]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: fix off task->comm by one
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42  * Mutex for (sysadmin-configurable) counter reservations:
43  */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47  * Architecture provided APIs - weak aliases:
48  */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52         return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void)           { return 0; }
56 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59                struct perf_cpu_context *cpuctx,
60                struct perf_counter_context *ctx, int cpu)
61 {
62         return 0;
63 }
64
65 void __weak perf_counter_print_debug(void)      { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70         struct perf_counter *group_leader = counter->group_leader;
71
72         /*
73          * Depending on whether it is a standalone or sibling counter,
74          * add it straight to the context's counter list, or to the group
75          * leader's sibling list:
76          */
77         if (counter->group_leader == counter)
78                 list_add_tail(&counter->list_entry, &ctx->counter_list);
79         else {
80                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81                 group_leader->nr_siblings++;
82         }
83
84         list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90         struct perf_counter *sibling, *tmp;
91
92         list_del_init(&counter->list_entry);
93         list_del_rcu(&counter->event_entry);
94
95         if (counter->group_leader != counter)
96                 counter->group_leader->nr_siblings--;
97
98         /*
99          * If this was a group counter with sibling counters then
100          * upgrade the siblings to singleton counters by adding them
101          * to the context list directly:
102          */
103         list_for_each_entry_safe(sibling, tmp,
104                                  &counter->sibling_list, list_entry) {
105
106                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107                 sibling->group_leader = sibling;
108         }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113                   struct perf_cpu_context *cpuctx,
114                   struct perf_counter_context *ctx)
115 {
116         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117                 return;
118
119         counter->state = PERF_COUNTER_STATE_INACTIVE;
120         counter->tstamp_stopped = ctx->time;
121         counter->hw_ops->disable(counter);
122         counter->oncpu = -1;
123
124         if (!is_software_counter(counter))
125                 cpuctx->active_oncpu--;
126         ctx->nr_active--;
127         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128                 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133                 struct perf_cpu_context *cpuctx,
134                 struct perf_counter_context *ctx)
135 {
136         struct perf_counter *counter;
137
138         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139                 return;
140
141         counter_sched_out(group_counter, cpuctx, ctx);
142
143         /*
144          * Schedule out siblings (if any):
145          */
146         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147                 counter_sched_out(counter, cpuctx, ctx);
148
149         if (group_counter->hw_event.exclusive)
150                 cpuctx->exclusive = 0;
151 }
152
153 /*
154  * Cross CPU call to remove a performance counter
155  *
156  * We disable the counter on the hardware level first. After that we
157  * remove it from the context list.
158  */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162         struct perf_counter *counter = info;
163         struct perf_counter_context *ctx = counter->ctx;
164         unsigned long flags;
165         u64 perf_flags;
166
167         /*
168          * If this is a task context, we need to check whether it is
169          * the current task context of this cpu. If not it has been
170          * scheduled out before the smp call arrived.
171          */
172         if (ctx->task && cpuctx->task_ctx != ctx)
173                 return;
174
175         spin_lock_irqsave(&ctx->lock, flags);
176
177         counter_sched_out(counter, cpuctx, ctx);
178
179         counter->task = NULL;
180         ctx->nr_counters--;
181
182         /*
183          * Protect the list operation against NMI by disabling the
184          * counters on a global level. NOP for non NMI based counters.
185          */
186         perf_flags = hw_perf_save_disable();
187         list_del_counter(counter, ctx);
188         hw_perf_restore(perf_flags);
189
190         if (!ctx->task) {
191                 /*
192                  * Allow more per task counters with respect to the
193                  * reservation:
194                  */
195                 cpuctx->max_pertask =
196                         min(perf_max_counters - ctx->nr_counters,
197                             perf_max_counters - perf_reserved_percpu);
198         }
199
200         spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202
203
204 /*
205  * Remove the counter from a task's (or a CPU's) list of counters.
206  *
207  * Must be called with counter->mutex and ctx->mutex held.
208  *
209  * CPU counters are removed with a smp call. For task counters we only
210  * call when the task is on a CPU.
211  */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214         struct perf_counter_context *ctx = counter->ctx;
215         struct task_struct *task = ctx->task;
216
217         if (!task) {
218                 /*
219                  * Per cpu counters are removed via an smp call and
220                  * the removal is always sucessful.
221                  */
222                 smp_call_function_single(counter->cpu,
223                                          __perf_counter_remove_from_context,
224                                          counter, 1);
225                 return;
226         }
227
228 retry:
229         task_oncpu_function_call(task, __perf_counter_remove_from_context,
230                                  counter);
231
232         spin_lock_irq(&ctx->lock);
233         /*
234          * If the context is active we need to retry the smp call.
235          */
236         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237                 spin_unlock_irq(&ctx->lock);
238                 goto retry;
239         }
240
241         /*
242          * The lock prevents that this context is scheduled in so we
243          * can remove the counter safely, if the call above did not
244          * succeed.
245          */
246         if (!list_empty(&counter->list_entry)) {
247                 ctx->nr_counters--;
248                 list_del_counter(counter, ctx);
249                 counter->task = NULL;
250         }
251         spin_unlock_irq(&ctx->lock);
252 }
253
254 static inline u64 perf_clock(void)
255 {
256         return cpu_clock(smp_processor_id());
257 }
258
259 /*
260  * Update the record of the current time in a context.
261  */
262 static void update_context_time(struct perf_counter_context *ctx)
263 {
264         u64 now = perf_clock();
265
266         ctx->time += now - ctx->timestamp;
267         ctx->timestamp = now;
268 }
269
270 /*
271  * Update the total_time_enabled and total_time_running fields for a counter.
272  */
273 static void update_counter_times(struct perf_counter *counter)
274 {
275         struct perf_counter_context *ctx = counter->ctx;
276         u64 run_end;
277
278         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
279                 return;
280
281         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
282
283         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
284                 run_end = counter->tstamp_stopped;
285         else
286                 run_end = ctx->time;
287
288         counter->total_time_running = run_end - counter->tstamp_running;
289 }
290
291 /*
292  * Update total_time_enabled and total_time_running for all counters in a group.
293  */
294 static void update_group_times(struct perf_counter *leader)
295 {
296         struct perf_counter *counter;
297
298         update_counter_times(leader);
299         list_for_each_entry(counter, &leader->sibling_list, list_entry)
300                 update_counter_times(counter);
301 }
302
303 /*
304  * Cross CPU call to disable a performance counter
305  */
306 static void __perf_counter_disable(void *info)
307 {
308         struct perf_counter *counter = info;
309         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
310         struct perf_counter_context *ctx = counter->ctx;
311         unsigned long flags;
312
313         /*
314          * If this is a per-task counter, need to check whether this
315          * counter's task is the current task on this cpu.
316          */
317         if (ctx->task && cpuctx->task_ctx != ctx)
318                 return;
319
320         spin_lock_irqsave(&ctx->lock, flags);
321
322         /*
323          * If the counter is on, turn it off.
324          * If it is in error state, leave it in error state.
325          */
326         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
327                 update_context_time(ctx);
328                 update_counter_times(counter);
329                 if (counter == counter->group_leader)
330                         group_sched_out(counter, cpuctx, ctx);
331                 else
332                         counter_sched_out(counter, cpuctx, ctx);
333                 counter->state = PERF_COUNTER_STATE_OFF;
334         }
335
336         spin_unlock_irqrestore(&ctx->lock, flags);
337 }
338
339 /*
340  * Disable a counter.
341  */
342 static void perf_counter_disable(struct perf_counter *counter)
343 {
344         struct perf_counter_context *ctx = counter->ctx;
345         struct task_struct *task = ctx->task;
346
347         if (!task) {
348                 /*
349                  * Disable the counter on the cpu that it's on
350                  */
351                 smp_call_function_single(counter->cpu, __perf_counter_disable,
352                                          counter, 1);
353                 return;
354         }
355
356  retry:
357         task_oncpu_function_call(task, __perf_counter_disable, counter);
358
359         spin_lock_irq(&ctx->lock);
360         /*
361          * If the counter is still active, we need to retry the cross-call.
362          */
363         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
364                 spin_unlock_irq(&ctx->lock);
365                 goto retry;
366         }
367
368         /*
369          * Since we have the lock this context can't be scheduled
370          * in, so we can change the state safely.
371          */
372         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
373                 update_counter_times(counter);
374                 counter->state = PERF_COUNTER_STATE_OFF;
375         }
376
377         spin_unlock_irq(&ctx->lock);
378 }
379
380 /*
381  * Disable a counter and all its children.
382  */
383 static void perf_counter_disable_family(struct perf_counter *counter)
384 {
385         struct perf_counter *child;
386
387         perf_counter_disable(counter);
388
389         /*
390          * Lock the mutex to protect the list of children
391          */
392         mutex_lock(&counter->mutex);
393         list_for_each_entry(child, &counter->child_list, child_list)
394                 perf_counter_disable(child);
395         mutex_unlock(&counter->mutex);
396 }
397
398 static int
399 counter_sched_in(struct perf_counter *counter,
400                  struct perf_cpu_context *cpuctx,
401                  struct perf_counter_context *ctx,
402                  int cpu)
403 {
404         if (counter->state <= PERF_COUNTER_STATE_OFF)
405                 return 0;
406
407         counter->state = PERF_COUNTER_STATE_ACTIVE;
408         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
409         /*
410          * The new state must be visible before we turn it on in the hardware:
411          */
412         smp_wmb();
413
414         if (counter->hw_ops->enable(counter)) {
415                 counter->state = PERF_COUNTER_STATE_INACTIVE;
416                 counter->oncpu = -1;
417                 return -EAGAIN;
418         }
419
420         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
421
422         if (!is_software_counter(counter))
423                 cpuctx->active_oncpu++;
424         ctx->nr_active++;
425
426         if (counter->hw_event.exclusive)
427                 cpuctx->exclusive = 1;
428
429         return 0;
430 }
431
432 /*
433  * Return 1 for a group consisting entirely of software counters,
434  * 0 if the group contains any hardware counters.
435  */
436 static int is_software_only_group(struct perf_counter *leader)
437 {
438         struct perf_counter *counter;
439
440         if (!is_software_counter(leader))
441                 return 0;
442
443         list_for_each_entry(counter, &leader->sibling_list, list_entry)
444                 if (!is_software_counter(counter))
445                         return 0;
446
447         return 1;
448 }
449
450 /*
451  * Work out whether we can put this counter group on the CPU now.
452  */
453 static int group_can_go_on(struct perf_counter *counter,
454                            struct perf_cpu_context *cpuctx,
455                            int can_add_hw)
456 {
457         /*
458          * Groups consisting entirely of software counters can always go on.
459          */
460         if (is_software_only_group(counter))
461                 return 1;
462         /*
463          * If an exclusive group is already on, no other hardware
464          * counters can go on.
465          */
466         if (cpuctx->exclusive)
467                 return 0;
468         /*
469          * If this group is exclusive and there are already
470          * counters on the CPU, it can't go on.
471          */
472         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
473                 return 0;
474         /*
475          * Otherwise, try to add it if all previous groups were able
476          * to go on.
