]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_counter.c
perf_counter: per user mlock gift
[mv-sheeva.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void
101 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102 {
103         struct perf_counter *group_leader = counter->group_leader;
104
105         /*
106          * Depending on whether it is a standalone or sibling counter,
107          * add it straight to the context's counter list, or to the group
108          * leader's sibling list:
109          */
110         if (group_leader == counter)
111                 list_add_tail(&counter->list_entry, &ctx->counter_list);
112         else {
113                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
114                 group_leader->nr_siblings++;
115         }
116
117         list_add_rcu(&counter->event_entry, &ctx->event_list);
118 }
119
120 static void
121 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
122 {
123         struct perf_counter *sibling, *tmp;
124
125         list_del_init(&counter->list_entry);
126         list_del_rcu(&counter->event_entry);
127
128         if (counter->group_leader != counter)
129                 counter->group_leader->nr_siblings--;
130
131         /*
132          * If this was a group counter with sibling counters then
133          * upgrade the siblings to singleton counters by adding them
134          * to the context list directly:
135          */
136         list_for_each_entry_safe(sibling, tmp,
137                                  &counter->sibling_list, list_entry) {
138
139                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
140                 sibling->group_leader = sibling;
141         }
142 }
143
144 static void
145 counter_sched_out(struct perf_counter *counter,
146                   struct perf_cpu_context *cpuctx,
147                   struct perf_counter_context *ctx)
148 {
149         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
150                 return;
151
152         counter->state = PERF_COUNTER_STATE_INACTIVE;
153         counter->tstamp_stopped = ctx->time;
154         counter->pmu->disable(counter);
155         counter->oncpu = -1;
156
157         if (!is_software_counter(counter))
158                 cpuctx->active_oncpu--;
159         ctx->nr_active--;
160         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
161                 cpuctx->exclusive = 0;
162 }
163
164 static void
165 group_sched_out(struct perf_counter *group_counter,
166                 struct perf_cpu_context *cpuctx,
167                 struct perf_counter_context *ctx)
168 {
169         struct perf_counter *counter;
170
171         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
172                 return;
173
174         counter_sched_out(group_counter, cpuctx, ctx);
175
176         /*
177          * Schedule out siblings (if any):
178          */
179         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
180                 counter_sched_out(counter, cpuctx, ctx);
181
182         if (group_counter->hw_event.exclusive)
183                 cpuctx->exclusive = 0;
184 }
185
186 /*
187  * Cross CPU call to remove a performance counter
188  *
189  * We disable the counter on the hardware level first. After that we
190  * remove it from the context list.
191  */
192 static void __perf_counter_remove_from_context(void *info)
193 {
194         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
195         struct perf_counter *counter = info;
196         struct perf_counter_context *ctx = counter->ctx;
197         unsigned long flags;
198
199         /*
200          * If this is a task context, we need to check whether it is
201          * the current task context of this cpu. If not it has been
202          * scheduled out before the smp call arrived.
203          */
204         if (ctx->task && cpuctx->task_ctx != ctx)
205                 return;
206
207         spin_lock_irqsave(&ctx->lock, flags);
208
209         counter_sched_out(counter, cpuctx, ctx);
210
211         counter->task = NULL;
212         ctx->nr_counters--;
213
214         /*
215          * Protect the list operation against NMI by disabling the
216          * counters on a global level. NOP for non NMI based counters.
217          */
218         perf_disable();
219         list_del_counter(counter, ctx);
220         perf_enable();
221
222         if (!ctx->task) {
223                 /*
224                  * Allow more per task counters with respect to the
225                  * reservation:
226                  */
227                 cpuctx->max_pertask =
228                         min(perf_max_counters - ctx->nr_counters,
229                             perf_max_counters - perf_reserved_percpu);
230         }
231
232         spin_unlock_irqrestore(&ctx->lock, flags);
233 }
234
235
236 /*
237  * Remove the counter from a task's (or a CPU's) list of counters.
238  *
239  * Must be called with counter->mutex and ctx->mutex held.
240  *
241  * CPU counters are removed with a smp call. For task counters we only
242  * call when the task is on a CPU.
243  */
244 static void perf_counter_remove_from_context(struct perf_counter *counter)
245 {
246         struct perf_counter_context *ctx = counter->ctx;
247         struct task_struct *task = ctx->task;
248
249         if (!task) {
250                 /*
251                  * Per cpu counters are removed via an smp call and
252                  * the removal is always sucessful.
253                  */
254                 smp_call_function_single(counter->cpu,
255                                          __perf_counter_remove_from_context,
256                                          counter, 1);
257                 return;
258         }
259
260 retry:
261         task_oncpu_function_call(task, __perf_counter_remove_from_context,
262                                  counter);
263
264         spin_lock_irq(&ctx->lock);
265         /*
266          * If the context is active we need to retry the smp call.
267          */
268         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
269                 spin_unlock_irq(&ctx->lock);
270                 goto retry;
271         }
272
273         /*
274          * The lock prevents that this context is scheduled in so we
275          * can remove the counter safely, if the call above did not
276          * succeed.
277          */
278         if (!list_empty(&counter->list_entry)) {
279                 ctx->nr_counters--;
280                 list_del_counter(counter, ctx);
281                 counter->task = NULL;
282         }
283         spin_unlock_irq(&ctx->lock);
284 }
285
286 static inline u64 perf_clock(void)
287 {
288         return cpu_clock(smp_processor_id());
289 }
290
291 /*
292  * Update the record of the current time in a context.
293  */
294 static void update_context_time(struct perf_counter_context *ctx)
295 {
296         u64 now = perf_clock();
297
298         ctx->time += now - ctx->timestamp;
299         ctx->timestamp = now;
300 }
301
302 /*
303  * Update the total_time_enabled and total_time_running fields for a counter.
304  */
305 static void update_counter_times(struct perf_counter *counter)
306 {
307         struct perf_counter_context *ctx = counter->ctx;
308         u64 run_end;
309
310         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
311                 return;
312
313         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
314
315         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
316                 run_end = counter->tstamp_stopped;
317         else
318                 run_end = ctx->time;
319
320         counter->total_time_running = run_end - counter->tstamp_running;
321 }
322
323 /*
324  * Update total_time_enabled and total_time_running for all counters in a group.
325  */
326 static void update_group_times(struct perf_counter *leader)
327 {
328         struct perf_counter *counter;
329
330         update_counter_times(leader);
331         list_for_each_entry(counter, &leader->sibling_list, list_entry)
332                 update_counter_times(counter);
333 }
334
335 /*
336  * Cross CPU call to disable a performance counter
337  */
338 static void __perf_counter_disable(void *info)
339 {
340         struct perf_counter *counter = info;
341         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
342         struct perf_counter_context *ctx = counter->ctx;
343         unsigned long flags;
344
345         /*
346          * If this is a per-task counter, need to check whether this
347          * counter's task is the current task on this cpu.
348          */
349         if (ctx->task && cpuctx->task_ctx != ctx)
350                 return;
351
352         spin_lock_irqsave(&ctx->lock, flags);
353
354         /*
355          * If the counter is on, turn it off.
356          * If it is in error state, leave it in error state.
357          */
358         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
359                 update_context_time(ctx);
360                 update_counter_times(counter);
361                 if (counter == counter->group_leader)
362                         group_sched_out(counter, cpuctx, ctx);
363                 else
364                         counter_sched_out(counter, cpuctx, ctx);
365                 counter->state = PERF_COUNTER_STATE_OFF;
366         }
367
368         spin_unlock_irqrestore(&ctx->lock, flags);
369 }
370
371 /*
372  * Disable a counter.
373  */
374 static void perf_counter_disable(struct perf_counter *counter)
375 {
376         struct perf_counter_context *ctx = counter->ctx;
377         struct task_struct *task = ctx->task;
378
379         if (!task) {
380                 /*
381                  * Disable the counter on the cpu that it's on
382                  */
383                 smp_call_function_single(counter->cpu, __perf_counter_disable,
384                                          counter, 1);
385                 return;
386         }
387
388  retry:
389         task_oncpu_function_call(task, __perf_counter_disable, counter);
390
391         spin_lock_irq(&ctx->lock);
392         /*
393          * If the counter is still active, we need to retry the cross-call.
394          */
395         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
396                 spin_unlock_irq(&ctx->lock);
397                 goto retry;
398         }
399
400         /*
401          * Since we have the lock this context can't be scheduled
402          * in, so we can change the state safely.
403          */
404         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
405                 update_counter_times(counter);
406                 counter->state = PERF_COUNTER_STATE_OFF;
407         }
408
409         spin_unlock_irq(&ctx->lock);
410 }
411
412 static int
413 counter_sched_in(struct perf_counter *counter,
414                  struct perf_cpu_context *cpuctx,
415                  struct perf_counter_context *ctx,
416                  int cpu)
417 {
418         if (counter->state <= PERF_COUNTER_STATE_OFF)
419                 return 0;
420
421         counter->state = PERF_COUNTER_STATE_ACTIVE;
422         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
423         /*
424          * The new state must be visible before we turn it on in the hardware:
425          */
426         smp_wmb();
427
428         if (counter->pmu->enable(counter)) {
429                 counter->state = PERF_COUNTER_STATE_INACTIVE;
430                 counter->oncpu = -1;
431                 return -EAGAIN;
432         }
433
434         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
435
436         if (!is_software_counter(counter))
437                 cpuctx->active_oncpu++;
438         ctx->nr_active++;
439
440         if (counter->hw_event.exclusive)
441                 cpuctx->exclusive = 1;
442
443         return 0;
444 }
445
446 static int
447 group_sched_in(struct perf_counter *group_counter,
448                struct perf_cpu_context *cpuctx,
449                struct perf_counter_context *ctx,
450                int cpu)
451 {
452         struct perf_counter *counter, *partial_group;
453         int ret;
454
455         if (group_counter->state == PERF_COUNTER_STATE_OFF)
456                 return 0;
457
458         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
459         if (ret)
460                 return ret < 0 ? ret : 0;
461
462         group_counter->prev_state = group_counter->state;
463         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
464                 return -EAGAIN;
465
466         /*
467          * Schedule in siblings as one group (if any):
468          */
469         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
470                 counter->prev_state = counter->state;
471                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
472                         partial_group = counter;
473                         goto group_error;
474                 }
475         }
476
477         return 0;
478
479 group_error:
480         /*
481          * Groups can be scheduled in as one unit only, so undo any
482          * partial group before returning:
483          */
484         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
485                 if (counter == partial_group)
486                         break;
487                 counter_sched_out(counter, cpuctx, ctx);
488         }
489         counter_sched_out(group_counter, cpuctx, ctx);
490
491         return -EAGAIN;
492 }
493
494 /*
495  * Return 1 for a group consisting entirely of software counters,
496  * 0 if the group contains any hardware counters.
497  */
498 static int is_software_only_group(struct perf_counter *leader)
499 {
500         struct perf_counter *counter;
501
502         if (!is_software_counter(leader))
503                 return 0;
504
505         list_for_each_entry(counter, &leader->sibling_list, list_entry)
506                 if (!is_software_counter(counter))
507                         return 0;
508
509         return 1;
510 }
511
512 /*
513  * Work out whether we can put this counter group on the CPU now.
514  */
515 static int group_can_go_on(struct perf_counter *counter,
516                            struct perf_cpu_context *cpuctx,
517                            int can_add_hw)
518 {
519         /*
520          * Groups consisting entirely of software counters can always go on.
521          */
522         if (is_software_only_group(counter))
523                 return 1;
524         /*
525          * If an exclusive group is already on, no other hardware
526          * counters can go on.
527          */
528         if (cpuctx->exclusive)
529                 return 0;
530         /*
531          * If this group is exclusive and there are already
532          * counters on the CPU, it can't go on.
533          */
534         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
535                 return 0;
536         /*
537          * Otherwise, try to add it if all previous groups were able
538          * to go on.
