]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: Optimize sched in/out of counters
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void
101 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102 {
103         struct perf_counter *group_leader = counter->group_leader;
104
105         /*
106          * Depending on whether it is a standalone or sibling counter,
107          * add it straight to the context's counter list, or to the group
108          * leader's sibling list:
109          */
110         if (group_leader == counter)
111                 list_add_tail(&counter->list_entry, &ctx->counter_list);
112         else {
113                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
114                 group_leader->nr_siblings++;
115         }
116
117         list_add_rcu(&counter->event_entry, &ctx->event_list);
118         ctx->nr_counters++;
119 }
120
121 static void
122 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
123 {
124         struct perf_counter *sibling, *tmp;
125
126         ctx->nr_counters--;
127
128         list_del_init(&counter->list_entry);
129         list_del_rcu(&counter->event_entry);
130
131         if (counter->group_leader != counter)
132                 counter->group_leader->nr_siblings--;
133
134         /*
135          * If this was a group counter with sibling counters then
136          * upgrade the siblings to singleton counters by adding them
137          * to the context list directly:
138          */
139         list_for_each_entry_safe(sibling, tmp,
140                                  &counter->sibling_list, list_entry) {
141
142                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
143                 sibling->group_leader = sibling;
144         }
145 }
146
147 static void
148 counter_sched_out(struct perf_counter *counter,
149                   struct perf_cpu_context *cpuctx,
150                   struct perf_counter_context *ctx)
151 {
152         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
153                 return;
154
155         counter->state = PERF_COUNTER_STATE_INACTIVE;
156         counter->tstamp_stopped = ctx->time;
157         counter->pmu->disable(counter);
158         counter->oncpu = -1;
159
160         if (!is_software_counter(counter))
161                 cpuctx->active_oncpu--;
162         ctx->nr_active--;
163         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
164                 cpuctx->exclusive = 0;
165 }
166
167 static void
168 group_sched_out(struct perf_counter *group_counter,
169                 struct perf_cpu_context *cpuctx,
170                 struct perf_counter_context *ctx)
171 {
172         struct perf_counter *counter;
173
174         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
175                 return;
176
177         counter_sched_out(group_counter, cpuctx, ctx);
178
179         /*
180          * Schedule out siblings (if any):
181          */
182         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
183                 counter_sched_out(counter, cpuctx, ctx);
184
185         if (group_counter->hw_event.exclusive)
186                 cpuctx->exclusive = 0;
187 }
188
189 /*
190  * Cross CPU call to remove a performance counter
191  *
192  * We disable the counter on the hardware level first. After that we
193  * remove it from the context list.
194  */
195 static void __perf_counter_remove_from_context(void *info)
196 {
197         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
198         struct perf_counter *counter = info;
199         struct perf_counter_context *ctx = counter->ctx;
200         unsigned long flags;
201
202         /*
203          * If this is a task context, we need to check whether it is
204          * the current task context of this cpu. If not it has been
205          * scheduled out before the smp call arrived.
206          */
207         if (ctx->task && cpuctx->task_ctx != ctx)
208                 return;
209
210         spin_lock_irqsave(&ctx->lock, flags);
211
212         counter_sched_out(counter, cpuctx, ctx);
213
214         counter->task = NULL;
215
216         /*
217          * Protect the list operation against NMI by disabling the
218          * counters on a global level. NOP for non NMI based counters.
219          */
220         perf_disable();
221         list_del_counter(counter, ctx);
222         perf_enable();
223
224         if (!ctx->task) {
225                 /*
226                  * Allow more per task counters with respect to the
227                  * reservation:
228                  */
229                 cpuctx->max_pertask =
230                         min(perf_max_counters - ctx->nr_counters,
231                             perf_max_counters - perf_reserved_percpu);
232         }
233
234         spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236
237
238 /*
239  * Remove the counter from a task's (or a CPU's) list of counters.
240  *
241  * Must be called with counter->mutex and ctx->mutex held.
242  *
243  * CPU counters are removed with a smp call. For task counters we only
244  * call when the task is on a CPU.
245  */
246 static void perf_counter_remove_from_context(struct perf_counter *counter)
247 {
248         struct perf_counter_context *ctx = counter->ctx;
249         struct task_struct *task = ctx->task;
250
251         if (!task) {
252                 /*
253                  * Per cpu counters are removed via an smp call and
254                  * the removal is always sucessful.
255                  */
256                 smp_call_function_single(counter->cpu,
257                                          __perf_counter_remove_from_context,
258                                          counter, 1);
259                 return;
260         }
261
262 retry:
263         task_oncpu_function_call(task, __perf_counter_remove_from_context,
264                                  counter);
265
266         spin_lock_irq(&ctx->lock);
267         /*
268          * If the context is active we need to retry the smp call.
269          */
270         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
271                 spin_unlock_irq(&ctx->lock);
272                 goto retry;
273         }
274
275         /*
276          * The lock prevents that this context is scheduled in so we
277          * can remove the counter safely, if the call above did not
278          * succeed.
279          */
280         if (!list_empty(&counter->list_entry)) {
281                 list_del_counter(counter, ctx);
282                 counter->task = NULL;
283         }
284         spin_unlock_irq(&ctx->lock);
285 }
286
287 static inline u64 perf_clock(void)
288 {
289         return cpu_clock(smp_processor_id());
290 }
291
292 /*
293  * Update the record of the current time in a context.
294  */
295 static void update_context_time(struct perf_counter_context *ctx)
296 {
297         u64 now = perf_clock();
298
299         ctx->time += now - ctx->timestamp;
300         ctx->timestamp = now;
301 }
302
303 /*
304  * Update the total_time_enabled and total_time_running fields for a counter.
305  */
306 static void update_counter_times(struct perf_counter *counter)
307 {
308         struct perf_counter_context *ctx = counter->ctx;
309         u64 run_end;
310
311         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
312                 return;
313
314         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
315
316         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317                 run_end = counter->tstamp_stopped;
318         else
319                 run_end = ctx->time;
320
321         counter->total_time_running = run_end - counter->tstamp_running;
322 }
323
324 /*
325  * Update total_time_enabled and total_time_running for all counters in a group.
326  */
327 static void update_group_times(struct perf_counter *leader)
328 {
329         struct perf_counter *counter;
330
331         update_counter_times(leader);
332         list_for_each_entry(counter, &leader->sibling_list, list_entry)
333                 update_counter_times(counter);
334 }
335
336 /*
337  * Cross CPU call to disable a performance counter
338  */
339 static void __perf_counter_disable(void *info)
340 {
341         struct perf_counter *counter = info;
342         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
343         struct perf_counter_context *ctx = counter->ctx;
344         unsigned long flags;
345
346         /*
347          * If this is a per-task counter, need to check whether this
348          * counter's task is the current task on this cpu.
349          */
350         if (ctx->task && cpuctx->task_ctx != ctx)
351                 return;
352
353         spin_lock_irqsave(&ctx->lock, flags);
354
355         /*
356          * If the counter is on, turn it off.
357          * If it is in error state, leave it in error state.
358          */
359         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
360                 update_context_time(ctx);
361                 update_counter_times(counter);
362                 if (counter == counter->group_leader)
363                         group_sched_out(counter, cpuctx, ctx);
364                 else
365                         counter_sched_out(counter, cpuctx, ctx);
366                 counter->state = PERF_COUNTER_STATE_OFF;
367         }
368
369         spin_unlock_irqrestore(&ctx->lock, flags);
370 }
371
372 /*
373  * Disable a counter.
374  */
375 static void perf_counter_disable(struct perf_counter *counter)
376 {
377         struct perf_counter_context *ctx = counter->ctx;
378         struct task_struct *task = ctx->task;
379
380         if (!task) {
381                 /*
382                  * Disable the counter on the cpu that it's on
383                  */
384                 smp_call_function_single(counter->cpu, __perf_counter_disable,
385                                          counter, 1);
386                 return;
387         }
388
389  retry:
390         task_oncpu_function_call(task, __perf_counter_disable, counter);
391
392         spin_lock_irq(&ctx->lock);
393         /*
394          * If the counter is still active, we need to retry the cross-call.
395          */
396         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
397                 spin_unlock_irq(&ctx->lock);
398                 goto retry;
399         }
400
401         /*
402          * Since we have the lock this context can't be scheduled
403          * in, so we can change the state safely.
404          */
405         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
406                 update_counter_times(counter);
407                 counter->state = PERF_COUNTER_STATE_OFF;
408         }
409
410         spin_unlock_irq(&ctx->lock);
411 }
412
413 static int
414 counter_sched_in(struct perf_counter *counter,
415                  struct perf_cpu_context *cpuctx,
416                  struct perf_counter_context *ctx,
417                  int cpu)
418 {
419         if (counter->state <= PERF_COUNTER_STATE_OFF)
420                 return 0;
421
422         counter->state = PERF_COUNTER_STATE_ACTIVE;
423         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
424         /*
425          * The new state must be visible before we turn it on in the hardware:
426          */
427         smp_wmb();
428
429         if (counter->pmu->enable(counter)) {
430                 counter->state = PERF_COUNTER_STATE_INACTIVE;
431                 counter->oncpu = -1;
432                 return -EAGAIN;
433         }
434
435         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
436
437         if (!is_software_counter(counter))
438                 cpuctx->active_oncpu++;
439         ctx->nr_active++;
440
441         if (counter->hw_event.exclusive)
442                 cpuctx->exclusive = 1;
443
444         return 0;
445 }
446
447 static int
448 group_sched_in(struct perf_counter *group_counter,
449                struct perf_cpu_context *cpuctx,
450                struct perf_counter_context *ctx,
451                int cpu)
452 {
453         struct perf_counter *counter, *partial_group;
454         int ret;
455
456         if (group_counter->state == PERF_COUNTER_STATE_OFF)
457                 return 0;
458
459         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
460         if (ret)
461                 return ret < 0 ? ret : 0;
462
463         group_counter->prev_state = group_counter->state;
464         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
465                 return -EAGAIN;
466
467         /*
468          * Schedule in siblings as one group (if any):
469          */
470         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
471                 counter->prev_state = counter->state;
472                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
473                         partial_group = counter;
474                         goto group_error;
475                 }
476         }
477
478         return 0;
479
480 group_error:
481         /*
482          * Groups can be scheduled in as one unit only, so undo any
483          * partial group before returning:
484          */
485         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
486                 if (counter == partial_group)
487                         break;
488                 counter_sched_out(counter, cpuctx, ctx);
489         }
490         counter_sched_out(group_counter, cpuctx, ctx);
491
492         return -EAGAIN;
493 }
494
495 /*
496  * Return 1 for a group consisting entirely of software counters,
497  * 0 if the group contains any hardware counters.