477          */
478         return can_add_hw;
479 }
480
481 static void add_counter_to_ctx(struct perf_counter *counter,
482                                struct perf_counter_context *ctx)
483 {
484         list_add_counter(counter, ctx);
485         ctx->nr_counters++;
486         counter->prev_state = PERF_COUNTER_STATE_OFF;
487         counter->tstamp_enabled = ctx->time;
488         counter->tstamp_running = ctx->time;
489         counter->tstamp_stopped = ctx->time;
490 }
491
492 /*
493  * Cross CPU call to install and enable a performance counter
494  */
495 static void __perf_install_in_context(void *info)
496 {
497         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498         struct perf_counter *counter = info;
499         struct perf_counter_context *ctx = counter->ctx;
500         struct perf_counter *leader = counter->group_leader;
501         int cpu = smp_processor_id();
502         unsigned long flags;
503         u64 perf_flags;
504         int err;
505
506         /*
507          * If this is a task context, we need to check whether it is
508          * the current task context of this cpu. If not it has been
509          * scheduled out before the smp call arrived.
510          */
511         if (ctx->task && cpuctx->task_ctx != ctx)
512                 return;
513
514         spin_lock_irqsave(&ctx->lock, flags);
515         update_context_time(ctx);
516
517         /*
518          * Protect the list operation against NMI by disabling the
519          * counters on a global level. NOP for non NMI based counters.
520          */
521         perf_flags = hw_perf_save_disable();
522
523         add_counter_to_ctx(counter, ctx);
524
525         /*
526          * Don't put the counter on if it is disabled or if
527          * it is in a group and the group isn't on.
528          */
529         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
530             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
531                 goto unlock;
532
533         /*
534          * An exclusive counter can't go on if there are already active
535          * hardware counters, and no hardware counter can go on if there
536          * is already an exclusive counter on.
537          */
538         if (!group_can_go_on(counter, cpuctx, 1))
539                 err = -EEXIST;
540         else
541                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
542
543         if (err) {
544                 /*
545                  * This counter couldn't go on.  If it is in a group
546                  * then we have to pull the whole group off.
547                  * If the counter group is pinned then put it in error state.
548                  */
549                 if (leader != counter)
550                         group_sched_out(leader, cpuctx, ctx);
551                 if (leader->hw_event.pinned) {
552                         update_group_times(leader);
553                         leader->state = PERF_COUNTER_STATE_ERROR;
554                 }
555         }
556
557         if (!err && !ctx->task && cpuctx->max_pertask)
558                 cpuctx->max_pertask--;
559
560  unlock:
561         hw_perf_restore(perf_flags);
562
563         spin_unlock_irqrestore(&ctx->lock, flags);
564 }
565
566 /*
567  * Attach a performance counter to a context
568  *
569  * First we add the counter to the list with the hardware enable bit
570  * in counter->hw_config cleared.
571  *
572  * If the counter is attached to a task which is on a CPU we use a smp
573  * call to enable it in the task context. The task might have been
574  * scheduled away, but we check this in the smp call again.
575  *
576  * Must be called with ctx->mutex held.
577  */
578 static void
579 perf_install_in_context(struct perf_counter_context *ctx,
580                         struct perf_counter *counter,
581                         int cpu)
582 {
583         struct task_struct *task = ctx->task;
584
585         if (!task) {
586                 /*
587                  * Per cpu counters are installed via an smp call and
588                  * the install is always sucessful.
589                  */
590                 smp_call_function_single(cpu, __perf_install_in_context,
591                                          counter, 1);
592                 return;
593         }
594
595         counter->task = task;
596 retry:
597         task_oncpu_function_call(task, __perf_install_in_context,
598                                  counter);
599
600         spin_lock_irq(&ctx->lock);
601         /*
602          * we need to retry the smp call.
603          */
604         if (ctx->is_active && list_empty(&counter->list_entry)) {
605                 spin_unlock_irq(&ctx->lock);
606                 goto retry;
607         }
608
609         /*
610          * The lock prevents that this context is scheduled in so we
611          * can add the counter safely, if it the call above did not
612          * succeed.
613          */
614         if (list_empty(&counter->list_entry))
615                 add_counter_to_ctx(counter, ctx);
616         spin_unlock_irq(&ctx->lock);
617 }
618
619 /*
620  * Cross CPU call to enable a performance counter
621  */
622 static void __perf_counter_enable(void *info)
623 {
624         struct perf_counter *counter = info;
625         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
626         struct perf_counter_context *ctx = counter->ctx;
627         struct perf_counter *leader = counter->group_leader;
628         unsigned long flags;
629         int err;
630
631         /*
632          * If this is a per-task counter, need to check whether this
633          * counter's task is the current task on this cpu.
634          */
635         if (ctx->task && cpuctx->task_ctx != ctx)
636                 return;
637
638         spin_lock_irqsave(&ctx->lock, flags);
639         update_context_time(ctx);
640
641         counter->prev_state = counter->state;
642         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
643                 goto unlock;
644         counter->state = PERF_COUNTER_STATE_INACTIVE;
645         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
646
647         /*
648          * If the counter is in a group and isn't the group leader,
649          * then don't put it on unless the group is on.
650          */
651         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
652                 goto unlock;
653
654         if (!group_can_go_on(counter, cpuctx, 1))
655                 err = -EEXIST;
656         else
657                 err = counter_sched_in(counter, cpuctx, ctx,
658                                        smp_processor_id());
659
660         if (err) {
661                 /*
662                  * If this counter can't go on and it's part of a
663                  * group, then the whole group has to come off.
664                  */
665                 if (leader != counter)
666                         group_sched_out(leader, cpuctx, ctx);
667                 if (leader->hw_event.pinned) {
668                         update_group_times(leader);
669                         leader->state = PERF_COUNTER_STATE_ERROR;
670                 }
671         }
672
673  unlock:
674         spin_unlock_irqrestore(&ctx->lock, flags);
675 }
676
677 /*
678  * Enable a counter.
679  */
680 static void perf_counter_enable(struct perf_counter *counter)
681 {
682         struct perf_counter_context *ctx = counter->ctx;
683         struct task_struct *task = ctx->task;
684
685         if (!task) {
686                 /*
687                  * Enable the counter on the cpu that it's on
688                  */
689                 smp_call_function_single(counter->cpu, __perf_counter_enable,
690                                          counter, 1);
691                 return;
692         }
693
694         spin_lock_irq(&ctx->lock);
695         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
696                 goto out;
697
698         /*
699          * If the counter is in error state, clear that first.
700          * That way, if we see the counter in error state below, we
701          * know that it has gone back into error state, as distinct
702          * from the task having been scheduled away before the
703          * cross-call arrived.
704          */
705         if (counter->state == PERF_COUNTER_STATE_ERROR)
706                 counter->state = PERF_COUNTER_STATE_OFF;
707
708  retry:
709         spin_unlock_irq(&ctx->lock);
710         task_oncpu_function_call(task, __perf_counter_enable, counter);
711
712         spin_lock_irq(&ctx->lock);
713
714         /*
715          * If the context is active and the counter is still off,
716          * we need to retry the cross-call.
717          */
718         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
719                 goto retry;
720
721         /*
722          * Since we have the lock this context can't be scheduled
723          * in, so we can change the state safely.
724          */
725         if (counter->state == PERF_COUNTER_STATE_OFF) {
726                 counter->state = PERF_COUNTER_STATE_INACTIVE;
727                 counter->tstamp_enabled =
728                         ctx->time - counter->total_time_enabled;
729         }
730  out:
731         spin_unlock_irq(&ctx->lock);
732 }
733
734 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
735 {
736         atomic_add(refresh, &counter->event_limit);
737         perf_counter_enable(counter);
738 }
739
740 /*
741  * Enable a counter and all its children.
742  */
743 static void perf_counter_enable_family(struct perf_counter *counter)
744 {
745         struct perf_counter *child;
746
747         perf_counter_enable(counter);
748
749         /*
750          * Lock the mutex to protect the list of children
751          */
752         mutex_lock(&counter->mutex);
753         list_for_each_entry(child, &counter->child_list, child_list)
754                 perf_counter_enable(child);
755         mutex_unlock(&counter->mutex);
756 }
757
758 void __perf_counter_sched_out(struct perf_counter_context *ctx,
759                               struct perf_cpu_context *cpuctx)
760 {
761         struct perf_counter *counter;
762         u64 flags;
763
764         spin_lock(&ctx->lock);
765         ctx->is_active = 0;
766         if (likely(!ctx->nr_counters))
767                 goto out;
768         update_context_time(ctx);
769
770         flags = hw_perf_save_disable();
771         if (ctx->nr_active) {
772                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
773                         group_sched_out(counter, cpuctx, ctx);
774         }
775         hw_perf_restore(flags);
776  out:
777         spin_unlock(&ctx->lock);
778 }
779
780 /*
781  * Called from scheduler to remove the counters of the current task,
782  * with interrupts disabled.
783  *
784  * We stop each counter and update the counter value in counter->count.
785  *
786  * This does not protect us against NMI, but disable()
787  * sets the disabled bit in the control field of counter _before_
788  * accessing the counter control register. If a NMI hits, then it will
789  * not restart the counter.
790  */
791 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
792 {
793         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
794         struct perf_counter_context *ctx = &task->perf_counter_ctx;
795         struct pt_regs *regs;
796
797         if (likely(!cpuctx->task_ctx))
798                 return;
799
800         update_context_time(ctx);
801
802         regs = task_pt_regs(task);
803         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
804         __perf_counter_sched_out(ctx, cpuctx);
805
806         cpuctx->task_ctx = NULL;
807 }
808
809 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
810 {
811         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
812 }
813
814 static int
815 group_sched_in(struct perf_counter *group_counter,
816                struct perf_cpu_context *cpuctx,
817                struct perf_counter_context *ctx,
818                int cpu)
819 {
820         struct perf_counter *counter, *partial_group;
821         int ret;
822
823         if (group_counter->state == PERF_COUNTER_STATE_OFF)
824                 return 0;
825
826         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
827         if (ret)
828                 return ret < 0 ? ret : 0;
829
830         group_counter->prev_state = group_counter->state;
831         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
832                 return -EAGAIN;
833
834         /*
835          * Schedule in siblings as one group (if any):
836          */
837         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
838                 counter->prev_state = counter->state;
839                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
840                         partial_group = counter;
841                         goto group_error;
842                 }
843         }
844
845         return 0;
846
847 group_error:
848         /*
849          * Groups can be scheduled in as one unit only, so undo any
850          * partial group before returning:
851          */
852         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
853                 if (counter == partial_group)
854                         break;
855                 counter_sched_out(counter, cpuctx, ctx);
856         }
857         counter_sched_out(group_counter, cpuctx, ctx);
858
859         return -EAGAIN;
860 }
861
862 static void
863 __perf_counter_sched_in(struct perf_counter_context *ctx,
864                         struct perf_cpu_context *cpuctx, int cpu)
865 {
866         struct perf_counter *counter;
867         u64 flags;
868         int can_add_hw = 1;
869
870         spin_lock(&ctx->lock);
871         ctx->is_active = 1;
872         if (likely(!ctx->nr_counters))
873                 goto out;
874
875         ctx->timestamp = perf_clock();
876
877         flags = hw_perf_save_disable();
878
879         /*
880          * First go through the list and put on any pinned groups
881          * in order to give them the best chance of going on.
882          */
883         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
885                     !counter->hw_event.pinned)
886                         continue;
887                 if (counter->cpu != -1 && counter->cpu != cpu)
888                         continue;
889
890                 if (group_can_go_on(counter, cpuctx, 1))
891                         group_sched_in(counter, cpuctx, ctx, cpu);
892
893                 /*
894                  * If this pinned group hasn't been scheduled,
895                  * put it in error state.
896                  */
897                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
898                         update_group_times(counter);
899                         counter->state = PERF_COUNTER_STATE_ERROR;
900                 }
901         }
902
903         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
904                 /*
905                  * Ignore counters in OFF or ERROR state, and
906                  * ignore pinned counters since we did them already.
