_restore(perf_flags);
1007
1008         spin_unlock(&ctx->lock);
1009
1010         curr_rq_unlock_irq_restore(&flags);
1011
1012         return 0;
1013 }
1014
1015 int perf_counter_task_enable(void)
1016 {
1017         struct task_struct *curr = current;
1018         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1019         struct perf_counter *counter;
1020         unsigned long flags;
1021         u64 perf_flags;
1022         int cpu;
1023
1024         if (likely(!ctx->nr_counters))
1025                 return 0;
1026
1027         curr_rq_lock_irq_save(&flags);
1028         cpu = smp_processor_id();
1029
1030         /* force the update of the task clock: */
1031         __task_delta_exec(curr, 1);
1032
1033         perf_counter_task_sched_out(curr, cpu);
1034
1035         spin_lock(&ctx->lock);
1036
1037         /*
1038          * Disable all the counters:
1039          */
1040         perf_flags = hw_perf_save_disable();
1041
1042         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1043                 if (counter->state > PERF_COUNTER_STATE_OFF)
1044                         continue;
1045                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1046                 counter->tstamp_enabled = ctx->time_now -
1047                         counter->total_time_enabled;
1048                 counter->hw_event.disabled = 0;
1049         }
1050         hw_perf_restore(perf_flags);
1051
1052         spin_unlock(&ctx->lock);
1053
1054         perf_counter_task_sched_in(curr, cpu);
1055
1056         curr_rq_unlock_irq_restore(&flags);
1057
1058         return 0;
1059 }
1060
1061 /*
1062  * Round-robin a context's counters:
1063  */
1064 static void rotate_ctx(struct perf_counter_context *ctx)
1065 {
1066         struct perf_counter *counter;
1067         u64 perf_flags;
1068
1069         if (!ctx->nr_counters)
1070                 return;
1071
1072         spin_lock(&ctx->lock);
1073         /*
1074          * Rotate the first entry last (works just fine for group counters too):
1075          */
1076         perf_flags = hw_perf_save_disable();
1077         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1078                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1079                 break;
1080         }
1081         hw_perf_restore(perf_flags);
1082
1083         spin_unlock(&ctx->lock);
1084 }
1085
1086 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1087 {
1088         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1089         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1090         const int rotate_percpu = 0;
1091
1092         if (rotate_percpu)
1093                 perf_counter_cpu_sched_out(cpuctx);
1094         perf_counter_task_sched_out(curr, cpu);
1095
1096         if (rotate_percpu)
1097                 rotate_ctx(&cpuctx->ctx);
1098         rotate_ctx(ctx);
1099
1100         if (rotate_percpu)
1101                 perf_counter_cpu_sched_in(cpuctx, cpu);
1102         perf_counter_task_sched_in(curr, cpu);
1103 }
1104
1105 /*
1106  * Cross CPU call to read the hardware counter
1107  */
1108 static void __read(void *info)
1109 {
1110         struct perf_counter *counter = info;
1111         struct perf_counter_context *ctx = counter->ctx;
1112         unsigned long flags;
1113
1114         curr_rq_lock_irq_save(&flags);
1115         if (ctx->is_active)
1116                 update_context_time(ctx, 1);
1117         counter->hw_ops->read(counter);
1118         update_counter_times(counter);
1119         curr_rq_unlock_irq_restore(&flags);
1120 }
1121
1122 static u64 perf_counter_read(struct perf_counter *counter)
1123 {
1124         /*
1125          * If counter is enabled and currently active on a CPU, update the
1126          * value in the counter structure:
1127          */
1128         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1129                 smp_call_function_single(counter->oncpu,
1130                                          __read, counter, 1);
1131         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1132                 update_counter_times(counter);
1133         }
1134
1135         return atomic64_read(&counter->count);
1136 }
1137
1138 static void put_context(struct perf_counter_context *ctx)
1139 {
1140         if (ctx->task)
1141                 put_task_struct(ctx->task);
1142 }
1143
1144 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1145 {
1146         struct perf_cpu_context *cpuctx;
1147         struct perf_counter_context *ctx;
1148         struct task_struct *task;
1149
1150         /*
1151          * If cpu is not a wildcard then this is a percpu counter:
1152          */
1153         if (cpu != -1) {
1154                 /* Must be root to operate on a CPU counter: */
1155                 if (!capable(CAP_SYS_ADMIN))
1156                         return ERR_PTR(-EACCES);
1157
1158                 if (cpu < 0 || cpu > num_possible_cpus())
1159                         return ERR_PTR(-EINVAL);
1160
1161                 /*
1162                  * We could be clever and allow to attach a counter to an
1163                  * offline CPU and activate it when the CPU comes up, but
1164                  * that's for later.
1165                  */
1166                 if (!cpu_isset(cpu, cpu_online_map))
1167                         return ERR_PTR(-ENODEV);
1168
1169                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1170                 ctx = &cpuctx->ctx;
1171
1172                 return ctx;
1173         }
1174
1175         rcu_read_lock();
1176         if (!pid)
1177                 task = current;
1178         else
1179                 task = find_task_by_vpid(pid);
1180         if (task)
1181                 get_task_struct(task);
1182         rcu_read_unlock();
1183
1184         if (!task)
1185                 return ERR_PTR(-ESRCH);
1186
1187         ctx = &task->perf_counter_ctx;
1188         ctx->task = task;
1189
1190         /* Reuse ptrace permission checks for now. */
1191         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1192                 put_context(ctx);
1193                 return ERR_PTR(-EACCES);
1194         }
1195
1196         return ctx;
1197 }
1198
1199 static void free_counter_rcu(struct rcu_head *head)
1200 {
1201         struct perf_counter *counter;
1202
1203         counter = container_of(head, struct perf_counter, rcu_head);
1204         kfree(counter);
1205 }
1206
1207 static void perf_pending_sync(struct perf_counter *counter);
1208
1209 static void free_counter(struct perf_counter *counter)
1210 {
1211         perf_pending_sync(counter);
1212
1213         if (counter->destroy)
1214                 counter->destroy(counter);
1215
1216         call_rcu(&counter->rcu_head, free_counter_rcu);
1217 }
1218
1219 /*
1220  * Called when the last reference to the file is gone.
1221  */
1222 static int perf_release(struct inode *inode, struct file *file)
1223 {
1224         struct perf_counter *counter = file->private_data;
1225         struct perf_counter_context *ctx = counter->ctx;
1226
1227         file->private_data = NULL;
1228
1229         mutex_lock(&ctx->mutex);
1230         mutex_lock(&counter->mutex);
1231
1232         perf_counter_remove_from_context(counter);
1233
1234         mutex_unlock(&counter->mutex);
1235         mutex_unlock(&ctx->mutex);
1236
1237         free_counter(counter);
1238         put_context(ctx);
1239
1240         return 0;
1241 }
1242
1243 /*
1244  * Read the performance counter - simple non blocking version for now
1245  */
1246 static ssize_t
1247 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1248 {
1249         u64 values[3];
1250         int n;
1251
1252         /*
1253          * Return end-of-file for a read on a counter that is in
1254          * error state (i.e. because it was pinned but it couldn't be
1255          * scheduled on to the CPU at some point).