539          */
540         return can_add_hw;
541 }
542
543 static void add_counter_to_ctx(struct perf_counter *counter,
544                                struct perf_counter_context *ctx)
545 {
546         list_add_counter(counter, ctx);
547         ctx->nr_counters++;
548         counter->prev_state = PERF_COUNTER_STATE_OFF;
549         counter->tstamp_enabled = ctx->time;
550         counter->tstamp_running = ctx->time;
551         counter->tstamp_stopped = ctx->time;
552 }
553
554 /*
555  * Cross CPU call to install and enable a performance counter
556  */
557 static void __perf_install_in_context(void *info)
558 {
559         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560         struct perf_counter *counter = info;
561         struct perf_counter_context *ctx = counter->ctx;
562         struct perf_counter *leader = counter->group_leader;
563         int cpu = smp_processor_id();
564         unsigned long flags;
565         int err;
566
567         /*
568          * If this is a task context, we need to check whether it is
569          * the current task context of this cpu. If not it has been
570          * scheduled out before the smp call arrived.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         spin_lock_irqsave(&ctx->lock, flags);
576         update_context_time(ctx);
577
578         /*
579          * Protect the list operation against NMI by disabling the
580          * counters on a global level. NOP for non NMI based counters.
581          */
582         perf_disable();
583
584         add_counter_to_ctx(counter, ctx);
585
586         /*
587          * Don't put the counter on if it is disabled or if
588          * it is in a group and the group isn't on.
589          */
590         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
591             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
592                 goto unlock;
593
594         /*
595          * An exclusive counter can't go on if there are already active
596          * hardware counters, and no hardware counter can go on if there
597          * is already an exclusive counter on.
598          */
599         if (!group_can_go_on(counter, cpuctx, 1))
600                 err = -EEXIST;
601         else
602                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
603
604         if (err) {
605                 /*
606                  * This counter couldn't go on.  If it is in a group
607                  * then we have to pull the whole group off.
608                  * If the counter group is pinned then put it in error state.
609                  */
610                 if (leader != counter)
611                         group_sched_out(leader, cpuctx, ctx);
612                 if (leader->hw_event.pinned) {
613                         update_group_times(leader);
614                         leader->state = PERF_COUNTER_STATE_ERROR;
615                 }
616         }
617
618         if (!err && !ctx->task && cpuctx->max_pertask)
619                 cpuctx->max_pertask--;
620
621  unlock:
622         perf_enable();
623
624         spin_unlock_irqrestore(&ctx->lock, flags);
625 }
626
627 /*
628  * Attach a performance counter to a context
629  *
630  * First we add the counter to the list with the hardware enable bit
631  * in counter->hw_config cleared.
632  *
633  * If the counter is attached to a task which is on a CPU we use a smp
634  * call to enable it in the task context. The task might have been
635  * scheduled away, but we check this in the smp call again.
636  *
637  * Must be called with ctx->mutex held.
638  */
639 static void
640 perf_install_in_context(struct perf_counter_context *ctx,
641                         struct perf_counter *counter,
642                         int cpu)
643 {
644         struct task_struct *task = ctx->task;
645
646         if (!task) {
647                 /*
648                  * Per cpu counters are installed via an smp call and
649                  * the install is always sucessful.
650                  */
651                 smp_call_function_single(cpu, __perf_install_in_context,
652                                          counter, 1);
653                 return;
654         }
655
656         counter->task = task;
657 retry:
658         task_oncpu_function_call(task, __perf_install_in_context,
659                                  counter);
660
661         spin_lock_irq(&ctx->lock);
662         /*
663          * we need to retry the smp call.
664          */
665         if (ctx->is_active && list_empty(&counter->list_entry)) {
666                 spin_unlock_irq(&ctx->lock);
667                 goto retry;
668         }
669
670         /*
671          * The lock prevents that this context is scheduled in so we
672          * can add the counter safely, if it the call above did not
673          * succeed.
674          */
675         if (list_empty(&counter->list_entry))
676                 add_counter_to_ctx(counter, ctx);
677         spin_unlock_irq(&ctx->lock);
678 }
679
680 /*
681  * Cross CPU call to enable a performance counter
682  */
683 static void __perf_counter_enable(void *info)
684 {
685         struct perf_counter *counter = info;
686         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
687         struct perf_counter_context *ctx = counter->ctx;
688         struct perf_counter *leader = counter->group_leader;
689         unsigned long flags;
690         int err;
691
692         /*
693          * If this is a per-task counter, need to check whether this
694          * counter's task is the current task on this cpu.
695          */
696         if (ctx->task && cpuctx->task_ctx != ctx)
697                 return;
698
699         spin_lock_irqsave(&ctx->lock, flags);
700         update_context_time(ctx);
701
702         counter->prev_state = counter->state;
703         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704                 goto unlock;
705         counter->state = PERF_COUNTER_STATE_INACTIVE;
706         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707
708         /*
709          * If the counter is in a group and isn't the group leader,
710          * then don't put it on unless the group is on.
711          */
712         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
713                 goto unlock;
714
715         if (!group_can_go_on(counter, cpuctx, 1)) {
716                 err = -EEXIST;
717         } else {
718                 perf_disable();
719                 if (counter == leader)
720                         err = group_sched_in(counter, cpuctx, ctx,
721                                              smp_processor_id());
722                 else
723                         err = counter_sched_in(counter, cpuctx, ctx,
724                                                smp_processor_id());
725                 perf_enable();
726         }
727
728         if (err) {
729                 /*
730                  * If this counter can't go on and it's part of a
731                  * group, then the whole group has to come off.
732                  */
733                 if (leader != counter)
734                         group_sched_out(leader, cpuctx, ctx);
735                 if (leader->hw_event.pinned) {
736                         update_group_times(leader);
737                         leader->state = PERF_COUNTER_STATE_ERROR;
738                 }
739         }
740
741  unlock:
742         spin_unlock_irqrestore(&ctx->lock, flags);
743 }
744
745 /*
746  * Enable a counter.
747  */
748 static void perf_counter_enable(struct perf_counter *counter)
749 {
750         struct perf_counter_context *ctx = counter->ctx;
751         struct task_struct *task = ctx->task;
752
753         if (!task) {
754                 /*
755                  * Enable the counter on the cpu that it's on
756                  */
757                 smp_call_function_single(counter->cpu, __perf_counter_enable,
758                                          counter, 1);
759                 return;
760         }
761
762         spin_lock_irq(&ctx->lock);
763         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764                 goto out;
765
766         /*
767          * If the counter is in error state, clear that first.
768          * That way, if we see the counter in error state below, we
769          * know that it has gone back into error state, as distinct
770          * from the task having been scheduled away before the
771          * cross-call arrived.
772          */
773         if (counter->state == PERF_COUNTER_STATE_ERROR)
774                 counter->state = PERF_COUNTER_STATE_OFF;
775
776  retry:
777         spin_unlock_irq(&ctx->lock);
778         task_oncpu_function_call(task, __perf_counter_enable, counter);
779
780         spin_lock_irq(&ctx->lock);
781
782         /*
783          * If the context is active and the counter is still off,
784          * we need to retry the cross-call.
785          */
786         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
787                 goto retry;
788
789         /*
790          * Since we have the lock this context can't be scheduled
791          * in, so we can change the state safely.
792          */
793         if (counter->state == PERF_COUNTER_STATE_OFF) {
794                 counter->state = PERF_COUNTER_STATE_INACTIVE;
795                 counter->tstamp_enabled =
796                         ctx->time - counter->total_time_enabled;
797         }
798  out:
799         spin_unlock_irq(&ctx->lock);
800 }
801
802 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803 {
804         /*
805          * not supported on inherited counters
806          */
807         if (counter->hw_event.inherit)
808                 return -EINVAL;
809
810         atomic_add(refresh, &counter->event_limit);
811         perf_counter_enable(counter);
812
813         return 0;
814 }
815
816 void __perf_counter_sched_out(struct perf_counter_context *ctx,
817                               struct perf_cpu_context *cpuctx)
818 {
819         struct perf_counter *counter;
820
821         spin_lock(&ctx->lock);
822         ctx->is_active = 0;
823         if (likely(!ctx->nr_counters))
824                 goto out;
825         update_context_time(ctx);
826
827         perf_disable();
828         if (ctx->nr_active) {
829                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
830                         group_sched_out(counter, cpuctx, ctx);
831         }
832         perf_enable();
833  out:
834         spin_unlock(&ctx->lock);
835 }
836
837 /*
838  * Called from scheduler to remove the counters of the current task,
839  * with interrupts disabled.
840  *
841  * We stop each counter and update the counter value in counter->count.
842  *
843  * This does not protect us against NMI, but disable()
844  * sets the disabled bit in the control field of counter _before_
845  * accessing the counter control register. If a NMI hits, then it will
846  * not restart the counter.
847  */
848 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
849 {
850         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
851         struct perf_counter_context *ctx = &task->perf_counter_ctx;
852         struct pt_regs *regs;
853
854         if (likely(!cpuctx->task_ctx))
855                 return;
856
857         update_context_time(ctx);
858
859         regs = task_pt_regs(task);
860         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
861         __perf_counter_sched_out(ctx, cpuctx);
862
863         cpuctx->task_ctx = NULL;
864 }
865
866 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
867 {
868         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
869
870         __perf_counter_sched_out(ctx, cpuctx);
871         cpuctx->task_ctx = NULL;
872 }
873
874 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
875 {
876         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
877 }
878
879 static void
880 __perf_counter_sched_in(struct perf_counter_context *ctx,
881                         struct perf_cpu_context *cpuctx, int cpu)
882 {
883         struct perf_counter *counter;
884         int can_add_hw = 1;
885
886         spin_lock(&ctx->lock);
887         ctx->is_active = 1;
888         if (likely(!ctx->nr_counters))
889                 goto out;
890
891         ctx->timestamp = perf_clock();
892
893         perf_disable();
894
895         /*
896          * First go through the list and put on any pinned groups
897          * in order to give them the best chance of going on.
898          */
899         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901                     !counter->hw_event.pinned)
902                         continue;
903                 if (counter->cpu != -1 && counter->cpu != cpu)
904                         continue;
905
906                 if (group_can_go_on(counter, cpuctx, 1))
907                         group_sched_in(counter, cpuctx, ctx, cpu);
908
909                 /*
910                  * If this pinned group hasn't been scheduled,
911                  * put it in error state.
912                  */
913                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914                         update_group_times(counter);
915                         counter->state = PERF_COUNTER_STATE_ERROR;
916                 }
917         }
918
919         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920                 /*
921                  * Ignore counters in OFF or ERROR state, and
922                  * ignore pinned counters since we did them already.
923                  */
924                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925                     counter->hw_event.pinned)
926                         continue;
927
928                 /*
929                  * Listen to the 'cpu' scheduling filter constraint
930                  * of counters:
931                  */
932                 if (counter->cpu != -1 && counter->cpu != cpu)
933                         continue;
934
935                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936                         if (group_sched_in(counter, cpuctx, ctx, cpu))
937                                 can_add_hw = 0;
938                 }
939         }
940         perf_enable();
941  out:
942         spin_unlock(&ctx->lock);
943 }
944
945 /*
946  * Called from scheduler to add the counters of the current task
947  * with interrupts disabled.
948  *
949  * We restore the counter value and then enable it.
950  *
951  * This does not protect us against NMI, but enable()
952  * sets the enabled bit in the control field of counter _before_
953  * accessing the counter control register. If a NMI hits, then it will
954  * keep the counter running.