907                  */
908                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
909                     counter->hw_event.pinned)
910                         continue;
911
912                 /*
913                  * Listen to the 'cpu' scheduling filter constraint
914                  * of counters:
915                  */
916                 if (counter->cpu != -1 && counter->cpu != cpu)
917                         continue;
918
919                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
920                         if (group_sched_in(counter, cpuctx, ctx, cpu))
921                                 can_add_hw = 0;
922                 }
923         }
924         hw_perf_restore(flags);
925  out:
926         spin_unlock(&ctx->lock);
927 }
928
929 /*
930  * Called from scheduler to add the counters of the current task
931  * with interrupts disabled.
932  *
933  * We restore the counter value and then enable it.
934  *
935  * This does not protect us against NMI, but enable()
936  * sets the enabled bit in the control field of counter _before_
937  * accessing the counter control register. If a NMI hits, then it will
938  * keep the counter running.
939  */
940 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
941 {
942         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
943         struct perf_counter_context *ctx = &task->perf_counter_ctx;
944
945         __perf_counter_sched_in(ctx, cpuctx, cpu);
946         cpuctx->task_ctx = ctx;
947 }
948
949 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
950 {
951         struct perf_counter_context *ctx = &cpuctx->ctx;
952
953         __perf_counter_sched_in(ctx, cpuctx, cpu);
954 }
955
956 int perf_counter_task_disable(void)
957 {
958         struct task_struct *curr = current;
959         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
960         struct perf_counter *counter;
961         unsigned long flags;
962         u64 perf_flags;
963         int cpu;
964
965         if (likely(!ctx->nr_counters))
966                 return 0;
967
968         local_irq_save(flags);
969         cpu = smp_processor_id();
970
971         perf_counter_task_sched_out(curr, cpu);
972
973         spin_lock(&ctx->lock);
974
975         /*
976          * Disable all the counters:
977          */
978         perf_flags = hw_perf_save_disable();
979
980         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
981                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
982                         update_group_times(counter);
983                         counter->state = PERF_COUNTER_STATE_OFF;
984                 }
985         }
986
987         hw_perf_restore(perf_flags);
988
989         spin_unlock_irqrestore(&ctx->lock, flags);
990
991         return 0;
992 }
993
994 int perf_counter_task_enable(void)
995 {
996         struct task_struct *curr = current;
997         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
998         struct perf_counter *counter;
999         unsigned long flags;
1000         u64 perf_flags;
1001         int cpu;
1002
1003         if (likely(!ctx->nr_counters))
1004                 return 0;
1005
1006         local_irq_save(flags);
1007         cpu = smp_processor_id();
1008
1009         perf_counter_task_sched_out(curr, cpu);
1010
1011         spin_lock(&ctx->lock);
1012
1013         /*
1014          * Disable all the counters:
1015          */
1016         perf_flags = hw_perf_save_disable();
1017
1018         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1019                 if (counter->state > PERF_COUNTER_STATE_OFF)
1020                         continue;
1021                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1022                 counter->tstamp_enabled =
1023                         ctx->time - counter->total_time_enabled;
1024                 counter->hw_event.disabled = 0;
1025         }
1026         hw_perf_restore(perf_flags);
1027
1028         spin_unlock(&ctx->lock);
1029
1030         perf_counter_task_sched_in(curr, cpu);
1031
1032         local_irq_restore(flags);
1033
1034         return 0;
1035 }
1036
1037 /*
1038  * Round-robin a context's counters:
1039  */
1040 static void rotate_ctx(struct perf_counter_context *ctx)
1041 {
1042         struct perf_counter *counter;
1043         u64 perf_flags;
1044
1045         if (!ctx->nr_counters)
1046                 return;
1047
1048         spin_lock(&ctx->lock);
1049         /*
1050          * Rotate the first entry last (works just fine for group counters too):
1051          */
1052         perf_flags = hw_perf_save_disable();
1053         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1054                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1055                 break;
1056         }
1057         hw_perf_restore(perf_flags);
1058
1059         spin_unlock(&ctx->lock);
1060 }
1061
1062 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1063 {
1064         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1065         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1066         const int rotate_percpu = 0;
1067
1068         if (rotate_percpu)
1069                 perf_counter_cpu_sched_out(cpuctx);
1070         perf_counter_task_sched_out(curr, cpu);
1071
1072         if (rotate_percpu)
1073                 rotate_ctx(&cpuctx->ctx);
1074         rotate_ctx(ctx);
1075
1076         if (rotate_percpu)
1077                 perf_counter_cpu_sched_in(cpuctx, cpu);
1078         perf_counter_task_sched_in(curr, cpu);
1079 }
1080
1081 /*
1082  * Cross CPU call to read the hardware counter
1083  */
1084 static void __read(void *info)
1085 {
1086         struct perf_counter *counter = info;
1087         struct perf_counter_context *ctx = counter->ctx;
1088         unsigned long flags;
1089
1090         local_irq_save(flags);
1091         if (ctx->is_active)
1092                 update_context_time(ctx);
1093         counter->hw_ops->read(counter);
1094         update_counter_times(counter);
1095         local_irq_restore(flags);
1096 }
1097
1098 static u64 perf_counter_read(struct perf_counter *counter)
1099 {
1100         /*
1101          * If counter is enabled and currently active on a CPU, update the
1102          * value in the counter structure:
1103          */
1104         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1105                 smp_call_function_single(counter->oncpu,
1106                                          __read, counter, 1);
1107         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1108                 update_counter_times(counter);
1109         }
1110
1111         return atomic64_read(&counter->count);
1112 }
1113
1114 static void put_context(struct perf_counter_context *ctx)
1115 {
1116         if (ctx->task)
1117                 put_task_struct(ctx->task);
1118 }
1119
1120 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1121 {
1122         struct perf_cpu_context *cpuctx;
1123         struct perf_counter_context *ctx;
1124         struct task_struct *task;
1125
1126         /*
1127          * If cpu is not a wildcard then this is a percpu counter:
1128          */
1129         if (cpu != -1) {
1130                 /* Must be root to operate on a CPU counter: */
1131                 if (!capable(CAP_SYS_ADMIN))
1132                         return ERR_PTR(-EACCES);
1133
1134                 if (cpu < 0 || cpu > num_possible_cpus())
1135                         return ERR_PTR(-EINVAL);
1136
1137                 /*
1138                  * We could be clever and allow to attach a counter to an
1139                  * offline CPU and activate it when the CPU comes up, but
1140                  * that's for later.
1141                  */
1142                 if (!cpu_isset(cpu, cpu_online_map))
1143                         return ERR_PTR(-ENODEV);
1144
1145                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1146                 ctx = &cpuctx->ctx;
1147
1148                 return ctx;
1149         }
1150
1151         rcu_read_lock();
1152         if (!pid)
1153                 task = current;
1154         else
1155                 task = find_task_by_vpid(pid);
1156         if (task)
1157                 get_task_struct(task);
1158         rcu_read_unlock();
1159
1160         if (!task)
1161                 return ERR_PTR(-ESRCH);
1162
1163         ctx = &task->perf_counter_ctx;
1164         ctx->task = task;
1165
1166         /* Reuse ptrace permission checks for now. */
1167         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1168                 put_context(ctx);
1169                 return ERR_PTR(-EACCES);
1170         }
1171
1172         return ctx;
1173 }
1174
1175 static void free_counter_rcu(struct rcu_head *head)
1176 {
1177         struct perf_counter *counter;
1178
1179         counter = container_of(head, struct perf_counter, rcu_head);
1180         kfree(counter);
1181 }
1182
1183 static void perf_pending_sync(struct perf_counter *counter);
1184
1185 static void free_counter(struct perf_counter *counter)
1186 {
1187         perf_pending_sync(counter);
1188
1189         if (counter->destroy)
1190                 counter->destroy(counter);
1191
1192         call_rcu(&counter->rcu_head, free_counter_rcu);
1193 }
1194
1195 /*
1196  * Called when the last reference to the file is gone.
1197  */
1198 static int perf_release(struct inode *inode, struct file *file)
1199 {
1200         struct perf_counter *counter = file->private_data;
1201         struct perf_counter_context *ctx = counter->ctx;
1202
1203         file->private_data = NULL;
1204
1205         mutex_lock(&ctx->mutex);
1206         mutex_lock(&counter->mutex);
1207
1208         perf_counter_remove_from_context(counter);
1209
1210         mutex_unlock(&counter->mutex);
1211         mutex_unlock(&ctx->mutex);
1212
1213         free_counter(counter);
1214         put_context(ctx);
1215
1216         return 0;
1217 }
1218
1219 /*
1220  * Read the performance counter - simple non blocking version for now
1221  */
1222 static ssize_t
1223 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1224 {
1225         u64 values[3];
1226         int n;
1227
1228         /*
1229          * Return end-of-file for a read on a counter that is in
1230          * error state (i.e. because it was pinned but it couldn't be
1231          * scheduled on to the CPU at some point).
1232          */
1233         if (counter->state == PERF_COUNTER_STATE_ERROR)
1234                 return 0;
1235
1236         mutex_lock(&counter->mutex);
1237         values[0] = perf_counter_read(counter);
1238         n = 1;
1239         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1240                 values[n++] = counter->total_time_enabled +
1241                         atomic64_read(&counter->child_total_time_enabled);
1242         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1243                 values[n++] = counter->total_time_running +
1244                         atomic64_read(&counter->child_total_time_running);
1245         mutex_unlock(&counter->mutex);
1246
1247         if (count < n * sizeof(u64))
1248                 return -EINVAL;
1249         count = n * sizeof(u64);
1250
1251         if (copy_to_user(buf, values, count))
1252                 return -EFAULT;
1253
1254         return count;
1255 }
1256
1257 static ssize_t
1258 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1259 {
1260         struct perf_counter *counter = file->private_data;
1261
1262         return perf_read_hw(counter, buf, count);
1263 }
1264
1265 static unsigned int perf_poll(struct file *file, poll_table *wait)
1266 {
1267         struct perf_counter *counter = file->private_data;
1268         struct perf_mmap_data *data;
1269         unsigned int events;
1270
1271         rcu_read_lock();
1272         data = rcu_dereference(counter->data);
1273         if (data)
1274                 events = atomic_xchg(&data->wakeup, 0);
1275         else
1276                 events = POLL_HUP;
1277         rcu_read_unlock();
1278
1279         poll_wait(file, &counter->waitq, wait);
1280
1281         return events;
1282 }
1283
1284 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1285 {
1286         struct perf_counter *counter = file->private_data;
1287         int err = 0;
1288
1289         switch (cmd) {
1290         case PERF_COUNTER_IOC_ENABLE:
1291                 perf_counter_enable_family(counter);
1292                 break;
1293         case PERF_COUNTER_IOC_DISABLE:
1294                 perf_counter_disable_family(counter);
1295                 break;
1296         case PERF_COUNTER_IOC_REFRESH:
1297                 perf_counter_refresh(counter, arg);
1298                 break;
1299         default:
1300                 err = -ENOTTY;
1301         }
1302         return err;
1303 }
1304
1305 /*
1306  * Callers need to ensure there can be no nesting of this function, otherwise
1307  * the seqlock logic goes bad. We can not serialize this because the arch
1308  * code calls this from NMI context.
1309  */
1310 void perf_counter_update_userpage(struct perf_counter *counter)
1311 {
1312         struct perf_mmap_data *data;
1313         struct perf_counter_mmap_page *userpg;
1314
1315         rcu_read_lock();
1316         data = rcu_dereference(counter->data);
1317         if (!data)
1318                 goto unlock;
1319
1320         userpg = data->user_page;
1321
1322         /*
1323          * Disable preemption so as to not let the corresponding user-space
1324          * spin too long if we get preempted.