1256          */
1257         if (counter->state == PERF_COUNTER_STATE_ERROR)
1258                 return 0;
1259
1260         mutex_lock(&counter->mutex);
1261         values[0] = perf_counter_read(counter);
1262         n = 1;
1263         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1264                 values[n++] = counter->total_time_enabled +
1265                         atomic64_read(&counter->child_total_time_enabled);
1266         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1267                 values[n++] = counter->total_time_running +
1268                         atomic64_read(&counter->child_total_time_running);
1269         mutex_unlock(&counter->mutex);
1270
1271         if (count < n * sizeof(u64))
1272                 return -EINVAL;
1273         count = n * sizeof(u64);
1274
1275         if (copy_to_user(buf, values, count))
1276                 return -EFAULT;
1277
1278         return count;
1279 }
1280
1281 static ssize_t
1282 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1283 {
1284         struct perf_counter *counter = file->private_data;
1285
1286         return perf_read_hw(counter, buf, count);
1287 }
1288
1289 static unsigned int perf_poll(struct file *file, poll_table *wait)
1290 {
1291         struct perf_counter *counter = file->private_data;
1292         struct perf_mmap_data *data;
1293         unsigned int events;
1294
1295         rcu_read_lock();
1296         data = rcu_dereference(counter->data);
1297         if (data)
1298                 events = atomic_xchg(&data->wakeup, 0);
1299         else
1300                 events = POLL_HUP;
1301         rcu_read_unlock();
1302
1303         poll_wait(file, &counter->waitq, wait);
1304
1305         return events;
1306 }
1307
1308 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1309 {
1310         struct perf_counter *counter = file->private_data;
1311         int err = 0;
1312
1313         switch (cmd) {
1314         case PERF_COUNTER_IOC_ENABLE:
1315                 perf_counter_enable_family(counter);
1316                 break;
1317         case PERF_COUNTER_IOC_DISABLE:
1318                 perf_counter_disable_family(counter);
1319                 break;
1320         case PERF_COUNTER_IOC_REFRESH:
1321                 perf_counter_refresh(counter, arg);
1322                 break;
1323         default:
1324                 err = -ENOTTY;
1325         }
1326         return err;
1327 }
1328
1329 /*
1330  * Callers need to ensure there can be no nesting of this function, otherwise
1331  * the seqlock logic goes bad. We can not serialize this because the arch
1332  * code calls this from NMI context.
1333  */
1334 void perf_counter_update_userpage(struct perf_counter *counter)
1335 {
1336         struct perf_mmap_data *data;
1337         struct perf_counter_mmap_page *userpg;
1338
1339         rcu_read_lock();
1340         data = rcu_dereference(counter->data);
1341         if (!data)
1342                 goto unlock;
1343
1344         userpg = data->user_page;
1345
1346         /*
1347          * Disable preemption so as to not let the corresponding user-space
1348          * spin too long if we get preempted.
1349          */
1350         preempt_disable();
1351         ++userpg->lock;
1352         barrier();
1353         userpg->index = counter->hw.idx;
1354         userpg->offset = atomic64_read(&counter->count);
1355         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1356                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1357
1358         barrier();
1359         ++userpg->lock;
1360         preempt_enable();
1361 unlock:
1362         rcu_read_unlock();
1363 }
1364
1365 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1366 {
1367         struct perf_counter *counter = vma->vm_file->private_data;
1368         struct perf_mmap_data *data;
1369         int ret = VM_FAULT_SIGBUS;
1370
1371         rcu_read_lock();
1372         data = rcu_dereference(counter->data);
1373         if (!data)
1374                 goto unlock;
1375
1376         if (vmf->pgoff == 0) {
1377                 vmf->page = virt_to_page(data->user_page);
1378         } else {
1379                 int nr = vmf->pgoff - 1;
1380
1381                 if ((unsigned)nr > data->nr_pages)
1382                         goto unlock;
1383
1384                 vmf->page = virt_to_page(data->data_pages[nr]);
1385         }
1386         get_page(vmf->page);
1387         ret = 0;
1388 unlock:
1389         rcu_read_unlock();
1390
1391         return ret;
1392 }
1393
1394 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1395 {
1396         struct perf_mmap_data *data;
1397         unsigned long size;
1398         int i;
1399
1400         WARN_ON(atomic_read(&counter->mmap_count));
1401
1402         size = sizeof(struct perf_mmap_data);
1403         size += nr_pages * sizeof(void *);
1404
1405         data = kzalloc(size, GFP_KERNEL);
1406         if (!data)
1407                 goto fail;
1408
1409         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1410         if (!data->user_page)
1411                 goto fail_user_page;
1412
1413         for (i = 0; i < nr_pages; i++) {
1414                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1415                 if (!data->data_pages[i])
1416                         goto fail_data_pages;
1417         }
1418
1419         data->nr_pages = nr_pages;
1420
1421         rcu_assign_pointer(counter->data, data);
1422
1423         return 0;
1424
1425 fail_data_pages:
1426         for (i--; i >= 0; i--)
1427                 free_page((unsigned long)data->data_pages[i]);
1428
1429         free_page((unsigned long)data->user_page);
1430
1431 fail_user_page:
1432         kfree(data);
1433
1434 fail:
1435         return -ENOMEM;
1436 }
1437
1438 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1439 {
1440         struct perf_mmap_data *data = container_of(rcu_head,
1441                         struct perf_mmap_data, rcu_head);
1442         int i;
1443
1444         free_page((unsigned long)data->user_page);
1445         for (i = 0; i < data->nr_pages; i++)
1446                 free_page((unsigned long)data->data_pages[i]);
1447         kfree(data);
1448 }
1449
1450 static void perf_mmap_data_free(struct perf_counter *counter)
1451 {
1452         struct perf_mmap_data *data = counter->data;
1453
1454         WARN_ON(atomic_read(&counter->mmap_count));
1455
1456         rcu_assign_pointer(counter->data, NULL);
1457         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1458 }
1459
1460 static void perf_mmap_open(struct vm_area_struct *vma)
1461 {
1462         struct perf_counter *counter = vma->vm_file->private_data;
1463
1464         atomic_inc(&counter->mmap_count);
1465 }
1466
1467 static void perf_mmap_close(struct vm_area_struct *vma)
1468 {
1469         struct perf_counter *counter = vma->vm_file->private_data;
1470
1471         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1472                                       &counter->mmap_mutex)) {
1473                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1474                 perf_mmap_data_free(counter);
1475                 mutex_unlock(&counter->mmap_mutex);
1476         }
1477 }
1478
1479 static struct vm_operations_struct perf_mmap_vmops = {
1480         .open  = perf_mmap_open,
1481         .close = perf_mmap_close,
1482         .fault = perf_mmap_fault,
1483 };
1484
1485 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1486 {
1487         struct perf_counter *counter = file->private_data;
1488         unsigned long vma_size;
1489         unsigned long nr_pages;
1490         unsigned long locked, lock_limit;
1491         int ret = 0;
1492
1493         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1494                 return -EINVAL;
1495
1496         vma_size = vma->vm_end - vma->vm_start;
1497         nr_pages = (vma_size / PAGE_SIZE) - 1;
1498
1499         /*
1500          * If we have data pages ensure they're a power-of-two number, so we
1501          * can do bitmasks instead of modulo.
1502          */
1503         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1504                 return -EINVAL;
1505
1506         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1507                 return -EINVAL;
1508
1509         if (vma->vm_pgoff != 0)
1510                 return -EINVAL;
1511
1512         mutex_lock(&counter->mmap_mutex);
1513         if (atomic_inc_not_zero(&counter->mmap_count)) {
1514                 if (nr_pages != counter->data->nr_pages)
1515                         ret = -EINVAL;
1516                 goto unlock;
1517         }
1518
1519         locked = vma->vm_mm->locked_vm;
1520         locked += nr_pages + 1;
1521
1522         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1523         lock_limit >>= PAGE_SHIFT;
1524
1525         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1526                 ret = -EPERM;
1527                 goto unlock;
1528         }
1529
1530         WARN_ON(counter->data);
1531         ret = perf_mmap_data_alloc(counter, nr_pages);
1532         if (ret)
1533                 goto unlock;
1534
1535         atomic_set(&counter->mmap_count, 1);
1536         vma->vm_mm->locked_vm += nr_pages + 1;
1537 unlock:
1538         mutex_unlock(&counter->mmap_mutex);
1539
1540         vma->vm_flags &= ~VM_MAYWRITE;
1541         vma->vm_flags |= VM_RESERVED;
1542         vma->vm_ops = &perf_mmap_vmops;
1543
1544         return ret;
1545 }
1546
1547 static int perf_fasync(int fd, struct file *filp, int on)
1548 {
1549         struct perf_counter *counter = filp->private_data;
1550         struct inode *inode = filp->f_path.dentry->d_inode;
1551         int retval;
1552
1553         mutex_lock(&inode->i_mutex);
1554         retval = fasync_helper(fd, filp, on, &counter->fasync);
1555         mutex_unlock(&inode->i_mutex);
1556
1557         if (retval < 0)
1558                 return retval;
1559
1560         return 0;
1561 }
1562
1563 static const struct file_operations perf_fops = {
1564         .release                = perf_release,
1565         .read                   = perf_read,
1566         .poll                   = perf_poll,
1567         .unlocked_ioctl         = perf_ioctl,
1568         .compat_ioctl           = perf_ioctl,
1569         .mmap                   = perf_mmap,
1570         .fasync                 = perf_fasync,
1571 };
1572
1573 /*
1574  * Perf counter wakeup
1575  *
1576  * If there's data, ensure we set the poll() state and publish everything
1577  * to user-space before waking everybody up.