498  */
499 static int is_software_only_group(struct perf_counter *leader)
500 {
501         struct perf_counter *counter;
502
503         if (!is_software_counter(leader))
504                 return 0;
505
506         list_for_each_entry(counter, &leader->sibling_list, list_entry)
507                 if (!is_software_counter(counter))
508                         return 0;
509
510         return 1;
511 }
512
513 /*
514  * Work out whether we can put this counter group on the CPU now.
515  */
516 static int group_can_go_on(struct perf_counter *counter,
517                            struct perf_cpu_context *cpuctx,
518                            int can_add_hw)
519 {
520         /*
521          * Groups consisting entirely of software counters can always go on.
522          */
523         if (is_software_only_group(counter))
524                 return 1;
525         /*
526          * If an exclusive group is already on, no other hardware
527          * counters can go on.
528          */
529         if (cpuctx->exclusive)
530                 return 0;
531         /*
532          * If this group is exclusive and there are already
533          * counters on the CPU, it can't go on.
534          */
535         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
536                 return 0;
537         /*
538          * Otherwise, try to add it if all previous groups were able
539          * to go on.
540          */
541         return can_add_hw;
542 }
543
544 static void add_counter_to_ctx(struct perf_counter *counter,
545                                struct perf_counter_context *ctx)
546 {
547         list_add_counter(counter, ctx);
548         counter->prev_state = PERF_COUNTER_STATE_OFF;
549         counter->tstamp_enabled = ctx->time;
550         counter->tstamp_running = ctx->time;
551         counter->tstamp_stopped = ctx->time;
552 }
553
554 /*
555  * Cross CPU call to install and enable a performance counter
556  */
557 static void __perf_install_in_context(void *info)
558 {
559         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560         struct perf_counter *counter = info;
561         struct perf_counter_context *ctx = counter->ctx;
562         struct perf_counter *leader = counter->group_leader;
563         int cpu = smp_processor_id();
564         unsigned long flags;
565         int err;
566
567         /*
568          * If this is a task context, we need to check whether it is
569          * the current task context of this cpu. If not it has been
570          * scheduled out before the smp call arrived.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         spin_lock_irqsave(&ctx->lock, flags);
576         update_context_time(ctx);
577
578         /*
579          * Protect the list operation against NMI by disabling the
580          * counters on a global level. NOP for non NMI based counters.
581          */
582         perf_disable();
583
584         add_counter_to_ctx(counter, ctx);
585
586         /*
587          * Don't put the counter on if it is disabled or if
588          * it is in a group and the group isn't on.
589          */
590         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
591             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
592                 goto unlock;
593
594         /*
595          * An exclusive counter can't go on if there are already active
596          * hardware counters, and no hardware counter can go on if there
597          * is already an exclusive counter on.
598          */
599         if (!group_can_go_on(counter, cpuctx, 1))
600                 err = -EEXIST;
601         else
602                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
603
604         if (err) {
605                 /*
606                  * This counter couldn't go on.  If it is in a group
607                  * then we have to pull the whole group off.
608                  * If the counter group is pinned then put it in error state.
609                  */
610                 if (leader != counter)
611                         group_sched_out(leader, cpuctx, ctx);
612                 if (leader->hw_event.pinned) {
613                         update_group_times(leader);
614                         leader->state = PERF_COUNTER_STATE_ERROR;
615                 }
616         }
617
618         if (!err && !ctx->task && cpuctx->max_pertask)
619                 cpuctx->max_pertask--;
620
621  unlock:
622         perf_enable();
623
624         spin_unlock_irqrestore(&ctx->lock, flags);
625 }
626
627 /*
628  * Attach a performance counter to a context
629  *
630  * First we add the counter to the list with the hardware enable bit
631  * in counter->hw_config cleared.
632  *
633  * If the counter is attached to a task which is on a CPU we use a smp
634  * call to enable it in the task context. The task might have been
635  * scheduled away, but we check this in the smp call again.
636  *
637  * Must be called with ctx->mutex held.
638  */
639 static void
640 perf_install_in_context(struct perf_counter_context *ctx,
641                         struct perf_counter *counter,
642                         int cpu)
643 {
644         struct task_struct *task = ctx->task;
645
646         if (!task) {
647                 /*
648                  * Per cpu counters are installed via an smp call and
649                  * the install is always sucessful.
650                  */
651                 smp_call_function_single(cpu, __perf_install_in_context,
652                                          counter, 1);
653                 return;
654         }
655
656         counter->task = task;
657 retry:
658         task_oncpu_function_call(task, __perf_install_in_context,
659                                  counter);
660
661         spin_lock_irq(&ctx->lock);
662         /*
663          * we need to retry the smp call.
664          */
665         if (ctx->is_active && list_empty(&counter->list_entry)) {
666                 spin_unlock_irq(&ctx->lock);
667                 goto retry;
668         }
669
670         /*
671          * The lock prevents that this context is scheduled in so we
672          * can add the counter safely, if it the call above did not
673          * succeed.
674          */
675         if (list_empty(&counter->list_entry))
676                 add_counter_to_ctx(counter, ctx);
677         spin_unlock_irq(&ctx->lock);
678 }
679
680 /*
681  * Cross CPU call to enable a performance counter
682  */
683 static void __perf_counter_enable(void *info)
684 {
685         struct perf_counter *counter = info;
686         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
687         struct perf_counter_context *ctx = counter->ctx;
688         struct perf_counter *leader = counter->group_leader;
689         unsigned long flags;
690         int err;
691
692         /*
693          * If this is a per-task counter, need to check whether this
694          * counter's task is the current task on this cpu.
695          */
696         if (ctx->task && cpuctx->task_ctx != ctx)
697                 return;
698
699         spin_lock_irqsave(&ctx->lock, flags);
700         update_context_time(ctx);
701
702         counter->prev_state = counter->state;
703         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704                 goto unlock;
705         counter->state = PERF_COUNTER_STATE_INACTIVE;
706         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707
708         /*
709          * If the counter is in a group and isn't the group leader,
710          * then don't put it on unless the group is on.
711          */
712         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
713                 goto unlock;
714
715         if (!group_can_go_on(counter, cpuctx, 1)) {
716                 err = -EEXIST;
717         } else {
718                 perf_disable();
719                 if (counter == leader)
720                         err = group_sched_in(counter, cpuctx, ctx,
721                                              smp_processor_id());
722                 else
723                         err = counter_sched_in(counter, cpuctx, ctx,
724                                                smp_processor_id());
725                 perf_enable();
726         }
727
728         if (err) {
729                 /*
730                  * If this counter can't go on and it's part of a
731                  * group, then the whole group has to come off.
732                  */
733                 if (leader != counter)
734                         group_sched_out(leader, cpuctx, ctx);
735                 if (leader->hw_event.pinned) {
736                         update_group_times(leader);
737                         leader->state = PERF_COUNTER_STATE_ERROR;
738                 }
739         }
740
741  unlock:
742         spin_unlock_irqrestore(&ctx->lock, flags);
743 }
744
745 /*
746  * Enable a counter.
747  */
748 static void perf_counter_enable(struct perf_counter *counter)
749 {
750         struct perf_counter_context *ctx = counter->ctx;
751         struct task_struct *task = ctx->task;
752
753         if (!task) {
754                 /*
755                  * Enable the counter on the cpu that it's on
756                  */
757                 smp_call_function_single(counter->cpu, __perf_counter_enable,
758                                          counter, 1);
759                 return;
760         }
761
762         spin_lock_irq(&ctx->lock);
763         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764                 goto out;
765
766         /*
767          * If the counter is in error state, clear that first.
768          * That way, if we see the counter in error state below, we
769          * know that it has gone back into error state, as distinct
770          * from the task having been scheduled away before the
771          * cross-call arrived.
772          */
773         if (counter->state == PERF_COUNTER_STATE_ERROR)
774                 counter->state = PERF_COUNTER_STATE_OFF;
775
776  retry:
777         spin_unlock_irq(&ctx->lock);
778         task_oncpu_function_call(task, __perf_counter_enable, counter);
779
780         spin_lock_irq(&ctx->lock);
781
782         /*
783          * If the context is active and the counter is still off,
784          * we need to retry the cross-call.
785          */
786         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
787                 goto retry;
788
789         /*
790          * Since we have the lock this context can't be scheduled
791          * in, so we can change the state safely.
792          */
793         if (counter->state == PERF_COUNTER_STATE_OFF) {
794                 counter->state = PERF_COUNTER_STATE_INACTIVE;
795                 counter->tstamp_enabled =
796                         ctx->time - counter->total_time_enabled;
797         }
798  out:
799         spin_unlock_irq(&ctx->lock);
800 }
801
802 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803 {
804         /*
805          * not supported on inherited counters
806          */
807         if (counter->hw_event.inherit)
808                 return -EINVAL;
809
810         atomic_add(refresh, &counter->event_limit);
811         perf_counter_enable(counter);
812
813         return 0;
814 }
815
816 void __perf_counter_sched_out(struct perf_counter_context *ctx,
817                               struct perf_cpu_context *cpuctx)
818 {
819         struct perf_counter *counter;
820
821         spin_lock(&ctx->lock);
822         ctx->is_active = 0;
823         if (likely(!ctx->nr_counters))
824                 goto out;
825         update_context_time(ctx);
826
827         perf_disable();
828         if (ctx->nr_active) {
829                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
830                         if (counter != counter->group_leader)
831                                 counter_sched_out(counter, cpuctx, ctx);
832                         else
833                                 group_sched_out(counter, cpuctx, ctx);
834                 }
835         }
836         perf_enable();
837  out:
838         spin_unlock(&ctx->lock);
839 }
840
841 /*
842  * Called from scheduler to remove the counters of the current task,
843  * with interrupts disabled.