1325          */
1326         preempt_disable();
1327         ++userpg->lock;
1328         barrier();
1329         userpg->index = counter->hw.idx;
1330         userpg->offset = atomic64_read(&counter->count);
1331         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1332                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1333
1334         barrier();
1335         ++userpg->lock;
1336         preempt_enable();
1337 unlock:
1338         rcu_read_unlock();
1339 }
1340
1341 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1342 {
1343         struct perf_counter *counter = vma->vm_file->private_data;
1344         struct perf_mmap_data *data;
1345         int ret = VM_FAULT_SIGBUS;
1346
1347         rcu_read_lock();
1348         data = rcu_dereference(counter->data);
1349         if (!data)
1350                 goto unlock;
1351
1352         if (vmf->pgoff == 0) {
1353                 vmf->page = virt_to_page(data->user_page);
1354         } else {
1355                 int nr = vmf->pgoff - 1;
1356
1357                 if ((unsigned)nr > data->nr_pages)
1358                         goto unlock;
1359
1360                 vmf->page = virt_to_page(data->data_pages[nr]);
1361         }
1362         get_page(vmf->page);
1363         ret = 0;
1364 unlock:
1365         rcu_read_unlock();
1366
1367         return ret;
1368 }
1369
1370 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1371 {
1372         struct perf_mmap_data *data;
1373         unsigned long size;
1374         int i;
1375
1376         WARN_ON(atomic_read(&counter->mmap_count));
1377
1378         size = sizeof(struct perf_mmap_data);
1379         size += nr_pages * sizeof(void *);
1380
1381         data = kzalloc(size, GFP_KERNEL);
1382         if (!data)
1383                 goto fail;
1384
1385         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1386         if (!data->user_page)
1387                 goto fail_user_page;
1388
1389         for (i = 0; i < nr_pages; i++) {
1390                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1391                 if (!data->data_pages[i])
1392                         goto fail_data_pages;
1393         }
1394
1395         data->nr_pages = nr_pages;
1396
1397         rcu_assign_pointer(counter->data, data);
1398
1399         return 0;
1400
1401 fail_data_pages:
1402         for (i--; i >= 0; i--)
1403                 free_page((unsigned long)data->data_pages[i]);
1404
1405         free_page((unsigned long)data->user_page);
1406
1407 fail_user_page:
1408         kfree(data);
1409
1410 fail:
1411         return -ENOMEM;
1412 }
1413
1414 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1415 {
1416         struct perf_mmap_data *data = container_of(rcu_head,
1417                         struct perf_mmap_data, rcu_head);
1418         int i;
1419
1420         free_page((unsigned long)data->user_page);
1421         for (i = 0; i < data->nr_pages; i++)
1422                 free_page((unsigned long)data->data_pages[i]);
1423         kfree(data);
1424 }
1425
1426 static void perf_mmap_data_free(struct perf_counter *counter)
1427 {
1428         struct perf_mmap_data *data = counter->data;
1429
1430         WARN_ON(atomic_read(&counter->mmap_count));
1431
1432         rcu_assign_pointer(counter->data, NULL);
1433         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1434 }
1435
1436 static void perf_mmap_open(struct vm_area_struct *vma)
1437 {
1438         struct perf_counter *counter = vma->vm_file->private_data;
1439
1440         atomic_inc(&counter->mmap_count);
1441 }
1442
1443 static void perf_mmap_close(struct vm_area_struct *vma)
1444 {
1445         struct perf_counter *counter = vma->vm_file->private_data;
1446
1447         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1448                                       &counter->mmap_mutex)) {
1449                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1450                 perf_mmap_data_free(counter);
1451                 mutex_unlock(&counter->mmap_mutex);
1452         }
1453 }
1454
1455 static struct vm_operations_struct perf_mmap_vmops = {
1456         .open  = perf_mmap_open,
1457         .close = perf_mmap_close,
1458         .fault = perf_mmap_fault,
1459 };
1460
1461 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1462 {
1463         struct perf_counter *counter = file->private_data;
1464         unsigned long vma_size;
1465         unsigned long nr_pages;
1466         unsigned long locked, lock_limit;
1467         int ret = 0;
1468
1469         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1470                 return -EINVAL;
1471
1472         vma_size = vma->vm_end - vma->vm_start;
1473         nr_pages = (vma_size / PAGE_SIZE) - 1;
1474
1475         /*
1476          * If we have data pages ensure they're a power-of-two number, so we
1477          * can do bitmasks instead of modulo.
1478          */
1479         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1480                 return -EINVAL;
1481
1482         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1483                 return -EINVAL;
1484
1485         if (vma->vm_pgoff != 0)
1486                 return -EINVAL;
1487
1488         mutex_lock(&counter->mmap_mutex);
1489         if (atomic_inc_not_zero(&counter->mmap_count)) {
1490                 if (nr_pages != counter->data->nr_pages)
1491                         ret = -EINVAL;
1492                 goto unlock;
1493         }
1494
1495         locked = vma->vm_mm->locked_vm;
1496         locked += nr_pages + 1;
1497
1498         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1499         lock_limit >>= PAGE_SHIFT;
1500
1501         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1502                 ret = -EPERM;
1503                 goto unlock;
1504         }
1505
1506         WARN_ON(counter->data);
1507         ret = perf_mmap_data_alloc(counter, nr_pages);
1508         if (ret)
1509                 goto unlock;
1510
1511         atomic_set(&counter->mmap_count, 1);
1512         vma->vm_mm->locked_vm += nr_pages + 1;
1513 unlock:
1514         mutex_unlock(&counter->mmap_mutex);
1515
1516         vma->vm_flags &= ~VM_MAYWRITE;
1517         vma->vm_flags |= VM_RESERVED;
1518         vma->vm_ops = &perf_mmap_vmops;
1519
1520         return ret;
1521 }
1522
1523 static int perf_fasync(int fd, struct file *filp, int on)
1524 {
1525         struct perf_counter *counter = filp->private_data;
1526         struct inode *inode = filp->f_path.dentry->d_inode;
1527         int retval;
1528
1529         mutex_lock(&inode->i_mutex);
1530         retval = fasync_helper(fd, filp, on, &counter->fasync);
1531         mutex_unlock(&inode->i_mutex);
1532
1533         if (retval < 0)
1534                 return retval;
1535
1536         return 0;
1537 }
1538
1539 static const struct file_operations perf_fops = {
1540         .release                = perf_release,
1541         .read                   = perf_read,
1542         .poll                   = perf_poll,
1543         .unlocked_ioctl         = perf_ioctl,
1544         .compat_ioctl           = perf_ioctl,
1545         .mmap                   = perf_mmap,
1546         .fasync                 = perf_fasync,
1547 };
1548
1549 /*
1550  * Perf counter wakeup
1551  *
1552  * If there's data, ensure we set the poll() state and publish everything
1553  * to user-space before waking everybody up.
1554  */
1555
1556 void perf_counter_wakeup(struct perf_counter *counter)
1557 {
1558         struct perf_mmap_data *data;
1559
1560         rcu_read_lock();
1561         data = rcu_dereference(counter->data);
1562         if (data) {
1563                 atomic_set(&data->wakeup, POLL_IN);
1564                 /*
1565                  * Ensure all data writes are issued before updating the
1566                  * user-space data head information. The matching rmb()
1567                  * will be in userspace after reading this value.
1568                  */
1569                 smp_wmb();
1570                 data->user_page->data_head = atomic_read(&data->head);
1571         }
1572         rcu_read_unlock();
1573
1574         wake_up_all(&counter->waitq);
1575
1576         if (counter->pending_kill) {
1577                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1578                 counter->pending_kill = 0;
1579         }
1580 }
1581
1582 /*
1583  * Pending wakeups
1584  *
1585  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1586  *
1587  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1588  * single linked list and use cmpxchg() to add entries lockless.
1589  */
1590
1591 static void perf_pending_counter(struct perf_pending_entry *entry)
1592 {
1593         struct perf_counter *counter = container_of(entry,
1594                         struct perf_counter, pending);
1595
1596         if (counter->pending_disable) {
1597                 counter->pending_disable = 0;
1598                 perf_counter_disable(counter);
1599         }
1600
1601         if (counter->pending_wakeup) {
1602                 counter->pending_wakeup = 0;
1603                 perf_counter_wakeup(counter);
1604         }
1605 }
1606
1607 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1608
1609 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1610         PENDING_TAIL,
1611 };
1612
1613 static void perf_pending_queue(struct perf_pending_entry *entry,
1614                                void (*func)(struct perf_pending_entry *))
1615 {
1616         struct perf_pending_entry **head;
1617
1618         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1619                 return;
1620
1621         entry->func = func;
1622
1623         head = &get_cpu_var(perf_pending_head);
1624
1625         do {
1626                 entry->next = *head;
1627         } while (cmpxchg(head, entry->next, entry) != entry->next);
1628
1629         set_perf_counter_pending();
1630
1631         put_cpu_var(perf_pending_head);
1632 }
1633
1634 static int __perf_pending_run(void)
1635 {
1636         struct perf_pending_entry *list;
1637         int nr = 0;
1638
1639         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1640         while (list != PENDING_TAIL) {
1641                 void (*func)(struct perf_pending_entry *);
1642                 struct perf_pending_entry *entry = list;
1643
1644                 list = list->next;
1645
1646                 func = entry->func;
1647                 entry->next = NULL;
1648                 /*
1649                  * Ensure we observe the unqueue before we issue the wakeup,
1650                  * so that we won't be waiting forever.
1651                  * -- see perf_not_pending().
1652                  */
1653                 smp_wmb();
1654
1655                 func(entry);
1656                 nr++;
1657         }
1658
1659         return nr;
1660 }
1661
1662 static inline int perf_not_pending(struct perf_counter *counter)
1663 {
1664         /*
1665          * If we flush on whatever cpu we run, there is a chance we don't
1666          * need to wait.