1578  */
1579
1580 void perf_counter_wakeup(struct perf_counter *counter)
1581 {
1582         struct perf_mmap_data *data;
1583
1584         rcu_read_lock();
1585         data = rcu_dereference(counter->data);
1586         if (data) {
1587                 atomic_set(&data->wakeup, POLL_IN);
1588                 /*
1589                  * Ensure all data writes are issued before updating the
1590                  * user-space data head information. The matching rmb()
1591                  * will be in userspace after reading this value.
1592                  */
1593                 smp_wmb();
1594                 data->user_page->data_head = atomic_read(&data->head);
1595         }
1596         rcu_read_unlock();
1597
1598         wake_up_all(&counter->waitq);
1599
1600         if (counter->pending_kill) {
1601                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1602                 counter->pending_kill = 0;
1603         }
1604 }
1605
1606 /*
1607  * Pending wakeups
1608  *
1609  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1610  *
1611  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1612  * single linked list and use cmpxchg() to add entries lockless.
1613  */
1614
1615 static void perf_pending_counter(struct perf_pending_entry *entry)
1616 {
1617         struct perf_counter *counter = container_of(entry,
1618                         struct perf_counter, pending);
1619
1620         if (counter->pending_disable) {
1621                 counter->pending_disable = 0;
1622                 perf_counter_disable(counter);
1623         }
1624
1625         if (counter->pending_wakeup) {
1626                 counter->pending_wakeup = 0;
1627                 perf_counter_wakeup(counter);
1628         }
1629 }
1630
1631 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1632
1633 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1634         PENDING_TAIL,
1635 };
1636
1637 static void perf_pending_queue(struct perf_pending_entry *entry,
1638                                void (*func)(struct perf_pending_entry *))
1639 {
1640         struct perf_pending_entry **head;
1641
1642         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1643                 return;
1644
1645         entry->func = func;
1646
1647         head = &get_cpu_var(perf_pending_head);
1648
1649         do {
1650                 entry->next = *head;
1651         } while (cmpxchg(head, entry->next, entry) != entry->next);
1652
1653         set_perf_counter_pending();
1654
1655         put_cpu_var(perf_pending_head);
1656 }
1657
1658 static int __perf_pending_run(void)
1659 {
1660         struct perf_pending_entry *list;
1661         int nr = 0;
1662
1663         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1664         while (list != PENDING_TAIL) {
1665                 void (*func)(struct perf_pending_entry *);
1666                 struct perf_pending_entry *entry = list;
1667
1668                 list = list->next;
1669
1670                 func = entry->func;
1671                 entry->next = NULL;
1672                 /*
1673                  * Ensure we observe the unqueue before we issue the wakeup,
1674                  * so that we won't be waiting forever.
1675                  * -- see perf_not_pending().
1676                  */
1677                 smp_wmb();
1678
1679                 func(entry);
1680                 nr++;
1681         }
1682
1683         return nr;
1684 }
1685
1686 static inline int perf_not_pending(struct perf_counter *counter)
1687 {
1688         /*
1689          * If we flush on whatever cpu we run, there is a chance we don't
1690          * need to wait.
1691          */
1692         get_cpu();
1693         __perf_pending_run();
1694         put_cpu();
1695
1696         /*
1697          * Ensure we see the proper queue state before going to sleep
1698          * so that we do not miss the wakeup. -- see perf_pending_handle()
1699          */
1700         smp_rmb();
1701         return counter->pending.next == NULL;
1702 }
1703
1704 static void perf_pending_sync(struct perf_counter *counter)
1705 {
1706         wait_event(counter->waitq, perf_not_pending(counter));
1707 }
1708
1709 void perf_counter_do_pending(void)
1710 {
1711         __perf_pending_run();
1712 }
1713
1714 /*
1715  * Callchain support -- arch specific
1716  */
1717
1718 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1719 {
1720         return NULL;
1721 }
1722
1723 /*
1724  * Output
1725  */
1726
1727 struct perf_output_handle {
1728         struct perf_counter     *counter;
1729         struct perf_mmap_data   *data;
1730         unsigned int            offset;
1731         unsigned int            head;
1732         int                     wakeup;
1733         int                     nmi;
1734         int                     overflow;
1735 };
1736
1737 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1738 {
1739         if (handle->nmi) {
1740                 handle->counter->pending_wakeup = 1;
1741                 perf_pending_queue(&handle->counter->pending,
1742                                    perf_pending_counter);
1743         } else
1744                 perf_counter_wakeup(handle->counter);
1745 }
1746
1747 static int perf_output_begin(struct perf_output_handle *handle,
1748                              struct perf_counter *counter, unsigned int size,
1749                              int nmi, int overflow)
1750 {
1751         struct perf_mmap_data *data;
1752         unsigned int offset, head;
1753
1754         rcu_read_lock();
1755         data = rcu_dereference(counter->data);
1756         if (!data)
1757                 goto out;
1758
1759         handle->counter  = counter;
1760         handle->nmi      = nmi;
1761         handle->overflow = overflow;
1762
1763         if (!data->nr_pages)
1764                 goto fail;
1765
1766         do {
1767                 offset = head = atomic_read(&data->head);
1768                 head += size;
1769         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1770
1771         handle->data    = data;
1772         handle->offset  = offset;
1773         handle->head    = head;
1774         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1775
1776         return 0;
1777
1778 fail:
1779         __perf_output_wakeup(handle);
1780 out:
1781         rcu_read_unlock();
1782
1783         return -ENOSPC;
1784 }
1785
1786 static void perf_output_copy(struct perf_output_handle *handle,
1787                              void *buf, unsigned int len)
1788 {
1789         unsigned int pages_mask;
1790         unsigned int offset;
1791         unsigned int size;
1792         void **pages;
1793
1794         offset          = handle->offset;
1795         pages_mask      = handle->data->nr_pages - 1;
1796         pages           = handle->data->data_pages;
1797
1798         do {
1799                 unsigned int page_offset;
1800                 int nr;
1801
1802                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1803                 page_offset = offset & (PAGE_SIZE - 1);
1804                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1805
1806                 memcpy(pages[nr] + page_offset, buf, size);
1807
1808                 len         -= size;
1809                 buf         += size;
1810                 offset      += size;
1811         } while (len);
1812
1813         handle->offset = offset;
1814
1815         WARN_ON_ONCE(handle->offset > handle->head);
1816 }
1817
1818 #define perf_output_put(handle, x) \
1819         perf_output_copy((handle), &(x), sizeof(x))
1820
1821 static void perf_output_end(struct perf_output_handle *handle)
1822 {
1823         int wakeup_events = handle->counter->hw_event.wakeup_events;
1824
1825         if (handle->overflow && wakeup_events) {
1826                 int events = atomic_inc_return(&handle->data->events);
1827                 if (events >= wakeup_events) {
1828                         atomic_sub(wakeup_events, &handle->data->events);
1829                         __perf_output_wakeup(handle);
1830                 }
1831         } else if (handle->wakeup)
1832                 __perf_output_wakeup(handle);
1833         rcu_read_unlock();
1834 }
1835
1836 static void perf_counter_output(struct perf_counter *counter,
1837                                 int nmi, struct pt_regs *regs)
1838 {
1839         int ret;
1840         u64 record_type = counter->hw_event.record_type;
1841         struct perf_output_handle handle;
1842         struct perf_event_header header;
1843         u64 ip;