844  *
845  * We stop each counter and update the counter value in counter->count.
846  *
847  * This does not protect us against NMI, but disable()
848  * sets the disabled bit in the control field of counter _before_
849  * accessing the counter control register. If a NMI hits, then it will
850  * not restart the counter.
851  */
852 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
853 {
854         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
855         struct perf_counter_context *ctx = &task->perf_counter_ctx;
856         struct pt_regs *regs;
857
858         if (likely(!cpuctx->task_ctx))
859                 return;
860
861         update_context_time(ctx);
862
863         regs = task_pt_regs(task);
864         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
865         __perf_counter_sched_out(ctx, cpuctx);
866
867         cpuctx->task_ctx = NULL;
868 }
869
870 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
871 {
872         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
873
874         __perf_counter_sched_out(ctx, cpuctx);
875         cpuctx->task_ctx = NULL;
876 }
877
878 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
879 {
880         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
881 }
882
883 static void
884 __perf_counter_sched_in(struct perf_counter_context *ctx,
885                         struct perf_cpu_context *cpuctx, int cpu)
886 {
887         struct perf_counter *counter;
888         int can_add_hw = 1;
889
890         spin_lock(&ctx->lock);
891         ctx->is_active = 1;
892         if (likely(!ctx->nr_counters))
893                 goto out;
894
895         ctx->timestamp = perf_clock();
896
897         perf_disable();
898
899         /*
900          * First go through the list and put on any pinned groups
901          * in order to give them the best chance of going on.
902          */
903         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
904                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
905                     !counter->hw_event.pinned)
906                         continue;
907                 if (counter->cpu != -1 && counter->cpu != cpu)
908                         continue;
909
910                 if (counter != counter->group_leader)
911                         counter_sched_in(counter, cpuctx, ctx, cpu);
912                 else {
913                         if (group_can_go_on(counter, cpuctx, 1))
914                                 group_sched_in(counter, cpuctx, ctx, cpu);
915                 }
916
917                 /*
918                  * If this pinned group hasn't been scheduled,
919                  * put it in error state.
920                  */
921                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
922                         update_group_times(counter);
923                         counter->state = PERF_COUNTER_STATE_ERROR;
924                 }
925         }
926
927         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
928                 /*
929                  * Ignore counters in OFF or ERROR state, and
930                  * ignore pinned counters since we did them already.
931                  */
932                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
933                     counter->hw_event.pinned)
934                         continue;
935
936                 /*
937                  * Listen to the 'cpu' scheduling filter constraint
938                  * of counters:
939                  */
940                 if (counter->cpu != -1 && counter->cpu != cpu)
941                         continue;
942
943                 if (counter != counter->group_leader) {
944                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
945                                 can_add_hw = 0;
946                 } else {
947                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
948                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
949                                         can_add_hw = 0;
950                         }
951                 }
952         }
953         perf_enable();
954  out:
955         spin_unlock(&ctx->lock);
956 }
957
958 /*
959  * Called from scheduler to add the counters of the current task
960  * with interrupts disabled.
961  *
962  * We restore the counter value and then enable it.
963  *
964  * This does not protect us against NMI, but enable()
965  * sets the enabled bit in the control field of counter _before_
966  * accessing the counter control register. If a NMI hits, then it will
967  * keep the counter running.
968  */
969 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
970 {
971         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
972         struct perf_counter_context *ctx = &task->perf_counter_ctx;
973
974         __perf_counter_sched_in(ctx, cpuctx, cpu);
975         cpuctx->task_ctx = ctx;
976 }
977
978 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
979 {
980         struct perf_counter_context *ctx = &cpuctx->ctx;
981
982         __perf_counter_sched_in(ctx, cpuctx, cpu);
983 }
984
985 int perf_counter_task_disable(void)
986 {
987         struct task_struct *curr = current;
988         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
989         struct perf_counter *counter;
990         unsigned long flags;
991
992         if (likely(!ctx->nr_counters))
993                 return 0;
994
995         local_irq_save(flags);
996
997         __perf_counter_task_sched_out(ctx);
998
999         spin_lock(&ctx->lock);
1000
1001         /*
1002          * Disable all the counters:
1003          */
1004         perf_disable();
1005
1006         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1007                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1008                         update_group_times(counter);
1009                         counter->state = PERF_COUNTER_STATE_OFF;
1010                 }
1011         }
1012
1013         perf_enable();
1014
1015         spin_unlock_irqrestore(&ctx->lock, flags);
1016
1017         return 0;
1018 }
1019
1020 int perf_counter_task_enable(void)
1021 {
1022         struct task_struct *curr = current;
1023         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1024         struct perf_counter *counter;
1025         unsigned long flags;
1026         int cpu;
1027
1028         if (likely(!ctx->nr_counters))
1029                 return 0;
1030
1031         local_irq_save(flags);
1032         cpu = smp_processor_id();
1033
1034         __perf_counter_task_sched_out(ctx);
1035
1036         spin_lock(&ctx->lock);
1037
1038         /*
1039          * Disable all the counters:
1040          */
1041         perf_disable();
1042
1043         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1044                 if (counter->state > PERF_COUNTER_STATE_OFF)
1045                         continue;
1046                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1047                 counter->tstamp_enabled =
1048                         ctx->time - counter->total_time_enabled;
1049                 counter->hw_event.disabled = 0;
1050         }
1051         perf_enable();
1052
1053         spin_unlock(&ctx->lock);
1054
1055         perf_counter_task_sched_in(curr, cpu);
1056
1057         local_irq_restore(flags);
1058
1059         return 0;
1060 }
1061
1062 static void perf_log_period(struct perf_counter *counter, u64 period);
1063
1064 static void perf_adjust_freq(struct perf_counter_context *ctx)
1065 {
1066         struct perf_counter *counter;
1067         u64 irq_period;
1068         u64 events, period;
1069         s64 delta;
1070
1071         spin_lock(&ctx->lock);
1072         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1073                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1074                         continue;
1075
1076                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1077                         continue;
1078
1079                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1080                 period = div64_u64(events, counter->hw_event.irq_freq);
1081
1082                 delta = (s64)(1 + period - counter->hw.irq_period);
1083                 delta >>= 1;
1084
1085                 irq_period = counter->hw.irq_period + delta;
1086
1087                 if (!irq_period)
1088                         irq_period = 1;
1089
1090                 perf_log_period(counter, irq_period);
1091
1092                 counter->hw.irq_period = irq_period;
1093                 counter->hw.interrupts = 0;
1094         }
1095         spin_unlock(&ctx->lock);
1096 }
1097
1098 /*
1099  * Round-robin a context's counters:
1100  */
1101 static void rotate_ctx(struct perf_counter_context *ctx)
1102 {
1103         struct perf_counter *counter;
1104
1105         if (!ctx->nr_counters)
1106                 return;
1107
1108         spin_lock(&ctx->lock);
1109         /*
1110          * Rotate the first entry last (works just fine for group counters too):
1111          */
1112         perf_disable();
1113         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1114                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1115                 break;
1116         }
1117         perf_enable();
1118
1119         spin_unlock(&ctx->lock);
1120 }
1121
1122 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1123 {
1124         struct perf_cpu_context *cpuctx;
1125         struct perf_counter_context *ctx;
1126
1127         if (!atomic_read(&nr_counters))
1128                 return;
1129
1130         cpuctx = &per_cpu(perf_cpu_context, cpu);
1131         ctx = &curr->perf_counter_ctx;
1132
1133         perf_adjust_freq(&cpuctx->ctx);
1134         perf_adjust_freq(ctx);
1135
1136         perf_counter_cpu_sched_out(cpuctx);
1137         __perf_counter_task_sched_out(ctx);
1138
1139         rotate_ctx(&cpuctx->ctx);
1140         rotate_ctx(ctx);
1141
1142         perf_counter_cpu_sched_in(cpuctx, cpu);
1143         perf_counter_task_sched_in(curr, cpu);
1144 }
1145
1146 /*
1147  * Cross CPU call to read the hardware counter
1148  */
1149 static void __read(void *info)
1150 {
1151         struct perf_counter *counter = info;
1152         struct perf_counter_context *ctx = counter->ctx;
1153         unsigned long flags;
1154
1155         local_irq_save(flags);
1156         if (ctx->is_active)
1157                 update_context_time(ctx);
1158         counter->pmu->read(counter);
1159         update_counter_times(counter);
1160         local_irq_restore(flags);
1161 }
1162
1163 static u64 perf_counter_read(struct perf_counter *counter)
1164 {
1165         /*
1166          * If counter is enabled and currently active on a CPU, update the
1167          * value in the counter structure:
1168          */
1169         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1170                 smp_call_function_single(counter->oncpu,
1171                                          __read, counter, 1);
1172         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1173                 update_counter_times(counter);
1174         }
1175
1176         return atomic64_read(&counter->count);
1177 }
1178
1179 static void put_context(struct perf_counter_context *ctx)
1180 {
1181         if (ctx->task)
1182                 put_task_struct(ctx->task);
1183 }
1184
1185 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1186 {
1187         struct perf_cpu_context *cpuctx;
1188         struct perf_counter_context *ctx;
1189         struct task_struct *task;
1190
1191         /*
1192          * If cpu is not a wildcard then this is a percpu counter:
1193          */
1194         if (cpu != -1) {
1195                 /* Must be root to operate on a CPU counter: */
1196                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1197                         return ERR_PTR(-EACCES);
1198
1199                 if (cpu < 0 || cpu > num_possible_cpus())
1200                         return ERR_PTR(-EINVAL);
1201
1202                 /*
1203                  * We could be clever and allow to attach a counter to an
1204                  * offline CPU and activate it when the CPU comes up, but
1205                  * that's for later.