1667          */
1668         get_cpu();
1669         __perf_pending_run();
1670         put_cpu();
1671
1672         /*
1673          * Ensure we see the proper queue state before going to sleep
1674          * so that we do not miss the wakeup. -- see perf_pending_handle()
1675          */
1676         smp_rmb();
1677         return counter->pending.next == NULL;
1678 }
1679
1680 static void perf_pending_sync(struct perf_counter *counter)
1681 {
1682         wait_event(counter->waitq, perf_not_pending(counter));
1683 }
1684
1685 void perf_counter_do_pending(void)
1686 {
1687         __perf_pending_run();
1688 }
1689
1690 /*
1691  * Callchain support -- arch specific
1692  */
1693
1694 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1695 {
1696         return NULL;
1697 }
1698
1699 /*
1700  * Output
1701  */
1702
1703 struct perf_output_handle {
1704         struct perf_counter     *counter;
1705         struct perf_mmap_data   *data;
1706         unsigned int            offset;
1707         unsigned int            head;
1708         int                     wakeup;
1709         int                     nmi;
1710         int                     overflow;
1711 };
1712
1713 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1714 {
1715         if (handle->nmi) {
1716                 handle->counter->pending_wakeup = 1;
1717                 perf_pending_queue(&handle->counter->pending,
1718                                    perf_pending_counter);
1719         } else
1720                 perf_counter_wakeup(handle->counter);
1721 }
1722
1723 static int perf_output_begin(struct perf_output_handle *handle,
1724                              struct perf_counter *counter, unsigned int size,
1725                              int nmi, int overflow)
1726 {
1727         struct perf_mmap_data *data;
1728         unsigned int offset, head;
1729
1730         rcu_read_lock();
1731         data = rcu_dereference(counter->data);
1732         if (!data)
1733                 goto out;
1734
1735         handle->counter  = counter;
1736         handle->nmi      = nmi;
1737         handle->overflow = overflow;
1738
1739         if (!data->nr_pages)
1740                 goto fail;
1741
1742         do {
1743                 offset = head = atomic_read(&data->head);
1744                 head += size;
1745         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1746
1747         handle->data    = data;
1748         handle->offset  = offset;
1749         handle->head    = head;
1750         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1751
1752         return 0;
1753
1754 fail:
1755         __perf_output_wakeup(handle);
1756 out:
1757         rcu_read_unlock();
1758
1759         return -ENOSPC;
1760 }
1761
1762 static void perf_output_copy(struct perf_output_handle *handle,
1763                              void *buf, unsigned int len)
1764 {
1765         unsigned int pages_mask;
1766         unsigned int offset;
1767         unsigned int size;
1768         void **pages;
1769
1770         offset          = handle->offset;
1771         pages_mask      = handle->data->nr_pages - 1;
1772         pages           = handle->data->data_pages;
1773
1774         do {
1775                 unsigned int page_offset;
1776                 int nr;
1777
1778                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1779                 page_offset = offset & (PAGE_SIZE - 1);
1780                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1781
1782                 memcpy(pages[nr] + page_offset, buf, size);
1783
1784                 len         -= size;
1785                 buf         += size;
1786                 offset      += size;
1787         } while (len);
1788
1789         handle->offset = offset;
1790
1791         WARN_ON_ONCE(handle->offset > handle->head);
1792 }
1793
1794 #define perf_output_put(handle, x) \
1795         perf_output_copy((handle), &(x), sizeof(x))
1796
1797 static void perf_output_end(struct perf_output_handle *handle)
1798 {
1799         int wakeup_events = handle->counter->hw_event.wakeup_events;
1800
1801         if (handle->overflow && wakeup_events) {
1802                 int events = atomic_inc_return(&handle->data->events);
1803                 if (events >= wakeup_events) {
1804                         atomic_sub(wakeup_events, &handle->data->events);
1805                         __perf_output_wakeup(handle);
1806                 }
1807         } else if (handle->wakeup)
1808                 __perf_output_wakeup(handle);
1809         rcu_read_unlock();
1810 }
1811
1812 static void perf_counter_output(struct perf_counter *counter,
1813                                 int nmi, struct pt_regs *regs, u64 addr)
1814 {
1815         int ret;
1816         u64 record_type = counter->hw_event.record_type;
1817         struct perf_output_handle handle;
1818         struct perf_event_header header;
1819         u64 ip;
1820         struct {
1821                 u32 pid, tid;
1822         } tid_entry;
1823         struct {
1824                 u64 event;
1825                 u64 counter;
1826         } group_entry;
1827         struct perf_callchain_entry *callchain = NULL;
1828         int callchain_size = 0;
1829         u64 time;
1830
1831         header.type = 0;
1832         header.size = sizeof(header);
1833
1834         header.misc = PERF_EVENT_MISC_OVERFLOW;
1835         header.misc |= user_mode(regs) ?
1836                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1837
1838         if (record_type & PERF_RECORD_IP) {
1839                 ip = instruction_pointer(regs);
1840                 header.type |= PERF_RECORD_IP;
1841                 header.size += sizeof(ip);
1842         }
1843
1844         if (record_type & PERF_RECORD_TID) {
1845                 /* namespace issues */
1846                 tid_entry.pid = current->group_leader->pid;
1847                 tid_entry.tid = current->pid;
1848
1849                 header.type |= PERF_RECORD_TID;
1850                 header.size += sizeof(tid_entry);
1851         }
1852
1853         if (record_type & PERF_RECORD_TIME) {
1854                 /*
1855                  * Maybe do better on x86 and provide cpu_clock_nmi()
1856                  */
1857                 time = sched_clock();
1858
1859                 header.type |= PERF_RECORD_TIME;
1860                 header.size += sizeof(u64);
1861         }
1862
1863         if (record_type & PERF_RECORD_ADDR) {
1864                 header.type |= PERF_RECORD_ADDR;
1865                 header.size += sizeof(u64);
1866         }
1867
1868         if (record_type & PERF_RECORD_GROUP) {
1869                 header.type |= PERF_RECORD_GROUP;
1870                 header.size += sizeof(u64) +
1871                         counter->nr_siblings * sizeof(group_entry);
1872         }
1873
1874         if (record_type & PERF_RECORD_CALLCHAIN) {
1875                 callchain = perf_callchain(regs);
1876
1877                 if (callchain) {
1878                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1879
1880                         header.type |= PERF_RECORD_CALLCHAIN;
1881                         header.size += callchain_size;
1882                 }
1883         }
1884
1885         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1886         if (ret)
1887                 return;
1888
1889         perf_output_put(&handle, header);
1890
1891         if (record_type & PERF_RECORD_IP)
1892                 perf_output_put(&handle, ip);
1893
1894         if (record_type & PERF_RECORD_TID)
1895                 perf_output_put(&handle, tid_entry);
1896
1897         if (record_type & PERF_RECORD_TIME)
1898                 perf_output_put(&handle, time);
1899
1900         if (record_type & PERF_RECORD_ADDR)
1901                 perf_output_put(&handle, addr);
1902
1903         if (record_type & PERF_RECORD_GROUP) {
1904                 struct perf_counter *leader, *sub;
1905                 u64 nr = counter->nr_siblings;
1906
1907                 perf_output_put(&handle, nr);
1908
1909                 leader = counter->group_leader;
1910                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1911                         if (sub != counter)
1912                                 sub->hw_ops->read(sub);
1913
1914                         group_entry.event = sub->hw_event.config;
1915                         group_entry.counter = atomic64_read(&sub->count);
1916
1917                         perf_output_put(&handle, group_entry);
1918                 }
1919         }
1920
1921         if (callchain)
1922                 perf_output_copy(&handle, callchain, callchain_size);
1923
1924         perf_output_end(&handle);
1925 }
1926
1927 /*
1928  * comm tracking
1929  */
1930
1931 struct perf_comm_event {
1932         struct task_struct      *task;
1933         char                    *comm;
1934         int                     comm_size;
1935
1936         struct {
1937                 struct perf_event_header        header;
1938
1939                 u32                             pid;
1940                 u32                             tid;
1941         } event;
1942 };
1943
1944 static void perf_counter_comm_output(struct perf_counter *counter,
1945                                      struct perf_comm_event *comm_event)
1946 {
1947         struct perf_output_handle handle;
1948         int size = comm_event->event.header.size;
1949         int ret = perf_output_begin(&handle, counter, size, 0, 0);
1950
1951         if (ret)
1952                 return;
1953
1954         perf_output_put(&handle, comm_event->event);
1955         perf_output_copy(&handle, comm_event->comm,
1956                                    comm_event->comm_size);
1957         perf_output_end(&handle);
1958 }
1959
1960 static int perf_counter_comm_match(struct perf_counter *counter,
1961                                    struct perf_comm_event *comm_event)
1962 {
1963         if (counter->hw_event.comm &&
1964             comm_event->event.header.type == PERF_EVENT_COMM)
1965                 return 1;
1966
1967         return 0;
1968 }
1969
1970 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1971                                   struct perf_comm_event *comm_event)
1972 {
1973         struct perf_counter *counter;
1974
1975         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1976                 return;
1977
1978         rcu_read_lock();
1979         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1980                 if (perf_counter_comm_match(counter, comm_event))
1981                         perf_counter_comm_output(counter, comm_event);
1982         }
1983         rcu_read_unlock();
1984 }
1985
1986 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
1987 {
1988         struct perf_cpu_context *cpuctx;
1989         unsigned int size;
1990         char *comm = comm_event->task->comm;
1991
1992         size = ALIGN(strlen(comm)+1, sizeof(u64));
1993
1994         comm_event->comm = comm;
1995         comm_event->comm_size = size;
1996
1997         comm_event->event.header.size = sizeof(comm_event->event) + size;
1998
1999         cpuctx = &get_cpu_var(perf_cpu_context);
2000         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2001         put_cpu_var(perf_cpu_context);
2002
2003         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2004 }
2005
2006 void perf_counter_comm(struct task_struct *task)
2007 {
2008         struct perf_comm_event comm_event = {
2009                 .task   = task,
2010                 .event  = {
2011                         .header = { .type = PERF_EVENT_COMM, },
2012                         .pid    = task->group_leader->pid,
2013                         .tid    = task->pid,
2014                 },
2015         };
2016
2017         perf_counter_comm_event(&comm_event);
2018 }
2019
2020 /*
2021  * mmap tracking
2022  */
2023
2024 struct perf_mmap_event {
2025         struct file     *file;
2026         char            *file_name;
2027         int             file_size;
2028
2029         struct {
2030                 struct perf_event_header        header;
2031
2032                 u32                             pid;
2033                 u32                             tid;
2034                 u64                             start;
2035                 u64                             len;
2036                 u64                             pgoff;
2037         } event;
2038 };
2039
2040 static void perf_counter_mmap_output(struct perf_counter *counter,
2041                                      struct perf_mmap_event *mmap_event)
2042 {
2043         struct perf_output_handle handle;
2044         int size = mmap_event->event.header.size;
2045         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2046
2047         if (ret)
2048                 return;
2049
2050         perf_output_put(&handle, mmap_event->event);
2051         perf_output_copy(&handle, mmap_event->file_name,
2052                                    mmap_event->file_size);
2053         perf_output_end(&handle);
2054 }
2055
2056 static int perf_counter_mmap_match(struct perf_counter *counter,
2057                                    struct perf_mmap_event *mmap_event)
2058 {
2059         if (counter->hw_event.mmap &&
2060             mmap_event->event.header.type == PERF_EVENT_MMAP)
2061                 return 1;
2062
2063         if (counter->hw_event.munmap &&
2064             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2065                 return 1;
2066
2067         return 0;
2068 }
2069
2070 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2071                                   struct perf_mmap_event *mmap_event)
2072 {
2073         struct perf_counter *counter;
2074
2075         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2076                 return;
2077
2078         rcu_read_lock();
2079         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2080                 if (perf_counter_mmap_match(counter, mmap_event))
2081                         perf_counter_mmap_output(counter, mmap_event);
2082         }
2083         rcu_read_unlock();
2084 }
2085
2086 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2087 {
2088         struct perf_cpu_context *cpuctx;
2089         struct file *file = mmap_event->file;
2090         unsigned int size;
2091         char tmp[16];
2092         char *buf = NULL;
2093         char *name;
2094
2095         if (file) {
2096                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2097                 if (!buf) {
2098                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2099                         goto got_name;
2100                 }
2101                 name = dentry_path(file->f_dentry, buf, PATH_MAX);
2102                 if (IS_ERR(name)) {
2103                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2104                         goto got_name;
2105                 }
2106         } else {
2107                 name = strncpy(tmp, "//anon", sizeof(tmp));
2108                 goto got_name;
2109         }
2110
2111 got_name:
2112         size = ALIGN(strlen(name)+1, sizeof(u64));
2113
2114         mmap_event->file_name = name;
2115         mmap_event->file_size = size;
2116
2117         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2118
2119         cpuctx = &get_cpu_var(perf_cpu_context);
2120         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2121         put_cpu_var(perf_cpu_context);
2122
2123         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2124
2125         kfree(buf);
2126 }
2127
2128 void perf_counter_mmap(unsigned long addr, unsigned long len,
2129                        unsigned long pgoff, struct file *file)
2130 {
2131         struct perf_mmap_event mmap_event = {
2132                 .file   = file,
2133                 .event  = {
2134                         .header = { .type = PERF_EVENT_MMAP, },
2135                         .pid    = current->group_leader->pid,
2136                         .tid    = current->pid,
2137                         .start  = addr,
2138                         .len    = len,
2139                         .pgoff  = pgoff,
2140                 },
2141         };
2142
2143         perf_counter_mmap_event(&mmap_event);
2144 }
2145
2146 void perf_counter_munmap(unsigned long addr, unsigned long len,
2147                          unsigned long pgoff, struct file *file)
2148 {
2149         struct perf_mmap_event mmap_event = {
2150                 .file   = file,
2151                 .event  = {
2152                         .header = { .type = PERF_EVENT_MUNMAP, },
2153                         .pid    = current->group_leader->pid,
2154                         .tid    = current->pid,
2155                         .start  = addr,
2156                         .len    = len,
2157                         .pgoff  = pgoff,
2158                 },
2159         };
2160
2161         perf_counter_mmap_event(&mmap_event);
2162 }
2163
2164 /*
2165  * Generic counter overflow handling.