955  */
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
957 {
958         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959         struct perf_counter_context *ctx = &task->perf_counter_ctx;
960
961         __perf_counter_sched_in(ctx, cpuctx, cpu);
962         cpuctx->task_ctx = ctx;
963 }
964
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
966 {
967         struct perf_counter_context *ctx = &cpuctx->ctx;
968
969         __perf_counter_sched_in(ctx, cpuctx, cpu);
970 }
971
972 int perf_counter_task_disable(void)
973 {
974         struct task_struct *curr = current;
975         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976         struct perf_counter *counter;
977         unsigned long flags;
978
979         if (likely(!ctx->nr_counters))
980                 return 0;
981
982         local_irq_save(flags);
983
984         __perf_counter_task_sched_out(ctx);
985
986         spin_lock(&ctx->lock);
987
988         /*
989          * Disable all the counters:
990          */
991         perf_disable();
992
993         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995                         update_group_times(counter);
996                         counter->state = PERF_COUNTER_STATE_OFF;
997                 }
998         }
999
1000         perf_enable();
1001
1002         spin_unlock_irqrestore(&ctx->lock, flags);
1003
1004         return 0;
1005 }
1006
1007 int perf_counter_task_enable(void)
1008 {
1009         struct task_struct *curr = current;
1010         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1011         struct perf_counter *counter;
1012         unsigned long flags;
1013         int cpu;
1014
1015         if (likely(!ctx->nr_counters))
1016                 return 0;
1017
1018         local_irq_save(flags);
1019         cpu = smp_processor_id();
1020
1021         __perf_counter_task_sched_out(ctx);
1022
1023         spin_lock(&ctx->lock);
1024
1025         /*
1026          * Disable all the counters:
1027          */
1028         perf_disable();
1029
1030         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1031                 if (counter->state > PERF_COUNTER_STATE_OFF)
1032                         continue;
1033                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1034                 counter->tstamp_enabled =
1035                         ctx->time - counter->total_time_enabled;
1036                 counter->hw_event.disabled = 0;
1037         }
1038         perf_enable();
1039
1040         spin_unlock(&ctx->lock);
1041
1042         perf_counter_task_sched_in(curr, cpu);
1043
1044         local_irq_restore(flags);
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * Round-robin a context's counters:
1051  */
1052 static void rotate_ctx(struct perf_counter_context *ctx)
1053 {
1054         struct perf_counter *counter;
1055
1056         if (!ctx->nr_counters)
1057                 return;
1058
1059         spin_lock(&ctx->lock);
1060         /*
1061          * Rotate the first entry last (works just fine for group counters too):
1062          */
1063         perf_disable();
1064         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1065                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1066                 break;
1067         }
1068         perf_enable();
1069
1070         spin_unlock(&ctx->lock);
1071 }
1072
1073 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1074 {
1075         struct perf_cpu_context *cpuctx;
1076         struct perf_counter_context *ctx;
1077
1078         if (!atomic_read(&nr_counters))
1079                 return;
1080
1081         cpuctx = &per_cpu(perf_cpu_context, cpu);
1082         ctx = &curr->perf_counter_ctx;
1083
1084         perf_counter_cpu_sched_out(cpuctx);
1085         __perf_counter_task_sched_out(ctx);
1086
1087         rotate_ctx(&cpuctx->ctx);
1088         rotate_ctx(ctx);
1089
1090         perf_counter_cpu_sched_in(cpuctx, cpu);
1091         perf_counter_task_sched_in(curr, cpu);
1092 }
1093
1094 /*
1095  * Cross CPU call to read the hardware counter
1096  */
1097 static void __read(void *info)
1098 {
1099         struct perf_counter *counter = info;
1100         struct perf_counter_context *ctx = counter->ctx;
1101         unsigned long flags;
1102
1103         local_irq_save(flags);
1104         if (ctx->is_active)
1105                 update_context_time(ctx);
1106         counter->pmu->read(counter);
1107         update_counter_times(counter);
1108         local_irq_restore(flags);
1109 }
1110
1111 static u64 perf_counter_read(struct perf_counter *counter)
1112 {
1113         /*
1114          * If counter is enabled and currently active on a CPU, update the
1115          * value in the counter structure:
1116          */
1117         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1118                 smp_call_function_single(counter->oncpu,
1119                                          __read, counter, 1);
1120         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1121                 update_counter_times(counter);
1122         }
1123
1124         return atomic64_read(&counter->count);
1125 }
1126
1127 static void put_context(struct perf_counter_context *ctx)
1128 {
1129         if (ctx->task)
1130                 put_task_struct(ctx->task);
1131 }
1132
1133 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1134 {
1135         struct perf_cpu_context *cpuctx;
1136         struct perf_counter_context *ctx;
1137         struct task_struct *task;
1138
1139         /*
1140          * If cpu is not a wildcard then this is a percpu counter:
1141          */
1142         if (cpu != -1) {
1143                 /* Must be root to operate on a CPU counter: */
1144                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1145                         return ERR_PTR(-EACCES);
1146
1147                 if (cpu < 0 || cpu > num_possible_cpus())
1148                         return ERR_PTR(-EINVAL);
1149
1150                 /*
1151                  * We could be clever and allow to attach a counter to an
1152                  * offline CPU and activate it when the CPU comes up, but
1153                  * that's for later.
1154                  */
1155                 if (!cpu_isset(cpu, cpu_online_map))
1156                         return ERR_PTR(-ENODEV);
1157
1158                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1159                 ctx = &cpuctx->ctx;
1160
1161                 return ctx;
1162         }
1163
1164         rcu_read_lock();
1165         if (!pid)
1166                 task = current;
1167         else
1168                 task = find_task_by_vpid(pid);
1169         if (task)
1170                 get_task_struct(task);
1171         rcu_read_unlock();
1172
1173         if (!task)
1174                 return ERR_PTR(-ESRCH);
1175
1176         ctx = &task->perf_counter_ctx;
1177         ctx->task = task;
1178
1179         /* Reuse ptrace permission checks for now. */
1180         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1181                 put_context(ctx);
1182                 return ERR_PTR(-EACCES);
1183         }
1184
1185         return ctx;
1186 }
1187
1188 static void free_counter_rcu(struct rcu_head *head)
1189 {
1190         struct perf_counter *counter;
1191
1192         counter = container_of(head, struct perf_counter, rcu_head);
1193         kfree(counter);
1194 }
1195
1196 static void perf_pending_sync(struct perf_counter *counter);
1197
1198 static void free_counter(struct perf_counter *counter)
1199 {
1200         perf_pending_sync(counter);
1201
1202         atomic_dec(&nr_counters);
1203         if (counter->hw_event.mmap)
1204                 atomic_dec(&nr_mmap_tracking);
1205         if (counter->hw_event.munmap)
1206                 atomic_dec(&nr_munmap_tracking);
1207         if (counter->hw_event.comm)
1208                 atomic_dec(&nr_comm_tracking);
1209
1210         if (counter->destroy)
1211                 counter->destroy(counter);
1212
1213         call_rcu(&counter->rcu_head, free_counter_rcu);
1214 }
1215
1216 /*
1217  * Called when the last reference to the file is gone.
1218  */
1219 static int perf_release(struct inode *inode, struct file *file)
1220 {
1221         struct perf_counter *counter = file->private_data;
1222         struct perf_counter_context *ctx = counter->ctx;
1223
1224         file->private_data = NULL;
1225
1226         mutex_lock(&ctx->mutex);
1227         mutex_lock(&counter->mutex);
1228
1229         perf_counter_remove_from_context(counter);
1230
1231         mutex_unlock(&counter->mutex);
1232         mutex_unlock(&ctx->mutex);
1233
1234         free_counter(counter);
1235         put_context(ctx);
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Read the performance counter - simple non blocking version for now
1242  */
1243 static ssize_t
1244 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1245 {
1246         u64 values[3];
1247         int n;
1248
1249         /*
1250          * Return end-of-file for a read on a counter that is in
1251          * error state (i.e. because it was pinned but it couldn't be
1252          * scheduled on to the CPU at some point).
1253          */
1254         if (counter->state == PERF_COUNTER_STATE_ERROR)
1255                 return 0;
1256
1257         mutex_lock(&counter->mutex);
1258         values[0] = perf_counter_read(counter);
1259         n = 1;
1260         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1261                 values[n++] = counter->total_time_enabled +
1262                         atomic64_read(&counter->child_total_time_enabled);
1263         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1264                 values[n++] = counter->total_time_running +
1265                         atomic64_read(&counter->child_total_time_running);
1266         mutex_unlock(&counter->mutex);
1267
1268         if (count < n * sizeof(u64))
1269                 return -EINVAL;
1270         count = n * sizeof(u64);
1271
1272         if (copy_to_user(buf, values, count))
1273                 return -EFAULT;
1274
1275         return count;
1276 }
1277
1278 static ssize_t
1279 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1280 {
1281         struct perf_counter *counter = file->private_data;
1282
1283         return perf_read_hw(counter, buf, count);
1284 }
1285
1286 static unsigned int perf_poll(struct file *file, poll_table *wait)
1287 {
1288         struct perf_counter *counter = file->private_data;
1289         struct perf_mmap_data *data;
1290         unsigned int events = POLL_HUP;
1291
1292         rcu_read_lock();
1293         data = rcu_dereference(counter->data);
1294         if (data)
1295                 events = atomic_xchg(&data->poll, 0);
1296         rcu_read_unlock();
1297
1298         poll_wait(file, &counter->waitq, wait);
1299
1300         return events;
1301 }
1302
1303 static void perf_counter_reset(struct perf_counter *counter)
1304 {
1305         (void)perf_counter_read(counter);
1306         atomic64_set(&counter->count, 0);
1307         perf_counter_update_userpage(counter);
1308 }
1309
1310 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1311                                           void (*func)(struct perf_counter *))
1312 {
1313         struct perf_counter_context *ctx = counter->ctx;
1314         struct perf_counter *sibling;
1315
1316         spin_lock_irq(&ctx->lock);
1317         counter = counter->group_leader;
1318
1319         func(counter);
1320         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1321                 func(sibling);
1322         spin_unlock_irq(&ctx->lock);
1323 }
1324
1325 static void perf_counter_for_each_child(struct perf_counter *counter,
1326                                         void (*func)(struct perf_counter *))
1327 {
1328         struct perf_counter *child;
1329
1330         mutex_lock(&counter->mutex);
1331         func(counter);
1332         list_for_each_entry(child, &counter->child_list, child_list)
1333                 func(child);
1334         mutex_unlock(&counter->mutex);
1335 }
1336
1337 static void perf_counter_for_each(struct perf_counter *counter,
1338                                   void (*func)(struct perf_counter *))
1339 {
1340         struct perf_counter *child;
1341
1342         mutex_lock(&counter->mutex);
1343         perf_counter_for_each_sibling(counter, func);
1344         list_for_each_entry(child, &counter->child_list, child_list)
1345                 perf_counter_for_each_sibling(child, func);
1346         mutex_unlock(&counter->mutex);
1347 }
1348
1349 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1350 {
1351         struct perf_counter *counter = file->private_data;
1352         void (*func)(struct perf_counter *);
1353         u32 flags = arg;
1354
1355         switch (cmd) {
1356         case PERF_COUNTER_IOC_ENABLE:
1357                 func = perf_counter_enable;
1358                 break;
1359         case PERF_COUNTER_IOC_DISABLE:
1360                 func = perf_counter_disable;
1361                 break;
1362         case PERF_COUNTER_IOC_RESET:
1363                 func = perf_counter_reset;
1364                 break;
1365
1366         case PERF_COUNTER_IOC_REFRESH:
1367                 return perf_counter_refresh(counter, arg);
1368         default:
1369                 return -ENOTTY;
1370         }
1371
1372         if (flags & PERF_IOC_FLAG_GROUP)
1373                 perf_counter_for_each(counter, func);
1374         else
1375                 perf_counter_for_each_child(counter, func);
1376
1377         return 0;
1378 }
1379
1380 /*
1381  * Callers need to ensure there can be no nesting of this function, otherwise
1382  * the seqlock logic goes bad. We can not serialize this because the arch
1383  * code calls this from NMI context.
1384  */
1385 void perf_counter_update_userpage(struct perf_counter *counter)
1386 {
1387         struct perf_mmap_data *data;
1388         struct perf_counter_mmap_page *userpg;
1389
1390         rcu_read_lock();
1391         data = rcu_dereference(counter->data);
1392         if (!data)
1393                 goto unlock;
1394
1395         userpg = data->user_page;
1396
1397         /*
1398          * Disable preemption so as to not let the corresponding user-space
1399          * spin too long if we get preempted.