1206                  */
1207                 if (!cpu_isset(cpu, cpu_online_map))
1208                         return ERR_PTR(-ENODEV);
1209
1210                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1211                 ctx = &cpuctx->ctx;
1212
1213                 return ctx;
1214         }
1215
1216         rcu_read_lock();
1217         if (!pid)
1218                 task = current;
1219         else
1220                 task = find_task_by_vpid(pid);
1221         if (task)
1222                 get_task_struct(task);
1223         rcu_read_unlock();
1224
1225         if (!task)
1226                 return ERR_PTR(-ESRCH);
1227
1228         ctx = &task->perf_counter_ctx;
1229         ctx->task = task;
1230
1231         /* Reuse ptrace permission checks for now. */
1232         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1233                 put_context(ctx);
1234                 return ERR_PTR(-EACCES);
1235         }
1236
1237         return ctx;
1238 }
1239
1240 static void free_counter_rcu(struct rcu_head *head)
1241 {
1242         struct perf_counter *counter;
1243
1244         counter = container_of(head, struct perf_counter, rcu_head);
1245         kfree(counter);
1246 }
1247
1248 static void perf_pending_sync(struct perf_counter *counter);
1249
1250 static void free_counter(struct perf_counter *counter)
1251 {
1252         perf_pending_sync(counter);
1253
1254         atomic_dec(&nr_counters);
1255         if (counter->hw_event.mmap)
1256                 atomic_dec(&nr_mmap_tracking);
1257         if (counter->hw_event.munmap)
1258                 atomic_dec(&nr_munmap_tracking);
1259         if (counter->hw_event.comm)
1260                 atomic_dec(&nr_comm_tracking);
1261
1262         if (counter->destroy)
1263                 counter->destroy(counter);
1264
1265         call_rcu(&counter->rcu_head, free_counter_rcu);
1266 }
1267
1268 /*
1269  * Called when the last reference to the file is gone.
1270  */
1271 static int perf_release(struct inode *inode, struct file *file)
1272 {
1273         struct perf_counter *counter = file->private_data;
1274         struct perf_counter_context *ctx = counter->ctx;
1275
1276         file->private_data = NULL;
1277
1278         mutex_lock(&ctx->mutex);
1279         mutex_lock(&counter->mutex);
1280
1281         perf_counter_remove_from_context(counter);
1282
1283         mutex_unlock(&counter->mutex);
1284         mutex_unlock(&ctx->mutex);
1285
1286         free_counter(counter);
1287         put_context(ctx);
1288
1289         return 0;
1290 }
1291
1292 /*
1293  * Read the performance counter - simple non blocking version for now
1294  */
1295 static ssize_t
1296 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1297 {
1298         u64 values[3];
1299         int n;
1300
1301         /*
1302          * Return end-of-file for a read on a counter that is in
1303          * error state (i.e. because it was pinned but it couldn't be
1304          * scheduled on to the CPU at some point).
1305          */
1306         if (counter->state == PERF_COUNTER_STATE_ERROR)
1307                 return 0;
1308
1309         mutex_lock(&counter->mutex);
1310         values[0] = perf_counter_read(counter);
1311         n = 1;
1312         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1313                 values[n++] = counter->total_time_enabled +
1314                         atomic64_read(&counter->child_total_time_enabled);
1315         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1316                 values[n++] = counter->total_time_running +
1317                         atomic64_read(&counter->child_total_time_running);
1318         mutex_unlock(&counter->mutex);
1319
1320         if (count < n * sizeof(u64))
1321                 return -EINVAL;
1322         count = n * sizeof(u64);
1323
1324         if (copy_to_user(buf, values, count))
1325                 return -EFAULT;
1326
1327         return count;
1328 }
1329
1330 static ssize_t
1331 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1332 {
1333         struct perf_counter *counter = file->private_data;
1334
1335         return perf_read_hw(counter, buf, count);
1336 }
1337
1338 static unsigned int perf_poll(struct file *file, poll_table *wait)
1339 {
1340         struct perf_counter *counter = file->private_data;
1341         struct perf_mmap_data *data;
1342         unsigned int events = POLL_HUP;
1343
1344         rcu_read_lock();
1345         data = rcu_dereference(counter->data);
1346         if (data)
1347                 events = atomic_xchg(&data->poll, 0);
1348         rcu_read_unlock();
1349
1350         poll_wait(file, &counter->waitq, wait);
1351
1352         return events;
1353 }
1354
1355 static void perf_counter_reset(struct perf_counter *counter)
1356 {
1357         (void)perf_counter_read(counter);
1358         atomic64_set(&counter->count, 0);
1359         perf_counter_update_userpage(counter);
1360 }
1361
1362 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1363                                           void (*func)(struct perf_counter *))
1364 {
1365         struct perf_counter_context *ctx = counter->ctx;
1366         struct perf_counter *sibling;
1367
1368         spin_lock_irq(&ctx->lock);
1369         counter = counter->group_leader;
1370
1371         func(counter);
1372         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1373                 func(sibling);
1374         spin_unlock_irq(&ctx->lock);
1375 }
1376
1377 static void perf_counter_for_each_child(struct perf_counter *counter,
1378                                         void (*func)(struct perf_counter *))
1379 {
1380         struct perf_counter *child;
1381
1382         mutex_lock(&counter->mutex);
1383         func(counter);
1384         list_for_each_entry(child, &counter->child_list, child_list)
1385                 func(child);
1386         mutex_unlock(&counter->mutex);
1387 }
1388
1389 static void perf_counter_for_each(struct perf_counter *counter,
1390                                   void (*func)(struct perf_counter *))
1391 {
1392         struct perf_counter *child;
1393
1394         mutex_lock(&counter->mutex);
1395         perf_counter_for_each_sibling(counter, func);
1396         list_for_each_entry(child, &counter->child_list, child_list)
1397                 perf_counter_for_each_sibling(child, func);
1398         mutex_unlock(&counter->mutex);
1399 }
1400
1401 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1402 {
1403         struct perf_counter *counter = file->private_data;
1404         void (*func)(struct perf_counter *);
1405         u32 flags = arg;
1406
1407         switch (cmd) {
1408         case PERF_COUNTER_IOC_ENABLE:
1409                 func = perf_counter_enable;
1410                 break;
1411         case PERF_COUNTER_IOC_DISABLE:
1412                 func = perf_counter_disable;
1413                 break;
1414         case PERF_COUNTER_IOC_RESET:
1415                 func = perf_counter_reset;
1416                 break;
1417
1418         case PERF_COUNTER_IOC_REFRESH:
1419                 return perf_counter_refresh(counter, arg);
1420         default:
1421                 return -ENOTTY;
1422         }
1423
1424         if (flags & PERF_IOC_FLAG_GROUP)
1425                 perf_counter_for_each(counter, func);
1426         else
1427                 perf_counter_for_each_child(counter, func);
1428
1429         return 0;
1430 }
1431
1432 /*
1433  * Callers need to ensure there can be no nesting of this function, otherwise
1434  * the seqlock logic goes bad. We can not serialize this because the arch
1435  * code calls this from NMI context.
1436  */
1437 void perf_counter_update_userpage(struct perf_counter *counter)
1438 {
1439         struct perf_mmap_data *data;
1440         struct perf_counter_mmap_page *userpg;
1441
1442         rcu_read_lock();
1443         data = rcu_dereference(counter->data);
1444         if (!data)
1445                 goto unlock;
1446
1447         userpg = data->user_page;
1448
1449         /*
1450          * Disable preemption so as to not let the corresponding user-space
1451          * spin too long if we get preempted.