1844         struct {
1845                 u32 pid, tid;
1846         } tid_entry;
1847         struct {
1848                 u64 event;
1849                 u64 counter;
1850         } group_entry;
1851         struct perf_callchain_entry *callchain = NULL;
1852         int callchain_size = 0;
1853         u64 time;
1854
1855         header.type = PERF_EVENT_COUNTER_OVERFLOW;
1856         header.size = sizeof(header);
1857
1858         if (record_type & PERF_RECORD_IP) {
1859                 ip = instruction_pointer(regs);
1860                 header.type |= __PERF_EVENT_IP;
1861                 header.size += sizeof(ip);
1862         }
1863
1864         if (record_type & PERF_RECORD_TID) {
1865                 /* namespace issues */
1866                 tid_entry.pid = current->group_leader->pid;
1867                 tid_entry.tid = current->pid;
1868
1869                 header.type |= __PERF_EVENT_TID;
1870                 header.size += sizeof(tid_entry);
1871         }
1872
1873         if (record_type & PERF_RECORD_GROUP) {
1874                 header.type |= __PERF_EVENT_GROUP;
1875                 header.size += sizeof(u64) +
1876                         counter->nr_siblings * sizeof(group_entry);
1877         }
1878
1879         if (record_type & PERF_RECORD_CALLCHAIN) {
1880                 callchain = perf_callchain(regs);
1881
1882                 if (callchain) {
1883                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1884
1885                         header.type |= __PERF_EVENT_CALLCHAIN;
1886                         header.size += callchain_size;
1887                 }
1888         }
1889
1890         if (record_type & PERF_RECORD_TIME) {
1891                 /*
1892                  * Maybe do better on x86 and provide cpu_clock_nmi()
1893                  */
1894                 time = sched_clock();
1895
1896                 header.type |= __PERF_EVENT_TIME;
1897                 header.size += sizeof(u64);
1898         }
1899
1900         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1901         if (ret)
1902                 return;
1903
1904         perf_output_put(&handle, header);
1905
1906         if (record_type & PERF_RECORD_IP)
1907                 perf_output_put(&handle, ip);
1908
1909         if (record_type & PERF_RECORD_TID)
1910                 perf_output_put(&handle, tid_entry);
1911
1912         if (record_type & PERF_RECORD_GROUP) {
1913                 struct perf_counter *leader, *sub;
1914                 u64 nr = counter->nr_siblings;
1915
1916                 perf_output_put(&handle, nr);
1917
1918                 leader = counter->group_leader;
1919                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1920                         if (sub != counter)
1921                                 sub->hw_ops->read(sub);
1922
1923                         group_entry.event = sub->hw_event.config;
1924                         group_entry.counter = atomic64_read(&sub->count);
1925
1926                         perf_output_put(&handle, group_entry);
1927                 }
1928         }
1929
1930         if (callchain)
1931                 perf_output_copy(&handle, callchain, callchain_size);
1932
1933         if (record_type & PERF_RECORD_TIME)
1934                 perf_output_put(&handle, time);
1935
1936         perf_output_end(&handle);
1937 }
1938
1939 /*
1940  * mmap tracking
1941  */
1942
1943 struct perf_mmap_event {
1944         struct file     *file;
1945         char            *file_name;
1946         int             file_size;
1947
1948         struct {
1949                 struct perf_event_header        header;
1950
1951                 u32                             pid;
1952                 u32                             tid;
1953                 u64                             start;
1954                 u64                             len;
1955                 u64                             pgoff;
1956         } event;
1957 };
1958
1959 static void perf_counter_mmap_output(struct perf_counter *counter,
1960                                      struct perf_mmap_event *mmap_event)
1961 {
1962         struct perf_output_handle handle;
1963         int size = mmap_event->event.header.size;
1964         int ret = perf_output_begin(&handle, counter, size, 0, 0);
1965
1966         if (ret)
1967                 return;
1968
1969         perf_output_put(&handle, mmap_event->event);
1970         perf_output_copy(&handle, mmap_event->file_name,
1971                                    mmap_event->file_size);
1972         perf_output_end(&handle);
1973 }
1974
1975 static int perf_counter_mmap_match(struct perf_counter *counter,
1976                                    struct perf_mmap_event *mmap_event)
1977 {
1978         if (counter->hw_event.mmap &&
1979             mmap_event->event.header.type == PERF_EVENT_MMAP)
1980                 return 1;
1981
1982         if (counter->hw_event.munmap &&
1983             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1984                 return 1;
1985
1986         return 0;
1987 }
1988
1989 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1990                                   struct perf_mmap_event *mmap_event)
1991 {
1992         struct perf_counter *counter;
1993
1994         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1995                 return;
1996
1997         rcu_read_lock();
1998         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1999                 if (perf_counter_mmap_match(counter, mmap_event))
2000                         perf_counter_mmap_output(counter, mmap_event);
2001         }
2002         rcu_read_unlock();
2003 }
2004
2005 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2006 {
2007         struct perf_cpu_context *cpuctx;
2008         struct file *file = mmap_event->file;
2009         unsigned int size;
2010         char tmp[16];
2011         char *buf = NULL;
2012         char *name;
2013
2014         if (file) {
2015                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2016                 if (!buf) {
2017                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2018                         goto got_name;
2019                 }
2020                 name = dentry_path(file->f_dentry, buf, PATH_MAX);
2021                 if (IS_ERR(name)) {
2022                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2023                         goto got_name;
2024                 }
2025         } else {
2026                 name = strncpy(tmp, "//anon", sizeof(tmp));
2027                 goto got_name;
2028         }
2029
2030 got_name:
2031         size = ALIGN(strlen(name), sizeof(u64));
2032
2033         mmap_event->file_name = name;
2034         mmap_event->file_size = size;
2035
2036         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2037
2038         cpuctx = &get_cpu_var(perf_cpu_context);
2039         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2040         put_cpu_var(perf_cpu_context);
2041
2042         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2043
2044         kfree(buf);
2045 }
2046
2047 void perf_counter_mmap(unsigned long addr, unsigned long len,
2048                        unsigned long pgoff, struct file *file)
2049 {
2050         struct perf_mmap_event mmap_event = {
2051                 .file   = file,
2052                 .event  = {
2053                         .header = { .type = PERF_EVENT_MMAP, },
2054                         .pid    = current->group_leader->pid,
2055                         .tid    = current->pid,
2056                         .start  = addr,
2057                         .len    = len,
2058                         .pgoff  = pgoff,
2059                 },
2060         };
2061
2062         perf_counter_mmap_event(&mmap_event);
2063 }
2064
2065 void perf_counter_munmap(unsigned long addr, unsigned long len,
2066                          unsigned long pgoff, struct file *file)
2067 {
2068         struct perf_mmap_event mmap_event = {
2069                 .file   = file,
2070                 .event  = {
2071                         .header = { .type = PERF_EVENT_MUNMAP, },
2072                         .pid    = current->group_leader->pid,
2073                         .tid    = current->pid,
2074                         .start  = addr,
2075                         .len    = len,
2076                         .pgoff  = pgoff,
2077                 },
2078         };
2079
2080         perf_counter_mmap_event(&mmap_event);
2081 }
2082
2083 /*
2084  * Generic counter overflow handling.