1400          */
1401         preempt_disable();
1402         ++userpg->lock;
1403         barrier();
1404         userpg->index = counter->hw.idx;
1405         userpg->offset = atomic64_read(&counter->count);
1406         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1407                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1408
1409         barrier();
1410         ++userpg->lock;
1411         preempt_enable();
1412 unlock:
1413         rcu_read_unlock();
1414 }
1415
1416 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1417 {
1418         struct perf_counter *counter = vma->vm_file->private_data;
1419         struct perf_mmap_data *data;
1420         int ret = VM_FAULT_SIGBUS;
1421
1422         rcu_read_lock();
1423         data = rcu_dereference(counter->data);
1424         if (!data)
1425                 goto unlock;
1426
1427         if (vmf->pgoff == 0) {
1428                 vmf->page = virt_to_page(data->user_page);
1429         } else {
1430                 int nr = vmf->pgoff - 1;
1431
1432                 if ((unsigned)nr > data->nr_pages)
1433                         goto unlock;
1434
1435                 vmf->page = virt_to_page(data->data_pages[nr]);
1436         }
1437         get_page(vmf->page);
1438         ret = 0;
1439 unlock:
1440         rcu_read_unlock();
1441
1442         return ret;
1443 }
1444
1445 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1446 {
1447         struct perf_mmap_data *data;
1448         unsigned long size;
1449         int i;
1450
1451         WARN_ON(atomic_read(&counter->mmap_count));
1452
1453         size = sizeof(struct perf_mmap_data);
1454         size += nr_pages * sizeof(void *);
1455
1456         data = kzalloc(size, GFP_KERNEL);
1457         if (!data)
1458                 goto fail;
1459
1460         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1461         if (!data->user_page)
1462                 goto fail_user_page;
1463
1464         for (i = 0; i < nr_pages; i++) {
1465                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1466                 if (!data->data_pages[i])
1467                         goto fail_data_pages;
1468         }
1469
1470         data->nr_pages = nr_pages;
1471         atomic_set(&data->lock, -1);
1472
1473         rcu_assign_pointer(counter->data, data);
1474
1475         return 0;
1476
1477 fail_data_pages:
1478         for (i--; i >= 0; i--)
1479                 free_page((unsigned long)data->data_pages[i]);
1480
1481         free_page((unsigned long)data->user_page);
1482
1483 fail_user_page:
1484         kfree(data);
1485
1486 fail:
1487         return -ENOMEM;
1488 }
1489
1490 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1491 {
1492         struct perf_mmap_data *data = container_of(rcu_head,
1493                         struct perf_mmap_data, rcu_head);
1494         int i;
1495
1496         free_page((unsigned long)data->user_page);
1497         for (i = 0; i < data->nr_pages; i++)
1498                 free_page((unsigned long)data->data_pages[i]);
1499         kfree(data);
1500 }
1501
1502 static void perf_mmap_data_free(struct perf_counter *counter)
1503 {
1504         struct perf_mmap_data *data = counter->data;
1505
1506         WARN_ON(atomic_read(&counter->mmap_count));
1507
1508         rcu_assign_pointer(counter->data, NULL);
1509         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1510 }
1511
1512 static void perf_mmap_open(struct vm_area_struct *vma)
1513 {
1514         struct perf_counter *counter = vma->vm_file->private_data;
1515
1516         atomic_inc(&counter->mmap_count);
1517 }
1518
1519 static void perf_mmap_close(struct vm_area_struct *vma)
1520 {
1521         struct perf_counter *counter = vma->vm_file->private_data;
1522
1523         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1524                                       &counter->mmap_mutex)) {
1525                 struct user_struct *user = current_user();
1526
1527                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1528                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1529                 perf_mmap_data_free(counter);
1530                 mutex_unlock(&counter->mmap_mutex);
1531         }
1532 }
1533
1534 static struct vm_operations_struct perf_mmap_vmops = {
1535         .open  = perf_mmap_open,
1536         .close = perf_mmap_close,
1537         .fault = perf_mmap_fault,
1538 };
1539
1540 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1541 {
1542         struct perf_counter *counter = file->private_data;
1543         struct user_struct *user = current_user();
1544         unsigned long vma_size;
1545         unsigned long nr_pages;
1546         unsigned long user_locked, user_lock_limit;
1547         unsigned long locked, lock_limit;
1548         long user_extra, extra;
1549         int ret = 0;
1550
1551         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1552                 return -EINVAL;
1553
1554         vma_size = vma->vm_end - vma->vm_start;
1555         nr_pages = (vma_size / PAGE_SIZE) - 1;
1556
1557         /*
1558          * If we have data pages ensure they're a power-of-two number, so we
1559          * can do bitmasks instead of modulo.
1560          */
1561         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1562                 return -EINVAL;
1563
1564         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1565                 return -EINVAL;
1566
1567         if (vma->vm_pgoff != 0)
1568                 return -EINVAL;
1569
1570         mutex_lock(&counter->mmap_mutex);
1571         if (atomic_inc_not_zero(&counter->mmap_count)) {
1572                 if (nr_pages != counter->data->nr_pages)
1573                         ret = -EINVAL;
1574                 goto unlock;
1575         }
1576
1577         user_extra = nr_pages + 1;
1578         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1579         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1580
1581         extra = 0;
1582         if (user_locked > user_lock_limit)
1583                 extra = user_locked - user_lock_limit;
1584
1585         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1586         lock_limit >>= PAGE_SHIFT;
1587         locked = vma->vm_mm->locked_vm + extra;
1588
1589         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1590                 ret = -EPERM;
1591                 goto unlock;
1592         }
1593
1594         WARN_ON(counter->data);
1595         ret = perf_mmap_data_alloc(counter, nr_pages);
1596         if (ret)
1597                 goto unlock;
1598
1599         atomic_set(&counter->mmap_count, 1);
1600         atomic_long_add(user_extra, &user->locked_vm);
1601         vma->vm_mm->locked_vm += extra;
1602         counter->data->nr_locked = extra;
1603 unlock:
1604         mutex_unlock(&counter->mmap_mutex);
1605
1606         vma->vm_flags &= ~VM_MAYWRITE;
1607         vma->vm_flags |= VM_RESERVED;
1608         vma->vm_ops = &perf_mmap_vmops;
1609
1610         return ret;
1611 }
1612
1613 static int perf_fasync(int fd, struct file *filp, int on)
1614 {
1615         struct perf_counter *counter = filp->private_data;
1616         struct inode *inode = filp->f_path.dentry->d_inode;
1617         int retval;
1618
1619         mutex_lock(&inode->i_mutex);
1620         retval = fasync_helper(fd, filp, on, &counter->fasync);
1621         mutex_unlock(&inode->i_mutex);
1622
1623         if (retval < 0)
1624                 return retval;
1625
1626         return 0;
1627 }
1628
1629 static const struct file_operations perf_fops = {
1630         .release                = perf_release,
1631         .read                   = perf_read,
1632         .poll                   = perf_poll,
1633         .unlocked_ioctl         = perf_ioctl,
1634         .compat_ioctl           = perf_ioctl,
1635         .mmap                   = perf_mmap,
1636         .fasync                 = perf_fasync,
1637 };
1638
1639 /*
1640  * Perf counter wakeup
1641  *
1642  * If there's data, ensure we set the poll() state and publish everything
1643  * to user-space before waking everybody up.
1644  */
1645
1646 void perf_counter_wakeup(struct perf_counter *counter)
1647 {
1648         wake_up_all(&counter->waitq);
1649
1650         if (counter->pending_kill) {
1651                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1652                 counter->pending_kill = 0;
1653         }
1654 }
1655
1656 /*
1657  * Pending wakeups
1658  *
1659  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1660  *
1661  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1662  * single linked list and use cmpxchg() to add entries lockless.
1663  */
1664
1665 static void perf_pending_counter(struct perf_pending_entry *entry)
1666 {
1667         struct perf_counter *counter = container_of(entry,
1668                         struct perf_counter, pending);
1669
1670         if (counter->pending_disable) {
1671                 counter->pending_disable = 0;
1672                 perf_counter_disable(counter);
1673         }
1674
1675         if (counter->pending_wakeup) {
1676                 counter->pending_wakeup = 0;
1677                 perf_counter_wakeup(counter);
1678         }
1679 }
1680
1681 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1682
1683 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1684         PENDING_TAIL,
1685 };
1686
1687 static void perf_pending_queue(struct perf_pending_entry *entry,
1688                                void (*func)(struct perf_pending_entry *))
1689 {
1690         struct perf_pending_entry **head;
1691
1692         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1693                 return;
1694
1695         entry->func = func;
1696
1697         head = &get_cpu_var(perf_pending_head);
1698
1699         do {
1700                 entry->next = *head;
1701         } while (cmpxchg(head, entry->next, entry) != entry->next);
1702
1703         set_perf_counter_pending();
1704
1705         put_cpu_var(perf_pending_head);
1706 }
1707
1708 static int __perf_pending_run(void)
1709 {
1710         struct perf_pending_entry *list;
1711         int nr = 0;
1712
1713         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1714         while (list != PENDING_TAIL) {
1715                 void (*func)(struct perf_pending_entry *);
1716                 struct perf_pending_entry *entry = list;
1717
1718                 list = list->next;
1719
1720                 func = entry->func;
1721                 entry->next = NULL;
1722                 /*
1723                  * Ensure we observe the unqueue before we issue the wakeup,
1724                  * so that we won't be waiting forever.
1725                  * -- see perf_not_pending().
1726                  */
1727                 smp_wmb();
1728
1729                 func(entry);
1730                 nr++;
1731         }
1732
1733         return nr;
1734 }
1735
1736 static inline int perf_not_pending(struct perf_counter *counter)
1737 {
1738         /*
1739          * If we flush on whatever cpu we run, there is a chance we don't
1740          * need to wait.
1741          */
1742         get_cpu();
1743         __perf_pending_run();
1744         put_cpu();
1745
1746         /*
1747          * Ensure we see the proper queue state before going to sleep
1748          * so that we do not miss the wakeup. -- see perf_pending_handle()
1749          */
1750         smp_rmb();
1751         return counter->pending.next == NULL;
1752 }
1753
1754 static void perf_pending_sync(struct perf_counter *counter)
1755 {
1756         wait_event(counter->waitq, perf_not_pending(counter));
1757 }
1758
1759 void perf_counter_do_pending(void)
1760 {
1761         __perf_pending_run();
1762 }
1763
1764 /*
1765  * Callchain support -- arch specific
1766  */
1767
1768 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1769 {
1770         return NULL;
1771 }
1772
1773 /*
1774  * Output
1775  */
1776
1777 struct perf_output_handle {
1778         struct perf_counter     *counter;
1779         struct perf_mmap_data   *data;
1780         unsigned int            offset;
1781         unsigned int            head;
1782         int                     nmi;
1783         int                     overflow;
1784         int                     locked;
1785         unsigned long           flags;
1786 };
1787
1788 static void perf_output_wakeup(struct perf_output_handle *handle)
1789 {
1790         atomic_set(&handle->data->poll, POLL_IN);
1791
1792         if (handle->nmi) {
1793                 handle->counter->pending_wakeup = 1;
1794                 perf_pending_queue(&handle->counter->pending,
1795                                    perf_pending_counter);
1796         } else
1797                 perf_counter_wakeup(handle->counter);
1798 }
1799
1800 /*
1801  * Curious locking construct.
1802  *
1803  * We need to ensure a later event doesn't publish a head when a former
1804  * event isn't done writing. However since we need to deal with NMIs we
1805  * cannot fully serialize things.
1806  *
1807  * What we do is serialize between CPUs so we only have to deal with NMI
1808  * nesting on a single CPU.
1809  *
1810  * We only publish the head (and generate a wakeup) when the outer-most
1811  * event completes.
1812  */
1813 static void perf_output_lock(struct perf_output_handle *handle)
1814 {
1815         struct perf_mmap_data *data = handle->data;
1816         int cpu;
1817
1818         handle->locked = 0;
1819
1820         local_irq_save(handle->flags);
1821         cpu = smp_processor_id();
1822
1823         if (in_nmi() && atomic_read(&data->lock) == cpu)
1824                 return;
1825
1826         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1827                 cpu_relax();
1828
1829         handle->locked = 1;
1830 }
1831
1832 static void perf_output_unlock(struct perf_output_handle *handle)
1833 {
1834         struct perf_mmap_data *data = handle->data;
1835         int head, cpu;
1836
1837         data->done_head = data->head;
1838
1839         if (!handle->locked)
1840                 goto out;
1841
1842 again:
1843         /*
1844          * The xchg implies a full barrier that ensures all writes are done
1845          * before we publish the new head, matched by a rmb() in userspace when
1846          * reading this position.