1452          */
1453         preempt_disable();
1454         ++userpg->lock;
1455         barrier();
1456         userpg->index = counter->hw.idx;
1457         userpg->offset = atomic64_read(&counter->count);
1458         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1459                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1460
1461         barrier();
1462         ++userpg->lock;
1463         preempt_enable();
1464 unlock:
1465         rcu_read_unlock();
1466 }
1467
1468 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1469 {
1470         struct perf_counter *counter = vma->vm_file->private_data;
1471         struct perf_mmap_data *data;
1472         int ret = VM_FAULT_SIGBUS;
1473
1474         rcu_read_lock();
1475         data = rcu_dereference(counter->data);
1476         if (!data)
1477                 goto unlock;
1478
1479         if (vmf->pgoff == 0) {
1480                 vmf->page = virt_to_page(data->user_page);
1481         } else {
1482                 int nr = vmf->pgoff - 1;
1483
1484                 if ((unsigned)nr > data->nr_pages)
1485                         goto unlock;
1486
1487                 vmf->page = virt_to_page(data->data_pages[nr]);
1488         }
1489         get_page(vmf->page);
1490         ret = 0;
1491 unlock:
1492         rcu_read_unlock();
1493
1494         return ret;
1495 }
1496
1497 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1498 {
1499         struct perf_mmap_data *data;
1500         unsigned long size;
1501         int i;
1502
1503         WARN_ON(atomic_read(&counter->mmap_count));
1504
1505         size = sizeof(struct perf_mmap_data);
1506         size += nr_pages * sizeof(void *);
1507
1508         data = kzalloc(size, GFP_KERNEL);
1509         if (!data)
1510                 goto fail;
1511
1512         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1513         if (!data->user_page)
1514                 goto fail_user_page;
1515
1516         for (i = 0; i < nr_pages; i++) {
1517                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1518                 if (!data->data_pages[i])
1519                         goto fail_data_pages;
1520         }
1521
1522         data->nr_pages = nr_pages;
1523         atomic_set(&data->lock, -1);
1524
1525         rcu_assign_pointer(counter->data, data);
1526
1527         return 0;
1528
1529 fail_data_pages:
1530         for (i--; i >= 0; i--)
1531                 free_page((unsigned long)data->data_pages[i]);
1532
1533         free_page((unsigned long)data->user_page);
1534
1535 fail_user_page:
1536         kfree(data);
1537
1538 fail:
1539         return -ENOMEM;
1540 }
1541
1542 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1543 {
1544         struct perf_mmap_data *data = container_of(rcu_head,
1545                         struct perf_mmap_data, rcu_head);
1546         int i;
1547
1548         free_page((unsigned long)data->user_page);
1549         for (i = 0; i < data->nr_pages; i++)
1550                 free_page((unsigned long)data->data_pages[i]);
1551         kfree(data);
1552 }
1553
1554 static void perf_mmap_data_free(struct perf_counter *counter)
1555 {
1556         struct perf_mmap_data *data = counter->data;
1557
1558         WARN_ON(atomic_read(&counter->mmap_count));
1559
1560         rcu_assign_pointer(counter->data, NULL);
1561         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1562 }
1563
1564 static void perf_mmap_open(struct vm_area_struct *vma)
1565 {
1566         struct perf_counter *counter = vma->vm_file->private_data;
1567
1568         atomic_inc(&counter->mmap_count);
1569 }
1570
1571 static void perf_mmap_close(struct vm_area_struct *vma)
1572 {
1573         struct perf_counter *counter = vma->vm_file->private_data;
1574
1575         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1576                                       &counter->mmap_mutex)) {
1577                 struct user_struct *user = current_user();
1578
1579                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1580                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1581                 perf_mmap_data_free(counter);
1582                 mutex_unlock(&counter->mmap_mutex);
1583         }
1584 }
1585
1586 static struct vm_operations_struct perf_mmap_vmops = {
1587         .open  = perf_mmap_open,
1588         .close = perf_mmap_close,
1589         .fault = perf_mmap_fault,
1590 };
1591
1592 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1593 {
1594         struct perf_counter *counter = file->private_data;
1595         struct user_struct *user = current_user();
1596         unsigned long vma_size;
1597         unsigned long nr_pages;
1598         unsigned long user_locked, user_lock_limit;
1599         unsigned long locked, lock_limit;
1600         long user_extra, extra;
1601         int ret = 0;
1602
1603         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1604                 return -EINVAL;
1605
1606         vma_size = vma->vm_end - vma->vm_start;
1607         nr_pages = (vma_size / PAGE_SIZE) - 1;
1608
1609         /*
1610          * If we have data pages ensure they're a power-of-two number, so we
1611          * can do bitmasks instead of modulo.
1612          */
1613         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1614                 return -EINVAL;
1615
1616         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1617                 return -EINVAL;
1618
1619         if (vma->vm_pgoff != 0)
1620                 return -EINVAL;
1621
1622         mutex_lock(&counter->mmap_mutex);
1623         if (atomic_inc_not_zero(&counter->mmap_count)) {
1624                 if (nr_pages != counter->data->nr_pages)
1625                         ret = -EINVAL;
1626                 goto unlock;
1627         }
1628
1629         user_extra = nr_pages + 1;
1630         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1631         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1632
1633         extra = 0;
1634         if (user_locked > user_lock_limit)
1635                 extra = user_locked - user_lock_limit;
1636
1637         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1638         lock_limit >>= PAGE_SHIFT;
1639         locked = vma->vm_mm->locked_vm + extra;
1640
1641         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1642                 ret = -EPERM;
1643                 goto unlock;
1644         }
1645
1646         WARN_ON(counter->data);
1647         ret = perf_mmap_data_alloc(counter, nr_pages);
1648         if (ret)
1649                 goto unlock;
1650
1651         atomic_set(&counter->mmap_count, 1);
1652         atomic_long_add(user_extra, &user->locked_vm);
1653         vma->vm_mm->locked_vm += extra;
1654         counter->data->nr_locked = extra;
1655 unlock:
1656         mutex_unlock(&counter->mmap_mutex);
1657
1658         vma->vm_flags &= ~VM_MAYWRITE;
1659         vma->vm_flags |= VM_RESERVED;
1660         vma->vm_ops = &perf_mmap_vmops;
1661
1662         return ret;
1663 }
1664
1665 static int perf_fasync(int fd, struct file *filp, int on)
1666 {
1667         struct perf_counter *counter = filp->private_data;
1668         struct inode *inode = filp->f_path.dentry->d_inode;
1669         int retval;
1670
1671         mutex_lock(&inode->i_mutex);
1672         retval = fasync_helper(fd, filp, on, &counter->fasync);
1673         mutex_unlock(&inode->i_mutex);
1674
1675         if (retval < 0)
1676                 return retval;
1677
1678         return 0;
1679 }
1680
1681 static const struct file_operations perf_fops = {
1682         .release                = perf_release,
1683         .read                   = perf_read,
1684         .poll                   = perf_poll,
1685         .unlocked_ioctl         = perf_ioctl,
1686         .compat_ioctl           = perf_ioctl,
1687         .mmap                   = perf_mmap,
1688         .fasync                 = perf_fasync,
1689 };
1690
1691 /*
1692  * Perf counter wakeup
1693  *
1694  * If there's data, ensure we set the poll() state and publish everything
1695  * to user-space before waking everybody up.
1696  */
1697
1698 void perf_counter_wakeup(struct perf_counter *counter)
1699 {
1700         wake_up_all(&counter->waitq);
1701
1702         if (counter->pending_kill) {
1703                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1704                 counter->pending_kill = 0;
1705         }
1706 }
1707
1708 /*
1709  * Pending wakeups
1710  *
1711  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1712  *
1713  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1714  * single linked list and use cmpxchg() to add entries lockless.
1715  */
1716
1717 static void perf_pending_counter(struct perf_pending_entry *entry)
1718 {
1719         struct perf_counter *counter = container_of(entry,
1720                         struct perf_counter, pending);
1721
1722         if (counter->pending_disable) {
1723                 counter->pending_disable = 0;
1724                 perf_counter_disable(counter);
1725         }
1726
1727         if (counter->pending_wakeup) {
1728                 counter->pending_wakeup = 0;
1729                 perf_counter_wakeup(counter);
1730         }
1731 }
1732
1733 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1734
1735 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1736         PENDING_TAIL,
1737 };
1738
1739 static void perf_pending_queue(struct perf_pending_entry *entry,
1740                                void (*func)(struct perf_pending_entry *))
1741 {
1742         struct perf_pending_entry **head;
1743
1744         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1745                 return;
1746
1747         entry->func = func;
1748
1749         head = &get_cpu_var(perf_pending_head);
1750
1751         do {
1752                 entry->next = *head;
1753         } while (cmpxchg(head, entry->next, entry) != entry->next);
1754
1755         set_perf_counter_pending();
1756
1757         put_cpu_var(perf_pending_head);
1758 }
1759
1760 static int __perf_pending_run(void)
1761 {
1762         struct perf_pending_entry *list;
1763         int nr = 0;
1764
1765         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1766         while (list != PENDING_TAIL) {
1767                 void (*func)(struct perf_pending_entry *);
1768                 struct perf_pending_entry *entry = list;
1769
1770                 list = list->next;
1771
1772                 func = entry->func;
1773                 entry->next = NULL;
1774                 /*
1775                  * Ensure we observe the unqueue before we issue the wakeup,
1776                  * so that we won't be waiting forever.
1777                  * -- see perf_not_pending().
1778                  */
1779                 smp_wmb();
1780
1781                 func(entry);
1782                 nr++;
1783         }
1784
1785         return nr;
1786 }
1787
1788 static inline int perf_not_pending(struct perf_counter *counter)
1789 {
1790         /*
1791          * If we flush on whatever cpu we run, there is a chance we don't
1792          * need to wait.
1793          */
1794         get_cpu();
1795         __perf_pending_run();
1796         put_cpu();
1797
1798         /*
1799          * Ensure we see the proper queue state before going to sleep
1800          * so that we do not miss the wakeup. -- see perf_pending_handle()
1801          */
1802         smp_rmb();
1803         return counter->pending.next == NULL;
1804 }
1805
1806 static void perf_pending_sync(struct perf_counter *counter)
1807 {
1808         wait_event(counter->waitq, perf_not_pending(counter));
1809 }
1810
1811 void perf_counter_do_pending(void)
1812 {
1813         __perf_pending_run();
1814 }
1815
1816 /*
1817  * Callchain support -- arch specific
1818  */
1819
1820 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1821 {
1822         return NULL;
1823 }
1824
1825 /*
1826  * Output
1827  */
1828
1829 struct perf_output_handle {
1830         struct perf_counter     *counter;
1831         struct perf_mmap_data   *data;
1832         unsigned int            offset;
1833         unsigned int            head;
1834         int                     nmi;
1835         int                     overflow;
1836         int                     locked;
1837         unsigned long           flags;
1838 };
1839
1840 static void perf_output_wakeup(struct perf_output_handle *handle)
1841 {
1842         atomic_set(&handle->data->poll, POLL_IN);
1843
1844         if (handle->nmi) {
1845                 handle->counter->pending_wakeup = 1;
1846                 perf_pending_queue(&handle->counter->pending,
1847                                    perf_pending_counter);
1848         } else
1849                 perf_counter_wakeup(handle->counter);
1850 }
1851
1852 /*
1853  * Curious locking construct.
1854  *
1855  * We need to ensure a later event doesn't publish a head when a former
1856  * event isn't done writing. However since we need to deal with NMIs we
1857  * cannot fully serialize things.
1858  *
1859  * What we do is serialize between CPUs so we only have to deal with NMI
1860  * nesting on a single CPU.
1861  *
1862  * We only publish the head (and generate a wakeup) when the outer-most
1863  * event completes.