2166  */
2167
2168 int perf_counter_overflow(struct perf_counter *counter,
2169                           int nmi, struct pt_regs *regs, u64 addr)
2170 {
2171         int events = atomic_read(&counter->event_limit);
2172         int ret = 0;
2173
2174         counter->pending_kill = POLL_IN;
2175         if (events && atomic_dec_and_test(&counter->event_limit)) {
2176                 ret = 1;
2177                 counter->pending_kill = POLL_HUP;
2178                 if (nmi) {
2179                         counter->pending_disable = 1;
2180                         perf_pending_queue(&counter->pending,
2181                                            perf_pending_counter);
2182                 } else
2183                         perf_counter_disable(counter);
2184         }
2185
2186         perf_counter_output(counter, nmi, regs, addr);
2187         return ret;
2188 }
2189
2190 /*
2191  * Generic software counter infrastructure
2192  */
2193
2194 static void perf_swcounter_update(struct perf_counter *counter)
2195 {
2196         struct hw_perf_counter *hwc = &counter->hw;
2197         u64 prev, now;
2198         s64 delta;
2199
2200 again:
2201         prev = atomic64_read(&hwc->prev_count);
2202         now = atomic64_read(&hwc->count);
2203         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2204                 goto again;
2205
2206         delta = now - prev;
2207
2208         atomic64_add(delta, &counter->count);
2209         atomic64_sub(delta, &hwc->period_left);
2210 }
2211
2212 static void perf_swcounter_set_period(struct perf_counter *counter)
2213 {
2214         struct hw_perf_counter *hwc = &counter->hw;
2215         s64 left = atomic64_read(&hwc->period_left);
2216         s64 period = hwc->irq_period;
2217
2218         if (unlikely(left <= -period)) {
2219                 left = period;
2220                 atomic64_set(&hwc->period_left, left);
2221         }
2222
2223         if (unlikely(left <= 0)) {
2224                 left += period;
2225                 atomic64_add(period, &hwc->period_left);
2226         }
2227
2228         atomic64_set(&hwc->prev_count, -left);
2229         atomic64_set(&hwc->count, -left);
2230 }
2231
2232 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2233 {
2234         enum hrtimer_restart ret = HRTIMER_RESTART;
2235         struct perf_counter *counter;
2236         struct pt_regs *regs;
2237
2238         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2239         counter->hw_ops->read(counter);
2240
2241         regs = get_irq_regs();
2242         /*
2243          * In case we exclude kernel IPs or are somehow not in interrupt
2244          * context, provide the next best thing, the user IP.
2245          */
2246         if ((counter->hw_event.exclude_kernel || !regs) &&
2247                         !counter->hw_event.exclude_user)
2248                 regs = task_pt_regs(current);
2249
2250         if (regs) {
2251                 if (perf_counter_overflow(counter, 0, regs, 0))
2252                         ret = HRTIMER_NORESTART;
2253         }
2254
2255         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2256
2257         return ret;
2258 }
2259
2260 static void perf_swcounter_overflow(struct perf_counter *counter,
2261                                     int nmi, struct pt_regs *regs, u64 addr)
2262 {
2263         perf_swcounter_update(counter);
2264         perf_swcounter_set_period(counter);
2265         if (perf_counter_overflow(counter, nmi, regs, addr))
2266                 /* soft-disable the counter */
2267                 ;
2268
2269 }
2270
2271 static int perf_swcounter_match(struct perf_counter *counter,
2272                                 enum perf_event_types type,
2273                                 u32 event, struct pt_regs *regs)
2274 {
2275         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2276                 return 0;
2277
2278         if (perf_event_raw(&counter->hw_event))
2279                 return 0;
2280
2281         if (perf_event_type(&counter->hw_event) != type)
2282                 return 0;
2283
2284         if (perf_event_id(&counter->hw_event) != event)
2285                 return 0;
2286
2287         if (counter->hw_event.exclude_user && user_mode(regs))
2288                 return 0;
2289
2290         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2291                 return 0;
2292
2293         return 1;
2294 }
2295
2296 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2297                                int nmi, struct pt_regs *regs, u64 addr)
2298 {
2299         int neg = atomic64_add_negative(nr, &counter->hw.count);
2300         if (counter->hw.irq_period && !neg)
2301                 perf_swcounter_overflow(counter, nmi, regs, addr);
2302 }
2303
2304 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2305                                      enum perf_event_types type, u32 event,
2306                                      u64 nr, int nmi, struct pt_regs *regs,
2307                                      u64 addr)
2308 {
2309         struct perf_counter *counter;
2310
2311         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2312                 return;
2313
2314         rcu_read_lock();
2315         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2316                 if (perf_swcounter_match(counter, type, event, regs))
2317                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2318         }
2319         rcu_read_unlock();
2320 }
2321
2322 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2323 {
2324         if (in_nmi())
2325                 return &cpuctx->recursion[3];
2326
2327         if (in_irq())
2328                 return &cpuctx->recursion[2];
2329
2330         if (in_softirq())
2331                 return &cpuctx->recursion[1];
2332
2333         return &cpuctx->recursion[0];
2334 }
2335
2336 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2337                                    u64 nr, int nmi, struct pt_regs *regs,
2338                                    u64 addr)
2339 {
2340         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2341         int *recursion = perf_swcounter_recursion_context(cpuctx);
2342
2343         if (*recursion)
2344                 goto out;
2345
2346         (*recursion)++;
2347         barrier();
2348
2349         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2350                                  nr, nmi, regs, addr);
2351         if (cpuctx->task_ctx) {
2352                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2353                                          nr, nmi, regs, addr);
2354         }
2355
2356         barrier();
2357         (*recursion)--;
2358
2359 out:
2360         put_cpu_var(perf_cpu_context);
2361 }
2362
2363 void
2364 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2365 {
2366         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2367 }
2368
2369 static void perf_swcounter_read(struct perf_counter *counter)
2370 {
2371         perf_swcounter_update(counter);
2372 }
2373
2374 static int perf_swcounter_enable(struct perf_counter *counter)
2375 {
2376         perf_swcounter_set_period(counter);
2377         return 0;
2378 }
2379
2380 static void perf_swcounter_disable(struct perf_counter *counter)
2381 {
2382         perf_swcounter_update(counter);
2383 }
2384
2385 static const struct hw_perf_counter_ops perf_ops_generic = {
2386         .enable         = perf_swcounter_enable,
2387         .disable        = perf_swcounter_disable,
2388         .read           = perf_swcounter_read,
2389 };
2390
2391 /*
2392  * Software counter: cpu wall time clock
2393  */
2394
2395 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2396 {
2397         int cpu = raw_smp_processor_id();
2398         s64 prev;
2399         u64 now;
2400
2401         now = cpu_clock(cpu);
2402         prev = atomic64_read(&counter->hw.prev_count);
2403         atomic64_set(&counter->hw.prev_count, now);
2404         atomic64_add(now - prev, &counter->count);
2405 }
2406
2407 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2408 {
2409         struct hw_perf_counter *hwc = &counter->hw;
2410         int cpu = raw_smp_processor_id();
2411
2412         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2413         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2414         hwc->hrtimer.function = perf_swcounter_hrtimer;
2415         if (hwc->irq_period) {
2416                 __hrtimer_start_range_ns(&hwc->hrtimer,
2417                                 ns_to_ktime(hwc->irq_period), 0,
2418                                 HRTIMER_MODE_REL, 0);
2419         }
2420
2421         return 0;
2422 }
2423
2424 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2425 {
2426         hrtimer_cancel(&counter->hw.hrtimer);
2427         cpu_clock_perf_counter_update(counter);
2428 }
2429
2430 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2431 {
2432         cpu_clock_perf_counter_update(counter);
2433 }
2434
2435 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2436         .enable         = cpu_clock_perf_counter_enable,
2437         .disable        = cpu_clock_perf_counter_disable,
2438         .read           = cpu_clock_perf_counter_read,
2439 };
2440
2441 /*
2442  * Software counter: task time clock
2443  */
2444
2445 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2446 {
2447         u64 prev;
2448         s64 delta;
2449
2450         prev = atomic64_xchg(&counter->hw.prev_count, now);
2451         delta = now - prev;
2452         atomic64_add(delta, &counter->count);
2453 }
2454
2455 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2456 {
2457         struct hw_perf_counter *hwc = &counter->hw;
2458         u64 now;
2459
2460         now = counter->ctx->time;
2461
2462         atomic64_set(&hwc->prev_count, now);
2463         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2464         hwc->hrtimer.function = perf_swcounter_hrtimer;
2465         if (hwc->irq_period) {
2466                 __hrtimer_start_range_ns(&hwc->hrtimer,
2467                                 ns_to_ktime(hwc->irq_period), 0,
2468                                 HRTIMER_MODE_REL, 0);
2469         }
2470
2471         return 0;
2472 }
2473
2474 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2475 {
2476         hrtimer_cancel(&counter->hw.hrtimer);
2477         task_clock_perf_counter_update(counter, counter->ctx->time);
2478
2479 }
2480
2481 static void task_clock_perf_counter_read(struct perf_counter *counter)
2482 {
2483         u64 time;
2484
2485         if (!in_nmi()) {
2486                 update_context_time(counter->ctx);
2487                 time = counter->ctx->time;
2488         } else {
2489                 u64 now = perf_clock();
2490                 u64 delta = now - counter->ctx->timestamp;
2491                 time = counter->ctx->time + delta;
2492         }
2493
2494         task_clock_perf_counter_update(counter, time);
2495 }
2496
2497 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2498         .enable         = task_clock_perf_counter_enable,
2499         .disable        = task_clock_perf_counter_disable,
2500         .read           = task_clock_perf_counter_read,
2501 };
2502
2503 /*
2504  * Software counter: cpu migrations
2505  */
2506
2507 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2508 {
2509         struct task_struct *curr = counter->ctx->task;
2510
2511         if (curr)
2512                 return curr->se.nr_migrations;
2513         return cpu_nr_migrations(smp_processor_id());
2514 }
2515
2516 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2517 {
2518         u64 prev, now;
2519         s64 delta;
2520
2521         prev = atomic64_read(&counter->hw.prev_count);
2522         now = get_cpu_migrations(counter);
2523
2524         atomic64_set(&counter->hw.prev_count, now);
2525
2526         delta = now - prev;
2527
2528         atomic64_add(delta, &counter->count);
2529 }
2530
2531 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2532 {
2533         cpu_migrations_perf_counter_update(counter);
2534 }
2535
2536 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2537 {
2538         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2539                 atomic64_set(&counter->hw.prev_count,
2540                              get_cpu_migrations(counter));
2541         return 0;
2542 }
2543
2544 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2545 {
2546         cpu_migrations_perf_counter_update(counter);
2547 }
2548
2549 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2550         .enable         = cpu_migrations_perf_counter_enable,
2551         .disable        = cpu_migrations_perf_counter_disable,
2552         .read           = cpu_migrations_perf_counter_read,
2553 };
2554
2555 #ifdef CONFIG_EVENT_PROFILE
2556 void perf_tpcounter_event(int event_id)
2557 {
2558         struct pt_regs *regs = get_irq_regs();
2559
2560         if (!regs)
2561                 regs = task_pt_regs(current);
2562
2563         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2564 }
2565
2566 extern int ftrace_profile_enable(int);
2567 extern void ftrace_profile_disable(int);
2568
2569 static void tp_perf_counter_destroy(struct perf_counter *counter)
2570 {
2571         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2572 }
2573
2574 static const struct hw_perf_counter_ops *
2575 tp_perf_counter_init(struct perf_counter *counter)
2576 {
2577         int event_id = perf_event_id(&counter->hw_event);
2578         int ret;
2579
2580         ret = ftrace_profile_enable(event_id);
2581         if (ret)
2582                 return NULL;
2583
2584         counter->destroy = tp_perf_counter_destroy;
2585         counter->hw.irq_period = counter->hw_event.irq_period;
2586
2587         return &perf_ops_generic;
2588 }
2589 #else
2590 static const struct hw_perf_counter_ops *
2591 tp_perf_counter_init(struct perf_counter *counter)
2592 {
2593         return NULL;
2594 }
2595 #endif
2596
2597 static const struct hw_perf_counter_ops *
2598 sw_perf_counter_init(struct perf_counter *counter)
2599 {
2600         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2601         const struct hw_perf_counter_ops *hw_ops = NULL;
2602         struct hw_perf_counter *hwc = &counter->hw;
2603
2604         /*
2605          * Software counters (currently) can't in general distinguish
2606          * between user, kernel and hypervisor events.