1847          */
1848         while ((head = atomic_xchg(&data->done_head, 0)))
1849                 data->user_page->data_head = head;
1850
1851         /*
1852          * NMI can happen here, which means we can miss a done_head update.
1853          */
1854
1855         cpu = atomic_xchg(&data->lock, -1);
1856         WARN_ON_ONCE(cpu != smp_processor_id());
1857
1858         /*
1859          * Therefore we have to validate we did not indeed do so.
1860          */
1861         if (unlikely(atomic_read(&data->done_head))) {
1862                 /*
1863                  * Since we had it locked, we can lock it again.
1864                  */
1865                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1866                         cpu_relax();
1867
1868                 goto again;
1869         }
1870
1871         if (atomic_xchg(&data->wakeup, 0))
1872                 perf_output_wakeup(handle);
1873 out:
1874         local_irq_restore(handle->flags);
1875 }
1876
1877 static int perf_output_begin(struct perf_output_handle *handle,
1878                              struct perf_counter *counter, unsigned int size,
1879                              int nmi, int overflow)
1880 {
1881         struct perf_mmap_data *data;
1882         unsigned int offset, head;
1883
1884         /*
1885          * For inherited counters we send all the output towards the parent.
1886          */
1887         if (counter->parent)
1888                 counter = counter->parent;
1889
1890         rcu_read_lock();
1891         data = rcu_dereference(counter->data);
1892         if (!data)
1893                 goto out;
1894
1895         handle->data     = data;
1896         handle->counter  = counter;
1897         handle->nmi      = nmi;
1898         handle->overflow = overflow;
1899
1900         if (!data->nr_pages)
1901                 goto fail;
1902
1903         perf_output_lock(handle);
1904
1905         do {
1906                 offset = head = atomic_read(&data->head);
1907                 head += size;
1908         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1909
1910         handle->offset  = offset;
1911         handle->head    = head;
1912
1913         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1914                 atomic_set(&data->wakeup, 1);
1915
1916         return 0;
1917
1918 fail:
1919         perf_output_wakeup(handle);
1920 out:
1921         rcu_read_unlock();
1922
1923         return -ENOSPC;
1924 }
1925
1926 static void perf_output_copy(struct perf_output_handle *handle,
1927                              void *buf, unsigned int len)
1928 {
1929         unsigned int pages_mask;
1930         unsigned int offset;
1931         unsigned int size;
1932         void **pages;
1933
1934         offset          = handle->offset;
1935         pages_mask      = handle->data->nr_pages - 1;
1936         pages           = handle->data->data_pages;
1937
1938         do {
1939                 unsigned int page_offset;
1940                 int nr;
1941
1942                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1943                 page_offset = offset & (PAGE_SIZE - 1);
1944                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1945
1946                 memcpy(pages[nr] + page_offset, buf, size);
1947
1948                 len         -= size;
1949                 buf         += size;
1950                 offset      += size;
1951         } while (len);
1952
1953         handle->offset = offset;
1954
1955         /*
1956          * Check we didn't copy past our reservation window, taking the
1957          * possible unsigned int wrap into account.
1958          */
1959         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1960 }
1961
1962 #define perf_output_put(handle, x) \
1963         perf_output_copy((handle), &(x), sizeof(x))
1964
1965 static void perf_output_end(struct perf_output_handle *handle)
1966 {
1967         struct perf_counter *counter = handle->counter;
1968         struct perf_mmap_data *data = handle->data;
1969
1970         int wakeup_events = counter->hw_event.wakeup_events;
1971
1972         if (handle->overflow && wakeup_events) {
1973                 int events = atomic_inc_return(&data->events);
1974                 if (events >= wakeup_events) {
1975                         atomic_sub(wakeup_events, &data->events);
1976                         atomic_set(&data->wakeup, 1);
1977                 }
1978         }
1979
1980         perf_output_unlock(handle);
1981         rcu_read_unlock();
1982 }
1983
1984 static void perf_counter_output(struct perf_counter *counter,
1985                                 int nmi, struct pt_regs *regs, u64 addr)
1986 {
1987         int ret;
1988         u64 record_type = counter->hw_event.record_type;
1989         struct perf_output_handle handle;
1990         struct perf_event_header header;
1991         u64 ip;
1992         struct {
1993                 u32 pid, tid;
1994         } tid_entry;
1995         struct {
1996                 u64 event;
1997                 u64 counter;
1998         } group_entry;
1999         struct perf_callchain_entry *callchain = NULL;
2000         int callchain_size = 0;
2001         u64 time;
2002         struct {
2003                 u32 cpu, reserved;
2004         } cpu_entry;
2005
2006         header.type = 0;
2007         header.size = sizeof(header);
2008
2009         header.misc = PERF_EVENT_MISC_OVERFLOW;
2010         header.misc |= user_mode(regs) ?
2011                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
2012
2013         if (record_type & PERF_RECORD_IP) {
2014                 ip = instruction_pointer(regs);
2015                 header.type |= PERF_RECORD_IP;
2016                 header.size += sizeof(ip);
2017         }
2018
2019         if (record_type & PERF_RECORD_TID) {
2020                 /* namespace issues */
2021                 tid_entry.pid = current->group_leader->pid;
2022                 tid_entry.tid = current->pid;
2023
2024                 header.type |= PERF_RECORD_TID;
2025                 header.size += sizeof(tid_entry);
2026         }
2027
2028         if (record_type & PERF_RECORD_TIME) {
2029                 /*
2030                  * Maybe do better on x86 and provide cpu_clock_nmi()
2031                  */
2032                 time = sched_clock();
2033
2034                 header.type |= PERF_RECORD_TIME;
2035                 header.size += sizeof(u64);
2036         }
2037
2038         if (record_type & PERF_RECORD_ADDR) {
2039                 header.type |= PERF_RECORD_ADDR;
2040                 header.size += sizeof(u64);
2041         }
2042
2043         if (record_type & PERF_RECORD_CONFIG) {
2044                 header.type |= PERF_RECORD_CONFIG;
2045                 header.size += sizeof(u64);
2046         }
2047
2048         if (record_type & PERF_RECORD_CPU) {
2049                 header.type |= PERF_RECORD_CPU;
2050                 header.size += sizeof(cpu_entry);
2051
2052                 cpu_entry.cpu = raw_smp_processor_id();
2053         }
2054
2055         if (record_type & PERF_RECORD_GROUP) {
2056                 header.type |= PERF_RECORD_GROUP;
2057                 header.size += sizeof(u64) +
2058                         counter->nr_siblings * sizeof(group_entry);
2059         }
2060
2061         if (record_type & PERF_RECORD_CALLCHAIN) {
2062                 callchain = perf_callchain(regs);
2063
2064                 if (callchain) {
2065                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2066
2067                         header.type |= PERF_RECORD_CALLCHAIN;
2068                         header.size += callchain_size;
2069                 }
2070         }
2071
2072         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2073         if (ret)
2074                 return;
2075
2076         perf_output_put(&handle, header);
2077
2078         if (record_type & PERF_RECORD_IP)
2079                 perf_output_put(&handle, ip);
2080
2081         if (record_type & PERF_RECORD_TID)
2082                 perf_output_put(&handle, tid_entry);
2083
2084         if (record_type & PERF_RECORD_TIME)
2085                 perf_output_put(&handle, time);
2086
2087         if (record_type & PERF_RECORD_ADDR)
2088                 perf_output_put(&handle, addr);
2089
2090         if (record_type & PERF_RECORD_CONFIG)
2091                 perf_output_put(&handle, counter->hw_event.config);
2092
2093         if (record_type & PERF_RECORD_CPU)
2094                 perf_output_put(&handle, cpu_entry);
2095
2096         /*
2097          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2098          */
2099         if (record_type & PERF_RECORD_GROUP) {
2100                 struct perf_counter *leader, *sub;
2101                 u64 nr = counter->nr_siblings;
2102
2103                 perf_output_put(&handle, nr);
2104
2105                 leader = counter->group_leader;
2106                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2107                         if (sub != counter)
2108                                 sub->pmu->read(sub);
2109
2110                         group_entry.event = sub->hw_event.config;
2111                         group_entry.counter = atomic64_read(&sub->count);
2112
2113                         perf_output_put(&handle, group_entry);
2114                 }
2115         }
2116
2117         if (callchain)
2118                 perf_output_copy(&handle, callchain, callchain_size);
2119
2120         perf_output_end(&handle);
2121 }
2122
2123 /*
2124  * comm tracking
2125  */
2126
2127 struct perf_comm_event {
2128         struct task_struct      *task;
2129         char                    *comm;
2130         int                     comm_size;
2131
2132         struct {
2133                 struct perf_event_header        header;
2134
2135                 u32                             pid;
2136                 u32                             tid;
2137         } event;
2138 };
2139
2140 static void perf_counter_comm_output(struct perf_counter *counter,
2141                                      struct perf_comm_event *comm_event)
2142 {
2143         struct perf_output_handle handle;
2144         int size = comm_event->event.header.size;
2145         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2146
2147         if (ret)
2148                 return;
2149
2150         perf_output_put(&handle, comm_event->event);
2151         perf_output_copy(&handle, comm_event->comm,
2152                                    comm_event->comm_size);
2153         perf_output_end(&handle);
2154 }
2155
2156 static int perf_counter_comm_match(struct perf_counter *counter,
2157                                    struct perf_comm_event *comm_event)
2158 {
2159         if (counter->hw_event.comm &&
2160             comm_event->event.header.type == PERF_EVENT_COMM)
2161                 return 1;
2162
2163         return 0;
2164 }
2165
2166 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2167                                   struct perf_comm_event *comm_event)
2168 {
2169         struct perf_counter *counter;
2170
2171         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2172                 return;
2173
2174         rcu_read_lock();
2175         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2176                 if (perf_counter_comm_match(counter, comm_event))
2177                         perf_counter_comm_output(counter, comm_event);
2178         }
2179         rcu_read_unlock();
2180 }
2181
2182 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2183 {
2184         struct perf_cpu_context *cpuctx;
2185         unsigned int size;
2186         char *comm = comm_event->task->comm;
2187
2188         size = ALIGN(strlen(comm)+1, sizeof(u64));
2189
2190         comm_event->comm = comm;
2191         comm_event->comm_size = size;
2192
2193         comm_event->event.header.size = sizeof(comm_event->event) + size;
2194
2195         cpuctx = &get_cpu_var(perf_cpu_context);
2196         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2197         put_cpu_var(perf_cpu_context);
2198
2199         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2200 }
2201
2202 void perf_counter_comm(struct task_struct *task)
2203 {
2204         struct perf_comm_event comm_event;
2205
2206         if (!atomic_read(&nr_comm_tracking))
2207                 return;
2208        
2209         comm_event = (struct perf_comm_event){
2210                 .task   = task,
2211                 .event  = {
2212                         .header = { .type = PERF_EVENT_COMM, },
2213                         .pid    = task->group_leader->pid,
2214                         .tid    = task->pid,
2215                 },
2216         };
2217
2218         perf_counter_comm_event(&comm_event);
2219 }
2220
2221 /*
2222  * mmap tracking
2223  */
2224
2225 struct perf_mmap_event {
2226         struct file     *file;
2227         char            *file_name;
2228         int             file_size;
2229
2230         struct {
2231                 struct perf_event_header        header;
2232
2233                 u32                             pid;
2234                 u32                             tid;
2235                 u64                             start;
2236                 u64                             len;
2237                 u64                             pgoff;
2238         } event;
2239 };
2240
2241 static void perf_counter_mmap_output(struct perf_counter *counter,
2242                                      struct perf_mmap_event *mmap_event)
2243 {
2244         struct perf_output_handle handle;
2245         int size = mmap_event->event.header.size;
2246         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2247
2248         if (ret)
2249                 return;
2250
2251         perf_output_put(&handle, mmap_event->event);
2252         perf_output_copy(&handle, mmap_event->file_name,
2253                                    mmap_event->file_size);
2254         perf_output_end(&handle);
2255 }
2256
2257 static int perf_counter_mmap_match(struct perf_counter *counter,
2258                                    struct perf_mmap_event *mmap_event)
2259 {
2260         if (counter->hw_event.mmap &&
2261             mmap_event->event.header.type == PERF_EVENT_MMAP)
2262                 return 1;
2263
2264         if (counter->hw_event.munmap &&
2265             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2266                 return 1;
2267
2268         return 0;
2269 }
2270
2271 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2272                                   struct perf_mmap_event *mmap_event)
2273 {
2274         struct perf_counter *counter;
2275
2276         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2277                 return;
2278
2279         rcu_read_lock();
2280         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2281                 if (perf_counter_mmap_match(counter, mmap_event))
2282                         perf_counter_mmap_output(counter, mmap_event);
2283         }
2284         rcu_read_unlock();
2285 }
2286
2287 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2288 {
2289         struct perf_cpu_context *cpuctx;
2290         struct file *file = mmap_event->file;
2291         unsigned int size;
2292         char tmp[16];
2293         char *buf = NULL;
2294         char *name;
2295
2296         if (file) {
2297                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2298                 if (!buf) {
2299                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2300                         goto got_name;
2301                 }
2302                 name = d_path(&file->f_path, buf, PATH_MAX);
2303                 if (IS_ERR(name)) {
2304                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2305                         goto got_name;
2306                 }
2307         } else {
2308                 name = strncpy(tmp, "//anon", sizeof(tmp));
2309                 goto got_name;
2310         }
2311
2312 got_name:
2313         size = ALIGN(strlen(name)+1, sizeof(u64));
2314
2315         mmap_event->file_name = name;
2316         mmap_event->file_size = size;
2317
2318         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2319
2320         cpuctx = &get_cpu_var(perf_cpu_context);
2321         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2322         put_cpu_var(perf_cpu_context);
2323
2324         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2325
2326         kfree(buf);
2327 }
2328
2329 void perf_counter_mmap(unsigned long addr, unsigned long len,
2330                        unsigned long pgoff, struct file *file)
2331 {
2332         struct perf_mmap_event mmap_event;
2333
2334         if (!atomic_read(&nr_mmap_tracking))
2335                 return;
2336
2337         mmap_event = (struct perf_mmap_event){
2338                 .file   = file,
2339                 .event  = {
2340                         .header = { .type = PERF_EVENT_MMAP, },
2341                         .pid    = current->group_leader->pid,
2342                         .tid    = current->pid,
2343                         .start  = addr,
2344                         .len    = len,
2345                         .pgoff  = pgoff,
2346                 },
2347         };
2348
2349         perf_counter_mmap_event(&mmap_event);
2350 }
2351
2352 void perf_counter_munmap(unsigned long addr, unsigned long len,
2353                          unsigned long pgoff, struct file *file)
2354 {
2355         struct perf_mmap_event mmap_event;
2356
2357         if (!atomic_read(&nr_munmap_tracking))
2358                 return;
2359
2360         mmap_event = (struct perf_mmap_event){
2361                 .file   = file,
2362                 .event  = {
2363                         .header = { .type = PERF_EVENT_MUNMAP, },
2364                         .pid    = current->group_leader->pid,
2365                         .tid    = current->pid,
2366                         .start  = addr,
2367                         .len    = len,
2368                         .pgoff  = pgoff,
2369                 },
2370         };
2371
2372         perf_counter_mmap_event(&mmap_event);
2373 }
2374
2375 /*
2376  * Generic counter overflow handling.