1864  */
1865 static void perf_output_lock(struct perf_output_handle *handle)
1866 {
1867         struct perf_mmap_data *data = handle->data;
1868         int cpu;
1869
1870         handle->locked = 0;
1871
1872         local_irq_save(handle->flags);
1873         cpu = smp_processor_id();
1874
1875         if (in_nmi() && atomic_read(&data->lock) == cpu)
1876                 return;
1877
1878         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1879                 cpu_relax();
1880
1881         handle->locked = 1;
1882 }
1883
1884 static void perf_output_unlock(struct perf_output_handle *handle)
1885 {
1886         struct perf_mmap_data *data = handle->data;
1887         int head, cpu;
1888
1889         data->done_head = data->head;
1890
1891         if (!handle->locked)
1892                 goto out;
1893
1894 again:
1895         /*
1896          * The xchg implies a full barrier that ensures all writes are done
1897          * before we publish the new head, matched by a rmb() in userspace when
1898          * reading this position.
1899          */
1900         while ((head = atomic_xchg(&data->done_head, 0)))
1901                 data->user_page->data_head = head;
1902
1903         /*
1904          * NMI can happen here, which means we can miss a done_head update.
1905          */
1906
1907         cpu = atomic_xchg(&data->lock, -1);
1908         WARN_ON_ONCE(cpu != smp_processor_id());
1909
1910         /*
1911          * Therefore we have to validate we did not indeed do so.
1912          */
1913         if (unlikely(atomic_read(&data->done_head))) {
1914                 /*
1915                  * Since we had it locked, we can lock it again.
1916                  */
1917                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1918                         cpu_relax();
1919
1920                 goto again;
1921         }
1922
1923         if (atomic_xchg(&data->wakeup, 0))
1924                 perf_output_wakeup(handle);
1925 out:
1926         local_irq_restore(handle->flags);
1927 }
1928
1929 static int perf_output_begin(struct perf_output_handle *handle,
1930                              struct perf_counter *counter, unsigned int size,
1931                              int nmi, int overflow)
1932 {
1933         struct perf_mmap_data *data;
1934         unsigned int offset, head;
1935
1936         /*
1937          * For inherited counters we send all the output towards the parent.
1938          */
1939         if (counter->parent)
1940                 counter = counter->parent;
1941
1942         rcu_read_lock();
1943         data = rcu_dereference(counter->data);
1944         if (!data)
1945                 goto out;
1946
1947         handle->data     = data;
1948         handle->counter  = counter;
1949         handle->nmi      = nmi;
1950         handle->overflow = overflow;
1951
1952         if (!data->nr_pages)
1953                 goto fail;
1954
1955         perf_output_lock(handle);
1956
1957         do {
1958                 offset = head = atomic_read(&data->head);
1959                 head += size;
1960         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1961
1962         handle->offset  = offset;
1963         handle->head    = head;
1964
1965         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1966                 atomic_set(&data->wakeup, 1);
1967
1968         return 0;
1969
1970 fail:
1971         perf_output_wakeup(handle);
1972 out:
1973         rcu_read_unlock();
1974
1975         return -ENOSPC;
1976 }
1977
1978 static void perf_output_copy(struct perf_output_handle *handle,
1979                              void *buf, unsigned int len)
1980 {
1981         unsigned int pages_mask;
1982         unsigned int offset;
1983         unsigned int size;
1984         void **pages;
1985
1986         offset          = handle->offset;
1987         pages_mask      = handle->data->nr_pages - 1;
1988         pages           = handle->data->data_pages;
1989
1990         do {
1991                 unsigned int page_offset;
1992                 int nr;
1993
1994                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1995                 page_offset = offset & (PAGE_SIZE - 1);
1996                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1997
1998                 memcpy(pages[nr] + page_offset, buf, size);
1999
2000                 len         -= size;
2001                 buf         += size;
2002                 offset      += size;
2003         } while (len);
2004
2005         handle->offset = offset;
2006
2007         /*
2008          * Check we didn't copy past our reservation window, taking the
2009          * possible unsigned int wrap into account.
2010          */
2011         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2012 }
2013
2014 #define perf_output_put(handle, x) \
2015         perf_output_copy((handle), &(x), sizeof(x))
2016
2017 static void perf_output_end(struct perf_output_handle *handle)
2018 {
2019         struct perf_counter *counter = handle->counter;
2020         struct perf_mmap_data *data = handle->data;
2021
2022         int wakeup_events = counter->hw_event.wakeup_events;
2023
2024         if (handle->overflow && wakeup_events) {
2025                 int events = atomic_inc_return(&data->events);
2026                 if (events >= wakeup_events) {
2027                         atomic_sub(wakeup_events, &data->events);
2028                         atomic_set(&data->wakeup, 1);
2029                 }
2030         }
2031
2032         perf_output_unlock(handle);
2033         rcu_read_unlock();
2034 }
2035
2036 static void perf_counter_output(struct perf_counter *counter,
2037                                 int nmi, struct pt_regs *regs, u64 addr)
2038 {
2039         int ret;
2040         u64 record_type = counter->hw_event.record_type;
2041         struct perf_output_handle handle;
2042         struct perf_event_header header;
2043         u64 ip;
2044         struct {
2045                 u32 pid, tid;
2046         } tid_entry;
2047         struct {
2048                 u64 event;
2049                 u64 counter;
2050         } group_entry;
2051         struct perf_callchain_entry *callchain = NULL;
2052         int callchain_size = 0;
2053         u64 time;
2054         struct {
2055                 u32 cpu, reserved;
2056         } cpu_entry;
2057
2058         header.type = 0;
2059         header.size = sizeof(header);
2060
2061         header.misc = PERF_EVENT_MISC_OVERFLOW;
2062         header.misc |= perf_misc_flags(regs);
2063
2064         if (record_type & PERF_RECORD_IP) {
2065                 ip = perf_instruction_pointer(regs);
2066                 header.type |= PERF_RECORD_IP;
2067                 header.size += sizeof(ip);
2068         }
2069
2070         if (record_type & PERF_RECORD_TID) {
2071                 /* namespace issues */
2072                 tid_entry.pid = current->group_leader->pid;
2073                 tid_entry.tid = current->pid;
2074
2075                 header.type |= PERF_RECORD_TID;
2076                 header.size += sizeof(tid_entry);
2077         }
2078
2079         if (record_type & PERF_RECORD_TIME) {
2080                 /*
2081                  * Maybe do better on x86 and provide cpu_clock_nmi()
2082                  */
2083                 time = sched_clock();
2084
2085                 header.type |= PERF_RECORD_TIME;
2086                 header.size += sizeof(u64);
2087         }
2088
2089         if (record_type & PERF_RECORD_ADDR) {
2090                 header.type |= PERF_RECORD_ADDR;
2091                 header.size += sizeof(u64);
2092         }
2093
2094         if (record_type & PERF_RECORD_CONFIG) {
2095                 header.type |= PERF_RECORD_CONFIG;
2096                 header.size += sizeof(u64);
2097         }
2098
2099         if (record_type & PERF_RECORD_CPU) {
2100                 header.type |= PERF_RECORD_CPU;
2101                 header.size += sizeof(cpu_entry);
2102
2103                 cpu_entry.cpu = raw_smp_processor_id();
2104         }
2105
2106         if (record_type & PERF_RECORD_GROUP) {
2107                 header.type |= PERF_RECORD_GROUP;
2108                 header.size += sizeof(u64) +
2109                         counter->nr_siblings * sizeof(group_entry);
2110         }
2111
2112         if (record_type & PERF_RECORD_CALLCHAIN) {
2113                 callchain = perf_callchain(regs);
2114
2115                 if (callchain) {
2116                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2117
2118                         header.type |= PERF_RECORD_CALLCHAIN;
2119                         header.size += callchain_size;
2120                 }
2121         }
2122
2123         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2124         if (ret)
2125                 return;
2126
2127         perf_output_put(&handle, header);
2128
2129         if (record_type & PERF_RECORD_IP)
2130                 perf_output_put(&handle, ip);
2131
2132         if (record_type & PERF_RECORD_TID)
2133                 perf_output_put(&handle, tid_entry);
2134
2135         if (record_type & PERF_RECORD_TIME)
2136                 perf_output_put(&handle, time);
2137
2138         if (record_type & PERF_RECORD_ADDR)
2139                 perf_output_put(&handle, addr);
2140
2141         if (record_type & PERF_RECORD_CONFIG)
2142                 perf_output_put(&handle, counter->hw_event.config);
2143
2144         if (record_type & PERF_RECORD_CPU)
2145                 perf_output_put(&handle, cpu_entry);
2146
2147         /*
2148          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2149          */
2150         if (record_type & PERF_RECORD_GROUP) {
2151                 struct perf_counter *leader, *sub;
2152                 u64 nr = counter->nr_siblings;
2153
2154                 perf_output_put(&handle, nr);
2155
2156                 leader = counter->group_leader;
2157                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2158                         if (sub != counter)
2159                                 sub->pmu->read(sub);
2160
2161                         group_entry.event = sub->hw_event.config;
2162                         group_entry.counter = atomic64_read(&sub->count);
2163
2164                         perf_output_put(&handle, group_entry);
2165                 }
2166         }
2167
2168         if (callchain)
2169                 perf_output_copy(&handle, callchain, callchain_size);
2170
2171         perf_output_end(&handle);
2172 }
2173
2174 /*
2175  * comm tracking
2176  */
2177
2178 struct perf_comm_event {
2179         struct task_struct      *task;
2180         char                    *comm;
2181         int                     comm_size;
2182
2183         struct {
2184                 struct perf_event_header        header;
2185
2186                 u32                             pid;
2187                 u32                             tid;
2188         } event;
2189 };
2190
2191 static void perf_counter_comm_output(struct perf_counter *counter,
2192                                      struct perf_comm_event *comm_event)
2193 {
2194         struct perf_output_handle handle;
2195         int size = comm_event->event.header.size;
2196         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2197
2198         if (ret)
2199                 return;
2200
2201         perf_output_put(&handle, comm_event->event);
2202         perf_output_copy(&handle, comm_event->comm,
2203                                    comm_event->comm_size);
2204         perf_output_end(&handle);
2205 }
2206