2607          * However, context switches and cpu migrations are considered
2608          * to be kernel events, and page faults are never hypervisor
2609          * events.
2610          */
2611         switch (perf_event_id(&counter->hw_event)) {
2612         case PERF_COUNT_CPU_CLOCK:
2613                 hw_ops = &perf_ops_cpu_clock;
2614
2615                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2616                         hw_event->irq_period = 10000;
2617                 break;
2618         case PERF_COUNT_TASK_CLOCK:
2619                 /*
2620                  * If the user instantiates this as a per-cpu counter,
2621                  * use the cpu_clock counter instead.
2622                  */
2623                 if (counter->ctx->task)
2624                         hw_ops = &perf_ops_task_clock;
2625                 else
2626                         hw_ops = &perf_ops_cpu_clock;
2627
2628                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2629                         hw_event->irq_period = 10000;
2630                 break;
2631         case PERF_COUNT_PAGE_FAULTS:
2632         case PERF_COUNT_PAGE_FAULTS_MIN:
2633         case PERF_COUNT_PAGE_FAULTS_MAJ:
2634         case PERF_COUNT_CONTEXT_SWITCHES:
2635                 hw_ops = &perf_ops_generic;
2636                 break;
2637         case PERF_COUNT_CPU_MIGRATIONS:
2638                 if (!counter->hw_event.exclude_kernel)
2639                         hw_ops = &perf_ops_cpu_migrations;
2640                 break;
2641         }
2642
2643         if (hw_ops)
2644                 hwc->irq_period = hw_event->irq_period;
2645
2646         return hw_ops;
2647 }
2648
2649 /*
2650  * Allocate and initialize a counter structure
2651  */
2652 static struct perf_counter *
2653 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2654                    int cpu,
2655                    struct perf_counter_context *ctx,
2656                    struct perf_counter *group_leader,
2657                    gfp_t gfpflags)
2658 {
2659         const struct hw_perf_counter_ops *hw_ops;
2660         struct perf_counter *counter;
2661         long err;
2662
2663         counter = kzalloc(sizeof(*counter), gfpflags);
2664         if (!counter)
2665                 return ERR_PTR(-ENOMEM);
2666
2667         /*
2668          * Single counters are their own group leaders, with an
2669          * empty sibling list:
2670          */
2671         if (!group_leader)
2672                 group_leader = counter;
2673
2674         mutex_init(&counter->mutex);
2675         INIT_LIST_HEAD(&counter->list_entry);
2676         INIT_LIST_HEAD(&counter->event_entry);
2677         INIT_LIST_HEAD(&counter->sibling_list);
2678         init_waitqueue_head(&counter->waitq);
2679
2680         mutex_init(&counter->mmap_mutex);
2681
2682         INIT_LIST_HEAD(&counter->child_list);
2683
2684         counter->cpu                    = cpu;
2685         counter->hw_event               = *hw_event;
2686         counter->group_leader           = group_leader;
2687         counter->hw_ops                 = NULL;
2688         counter->ctx                    = ctx;
2689
2690         counter->state = PERF_COUNTER_STATE_INACTIVE;
2691         if (hw_event->disabled)
2692                 counter->state = PERF_COUNTER_STATE_OFF;
2693
2694         hw_ops = NULL;
2695
2696         if (perf_event_raw(hw_event)) {
2697                 hw_ops = hw_perf_counter_init(counter);
2698                 goto done;
2699         }
2700
2701         switch (perf_event_type(hw_event)) {
2702         case PERF_TYPE_HARDWARE:
2703                 hw_ops = hw_perf_counter_init(counter);
2704                 break;
2705
2706         case PERF_TYPE_SOFTWARE:
2707                 hw_ops = sw_perf_counter_init(counter);
2708                 break;
2709
2710         case PERF_TYPE_TRACEPOINT:
2711                 hw_ops = tp_perf_counter_init(counter);
2712                 break;
2713         }
2714 done:
2715         err = 0;
2716         if (!hw_ops)
2717                 err = -EINVAL;
2718         else if (IS_ERR(hw_ops))
2719                 err = PTR_ERR(hw_ops);
2720
2721         if (err) {
2722                 kfree(counter);
2723                 return ERR_PTR(err);
2724         }
2725
2726         counter->hw_ops = hw_ops;
2727
2728         return counter;
2729 }
2730
2731 /**
2732  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2733  *
2734  * @hw_event_uptr:      event type attributes for monitoring/sampling
2735  * @pid:                target pid
2736  * @cpu:                target cpu
2737  * @group_fd:           group leader counter fd
2738  */
2739 SYSCALL_DEFINE5(perf_counter_open,
2740                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2741                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2742 {
2743         struct perf_counter *counter, *group_leader;
2744         struct perf_counter_hw_event hw_event;
2745         struct perf_counter_context *ctx;
2746         struct file *counter_file = NULL;
2747         struct file *group_file = NULL;
2748         int fput_needed = 0;
2749         int fput_needed2 = 0;
2750         int ret;
2751
2752         /* for future expandability... */
2753         if (flags)
2754                 return -EINVAL;
2755
2756         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2757                 return -EFAULT;
2758
2759         /*
2760          * Get the target context (task or percpu):
2761          */
2762         ctx = find_get_context(pid, cpu);
2763         if (IS_ERR(ctx))
2764                 return PTR_ERR(ctx);
2765
2766         /*
2767          * Look up the group leader (we will attach this counter to it):
2768          */
2769         group_leader = NULL;
2770         if (group_fd != -1) {
2771                 ret = -EINVAL;
2772                 group_file = fget_light(group_fd, &fput_needed);
2773                 if (!group_file)
2774                         goto err_put_context;
2775                 if (group_file->f_op != &perf_fops)
2776                         goto err_put_context;
2777
2778                 group_leader = group_file->private_data;
2779                 /*
2780                  * Do not allow a recursive hierarchy (this new sibling
2781                  * becoming part of another group-sibling):
2782                  */
2783                 if (group_leader->group_leader != group_leader)
2784                         goto err_put_context;
2785                 /*
2786                  * Do not allow to attach to a group in a different
2787                  * task or CPU context:
2788                  */
2789                 if (group_leader->ctx != ctx)
2790                         goto err_put_context;
2791                 /*
2792                  * Only a group leader can be exclusive or pinned
2793                  */
2794                 if (hw_event.exclusive || hw_event.pinned)
2795                         goto err_put_context;
2796         }
2797
2798         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2799                                      GFP_KERNEL);
2800         ret = PTR_ERR(counter);
2801         if (IS_ERR(counter))
2802                 goto err_put_context;
2803
2804         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2805         if (ret < 0)
2806                 goto err_free_put_context;
2807
2808         counter_file = fget_light(ret, &fput_needed2);
2809         if (!counter_file)
2810                 goto err_free_put_context;
2811
2812         counter->filp = counter_file;
2813         mutex_lock(&ctx->mutex);
2814         perf_install_in_context(ctx, counter, cpu);
2815         mutex_unlock(&ctx->mutex);
2816
2817         fput_light(counter_file, fput_needed2);
2818
2819 out_fput:
2820         fput_light(group_file, fput_needed);
2821
2822         return ret;
2823
2824 err_free_put_context:
2825         kfree(counter);
2826
2827 err_put_context:
2828         put_context(ctx);
2829
2830         goto out_fput;
2831 }
2832
2833 /*
2834  * Initialize the perf_counter context in a task_struct:
2835  */
2836 static void
2837 __perf_counter_init_context(struct perf_counter_context *ctx,
2838                             struct task_struct *task)
2839 {
2840         memset(ctx, 0, sizeof(*ctx));
2841         spin_lock_init(&ctx->lock);
2842         mutex_init(&ctx->mutex);
2843         INIT_LIST_HEAD(&ctx->counter_list);
2844         INIT_LIST_HEAD(&ctx->event_list);
2845         ctx->task = task;
2846 }
2847
2848 /*
2849  * inherit a counter from parent task to child task:
2850  */
2851 static struct perf_counter *
2852 inherit_counter(struct perf_counter *parent_counter,
2853               struct task_struct *parent,
2854               struct perf_counter_context *parent_ctx,
2855               struct task_struct *child,
2856               struct perf_counter *group_leader,
2857               struct perf_counter_context *child_ctx)
2858 {
2859         struct perf_counter *child_counter;
2860
2861         /*
2862          * Instead of creating recursive hierarchies of counters,
2863          * we link inherited counters back to the original parent,
2864          * which has a filp for sure, which we use as the reference
2865          * count:
2866          */
2867         if (parent_counter->parent)
2868                 parent_counter = parent_counter->parent;
2869
2870         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2871                                            parent_counter->cpu, child_ctx,
2872                                            group_leader, GFP_KERNEL);
2873         if (IS_ERR(child_counter))
2874                 return child_counter;
2875
2876         /*
2877          * Link it up in the child's context:
2878          */
2879         child_counter->task = child;
2880         add_counter_to_ctx(child_counter, child_ctx);
2881
2882         child_counter->parent = parent_counter;
2883         /*
2884          * inherit into child's child as well:
2885          */
2886         child_counter->hw_event.inherit = 1;
2887
2888         /*
2889          * Get a reference to the parent filp - we will fput it
2890          * when the child counter exits. This is safe to do because
2891          * we are in the parent and we know that the filp still
2892          * exists and has a nonzero count:
2893          */
2894         atomic_long_inc(&parent_counter->filp->f_count);
2895
2896         /*
2897          * Link this into the parent counter's child list
2898          */
2899         mutex_lock(&parent_counter->mutex);
2900         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2901
2902         /*
2903          * Make the child state follow the state of the parent counter,
2904          * not its hw_event.disabled bit.  We hold the parent's mutex,
2905          * so we won't race with perf_counter_{en,dis}able_family.