2377  */
2378
2379 int perf_counter_overflow(struct perf_counter *counter,
2380                           int nmi, struct pt_regs *regs, u64 addr)
2381 {
2382         int events = atomic_read(&counter->event_limit);
2383         int ret = 0;
2384
2385         /*
2386          * XXX event_limit might not quite work as expected on inherited
2387          * counters
2388          */
2389
2390         counter->pending_kill = POLL_IN;
2391         if (events && atomic_dec_and_test(&counter->event_limit)) {
2392                 ret = 1;
2393                 counter->pending_kill = POLL_HUP;
2394                 if (nmi) {
2395                         counter->pending_disable = 1;
2396                         perf_pending_queue(&counter->pending,
2397                                            perf_pending_counter);
2398                 } else
2399                         perf_counter_disable(counter);
2400         }
2401
2402         perf_counter_output(counter, nmi, regs, addr);
2403         return ret;
2404 }
2405
2406 /*
2407  * Generic software counter infrastructure
2408  */
2409
2410 static void perf_swcounter_update(struct perf_counter *counter)
2411 {
2412         struct hw_perf_counter *hwc = &counter->hw;
2413         u64 prev, now;
2414         s64 delta;
2415
2416 again:
2417         prev = atomic64_read(&hwc->prev_count);
2418         now = atomic64_read(&hwc->count);
2419         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2420                 goto again;
2421
2422         delta = now - prev;
2423
2424         atomic64_add(delta, &counter->count);
2425         atomic64_sub(delta, &hwc->period_left);
2426 }
2427
2428 static void perf_swcounter_set_period(struct perf_counter *counter)
2429 {
2430         struct hw_perf_counter *hwc = &counter->hw;
2431         s64 left = atomic64_read(&hwc->period_left);
2432         s64 period = hwc->irq_period;
2433
2434         if (unlikely(left <= -period)) {
2435                 left = period;
2436                 atomic64_set(&hwc->period_left, left);
2437         }
2438
2439         if (unlikely(left <= 0)) {
2440                 left += period;
2441                 atomic64_add(period, &hwc->period_left);
2442         }
2443
2444         atomic64_set(&hwc->prev_count, -left);
2445         atomic64_set(&hwc->count, -left);
2446 }
2447
2448 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2449 {
2450         enum hrtimer_restart ret = HRTIMER_RESTART;
2451         struct perf_counter *counter;
2452         struct pt_regs *regs;
2453
2454         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2455         counter->pmu->read(counter);
2456
2457         regs = get_irq_regs();
2458         /*
2459          * In case we exclude kernel IPs or are somehow not in interrupt
2460          * context, provide the next best thing, the user IP.
2461          */
2462         if ((counter->hw_event.exclude_kernel || !regs) &&
2463                         !counter->hw_event.exclude_user)
2464                 regs = task_pt_regs(current);
2465
2466         if (regs) {
2467                 if (perf_counter_overflow(counter, 0, regs, 0))
2468                         ret = HRTIMER_NORESTART;
2469         }
2470
2471         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2472
2473         return ret;
2474 }
2475
2476 static void perf_swcounter_overflow(struct perf_counter *counter,
2477                                     int nmi, struct pt_regs *regs, u64 addr)
2478 {
2479         perf_swcounter_update(counter);
2480         perf_swcounter_set_period(counter);
2481         if (perf_counter_overflow(counter, nmi, regs, addr))
2482                 /* soft-disable the counter */
2483                 ;
2484
2485 }
2486
2487 static int perf_swcounter_match(struct perf_counter *counter,
2488                                 enum perf_event_types type,
2489                                 u32 event, struct pt_regs *regs)
2490 {
2491         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2492                 return 0;
2493
2494         if (perf_event_raw(&counter->hw_event))
2495                 return 0;
2496
2497         if (perf_event_type(&counter->hw_event) != type)
2498                 return 0;
2499
2500         if (perf_event_id(&counter->hw_event) != event)
2501                 return 0;
2502
2503         if (counter->hw_event.exclude_user && user_mode(regs))
2504                 return 0;
2505
2506         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2507                 return 0;
2508
2509         return 1;
2510 }
2511
2512 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2513                                int nmi, struct pt_regs *regs, u64 addr)
2514 {
2515         int neg = atomic64_add_negative(nr, &counter->hw.count);
2516         if (counter->hw.irq_period && !neg)
2517                 perf_swcounter_overflow(counter, nmi, regs, addr);
2518 }
2519
2520 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2521                                      enum perf_event_types type, u32 event,
2522                                      u64 nr, int nmi, struct pt_regs *regs,
2523                                      u64 addr)
2524 {
2525         struct perf_counter *counter;
2526
2527         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2528                 return;
2529
2530         rcu_read_lock();
2531         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2532                 if (perf_swcounter_match(counter, type, event, regs))
2533                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2534         }
2535         rcu_read_unlock();
2536 }
2537
2538 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2539 {
2540         if (in_nmi())
2541                 return &cpuctx->recursion[3];
2542
2543         if (in_irq())
2544                 return &cpuctx->recursion[2];
2545
2546         if (in_softirq())
2547                 return &cpuctx->recursion[1];
2548
2549         return &cpuctx->recursion[0];
2550 }
2551
2552 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2553                                    u64 nr, int nmi, struct pt_regs *regs,
2554                                    u64 addr)
2555 {
2556         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2557         int *recursion = perf_swcounter_recursion_context(cpuctx);
2558
2559         if (*recursion)
2560                 goto out;
2561
2562         (*recursion)++;
2563         barrier();
2564
2565         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2566                                  nr, nmi, regs, addr);
2567         if (cpuctx->task_ctx) {
2568                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2569                                          nr, nmi, regs, addr);
2570         }
2571
2572         barrier();
2573         (*recursion)--;
2574
2575 out:
2576         put_cpu_var(perf_cpu_context);
2577 }
2578
2579 void
2580 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2581 {
2582         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2583 }
2584
2585 static void perf_swcounter_read(struct perf_counter *counter)
2586 {
2587         perf_swcounter_update(counter);
2588 }
2589
2590 static int perf_swcounter_enable(struct perf_counter *counter)
2591 {
2592         perf_swcounter_set_period(counter);
2593         return 0;
2594 }
2595
2596 static void perf_swcounter_disable(struct perf_counter *counter)
2597 {
2598         perf_swcounter_update(counter);
2599 }
2600
2601 static const struct pmu perf_ops_generic = {
2602         .enable         = perf_swcounter_enable,
2603         .disable        = perf_swcounter_disable,
2604         .read           = perf_swcounter_read,
2605 };
2606
2607 /*
2608  * Software counter: cpu wall time clock
2609  */
2610
2611 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2612 {
2613         int cpu = raw_smp_processor_id();
2614         s64 prev;
2615         u64 now;
2616
2617         now = cpu_clock(cpu);
2618         prev = atomic64_read(&counter->hw.prev_count);
2619         atomic64_set(&counter->hw.prev_count, now);
2620         atomic64_add(now - prev, &counter->count);
2621 }
2622
2623 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2624 {
2625         struct hw_perf_counter *hwc = &counter->hw;
2626         int cpu = raw_smp_processor_id();
2627
2628         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2629         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2630         hwc->hrtimer.function = perf_swcounter_hrtimer;
2631         if (hwc->irq_period) {
2632                 __hrtimer_start_range_ns(&hwc->hrtimer,
2633                                 ns_to_ktime(hwc->irq_period), 0,
2634                                 HRTIMER_MODE_REL, 0);
2635         }
2636
2637         return 0;
2638 }
2639
2640 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2641 {
2642         hrtimer_cancel(&counter->hw.hrtimer);
2643         cpu_clock_perf_counter_update(counter);
2644 }
2645
2646 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2647 {
2648         cpu_clock_perf_counter_update(counter);
2649 }
2650
2651 static const struct pmu perf_ops_cpu_clock = {
2652         .enable         = cpu_clock_perf_counter_enable,
2653         .disable        = cpu_clock_perf_counter_disable,
2654         .read           = cpu_clock_perf_counter_read,
2655 };
2656
2657 /*
2658  * Software counter: task time clock
2659  */
2660
2661 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2662 {
2663         u64 prev;
2664         s64 delta;
2665
2666         prev = atomic64_xchg(&counter->hw.prev_count, now);
2667         delta = now - prev;
2668         atomic64_add(delta, &counter->count);
2669 }
2670
2671 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2672 {
2673         struct hw_perf_counter *hwc = &counter->hw;
2674         u64 now;
2675
2676         now = counter->ctx->time;
2677
2678         atomic64_set(&hwc->prev_count, now);
2679         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2680         hwc->hrtimer.function = perf_swcounter_hrtimer;
2681         if (hwc->irq_period) {
2682                 __hrtimer_start_range_ns(&hwc->hrtimer,
2683                                 ns_to_ktime(hwc->irq_period), 0,
2684                                 HRTIMER_MODE_REL, 0);
2685         }
2686
2687         return 0;
2688 }
2689
2690 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2691 {
2692         hrtimer_cancel(&counter->hw.hrtimer);
2693         task_clock_perf_counter_update(counter, counter->ctx->time);
2694
2695 }
2696
2697 static void task_clock_perf_counter_read(struct perf_counter *counter)
2698 {
2699         u64 time;
2700
2701         if (!in_nmi()) {
2702                 update_context_time(counter->ctx);
2703                 time = counter->ctx->time;
2704         } else {
2705                 u64 now = perf_clock();
2706                 u64 delta = now - counter->ctx->timestamp;
2707                 time = counter->ctx->time + delta;
2708         }
2709
2710         task_clock_perf_counter_update(counter, time);
2711 }
2712
2713 static const struct pmu perf_ops_task_clock = {
2714         .enable         = task_clock_perf_counter_enable,
2715         .disable        = task_clock_perf_counter_disable,
2716         .read           = task_clock_perf_counter_read,
2717 };
2718
2719 /*
2720  * Software counter: cpu migrations
2721  */
2722
2723 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2724 {
2725         struct task_struct *curr = counter->ctx->task;
2726
2727         if (curr)
2728                 return curr->se.nr_migrations;
2729         return cpu_nr_migrations(smp_processor_id());
2730 }
2731
2732 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2733 {
2734         u64 prev, now;
2735         s64 delta;
2736
2737         prev = atomic64_read(&counter->hw.prev_count);
2738         now = get_cpu_migrations(counter);
2739
2740         atomic64_set(&counter->hw.prev_count, now);
2741
2742         delta = now - prev;
2743
2744         atomic64_add(delta, &counter->count);
2745 }
2746
2747 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2748 {
2749         cpu_migrations_perf_counter_update(counter);
2750 }
2751
2752 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2753 {
2754         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2755                 atomic64_set(&counter->hw.prev_count,
2756                              get_cpu_migrations(counter));
2757         return 0;
2758 }
2759
2760 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2761 {
2762         cpu_migrations_perf_counter_update(counter);
2763 }
2764
2765 static const struct pmu perf_ops_cpu_migrations = {
2766         .enable         = cpu_migrations_perf_counter_enable,
2767         .disable        = cpu_migrations_perf_counter_disable,
2768         .read           = cpu_migrations_perf_counter_read,
2769 };
2770
2771 #ifdef CONFIG_EVENT_PROFILE
2772 void perf_tpcounter_event(int event_id)
2773 {
2774         struct pt_regs *regs = get_irq_regs();
2775
2776         if (!regs)
2777                 regs = task_pt_regs(current);
2778
2779         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2780 }
2781 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2782
2783 extern int ftrace_profile_enable(int);
2784 extern void ftrace_profile_disable(int);
2785
2786 static void tp_perf_counter_destroy(struct perf_counter *counter)
2787 {
2788         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2789 }
2790
2791 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2792 {
2793         int event_id = perf_event_id(&counter->hw_event);
2794         int ret;
2795
2796         ret = ftrace_profile_enable(event_id);
2797         if (ret)
2798                 return NULL;
2799
2800         counter->destroy = tp_perf_counter_destroy;
2801         counter->hw.irq_period = counter->hw_event.irq_period;
2802
2803         return &perf_ops_generic;
2804 }
2805 #else
2806 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2807 {
2808         return NULL;
2809 }
2810 #endif
2811
2812 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2813 {
2814         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2815         const struct pmu *pmu = NULL;
2816         struct hw_perf_counter *hwc = &counter->hw;
2817
2818         /*
2819          * Software counters (currently) can't in general distinguish
2820          * between user, kernel and hypervisor events.