2207 static int perf_counter_comm_match(struct perf_counter *counter,
2208                                    struct perf_comm_event *comm_event)
2209 {
2210         if (counter->hw_event.comm &&
2211             comm_event->event.header.type == PERF_EVENT_COMM)
2212                 return 1;
2213
2214         return 0;
2215 }
2216
2217 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2218                                   struct perf_comm_event *comm_event)
2219 {
2220         struct perf_counter *counter;
2221
2222         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2223                 return;
2224
2225         rcu_read_lock();
2226         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2227                 if (perf_counter_comm_match(counter, comm_event))
2228                         perf_counter_comm_output(counter, comm_event);
2229         }
2230         rcu_read_unlock();
2231 }
2232
2233 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2234 {
2235         struct perf_cpu_context *cpuctx;
2236         unsigned int size;
2237         char *comm = comm_event->task->comm;
2238
2239         size = ALIGN(strlen(comm)+1, sizeof(u64));
2240
2241         comm_event->comm = comm;
2242         comm_event->comm_size = size;
2243
2244         comm_event->event.header.size = sizeof(comm_event->event) + size;
2245
2246         cpuctx = &get_cpu_var(perf_cpu_context);
2247         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2248         put_cpu_var(perf_cpu_context);
2249
2250         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2251 }
2252
2253 void perf_counter_comm(struct task_struct *task)
2254 {
2255         struct perf_comm_event comm_event;
2256
2257         if (!atomic_read(&nr_comm_tracking))
2258                 return;
2259        
2260         comm_event = (struct perf_comm_event){
2261                 .task   = task,
2262                 .event  = {
2263                         .header = { .type = PERF_EVENT_COMM, },
2264                         .pid    = task->group_leader->pid,
2265                         .tid    = task->pid,
2266                 },
2267         };
2268
2269         perf_counter_comm_event(&comm_event);
2270 }
2271
2272 /*
2273  * mmap tracking
2274  */
2275
2276 struct perf_mmap_event {
2277         struct file     *file;
2278         char            *file_name;
2279         int             file_size;
2280
2281         struct {
2282                 struct perf_event_header        header;
2283
2284                 u32                             pid;
2285                 u32                             tid;
2286                 u64                             start;
2287                 u64                             len;
2288                 u64                             pgoff;
2289         } event;
2290 };
2291
2292 static void perf_counter_mmap_output(struct perf_counter *counter,
2293                                      struct perf_mmap_event *mmap_event)
2294 {
2295         struct perf_output_handle handle;
2296         int size = mmap_event->event.header.size;
2297         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2298
2299         if (ret)
2300                 return;
2301
2302         perf_output_put(&handle, mmap_event->event);
2303         perf_output_copy(&handle, mmap_event->file_name,
2304                                    mmap_event->file_size);
2305         perf_output_end(&handle);
2306 }
2307
2308 static int perf_counter_mmap_match(struct perf_counter *counter,
2309                                    struct perf_mmap_event *mmap_event)
2310 {
2311         if (counter->hw_event.mmap &&
2312             mmap_event->event.header.type == PERF_EVENT_MMAP)
2313                 return 1;
2314
2315         if (counter->hw_event.munmap &&
2316             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2317                 return 1;
2318
2319         return 0;
2320 }
2321
2322 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2323                                   struct perf_mmap_event *mmap_event)
2324 {
2325         struct perf_counter *counter;
2326
2327         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2328                 return;
2329
2330         rcu_read_lock();
2331         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2332                 if (perf_counter_mmap_match(counter, mmap_event))
2333                         perf_counter_mmap_output(counter, mmap_event);
2334         }
2335         rcu_read_unlock();
2336 }
2337
2338 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2339 {
2340         struct perf_cpu_context *cpuctx;
2341         struct file *file = mmap_event->file;
2342         unsigned int size;
2343         char tmp[16];
2344         char *buf = NULL;
2345         char *name;
2346
2347         if (file) {
2348                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2349                 if (!buf) {
2350                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2351                         goto got_name;
2352                 }
2353                 name = d_path(&file->f_path, buf, PATH_MAX);
2354                 if (IS_ERR(name)) {
2355                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2356                         goto got_name;
2357                 }
2358         } else {
2359                 name = strncpy(tmp, "//anon", sizeof(tmp));
2360                 goto got_name;
2361         }
2362
2363 got_name:
2364         size = ALIGN(strlen(name)+1, sizeof(u64));
2365
2366         mmap_event->file_name = name;
2367         mmap_event->file_size = size;
2368
2369         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2370
2371         cpuctx = &get_cpu_var(perf_cpu_context);
2372         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2373         put_cpu_var(perf_cpu_context);
2374
2375         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2376
2377         kfree(buf);
2378 }
2379
2380 void perf_counter_mmap(unsigned long addr, unsigned long len,
2381                        unsigned long pgoff, struct file *file)
2382 {
2383         struct perf_mmap_event mmap_event;
2384
2385         if (!atomic_read(&nr_mmap_tracking))
2386                 return;
2387
2388         mmap_event = (struct perf_mmap_event){
2389                 .file   = file,
2390                 .event  = {
2391                         .header = { .type = PERF_EVENT_MMAP, },
2392                         .pid    = current->group_leader->pid,
2393                         .tid    = current->pid,
2394                         .start  = addr,
2395                         .len    = len,
2396                         .pgoff  = pgoff,
2397                 },
2398         };
2399
2400         perf_counter_mmap_event(&mmap_event);
2401 }
2402
2403 void perf_counter_munmap(unsigned long addr, unsigned long len,
2404                          unsigned long pgoff, struct file *file)
2405 {
2406         struct perf_mmap_event mmap_event;
2407
2408         if (!atomic_read(&nr_munmap_tracking))
2409                 return;
2410
2411         mmap_event = (struct perf_mmap_event){
2412                 .file   = file,
2413                 .event  = {
2414                         .header = { .type = PERF_EVENT_MUNMAP, },
2415                         .pid    = current->group_leader->pid,
2416                         .tid    = current->pid,
2417                         .start  = addr,
2418                         .len    = len,
2419                         .pgoff  = pgoff,
2420                 },
2421         };
2422
2423         perf_counter_mmap_event(&mmap_event);
2424 }
2425
2426 /*
2427  *
2428  */
2429
2430 static void perf_log_period(struct perf_counter *counter, u64 period)
2431 {
2432         struct perf_output_handle handle;
2433         int ret;
2434
2435         struct {
2436                 struct perf_event_header        header;
2437                 u64                             time;
2438                 u64                             period;
2439         } freq_event = {
2440                 .header = {
2441                         .type = PERF_EVENT_PERIOD,
2442                         .misc = 0,
2443                         .size = sizeof(freq_event),
2444                 },
2445                 .time = sched_clock(),
2446                 .period = period,
2447         };
2448
2449         if (counter->hw.irq_period == period)
2450                 return;
2451
2452         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2453         if (ret)
2454                 return;
2455
2456         perf_output_put(&handle, freq_event);
2457         perf_output_end(&handle);
2458 }
2459
2460 /*
2461  * Generic counter overflow handling.
2462  */
2463
2464 int perf_counter_overflow(struct perf_counter *counter,
2465                           int nmi, struct pt_regs *regs, u64 addr)
2466 {
2467         int events = atomic_read(&counter->event_limit);
2468         int ret = 0;
2469
2470         counter->hw.interrupts++;
2471
2472         /*
2473          * XXX event_limit might not quite work as expected on inherited
2474          * counters
2475          */
2476
2477         counter->pending_kill = POLL_IN;
2478         if (events && atomic_dec_and_test(&counter->event_limit)) {
2479                 ret = 1;
2480                 counter->pending_kill = POLL_HUP;
2481                 if (nmi) {
2482                         counter->pending_disable = 1;
2483                         perf_pending_queue(&counter->pending,
2484                                            perf_pending_counter);
2485                 } else
2486                         perf_counter_disable(counter);
2487         }
2488
2489         perf_counter_output(counter, nmi, regs, addr);
2490         return ret;
2491 }
2492
2493 /*
2494  * Generic software counter infrastructure
2495  */
2496
2497 static void perf_swcounter_update(struct perf_counter *counter)
2498 {
2499         struct hw_perf_counter *hwc = &counter->hw;
2500         u64 prev, now;
2501         s64 delta;
2502
2503 again:
2504         prev = atomic64_read(&hwc->prev_count);
2505         now = atomic64_read(&hwc->count);
2506         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2507                 goto again;
2508
2509         delta = now - prev;
2510
2511         atomic64_add(delta, &counter->count);
2512         atomic64_sub(delta, &hwc->period_left);
2513 }
2514
2515 static void perf_swcounter_set_period(struct perf_counter *counter)
2516 {
2517         struct hw_perf_counter *hwc = &counter->hw;
2518         s64 left = atomic64_read(&hwc->period_left);
2519         s64 period = hwc->irq_period;
2520
2521         if (unlikely(left <= -period)) {
2522                 left = period;
2523                 atomic64_set(&hwc->period_left, left);
2524         }
2525
2526         if (unlikely(left <= 0)) {
2527                 left += period;
2528                 atomic64_add(period, &hwc->period_left);
2529         }
2530
2531         atomic64_set(&hwc->prev_count, -left);
2532         atomic64_set(&hwc->count, -left);
2533 }
2534
2535 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2536 {
2537         enum hrtimer_restart ret = HRTIMER_RESTART;
2538         struct perf_counter *counter;
2539         struct pt_regs *regs;
2540         u64 period;
2541
2542         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2543         counter->pmu->read(counter);
2544
2545         regs = get_irq_regs();
2546         /*
2547          * In case we exclude kernel IPs or are somehow not in interrupt
2548          * context, provide the next best thing, the user IP.