2085  */
2086
2087 int perf_counter_overflow(struct perf_counter *counter,
2088                           int nmi, struct pt_regs *regs)
2089 {
2090         int events = atomic_read(&counter->event_limit);
2091         int ret = 0;
2092
2093         counter->pending_kill = POLL_IN;
2094         if (events && atomic_dec_and_test(&counter->event_limit)) {
2095                 ret = 1;
2096                 counter->pending_kill = POLL_HUP;
2097                 if (nmi) {
2098                         counter->pending_disable = 1;
2099                         perf_pending_queue(&counter->pending,
2100                                            perf_pending_counter);
2101                 } else
2102                         perf_counter_disable(counter);
2103         }
2104
2105         perf_counter_output(counter, nmi, regs);
2106         return ret;
2107 }
2108
2109 /*
2110  * Generic software counter infrastructure
2111  */
2112
2113 static void perf_swcounter_update(struct perf_counter *counter)
2114 {
2115         struct hw_perf_counter *hwc = &counter->hw;
2116         u64 prev, now;
2117         s64 delta;
2118
2119 again:
2120         prev = atomic64_read(&hwc->prev_count);
2121         now = atomic64_read(&hwc->count);
2122         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2123                 goto again;
2124
2125         delta = now - prev;
2126
2127         atomic64_add(delta, &counter->count);
2128         atomic64_sub(delta, &hwc->period_left);
2129 }
2130
2131 static void perf_swcounter_set_period(struct perf_counter *counter)
2132 {
2133         struct hw_perf_counter *hwc = &counter->hw;
2134         s64 left = atomic64_read(&hwc->period_left);
2135         s64 period = hwc->irq_period;
2136
2137         if (unlikely(left <= -period)) {
2138                 left = period;
2139                 atomic64_set(&hwc->period_left, left);
2140         }
2141
2142         if (unlikely(left <= 0)) {
2143                 left += period;
2144                 atomic64_add(period, &hwc->period_left);
2145         }
2146
2147         atomic64_set(&hwc->prev_count, -left);
2148         atomic64_set(&hwc->count, -left);
2149 }
2150
2151 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2152 {
2153         enum hrtimer_restart ret = HRTIMER_RESTART;
2154         struct perf_counter *counter;
2155         struct pt_regs *regs;
2156
2157         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2158         counter->hw_ops->read(counter);
2159
2160         regs = get_irq_regs();
2161         /*
2162          * In case we exclude kernel IPs or are somehow not in interrupt
2163          * context, provide the next best thing, the user IP.
2164          */
2165         if ((counter->hw_event.exclude_kernel || !regs) &&
2166                         !counter->hw_event.exclude_user)
2167                 regs = task_pt_regs(current);
2168
2169         if (regs) {
2170                 if (perf_counter_overflow(counter, 0, regs))
2171                         ret = HRTIMER_NORESTART;
2172         }
2173
2174         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2175
2176         return ret;
2177 }
2178
2179 static void perf_swcounter_overflow(struct perf_counter *counter,
2180                                     int nmi, struct pt_regs *regs)
2181 {
2182         perf_swcounter_update(counter);
2183         perf_swcounter_set_period(counter);
2184         if (perf_counter_overflow(counter, nmi, regs))
2185                 /* soft-disable the counter */
2186                 ;
2187
2188 }
2189
2190 static int perf_swcounter_match(struct perf_counter *counter,
2191                                 enum perf_event_types type,
2192                                 u32 event, struct pt_regs *regs)
2193 {
2194         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2195                 return 0;
2196
2197         if (perf_event_raw(&counter->hw_event))
2198                 return 0;
2199
2200         if (perf_event_type(&counter->hw_event) != type)
2201                 return 0;
2202
2203         if (perf_event_id(&counter->hw_event) != event)
2204                 return 0;
2205
2206         if (counter->hw_event.exclude_user && user_mode(regs))
2207                 return 0;
2208
2209         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2210                 return 0;
2211
2212         return 1;
2213 }
2214
2215 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2216                                int nmi, struct pt_regs *regs)
2217 {
2218         int neg = atomic64_add_negative(nr, &counter->hw.count);
2219         if (counter->hw.irq_period && !neg)
2220                 perf_swcounter_overflow(counter, nmi, regs);
2221 }
2222
2223 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2224                                      enum perf_event_types type, u32 event,
2225                                      u64 nr, int nmi, struct pt_regs *regs)
2226 {
2227         struct perf_counter *counter;
2228
2229         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2230                 return;
2231
2232         rcu_read_lock();
2233         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2234                 if (perf_swcounter_match(counter, type, event, regs))
2235                         perf_swcounter_add(counter, nr, nmi, regs);
2236         }
2237         rcu_read_unlock();
2238 }
2239
2240 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2241 {
2242         if (in_nmi())
2243                 return &cpuctx->recursion[3];
2244
2245         if (in_irq())
2246                 return &cpuctx->recursion[2];
2247
2248         if (in_softirq())
2249                 return &cpuctx->recursion[1];
2250
2251         return &cpuctx->recursion[0];
2252 }
2253
2254 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2255                                    u64 nr, int nmi, struct pt_regs *regs)
2256 {
2257         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2258         int *recursion = perf_swcounter_recursion_context(cpuctx);
2259
2260         if (*recursion)
2261                 goto out;
2262
2263         (*recursion)++;
2264         barrier();
2265
2266         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2267         if (cpuctx->task_ctx) {
2268                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2269                                 nr, nmi, regs);
2270         }
2271
2272         barrier();
2273         (*recursion)--;
2274
2275 out:
2276         put_cpu_var(perf_cpu_context);
2277 }
2278
2279 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2280 {
2281         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2282 }
2283
2284 static void perf_swcounter_read(struct perf_counter *counter)
2285 {
2286         perf_swcounter_update(counter);
2287 }
2288
2289 static int perf_swcounter_enable(struct perf_counter *counter)
2290 {
2291         perf_swcounter_set_period(counter);
2292         return 0;
2293 }
2294
2295 static void perf_swcounter_disable(struct perf_counter *counter)
2296 {
2297         perf_swcounter_update(counter);
2298 }
2299
2300 static const struct hw_perf_counter_ops perf_ops_generic = {
2301         .enable         = perf_swcounter_enable,
2302         .disable        = perf_swcounter_disable,
2303         .read           = perf_swcounter_read,
2304 };
2305
2306 /*
2307  * Software counter: cpu wall time clock
2308  */
2309
2310 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2311 {
2312         int cpu = raw_smp_processor_id();
2313         s64 prev;
2314         u64 now;
2315
2316         now = cpu_clock(cpu);
2317         prev = atomic64_read(&counter->hw.prev_count);
2318         atomic64_set(&counter->hw.prev_count, now);
2319         atomic64_add(now - prev, &counter->count);
2320 }
2321
2322 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2323 {
2324         struct hw_perf_counter *hwc = &counter->hw;
2325         int cpu = raw_smp_processor_id();
2326
2327         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2328         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2329         hwc->hrtimer.function = perf_swcounter_hrtimer;
2330         if (hwc->irq_period) {
2331                 __hrtimer_start_range_ns(&hwc->hrtimer,
2332                                 ns_to_ktime(hwc->irq_period), 0,
2333                                 HRTIMER_MODE_REL, 0);
2334         }
2335
2336         return 0;
2337 }
2338
2339 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2340 {
2341         hrtimer_cancel(&counter->hw.hrtimer);
2342         cpu_clock_perf_counter_update(counter);
2343 }
2344
2345 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2346 {
2347         cpu_clock_perf_counter_update(counter);
2348 }
2349
2350 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2351         .enable         = cpu_clock_perf_counter_enable,
2352         .disable        = cpu_clock_perf_counter_disable,
2353         .read           = cpu_clock_perf_counter_read,
2354 };
2355
2356 /*
2357  * Software counter: task time clock
2358  */
2359
2360 /*
2361  * Called from within the scheduler:
2362  */
2363 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2364 {
2365         struct task_struct *curr = counter->task;
2366         u64 delta;
2367
2368         delta = __task_delta_exec(curr, update);
2369
2370         return curr->se.sum_exec_runtime + delta;
2371 }
2372
2373 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2374 {
2375         u64 prev;
2376         s64 delta;
2377
2378         prev = atomic64_read(&counter->hw.prev_count);
2379
2380         atomic64_set(&counter->hw.prev_count, now);