2821          * However, context switches and cpu migrations are considered
2822          * to be kernel events, and page faults are never hypervisor
2823          * events.
2824          */
2825         switch (perf_event_id(&counter->hw_event)) {
2826         case PERF_COUNT_CPU_CLOCK:
2827                 pmu = &perf_ops_cpu_clock;
2828
2829                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2830                         hw_event->irq_period = 10000;
2831                 break;
2832         case PERF_COUNT_TASK_CLOCK:
2833                 /*
2834                  * If the user instantiates this as a per-cpu counter,
2835                  * use the cpu_clock counter instead.
2836                  */
2837                 if (counter->ctx->task)
2838                         pmu = &perf_ops_task_clock;
2839                 else
2840                         pmu = &perf_ops_cpu_clock;
2841
2842                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2843                         hw_event->irq_period = 10000;
2844                 break;
2845         case PERF_COUNT_PAGE_FAULTS:
2846         case PERF_COUNT_PAGE_FAULTS_MIN:
2847         case PERF_COUNT_PAGE_FAULTS_MAJ:
2848         case PERF_COUNT_CONTEXT_SWITCHES:
2849                 pmu = &perf_ops_generic;
2850                 break;
2851         case PERF_COUNT_CPU_MIGRATIONS:
2852                 if (!counter->hw_event.exclude_kernel)
2853                         pmu = &perf_ops_cpu_migrations;
2854                 break;
2855         }
2856
2857         if (pmu)
2858                 hwc->irq_period = hw_event->irq_period;
2859
2860         return pmu;
2861 }
2862
2863 /*
2864  * Allocate and initialize a counter structure
2865  */
2866 static struct perf_counter *
2867 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2868                    int cpu,
2869                    struct perf_counter_context *ctx,
2870                    struct perf_counter *group_leader,
2871                    gfp_t gfpflags)
2872 {
2873         const struct pmu *pmu;
2874         struct perf_counter *counter;
2875         long err;
2876
2877         counter = kzalloc(sizeof(*counter), gfpflags);
2878         if (!counter)
2879                 return ERR_PTR(-ENOMEM);
2880
2881         /*
2882          * Single counters are their own group leaders, with an
2883          * empty sibling list:
2884          */
2885         if (!group_leader)
2886                 group_leader = counter;
2887
2888         mutex_init(&counter->mutex);
2889         INIT_LIST_HEAD(&counter->list_entry);
2890         INIT_LIST_HEAD(&counter->event_entry);
2891         INIT_LIST_HEAD(&counter->sibling_list);
2892         init_waitqueue_head(&counter->waitq);
2893
2894         mutex_init(&counter->mmap_mutex);
2895
2896         INIT_LIST_HEAD(&counter->child_list);
2897
2898         counter->cpu                    = cpu;
2899         counter->hw_event               = *hw_event;
2900         counter->group_leader           = group_leader;
2901         counter->pmu                    = NULL;
2902         counter->ctx                    = ctx;
2903
2904         counter->state = PERF_COUNTER_STATE_INACTIVE;
2905         if (hw_event->disabled)
2906                 counter->state = PERF_COUNTER_STATE_OFF;
2907
2908         pmu = NULL;
2909
2910         /*
2911          * we currently do not support PERF_RECORD_GROUP on inherited counters
2912          */
2913         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2914                 goto done;
2915
2916         if (perf_event_raw(hw_event)) {
2917                 pmu = hw_perf_counter_init(counter);
2918                 goto done;
2919         }
2920
2921         switch (perf_event_type(hw_event)) {
2922         case PERF_TYPE_HARDWARE:
2923                 pmu = hw_perf_counter_init(counter);
2924                 break;
2925
2926         case PERF_TYPE_SOFTWARE:
2927                 pmu = sw_perf_counter_init(counter);
2928                 break;
2929
2930         case PERF_TYPE_TRACEPOINT:
2931                 pmu = tp_perf_counter_init(counter);
2932                 break;
2933         }
2934 done:
2935         err = 0;
2936         if (!pmu)
2937                 err = -EINVAL;
2938         else if (IS_ERR(pmu))
2939                 err = PTR_ERR(pmu);
2940
2941         if (err) {
2942                 kfree(counter);
2943                 return ERR_PTR(err);
2944         }
2945
2946         counter->pmu = pmu;
2947
2948         atomic_inc(&nr_counters);
2949         if (counter->hw_event.mmap)
2950                 atomic_inc(&nr_mmap_tracking);
2951         if (counter->hw_event.munmap)
2952                 atomic_inc(&nr_munmap_tracking);
2953         if (counter->hw_event.comm)
2954                 atomic_inc(&nr_comm_tracking);
2955
2956         return counter;
2957 }
2958
2959 /**
2960  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2961  *
2962  * @hw_event_uptr:      event type attributes for monitoring/sampling
2963  * @pid:                target pid
2964  * @cpu:                target cpu
2965  * @group_fd:           group leader counter fd
2966  */
2967 SYSCALL_DEFINE5(perf_counter_open,
2968                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2969                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2970 {
2971         struct perf_counter *counter, *group_leader;
2972         struct perf_counter_hw_event hw_event;
2973         struct perf_counter_context *ctx;
2974         struct file *counter_file = NULL;
2975         struct file *group_file = NULL;
2976         int fput_needed = 0;
2977         int fput_needed2 = 0;
2978         int ret;
2979
2980         /* for future expandability... */
2981         if (flags)
2982                 return -EINVAL;
2983
2984         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2985                 return -EFAULT;
2986
2987         /*
2988          * Get the target context (task or percpu):
2989          */
2990         ctx = find_get_context(pid, cpu);
2991         if (IS_ERR(ctx))
2992                 return PTR_ERR(ctx);
2993
2994         /*
2995          * Look up the group leader (we will attach this counter to it):
2996          */
2997         group_leader = NULL;
2998         if (group_fd != -1) {
2999                 ret = -EINVAL;
3000                 group_file = fget_light(group_fd, &fput_needed);
3001                 if (!group_file)
3002                         goto err_put_context;
3003                 if (group_file->f_op != &perf_fops)
3004                         goto err_put_context;
3005
3006                 group_leader = group_file->private_data;
3007                 /*
3008                  * Do not allow a recursive hierarchy (this new sibling
3009                  * becoming part of another group-sibling):
3010                  */
3011                 if (group_leader->group_leader != group_leader)
3012                         goto err_put_context;
3013                 /*
3014                  * Do not allow to attach to a group in a different
3015                  * task or CPU context:
3016                  */
3017                 if (group_leader->ctx != ctx)
3018                         goto err_put_context;
3019                 /*
3020                  * Only a group leader can be exclusive or pinned
3021                  */
3022                 if (hw_event.exclusive || hw_event.pinned)
3023                         goto err_put_context;
3024         }
3025
3026         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3027                                      GFP_KERNEL);
3028         ret = PTR_ERR(counter);
3029         if (IS_ERR(counter))
3030                 goto err_put_context;
3031
3032         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3033         if (ret < 0)
3034                 goto err_free_put_context;
3035
3036         counter_file = fget_light(ret, &fput_needed2);
3037         if (!counter_file)
3038                 goto err_free_put_context;
3039
3040         counter->filp = counter_file;
3041         mutex_lock(&ctx->mutex);
3042         perf_install_in_context(ctx, counter, cpu);
3043         mutex_unlock(&ctx->mutex);
3044
3045         fput_light(counter_file, fput_needed2);
3046
3047 out_fput:
3048         fput_light(group_file, fput_needed);
3049
3050         return ret;
3051
3052 err_free_put_context:
3053         kfree(counter);
3054
3055 err_put_context:
3056         put_context(ctx);
3057
3058         goto out_fput;
3059 }
3060
3061 /*
3062  * Initialize the perf_counter context in a task_struct:
3063  */
3064 static void
3065 __perf_counter_init_context(struct perf_counter_context *ctx,
3066                             struct task_struct *task)
3067 {
3068         memset(ctx, 0, sizeof(*ctx));
3069         spin_lock_init(&ctx->lock);
3070         mutex_init(&ctx->mutex);
3071         INIT_LIST_HEAD(&ctx->counter_list);
3072         INIT_LIST_HEAD(&ctx->event_list);
3073         ctx->task = task;
3074 }
3075
3076 /*
3077  * inherit a counter from parent task to child task:
3078  */
3079 static struct perf_counter *
3080 inherit_counter(struct perf_counter *parent_counter,
3081               struct task_struct *parent,
3082               struct perf_counter_context *parent_ctx,
3083               struct task_struct *child,
3084               struct perf_counter *group_leader,
3085               struct perf_counter_context *child_ctx)
3086 {
3087         struct perf_counter *child_counter;
3088
3089         /*
3090          * Instead of creating recursive hierarchies of counters,
3091          * we link inherited counters back to the original parent,
3092          * which has a filp for sure, which we use as the reference
3093          * count:
3094          */
3095         if (parent_counter->parent)
3096                 parent_counter = parent_counter->parent;
3097
3098         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3099                                            parent_counter->cpu, child_ctx,
3100                                            group_leader, GFP_KERNEL);
3101         if (IS_ERR(child_counter))
3102                 return child_counter;
3103
3104         /*
3105          * Link it up in the child's context:
3106          */
3107         child_counter->task = child;
3108         add_counter_to_ctx(child_counter, child_ctx);
3109
3110         child_counter->parent = parent_counter;
3111         /*
3112          * inherit into child's child as well:
3113          */
3114         child_counter->hw_event.inherit = 1;
3115
3116         /*
3117          * Get a reference to the parent filp - we will fput it
3118          * when the child counter exits. This is safe to do because
3119          * we are in the parent and we know that the filp still
3120          * exists and has a nonzero count:
3121          */
3122         atomic_long_inc(&parent_counter->filp->f_count);
3123
3124         /*
3125          * Link this into the parent counter's child list
3126          */
3127         mutex_lock(&parent_counter->mutex);
3128         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3129
3130         /*
3131          * Make the child state follow the state of the parent counter,
3132          * not its hw_event.disabled bit.  We hold the parent's mutex,
3133          * so we won't race with perf_counter_{en,dis}able_family.