2906          */
2907         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2908                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2909         else
2910                 child_counter->state = PERF_COUNTER_STATE_OFF;
2911
2912         mutex_unlock(&parent_counter->mutex);
2913
2914         return child_counter;
2915 }
2916
2917 static int inherit_group(struct perf_counter *parent_counter,
2918               struct task_struct *parent,
2919               struct perf_counter_context *parent_ctx,
2920               struct task_struct *child,
2921               struct perf_counter_context *child_ctx)
2922 {
2923         struct perf_counter *leader;
2924         struct perf_counter *sub;
2925         struct perf_counter *child_ctr;
2926
2927         leader = inherit_counter(parent_counter, parent, parent_ctx,
2928                                  child, NULL, child_ctx);
2929         if (IS_ERR(leader))
2930                 return PTR_ERR(leader);
2931         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2932                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2933                                             child, leader, child_ctx);
2934                 if (IS_ERR(child_ctr))
2935                         return PTR_ERR(child_ctr);
2936         }
2937         return 0;
2938 }
2939
2940 static void sync_child_counter(struct perf_counter *child_counter,
2941                                struct perf_counter *parent_counter)
2942 {
2943         u64 parent_val, child_val;
2944
2945         parent_val = atomic64_read(&parent_counter->count);
2946         child_val = atomic64_read(&child_counter->count);
2947
2948         /*
2949          * Add back the child's count to the parent's count:
2950          */
2951         atomic64_add(child_val, &parent_counter->count);
2952         atomic64_add(child_counter->total_time_enabled,
2953                      &parent_counter->child_total_time_enabled);
2954         atomic64_add(child_counter->total_time_running,
2955                      &parent_counter->child_total_time_running);
2956
2957         /*
2958          * Remove this counter from the parent's list
2959          */
2960         mutex_lock(&parent_counter->mutex);
2961         list_del_init(&child_counter->child_list);
2962         mutex_unlock(&parent_counter->mutex);
2963
2964         /*
2965          * Release the parent counter, if this was the last
2966          * reference to it.
2967          */
2968         fput(parent_counter->filp);
2969 }
2970
2971 static void
2972 __perf_counter_exit_task(struct task_struct *child,
2973                          struct perf_counter *child_counter,
2974                          struct perf_counter_context *child_ctx)
2975 {
2976         struct perf_counter *parent_counter;
2977         struct perf_counter *sub, *tmp;
2978
2979         /*
2980          * If we do not self-reap then we have to wait for the
2981          * child task to unschedule (it will happen for sure),
2982          * so that its counter is at its final count. (This
2983          * condition triggers rarely - child tasks usually get
2984          * off their CPU before the parent has a chance to
2985          * get this far into the reaping action)
2986          */
2987         if (child != current) {
2988                 wait_task_inactive(child, 0);
2989                 list_del_init(&child_counter->list_entry);
2990                 update_counter_times(child_counter);
2991         } else {
2992                 struct perf_cpu_context *cpuctx;
2993                 unsigned long flags;
2994                 u64 perf_flags;
2995
2996                 /*
2997                  * Disable and unlink this counter.
2998                  *
2999                  * Be careful about zapping the list - IRQ/NMI context
3000                  * could still be processing it:
3001                  */
3002                 local_irq_save(flags);
3003                 perf_flags = hw_perf_save_disable();
3004
3005                 cpuctx = &__get_cpu_var(perf_cpu_context);
3006
3007                 group_sched_out(child_counter, cpuctx, child_ctx);
3008                 update_counter_times(child_counter);
3009
3010                 list_del_init(&child_counter->list_entry);
3011
3012                 child_ctx->nr_counters--;
3013
3014                 hw_perf_restore(perf_flags);
3015                 local_irq_restore(flags);
3016         }
3017
3018         parent_counter = child_counter->parent;
3019         /*
3020          * It can happen that parent exits first, and has counters
3021          * that are still around due to the child reference. These
3022          * counters need to be zapped - but otherwise linger.
3023          */
3024         if (parent_counter) {
3025                 sync_child_counter(child_counter, parent_counter);
3026                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3027                                          list_entry) {
3028                         if (sub->parent) {
3029                                 sync_child_counter(sub, sub->parent);
3030                                 free_counter(sub);
3031                         }
3032                 }
3033                 free_counter(child_counter);
3034         }
3035 }
3036
3037 /*
3038  * When a child task exits, feed back counter values to parent counters.
3039  *
3040  * Note: we may be running in child context, but the PID is not hashed
3041  * anymore so new counters will not be added.
3042  */
3043 void perf_counter_exit_task(struct task_struct *child)
3044 {
3045         struct perf_counter *child_counter, *tmp;
3046         struct perf_counter_context *child_ctx;
3047
3048         child_ctx = &child->perf_counter_ctx;
3049
3050         if (likely(!child_ctx->nr_counters))
3051                 return;
3052
3053         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3054                                  list_entry)
3055                 __perf_counter_exit_task(child, child_counter, child_ctx);
3056 }
3057
3058 /*
3059  * Initialize the perf_counter context in task_struct
3060  */
3061 void perf_counter_init_task(struct task_struct *child)
3062 {
3063         struct perf_counter_context *child_ctx, *parent_ctx;
3064         struct perf_counter *counter;
3065         struct task_struct *parent = current;
3066
3067         child_ctx  =  &child->perf_counter_ctx;
3068         parent_ctx = &parent->perf_counter_ctx;
3069
3070         __perf_counter_init_context(child_ctx, child);
3071
3072         /*
3073          * This is executed from the parent task context, so inherit
3074          * counters that have been marked for cloning:
3075          */
3076
3077         if (likely(!parent_ctx->nr_counters))
3078                 return;
3079
3080         /*
3081          * Lock the parent list. No need to lock the child - not PID
3082          * hashed yet and not running, so nobody can access it.
3083          */
3084         mutex_lock(&parent_ctx->mutex);
3085
3086         /*
3087          * We dont have to disable NMIs - we are only looking at
3088          * the list, not manipulating it:
3089          */
3090         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3091                 if (!counter->hw_event.inherit)
3092                         continue;
3093
3094                 if (inherit_group(counter, parent,
3095                                   parent_ctx, child, child_ctx))
3096                         break;
3097         }
3098
3099         mutex_unlock(&parent_ctx->mutex);
3100 }
3101
3102 static void __cpuinit perf_counter_init_cpu(int cpu)
3103 {
3104         struct perf_cpu_context *cpuctx;
3105
3106         cpuctx = &per_cpu(perf_cpu_context, cpu);
3107         __perf_counter_init_context(&cpuctx->ctx, NULL);
3108
3109         mutex_lock(&perf_resource_mutex);
3110         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3111         mutex_unlock(&perf_resource_mutex);
3112
3113         hw_perf_counter_setup(cpu);
3114 }
3115
3116 #ifdef CONFIG_HOTPLUG_CPU
3117 static void __perf_counter_exit_cpu(void *info)
3118 {
3119         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3120         struct perf_counter_context *ctx = &cpuctx->ctx;
3121         struct perf_counter *counter, *tmp;
3122
3123         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3124                 __perf_counter_remove_from_context(counter);
3125 }
3126 static void perf_counter_exit_cpu(int cpu)
3127 {
3128         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3129         struct perf_counter_context *ctx = &cpuctx->ctx;
3130
3131         mutex_lock(&ctx->mutex);
3132         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3133         mutex_unlock(&ctx->mutex);
3134 }
3135 #else
3136 static inline void perf_counter_exit_cpu(int cpu) { }
3137 #endif
3138
3139 static int __cpuinit
3140 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3141 {
3142         unsigned int cpu = (long)hcpu;
3143
3144         switch (action) {
3145
3146         case CPU_UP_PREPARE:
3147         case CPU_UP_PREPARE_FROZEN:
3148                 perf_counter_init_cpu(cpu);
3149                 break;
3150
3151         case CPU_DOWN_PREPARE:
3152         case CPU_DOWN_PREPARE_FROZEN:
3153                 perf_counter_exit_cpu(cpu);
3154                 break;
3155
3156         default:
3157                 break;
3158         }
3159
3160         return NOTIFY_OK;
3161 }
3162
3163 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3164         .notifier_call          = perf_cpu_notify,
3165 };
3166
3167 static int __init perf_counter_init(void)
3168 {
3169         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3170                         (void *)(long)smp_processor_id());
3171         register_cpu_notifier(&perf_cpu_nb);
3172
3173         return 0;
3174 }
3175 early_initcall(perf_counter_init);
3176
3177 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3178 {
3179         return sprintf(buf, "%d\n", perf_reserved_percpu);
3180 }
3181
3182 static ssize_t
3183 perf_set_reserve_percpu(struct sysdev_class *class,
3184                         const char *buf,
3185                         size_t count)
3186 {
3187         struct perf_cpu_context *cpuctx;
3188         unsigned long val;
3189         int err, cpu, mpt;
3190
3191         err = strict_strtoul(buf, 10, &val);
3192         if (err)
3193                 return err;
3194         if (val > perf_max_counters)
3195                 return -EINVAL;
3196
3197         mutex_lock(&perf_resource_mutex);
3198         perf_reserved_percpu = val;
3199         for_each_online_cpu(cpu) {
3200                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3201                 spin_lock_irq(&cpuctx->ctx.lock);
3202                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3203                           perf_max_counters - perf_reserved_percpu);
3204                 cpuctx->max_pertask = mpt;
3205                 spin_unlock_irq(&cpuctx->ctx.lock);
3206         }
3207         mutex_unlock(&perf_resource_mutex);
3208
3209         return count;
3210 }
3211
3212 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3213 {
3214         return sprintf(buf, "%d\n", perf_overcommit);
3215 }
3216
3217 static ssize_t
3218 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3219 {
3220         unsigned long val;
3221         int err;
3222
3223         err = strict_strtoul(buf, 10, &val);
3224         if (err)
3225                 return err;
3226         if (val > 1)
3227                 return -EINVAL;
3228
3229         mutex_lock(&perf_resource_mutex);
3230         perf_overcommit = val;
3231         mutex_unlock(&perf_resource_mutex);
3232
3233         return count;
3234 }
3235
3236 static SYSDEV_CLASS_ATTR(
3237                                 reserve_percpu,
3238                                 0644,
3239                                 perf_show_reserve_percpu,
3240                                 perf_set_reserve_percpu
3241                         );
3242
3243 static SYSDEV_CLASS_ATTR(
3244                                 overcommit,
3245                                 0644,
3246                                 perf_show_overcommit,
3247                                 perf_set_overcommit
3248                         );
3249
3250 static struct attribute *perfclass_attrs[] = {
3251         &attr_reserve_percpu.attr,
3252         &attr_overcommit.attr,
3253         NULL
3254 };
3255
3256 static struct attribute_group perfclass_attr_group = {
3257         .attrs                  = perfclass_attrs,
3258         .name                   = "perf_counters",
3259 };
3260
3261 static int __init perf_counter_sysfs_init(void)
3262 {
3263         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3264                                   &perfclass_attr_group);
3265 }
3266 device_initcall(perf_counter_sysfs_init);