2381
2382         delta = now - prev;
2383
2384         atomic64_add(delta, &counter->count);
2385 }
2386
2387 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2388 {
2389         struct hw_perf_counter *hwc = &counter->hw;
2390
2391         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2392         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2393         hwc->hrtimer.function = perf_swcounter_hrtimer;
2394         if (hwc->irq_period) {
2395                 __hrtimer_start_range_ns(&hwc->hrtimer,
2396                                 ns_to_ktime(hwc->irq_period), 0,
2397                                 HRTIMER_MODE_REL, 0);
2398         }
2399
2400         return 0;
2401 }
2402
2403 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2404 {
2405         hrtimer_cancel(&counter->hw.hrtimer);
2406         task_clock_perf_counter_update(counter,
2407                         task_clock_perf_counter_val(counter, 0));
2408 }
2409
2410 static void task_clock_perf_counter_read(struct perf_counter *counter)
2411 {
2412         task_clock_perf_counter_update(counter,
2413                         task_clock_perf_counter_val(counter, 1));
2414 }
2415
2416 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2417         .enable         = task_clock_perf_counter_enable,
2418         .disable        = task_clock_perf_counter_disable,
2419         .read           = task_clock_perf_counter_read,
2420 };
2421
2422 /*
2423  * Software counter: cpu migrations
2424  */
2425
2426 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2427 {
2428         struct task_struct *curr = counter->ctx->task;
2429
2430         if (curr)
2431                 return curr->se.nr_migrations;
2432         return cpu_nr_migrations(smp_processor_id());
2433 }
2434
2435 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2436 {
2437         u64 prev, now;
2438         s64 delta;
2439
2440         prev = atomic64_read(&counter->hw.prev_count);
2441         now = get_cpu_migrations(counter);
2442
2443         atomic64_set(&counter->hw.prev_count, now);
2444
2445         delta = now - prev;
2446
2447         atomic64_add(delta, &counter->count);
2448 }
2449
2450 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2451 {
2452         cpu_migrations_perf_counter_update(counter);
2453 }
2454
2455 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2456 {
2457         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2458                 atomic64_set(&counter->hw.prev_count,
2459                              get_cpu_migrations(counter));
2460         return 0;
2461 }
2462
2463 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2464 {
2465         cpu_migrations_perf_counter_update(counter);
2466 }
2467
2468 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2469         .enable         = cpu_migrations_perf_counter_enable,
2470         .disable        = cpu_migrations_perf_counter_disable,
2471         .read           = cpu_migrations_perf_counter_read,
2472 };
2473
2474 #ifdef CONFIG_EVENT_PROFILE
2475 void perf_tpcounter_event(int event_id)
2476 {
2477         struct pt_regs *regs = get_irq_regs();
2478
2479         if (!regs)
2480                 regs = task_pt_regs(current);
2481
2482         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2483 }
2484
2485 extern int ftrace_profile_enable(int);
2486 extern void ftrace_profile_disable(int);
2487
2488 static void tp_perf_counter_destroy(struct perf_counter *counter)
2489 {
2490         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2491 }
2492
2493 static const struct hw_perf_counter_ops *
2494 tp_perf_counter_init(struct perf_counter *counter)
2495 {
2496         int event_id = perf_event_id(&counter->hw_event);
2497         int ret;
2498
2499         ret = ftrace_profile_enable(event_id);
2500         if (ret)
2501                 return NULL;
2502
2503         counter->destroy = tp_perf_counter_destroy;
2504         counter->hw.irq_period = counter->hw_event.irq_period;
2505
2506         return &perf_ops_generic;
2507 }
2508 #else
2509 static const struct hw_perf_counter_ops *
2510 tp_perf_counter_init(struct perf_counter *counter)
2511 {
2512         return NULL;
2513 }
2514 #endif
2515
2516 static const struct hw_perf_counter_ops *
2517 sw_perf_counter_init(struct perf_counter *counter)
2518 {
2519         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2520         const struct hw_perf_counter_ops *hw_ops = NULL;
2521         struct hw_perf_counter *hwc = &counter->hw;
2522
2523         /*
2524          * Software counters (currently) can't in general distinguish
2525          * between user, kernel and hypervisor events.
2526          * However, context switches and cpu migrations are considered
2527          * to be kernel events, and page faults are never hypervisor
2528          * events.
2529          */
2530         switch (perf_event_id(&counter->hw_event)) {
2531         case PERF_COUNT_CPU_CLOCK:
2532                 hw_ops = &perf_ops_cpu_clock;
2533
2534                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2535                         hw_event->irq_period = 10000;
2536                 break;
2537         case PERF_COUNT_TASK_CLOCK:
2538                 /*
2539                  * If the user instantiates this as a per-cpu counter,
2540                  * use the cpu_clock counter instead.
2541                  */
2542                 if (counter->ctx->task)
2543                         hw_ops = &perf_ops_task_clock;
2544                 else
2545                         hw_ops = &perf_ops_cpu_clock;
2546
2547                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2548                         hw_event->irq_period = 10000;
2549                 break;
2550         case PERF_COUNT_PAGE_FAULTS:
2551         case PERF_COUNT_PAGE_FAULTS_MIN:
2552         case PERF_COUNT_PAGE_FAULTS_MAJ:
2553         case PERF_COUNT_CONTEXT_SWITCHES:
2554                 hw_ops = &perf_ops_generic;
2555                 break;
2556         case PERF_COUNT_CPU_MIGRATIONS:
2557                 if (!counter->hw_event.exclude_kernel)
2558                         hw_ops = &perf_ops_cpu_migrations;
2559                 break;
2560         }
2561
2562         if (hw_ops)
2563                 hwc->irq_period = hw_event->irq_period;
2564
2565         return hw_ops;
2566 }
2567
2568 /*
2569  * Allocate and initialize a counter structure
2570  */
2571 static struct perf_counter *
2572 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2573                    int cpu,
2574                    struct perf_counter_context *ctx,
2575                    struct perf_counter *group_leader,
2576                    gfp_t gfpflags)
2577 {
2578         const struct hw_perf_counter_ops *hw_ops;
2579         struct perf_counter *counter;
2580         long err;
2581
2582         counter = kzalloc(sizeof(*counter), gfpflags);
2583         if (!counter)
2584                 return ERR_PTR(-ENOMEM);
2585
2586         /*
2587          * Single counters are their own group leaders, with an
2588          * empty sibling list:
2589          */
2590         if (!group_leader)
2591                 group_leader = counter;
2592
2593         mutex_init(&counter->mutex);
2594         INIT_LIST_HEAD(&counter->list_entry);
2595         INIT_LIST_HEAD(&counter->event_entry);
2596         INIT_LIST_HEAD(&counter->sibling_list);
2597         init_waitqueue_head(&counter->waitq);
2598
2599         mutex_init(&counter->mmap_mutex);
2600
2601         INIT_LIST_HEAD(&counter->child_list);
2602
2603         counter->cpu                    = cpu;
2604         counter->hw_event               = *hw_event;
2605         counter->group_leader           = group_leader;
2606         counter->hw_ops                 = NULL;
2607         counter->ctx                    = ctx;
2608
2609         counter->state = PERF_COUNTER_STATE_INACTIVE;
2610         if (hw_event->disabled)
2611                 counter->state = PERF_COUNTER_STATE_OFF;
2612
2613         hw_ops = NULL;
2614
2615         if (perf_event_raw(hw_event)) {
2616                 hw_ops = hw_perf_counter_init(counter);
2617                 goto done;
2618         }
2619
2620         switch (perf_event_type(hw_event)) {
2621         case PERF_TYPE_HARDWARE:
2622                 hw_ops = hw_perf_counter_init(counter);
2623                 break;
2624
2625         case PERF_TYPE_SOFTWARE:
2626                 hw_ops = sw_perf_counter_init(counter);
2627                 break;
2628
2629         case PERF_TYPE_TRACEPOINT:
2630                 hw_ops = tp_perf_counter_init(counter);
2631                 break;
2632         }
2633 done:
2634         err = 0;
2635         if (!hw_ops)
2636                 err = -EINVAL;
2637         else if (IS_ERR(hw_ops))
2638                 err = PTR_ERR(hw_ops);
2639
2640         if (err) {
2641                 kfree(counter);
2642                 return ERR_PTR(err);
2643         }
2644
2645         counter->hw_ops = hw_ops;
2646
2647         return counter;
2648 }
2649
2650 /**
2651  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2652  *
2653  * @hw_event_uptr:      event type attributes for monitoring/sampling
2654  * @pid:                target pid
2655  * @cpu:                target cpu
2656  * @group_fd:           group leader counter fd
2657  */
2658 SYSCALL_DEFINE5(perf_counter_open,
2659                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2660                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2661 {
2662         struct perf_counter *counter, *group_leader;
2663         struct perf_counter_hw_event hw_event;