3134          */
3135         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3136                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3137         else
3138                 child_counter->state = PERF_COUNTER_STATE_OFF;
3139
3140         mutex_unlock(&parent_counter->mutex);
3141
3142         return child_counter;
3143 }
3144
3145 static int inherit_group(struct perf_counter *parent_counter,
3146               struct task_struct *parent,
3147               struct perf_counter_context *parent_ctx,
3148               struct task_struct *child,
3149               struct perf_counter_context *child_ctx)
3150 {
3151         struct perf_counter *leader;
3152         struct perf_counter *sub;
3153         struct perf_counter *child_ctr;
3154
3155         leader = inherit_counter(parent_counter, parent, parent_ctx,
3156                                  child, NULL, child_ctx);
3157         if (IS_ERR(leader))
3158                 return PTR_ERR(leader);
3159         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3160                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3161                                             child, leader, child_ctx);
3162                 if (IS_ERR(child_ctr))
3163                         return PTR_ERR(child_ctr);
3164         }
3165         return 0;
3166 }
3167
3168 static void sync_child_counter(struct perf_counter *child_counter,
3169                                struct perf_counter *parent_counter)
3170 {
3171         u64 parent_val, child_val;
3172
3173         parent_val = atomic64_read(&parent_counter->count);
3174         child_val = atomic64_read(&child_counter->count);
3175
3176         /*
3177          * Add back the child's count to the parent's count:
3178          */
3179         atomic64_add(child_val, &parent_counter->count);
3180         atomic64_add(child_counter->total_time_enabled,
3181                      &parent_counter->child_total_time_enabled);
3182         atomic64_add(child_counter->total_time_running,
3183                      &parent_counter->child_total_time_running);
3184
3185         /*
3186          * Remove this counter from the parent's list
3187          */
3188         mutex_lock(&parent_counter->mutex);
3189         list_del_init(&child_counter->child_list);
3190         mutex_unlock(&parent_counter->mutex);
3191
3192         /*
3193          * Release the parent counter, if this was the last
3194          * reference to it.
3195          */
3196         fput(parent_counter->filp);
3197 }
3198
3199 static void
3200 __perf_counter_exit_task(struct task_struct *child,
3201                          struct perf_counter *child_counter,
3202                          struct perf_counter_context *child_ctx)
3203 {
3204         struct perf_counter *parent_counter;
3205         struct perf_counter *sub, *tmp;
3206
3207         /*
3208          * If we do not self-reap then we have to wait for the
3209          * child task to unschedule (it will happen for sure),
3210          * so that its counter is at its final count. (This
3211          * condition triggers rarely - child tasks usually get
3212          * off their CPU before the parent has a chance to
3213          * get this far into the reaping action)
3214          */
3215         if (child != current) {
3216                 wait_task_inactive(child, 0);
3217                 list_del_init(&child_counter->list_entry);
3218                 update_counter_times(child_counter);
3219         } else {
3220                 struct perf_cpu_context *cpuctx;
3221                 unsigned long flags;
3222
3223                 /*
3224                  * Disable and unlink this counter.
3225                  *
3226                  * Be careful about zapping the list - IRQ/NMI context
3227                  * could still be processing it:
3228                  */
3229                 local_irq_save(flags);
3230                 perf_disable();
3231
3232                 cpuctx = &__get_cpu_var(perf_cpu_context);
3233
3234                 group_sched_out(child_counter, cpuctx, child_ctx);
3235                 update_counter_times(child_counter);
3236
3237                 list_del_init(&child_counter->list_entry);
3238
3239                 child_ctx->nr_counters--;
3240
3241                 perf_enable();
3242                 local_irq_restore(flags);
3243         }
3244
3245         parent_counter = child_counter->parent;
3246         /*
3247          * It can happen that parent exits first, and has counters
3248          * that are still around due to the child reference. These
3249          * counters need to be zapped - but otherwise linger.
3250          */
3251         if (parent_counter) {
3252                 sync_child_counter(child_counter, parent_counter);
3253                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3254                                          list_entry) {
3255                         if (sub->parent) {
3256                                 sync_child_counter(sub, sub->parent);
3257                                 free_counter(sub);
3258                         }
3259                 }
3260                 free_counter(child_counter);
3261         }
3262 }
3263
3264 /*
3265  * When a child task exits, feed back counter values to parent counters.
3266  *
3267  * Note: we may be running in child context, but the PID is not hashed
3268  * anymore so new counters will not be added.
3269  */
3270 void perf_counter_exit_task(struct task_struct *child)
3271 {
3272         struct perf_counter *child_counter, *tmp;
3273         struct perf_counter_context *child_ctx;
3274
3275         child_ctx = &child->perf_counter_ctx;
3276
3277         if (likely(!child_ctx->nr_counters))
3278                 return;
3279
3280         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3281                                  list_entry)
3282                 __perf_counter_exit_task(child, child_counter, child_ctx);
3283 }
3284
3285 /*
3286  * Initialize the perf_counter context in task_struct
3287  */
3288 void perf_counter_init_task(struct task_struct *child)
3289 {
3290         struct perf_counter_context *child_ctx, *parent_ctx;
3291         struct perf_counter *counter;
3292         struct task_struct *parent = current;
3293
3294         child_ctx  =  &child->perf_counter_ctx;
3295         parent_ctx = &parent->perf_counter_ctx;
3296
3297         __perf_counter_init_context(child_ctx, child);
3298
3299         /*
3300          * This is executed from the parent task context, so inherit
3301          * counters that have been marked for cloning:
3302          */
3303
3304         if (likely(!parent_ctx->nr_counters))
3305                 return;
3306
3307         /*
3308          * Lock the parent list. No need to lock the child - not PID
3309          * hashed yet and not running, so nobody can access it.
3310          */
3311         mutex_lock(&parent_ctx->mutex);
3312
3313         /*
3314          * We dont have to disable NMIs - we are only looking at
3315          * the list, not manipulating it:
3316          */
3317         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3318                 if (!counter->hw_event.inherit)
3319                         continue;
3320
3321                 if (inherit_group(counter, parent,
3322                                   parent_ctx, child, child_ctx))
3323                         break;
3324         }
3325
3326         mutex_unlock(&parent_ctx->mutex);
3327 }
3328
3329 static void __cpuinit perf_counter_init_cpu(int cpu)
3330 {
3331         struct perf_cpu_context *cpuctx;
3332
3333         cpuctx = &per_cpu(perf_cpu_context, cpu);
3334         __perf_counter_init_context(&cpuctx->ctx, NULL);
3335
3336         spin_lock(&perf_resource_lock);
3337         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3338         spin_unlock(&perf_resource_lock);
3339
3340         hw_perf_counter_setup(cpu);
3341 }
3342
3343 #ifdef CONFIG_HOTPLUG_CPU
3344 static void __perf_counter_exit_cpu(void *info)
3345 {
3346         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3347         struct perf_counter_context *ctx = &cpuctx->ctx;
3348         struct perf_counter *counter, *tmp;
3349
3350         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3351                 __perf_counter_remove_from_context(counter);
3352 }
3353 static void perf_counter_exit_cpu(int cpu)
3354 {
3355         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3356         struct perf_counter_context *ctx = &cpuctx->ctx;
3357
3358         mutex_lock(&ctx->mutex);
3359         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3360         mutex_unlock(&ctx->mutex);
3361 }
3362 #else
3363 static inline void perf_counter_exit_cpu(int cpu) { }
3364 #endif
3365
3366 static int __cpuinit
3367 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3368 {
3369         unsigned int cpu = (long)hcpu;
3370
3371         switch (action) {
3372
3373         case CPU_UP_PREPARE:
3374         case CPU_UP_PREPARE_FROZEN:
3375                 perf_counter_init_cpu(cpu);
3376                 break;
3377
3378         case CPU_DOWN_PREPARE:
3379         case CPU_DOWN_PREPARE_FROZEN:
3380                 perf_counter_exit_cpu(cpu);
3381                 break;
3382
3383         default:
3384                 break;
3385         }
3386
3387         return NOTIFY_OK;
3388 }
3389
3390 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3391         .notifier_call          = perf_cpu_notify,
3392 };
3393
3394 void __init perf_counter_init(void)
3395 {
3396         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3397                         (void *)(long)smp_processor_id());
3398         register_cpu_notifier(&perf_cpu_nb);
3399 }
3400
3401 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3402 {
3403         return sprintf(buf, "%d\n", perf_reserved_percpu);
3404 }
3405
3406 static ssize_t
3407 perf_set_reserve_percpu(struct sysdev_class *class,
3408                         const char *buf,
3409                         size_t count)
3410 {
3411         struct perf_cpu_context *cpuctx;
3412         unsigned long val;
3413         int err, cpu, mpt;
3414
3415         err = strict_strtoul(buf, 10, &val);
3416         if (err)
3417                 return err;
3418         if (val > perf_max_counters)
3419                 return -EINVAL;
3420
3421         spin_lock(&perf_resource_lock);
3422         perf_reserved_percpu = val;
3423         for_each_online_cpu(cpu) {
3424                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3425                 spin_lock_irq(&cpuctx->ctx.lock);
3426                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3427                           perf_max_counters - perf_reserved_percpu);
3428                 cpuctx->max_pertask = mpt;
3429                 spin_unlock_irq(&cpuctx->ctx.lock);
3430         }
3431         spin_unlock(&perf_resource_lock);
3432
3433         return count;
3434 }
3435
3436 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3437 {
3438         return sprintf(buf, "%d\n", perf_overcommit);
3439 }
3440
3441 static ssize_t
3442 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3443 {
3444         unsigned long val;
3445         int err;
3446
3447         err = strict_strtoul(buf, 10, &val);
3448         if (err)
3449                 return err;
3450         if (val > 1)
3451                 return -EINVAL;
3452
3453         spin_lock(&perf_resource_lock);
3454         perf_overcommit = val;
3455         spin_unlock(&perf_resource_lock);
3456
3457         return count;
3458 }
3459
3460 static SYSDEV_CLASS_ATTR(
3461                                 reserve_percpu,
3462                                 0644,
3463                                 perf_show_reserve_percpu,
3464                                 perf_set_reserve_percpu
3465                         );
3466
3467 static SYSDEV_CLASS_ATTR(
3468                                 overcommit,
3469                                 0644,
3470                                 perf_show_overcommit,
3471                                 perf_set_overcommit
3472                         );
3473
3474 static struct attribute *perfclass_attrs[] = {
3475         &attr_reserve_percpu.attr,
3476         &attr_overcommit.attr,
3477         NULL
3478 };
3479
3480 static struct attribute_group perfclass_attr_group = {
3481         .attrs                  = perfclass_attrs,
3482         .name                   = "perf_counters",
3483 };
3484
3485 static int __init perf_counter_sysfs_init(void)
3486 {
3487         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3488                                   &perfclass_attr_group);
3489 }
3490 device_initcall(perf_counter_sysfs_init);