2664         struct perf_counter_context *ctx;
2665         struct file *counter_file = NULL;
2666         struct file *group_file = NULL;
2667         int fput_needed = 0;
2668         int fput_needed2 = 0;
2669         int ret;
2670
2671         /* for future expandability... */
2672         if (flags)
2673                 return -EINVAL;
2674
2675         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2676                 return -EFAULT;
2677
2678         /*
2679          * Get the target context (task or percpu):
2680          */
2681         ctx = find_get_context(pid, cpu);
2682         if (IS_ERR(ctx))
2683                 return PTR_ERR(ctx);
2684
2685         /*
2686          * Look up the group leader (we will attach this counter to it):
2687          */
2688         group_leader = NULL;
2689         if (group_fd != -1) {
2690                 ret = -EINVAL;
2691                 group_file = fget_light(group_fd, &fput_needed);
2692                 if (!group_file)
2693                         goto err_put_context;
2694                 if (group_file->f_op != &perf_fops)
2695                         goto err_put_context;
2696
2697                 group_leader = group_file->private_data;
2698                 /*
2699                  * Do not allow a recursive hierarchy (this new sibling
2700                  * becoming part of another group-sibling):
2701                  */
2702                 if (group_leader->group_leader != group_leader)
2703                         goto err_put_context;
2704                 /*
2705                  * Do not allow to attach to a group in a different
2706                  * task or CPU context:
2707                  */
2708                 if (group_leader->ctx != ctx)
2709                         goto err_put_context;
2710                 /*
2711                  * Only a group leader can be exclusive or pinned
2712                  */
2713                 if (hw_event.exclusive || hw_event.pinned)
2714                         goto err_put_context;
2715         }
2716
2717         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2718                                      GFP_KERNEL);
2719         ret = PTR_ERR(counter);
2720         if (IS_ERR(counter))
2721                 goto err_put_context;
2722
2723         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2724         if (ret < 0)
2725                 goto err_free_put_context;
2726
2727         counter_file = fget_light(ret, &fput_needed2);
2728         if (!counter_file)
2729                 goto err_free_put_context;
2730
2731         counter->filp = counter_file;
2732         mutex_lock(&ctx->mutex);
2733         perf_install_in_context(ctx, counter, cpu);
2734         mutex_unlock(&ctx->mutex);
2735
2736         fput_light(counter_file, fput_needed2);
2737
2738 out_fput:
2739         fput_light(group_file, fput_needed);
2740
2741         return ret;
2742
2743 err_free_put_context:
2744         kfree(counter);
2745
2746 err_put_context:
2747         put_context(ctx);
2748
2749         goto out_fput;
2750 }
2751
2752 /*
2753  * Initialize the perf_counter context in a task_struct:
2754  */
2755 static void
2756 __perf_counter_init_context(struct perf_counter_context *ctx,
2757                             struct task_struct *task)
2758 {
2759         memset(ctx, 0, sizeof(*ctx));
2760         spin_lock_init(&ctx->lock);
2761         mutex_init(&ctx->mutex);
2762         INIT_LIST_HEAD(&ctx->counter_list);
2763         INIT_LIST_HEAD(&ctx->event_list);
2764         ctx->task = task;
2765 }
2766
2767 /*
2768  * inherit a counter from parent task to child task:
2769  */
2770 static struct perf_counter *
2771 inherit_counter(struct perf_counter *parent_counter,
2772               struct task_struct *parent,
2773               struct perf_counter_context *parent_ctx,
2774               struct task_struct *child,
2775               struct perf_counter *group_leader,
2776               struct perf_counter_context *child_ctx)
2777 {
2778         struct perf_counter *child_counter;
2779
2780         /*
2781          * Instead of creating recursive hierarchies of counters,
2782          * we link inherited counters back to the original parent,
2783          * which has a filp for sure, which we use as the reference
2784          * count:
2785          */
2786         if (parent_counter->parent)
2787                 parent_counter = parent_counter->parent;
2788
2789         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2790                                            parent_counter->cpu, child_ctx,
2791                                            group_leader, GFP_KERNEL);
2792         if (IS_ERR(child_counter))
2793                 return child_counter;
2794
2795         /*
2796          * Link it up in the child's context:
2797          */
2798         child_counter->task = child;
2799         add_counter_to_ctx(child_counter, child_ctx);
2800
2801         child_counter->parent = parent_counter;
2802         /*
2803          * inherit into child's child as well:
2804          */
2805         child_counter->hw_event.inherit = 1;
2806
2807         /*
2808          * Get a reference to the parent filp - we will fput it
2809          * when the child counter exits. This is safe to do because
2810          * we are in the parent and we know that the filp still
2811          * exists and has a nonzero count:
2812          */
2813         atomic_long_inc(&parent_counter->filp->f_count);
2814
2815         /*
2816          * Link this into the parent counter's child list
2817          */
2818         mutex_lock(&parent_counter->mutex);
2819         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2820
2821         /*
2822          * Make the child state follow the state of the parent counter,
2823          * not its hw_event.disabled bit.  We hold the parent's mutex,
2824          * so we won't race with perf_counter_{en,dis}able_family.
2825          */
2826         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2827                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2828         else
2829                 child_counter->state = PERF_COUNTER_STATE_OFF;
2830
2831         mutex_unlock(&parent_counter->mutex);
2832
2833         return child_counter;
2834 }
2835
2836 static int inherit_group(struct perf_counter *parent_counter,
2837               struct task_struct *parent,
2838               struct perf_counter_context *parent_ctx,
2839               struct task_struct *child,
2840               struct perf_counter_context *child_ctx)
2841 {
2842         struct perf_counter *leader;
2843         struct perf_counter *sub;
2844         struct perf_counter *child_ctr;
2845
2846         leader = inherit_counter(parent_counter, parent, parent_ctx,
2847                                  child, NULL, child_ctx);
2848         if (IS_ERR(leader))
2849                 return PTR_ERR(leader);
2850         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2851                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2852                                             child, leader, child_ctx);
2853                 if (IS_ERR(child_ctr))
2854                         return PTR_ERR(child_ctr);
2855         }
2856         return 0;
2857 }
2858
2859 static void sync_child_counter(struct perf_counter *child_counter,
2860                                struct perf_counter *parent_counter)
2861 {
2862         u64 parent_val, child_val;
2863
2864         parent_val = atomic64_read(&parent_counter->count);
2865         child_val = atomic64_read(&child_counter->count);
2866
2867         /*
2868          * Add back the child's count to the parent's count:
2869          */
2870         atomic64_add(child_val, &parent_counter->count);
2871         atomic64_add(child_counter->total_time_enabled,
2872                      &parent_counter->child_total_time_enabled);
2873         atomic64_add(child_counter->total_time_running,
2874                      &parent_counter->child_total_time_running);
2875
2876         /*
2877          * Remove this counter from the parent's list
2878          */
2879         mutex_lock(&parent_counter->mutex);
2880         list_del_init(&child_counter->child_list);
2881         mutex_unlock(&parent_counter->mutex);
2882
2883         /*
2884          * Release the parent counter, if this was the last
2885          * reference to it.
2886          */
2887         fput(parent_counter->filp);
2888 }
2889
2890 static void
2891 __perf_counter_exit_task(struct task_struct *child,
2892                          struct perf_counter *child_counter,
2893                          struct perf_counter_context *child_ctx)
2894 {
2895         struct perf_counter *parent_counter;
2896         struct perf_counter *sub, *tmp;
2897
2898         /*
2899          * If we do not self-reap then we have to wait for the
2900          * child task to unschedule (it will happen for sure),
2901          * so that its counter is at its final count. (This
2902          * condition triggers rarely - child tasks usually get
2903          * off their CPU before the parent has a chance to
2904          * get this far into the reaping action)
2905          */
2906         if (child != current) {
2907                 wait_task_inactive(child, 0);
2908                 list_del_init(&child_counter->list_entry);
2909                 update_counter_times(child_counter);
2910         } else {
2911                 struct perf_cpu_context *cpuctx;
2912                 unsigned long flags;
2913                 u64 perf_flags;
2914
2915                 /*
2916                  * Disable and unlink this counter.
2917                  *
2918                  * Be careful about zapping the list - IRQ/NMI context
2919                  * could still be processing it:
2920                  */
2921                 curr_rq_lock_irq_save(&flags);
2922                 perf_flags = hw_perf_save_disable();
2923
2924                 cpuctx = &__get_cpu_var(perf_cpu_context);
2925
2926                 group_sched_out(child_counter, cpuctx, child_ctx);
2927                 update_counter_times(child_counter);
2928
2929                 list_del_init(&child_counter->list_entry);
2930
2931                 child_ctx->nr_counters--;
2932
2933                 hw_perf_restore(perf_flags);
2934                 curr_rq_unlock_irq_restore(&flags);
2935         }
2936
2937         parent_counter = child_counter->parent;
2938         /*
2939          * It can happen that parent exits first, and has counters
2940          * that are still around due to the child reference. These
2941          * counters need to be zapped - but otherwise linger.
2942          */
2943         if (parent_counter) {
2944                 sync_child_counter(child_counter, parent_counter);
2945                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2946                                          list_entry) {
2947                         if (sub->parent) {
2948                                 sync_child_counter(sub, sub->parent);
2949                                 free_counter(sub);
2950                         }
2951                 }
2952                 free_counter(child_counter);
2953         }
2954 }
2955
2956 /*
2957  * When a child task exits, feed back counter values to parent counters.
2958  *
2959  * Note: we may be running in child context, but the PID is not hashed
2960  * anymore so new counters will not be added.
2961  */
2962 void perf_counter_exit_task(struct task_struct *child)
2963 {
2964         struct perf_counter *child_counter, *tmp;
2965         struct perf_counter_context *child_ctx;
2966
2967         child_ctx = &child->perf_counter_ctx;
2968
2969         if (likely(!child_ctx->nr_counters))
2970                 return;
2971
2972         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2973                                  list_entry)
2974                 __perf_counter_exit_task(child, child_counter, child_ctx);
2975 }
2976
2977 /*
2978  * Initialize the perf_counter context in task_struct
2979  */
2980 void perf_counter_init_task(struct task_struct *child)
2981 {
2982         struct perf_counter_context *child_ctx, *parent_ctx;
2983         struct perf_counter *counter;
2984         struct task_struct *parent = current;
2985
2986         child_ctx  =  &child->perf_counter_ctx;
2987         parent_ctx = &parent->perf_counter_ctx;
2988
2989         __perf_counter_init_context(child_ctx, child);
2990
2991         /*
2992          * This is executed from the parent task context, so inherit
2993          * counters that have been marked for cloning:
2994          */
2995
2996         if (likely(!parent_ctx->nr_counters))
2997                 return;
2998
2999         /*
3000          * Lock the parent list. No need to lock the child - not PID
3001          * hashed yet and not running, so nobody can access it.
3002          */
3003         mutex_lock(&parent_ctx->mutex);
3004
3005         /*
3006          * We dont have to disable NMIs - we are only looking at
3007          * the list, not manipulating it:
3008          */
3009         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3010                 if (!counter->hw_event.inherit)
3011                         continue;
3012
3013                 if (inherit_group(counter, parent,
3014                                   parent_ctx, child, child_ctx))
3015                         break;
3016         }
3017
3018         mutex_unlock(&parent_ctx->mutex);
3019 }
3020
3021 static void __cpuinit perf_counter_init_cpu(int cpu)
3022 {
3023         struct perf_cpu_context *cpuctx;
3024
3025         cpuctx = &per_cpu(perf_cpu_context, cpu);
3026         __perf_counter_init_context(&cpuctx->ctx, NULL);
3027
3028         mutex_lock(&perf_resource_mutex);
3029         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3030         mutex_unlock(&perf_resource_mutex);
3031
3032         hw_perf_counter_setup(cpu);
3033 }
3034
3035 #ifdef CONFIG_HOTPLUG_CPU
3036 static void __perf_counter_exit_cpu(void *info)
3037 {
3038         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3039         struct perf_counter_context *ctx = &cpuctx->ctx;
3040         struct perf_counter *counter, *tmp;
3041
3042         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3043                 __perf_counter_remove_from_context(counter);
3044 }
3045 static void perf_counter_exit_cpu(int cpu)
3046 {
3047         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3048         struct perf_counter_context *ctx = &cpuctx->ctx;
3049
3050         mutex_lock(&ctx->mutex);
3051         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3052         mutex_unlock(&ctx->mutex);
3053 }
3054 #else
3055 static inline void perf_counter_exit_cpu(int cpu) { }
3056 #endif
3057
3058 static int __cpuinit
3059 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3060 {
3061         unsigned int cpu = (long)hcpu;
3062
3063         switch (action) {
3064
3065         case CPU_UP_PREPARE:
3066         case CPU_UP_PREPARE_FROZEN:
3067                 perf_counter_init_cpu(cpu);
3068                 break;
3069
3070         case CPU_DOWN_PREPARE:
3071         case CPU_DOWN_PREPARE_FROZEN:
3072                 perf_counter_exit_cpu(cpu);
3073                 break;
3074
3075         default:
3076                 break;
3077         }
3078
3079         return NOTIFY_OK;
3080 }
3081
3082 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3083         .notifier_call          = perf_cpu_notify,
3084 };
3085
3086 static int __init perf_counter_init(void)
3087 {
3088         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3089                         (void *)(long)smp_processor_id());
3090         register_cpu_notifier(&perf_cpu_nb);
3091
3092         return 0;
3093 }
3094 early_initcall(perf_counter_init);
3095
3096 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3097 {
3098         return sprintf(buf, "%d\n", perf_reserved_percpu);
3099 }
3100
3101 static ssize_t
3102 perf_set_reserve_percpu(struct sysdev_class *class,
3103                         const char *buf,
3104                         size_t count)
3105 {
3106         struct perf_cpu_context *cpuctx;
3107         unsigned long val;
3108         int err, cpu, mpt;
3109
3110         err = strict_strtoul(buf, 10, &val);
3111         if (err)
3112                 return err;
3113         if (val > perf_max_counters)
3114                 return -EINVAL;
3115
3116         mutex_lock(&perf_resource_mutex);
3117         perf_reserved_percpu = val;
3118         for_each_online_cpu(cpu) {
3119                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3120                 spin_lock_irq(&cpuctx->ctx.lock);
3121                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3122                           perf_max_counters - perf_reserved_percpu);
3123                 cpuctx->max_pertask = mpt;
3124                 spin_unlock_irq(&cpuctx->ctx.lock);
3125         }
3126         mutex_unlock(&perf_resource_mutex);
3127
3128         return count;
3129 }
3130
3131 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3132 {
3133         return sprintf(buf, "%d\n", perf_overcommit);
3134 }
3135
3136 static ssize_t
3137 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3138 {
3139         unsigned long val;
3140         int err;
3141
3142         err = strict_strtoul(buf, 10, &val);
3143         if (err)
3144                 return err;
3145         if (val > 1)
3146                 return -EINVAL;
3147
3148         mutex_lock(&perf_resource_mutex);
3149         perf_overcommit = val;
3150         mutex_unlock(&perf_resource_mutex);
3151
3152         return count;
3153 }
3154
3155 static SYSDEV_CLASS_ATTR(
3156                                 reserve_percpu,
3157                                 0644,
3158                                 perf_show_reserve_percpu,
3159                                 perf_set_reserve_percpu
3160                         );
3161
3162 static SYSDEV_CLASS_ATTR(
3163                                 overcommit,
3164                                 0644,
3165                                 perf_show_overcommit,
3166                                 perf_set_overcommit
3167                         );
3168
3169 static struct attribute *perfclass_attrs[] = {
3170         &attr_reserve_percpu.attr,
3171         &attr_overcommit.attr,
3172         NULL
3173 };
3174
3175 static struct attribute_group perfclass_attr_group = {
3176         .attrs                  = perfclass_attrs,
3177         .name                   = "perf_counters",
3178 };
3179
3180 static int __init perf_counter_sysfs_init(void)
3181 {
3182         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3183                                   &perfclass_attr_group);
3184 }
3185 device_initcall(perf_counter_sysfs_init);