2549          */
2550         if ((counter->hw_event.exclude_kernel || !regs) &&
2551                         !counter->hw_event.exclude_user)
2552                 regs = task_pt_regs(current);
2553
2554         if (regs) {
2555                 if (perf_counter_overflow(counter, 0, regs, 0))
2556                         ret = HRTIMER_NORESTART;
2557         }
2558
2559         period = max_t(u64, 10000, counter->hw.irq_period);
2560         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2561
2562         return ret;
2563 }
2564
2565 static void perf_swcounter_overflow(struct perf_counter *counter,
2566                                     int nmi, struct pt_regs *regs, u64 addr)
2567 {
2568         perf_swcounter_update(counter);
2569         perf_swcounter_set_period(counter);
2570         if (perf_counter_overflow(counter, nmi, regs, addr))
2571                 /* soft-disable the counter */
2572                 ;
2573
2574 }
2575
2576 static int perf_swcounter_match(struct perf_counter *counter,
2577                                 enum perf_event_types type,
2578                                 u32 event, struct pt_regs *regs)
2579 {
2580         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2581                 return 0;
2582
2583         if (perf_event_raw(&counter->hw_event))
2584                 return 0;
2585
2586         if (perf_event_type(&counter->hw_event) != type)
2587                 return 0;
2588
2589         if (perf_event_id(&counter->hw_event) != event)
2590                 return 0;
2591
2592         if (counter->hw_event.exclude_user && user_mode(regs))
2593                 return 0;
2594
2595         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2596                 return 0;
2597
2598         return 1;
2599 }
2600
2601 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2602                                int nmi, struct pt_regs *regs, u64 addr)
2603 {
2604         int neg = atomic64_add_negative(nr, &counter->hw.count);
2605         if (counter->hw.irq_period && !neg)
2606                 perf_swcounter_overflow(counter, nmi, regs, addr);
2607 }
2608
2609 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2610                                      enum perf_event_types type, u32 event,
2611                                      u64 nr, int nmi, struct pt_regs *regs,
2612                                      u64 addr)
2613 {
2614         struct perf_counter *counter;
2615
2616         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2617                 return;
2618
2619         rcu_read_lock();
2620         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2621                 if (perf_swcounter_match(counter, type, event, regs))
2622                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2623         }
2624         rcu_read_unlock();
2625 }
2626
2627 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2628 {
2629         if (in_nmi())
2630                 return &cpuctx->recursion[3];
2631
2632         if (in_irq())
2633                 return &cpuctx->recursion[2];
2634
2635         if (in_softirq())
2636                 return &cpuctx->recursion[1];
2637
2638         return &cpuctx->recursion[0];
2639 }
2640
2641 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2642                                    u64 nr, int nmi, struct pt_regs *regs,
2643                                    u64 addr)
2644 {
2645         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2646         int *recursion = perf_swcounter_recursion_context(cpuctx);
2647
2648         if (*recursion)
2649                 goto out;
2650
2651         (*recursion)++;
2652         barrier();
2653
2654         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2655                                  nr, nmi, regs, addr);
2656         if (cpuctx->task_ctx) {
2657                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2658                                          nr, nmi, regs, addr);
2659         }
2660
2661         barrier();
2662         (*recursion)--;
2663
2664 out:
2665         put_cpu_var(perf_cpu_context);
2666 }
2667
2668 void
2669 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2670 {
2671         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2672 }
2673
2674 static void perf_swcounter_read(struct perf_counter *counter)
2675 {
2676         perf_swcounter_update(counter);
2677 }
2678
2679 static int perf_swcounter_enable(struct perf_counter *counter)
2680 {
2681         perf_swcounter_set_period(counter);
2682         return 0;
2683 }
2684
2685 static void perf_swcounter_disable(struct perf_counter *counter)
2686 {
2687         perf_swcounter_update(counter);
2688 }
2689
2690 static const struct pmu perf_ops_generic = {
2691         .enable         = perf_swcounter_enable,
2692         .disable        = perf_swcounter_disable,
2693         .read           = perf_swcounter_read,
2694 };
2695
2696 /*
2697  * Software counter: cpu wall time clock
2698  */
2699
2700 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2701 {
2702         int cpu = raw_smp_processor_id();
2703         s64 prev;
2704         u64 now;
2705
2706         now = cpu_clock(cpu);
2707         prev = atomic64_read(&counter->hw.prev_count);
2708         atomic64_set(&counter->hw.prev_count, now);
2709         atomic64_add(now - prev, &counter->count);
2710 }
2711
2712 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2713 {
2714         struct hw_perf_counter *hwc = &counter->hw;
2715         int cpu = raw_smp_processor_id();
2716
2717         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2718         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2719         hwc->hrtimer.function = perf_swcounter_hrtimer;
2720         if (hwc->irq_period) {
2721                 u64 period = max_t(u64, 10000, hwc->irq_period);
2722                 __hrtimer_start_range_ns(&hwc->hrtimer,
2723                                 ns_to_ktime(period), 0,
2724                                 HRTIMER_MODE_REL, 0);
2725         }
2726
2727         return 0;
2728 }
2729
2730 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2731 {
2732         if (counter->hw.irq_period)
2733                 hrtimer_cancel(&counter->hw.hrtimer);
2734         cpu_clock_perf_counter_update(counter);
2735 }
2736
2737 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2738 {
2739         cpu_clock_perf_counter_update(counter);
2740 }
2741
2742 static const struct pmu perf_ops_cpu_clock = {
2743         .enable         = cpu_clock_perf_counter_enable,
2744         .disable        = cpu_clock_perf_counter_disable,
2745         .read           = cpu_clock_perf_counter_read,
2746 };
2747
2748 /*
2749  * Software counter: task time clock
2750  */
2751
2752 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2753 {
2754         u64 prev;
2755         s64 delta;
2756
2757         prev = atomic64_xchg(&counter->hw.prev_count, now);
2758         delta = now - prev;
2759         atomic64_add(delta, &counter->count);
2760 }
2761
2762 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2763 {
2764         struct hw_perf_counter *hwc = &counter->hw;
2765         u64 now;
2766
2767         now = counter->ctx->time;
2768
2769         atomic64_set(&hwc->prev_count, now);
2770         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2771         hwc->hrtimer.function = perf_swcounter_hrtimer;
2772         if (hwc->irq_period) {
2773                 u64 period = max_t(u64, 10000, hwc->irq_period);
2774                 __hrtimer_start_range_ns(&hwc->hrtimer,
2775                                 ns_to_ktime(period), 0,
2776                                 HRTIMER_MODE_REL, 0);
2777         }
2778
2779         return 0;
2780 }
2781
2782 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2783 {
2784         if (counter->hw.irq_period)
2785                 hrtimer_cancel(&counter->hw.hrtimer);
2786         task_clock_perf_counter_update(counter, counter->ctx->time);
2787
2788 }
2789
2790 static void task_clock_perf_counter_read(struct perf_counter *counter)
2791 {
2792         u64 time;
2793
2794         if (!in_nmi()) {
2795                 update_context_time(counter->ctx);
2796                 time = counter->ctx->time;
2797         } else {
2798                 u64 now = perf_clock();
2799                 u64 delta = now - counter->ctx->timestamp;
2800                 time = counter->ctx->time + delta;
2801         }
2802
2803         task_clock_perf_counter_update(counter, time);
2804 }
2805
2806 static const struct pmu perf_ops_task_clock = {
2807         .enable         = task_clock_perf_counter_enable,
2808         .disable        = task_clock_perf_counter_disable,
2809         .read           = task_clock_perf_counter_read,
2810 };
2811
2812 /*
2813  * Software counter: cpu migrations
2814  */
2815
2816 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2817 {
2818         struct task_struct *curr = counter->ctx->task;
2819
2820         if (curr)
2821                 return curr->se.nr_migrations;
2822         return cpu_nr_migrations(smp_processor_id());
2823 }
2824
2825 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2826 {
2827         u64 prev, now;
2828         s64 delta;
2829
2830         prev = atomic64_read(&counter->hw.prev_count);
2831         now = get_cpu_migrations(counter);
2832
2833         atomic64_set(&counter->hw.prev_count, now);
2834
2835         delta = now - prev;
2836
2837         atomic64_add(delta, &counter->count);
2838 }
2839
2840 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2841 {
2842         cpu_migrations_perf_counter_update(counter);
2843 }
2844
2845 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2846 {
2847         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2848                 atomic64_set(&counter->hw.prev_count,
2849                              get_cpu_migrations(counter));
2850         return 0;
2851 }
2852
2853 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2854 {
2855         cpu_migrations_perf_counter_update(counter);
2856 }
2857
2858 static const struct pmu perf_ops_cpu_migrations = {
2859         .enable         = cpu_migrations_perf_counter_enable,
2860         .disable        = cpu_migrations_perf_counter_disable,
2861         .read           = cpu_migrations_perf_counter_read,
2862 };
2863
2864 #ifdef CONFIG_EVENT_PROFILE
2865 void perf_tpcounter_event(int event_id)
2866 {
2867         struct pt_regs *regs = get_irq_regs();
2868
2869         if (!regs)
2870                 regs = task_pt_regs(current);
2871
2872         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2873 }
2874 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2875
2876 extern int ftrace_profile_enable(int);
2877 extern void ftrace_profile_disable(int);
2878
2879 static void tp_perf_counter_destroy(struct perf_counter *counter)
2880 {
2881         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2882 }
2883
2884 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2885 {
2886         int event_id = perf_event_id(&counter->hw_event);
2887         int ret;
2888
2889         ret = ftrace_profile_enable(event_id);
2890         if (ret)
2891                 return NULL;
2892
2893         counter->destroy = tp_perf_counter_destroy;
2894         counter->hw.irq_period = counter->hw_event.irq_period;
2895
2896         return &perf_ops_generic;
2897 }
2898 #else
2899 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2900 {
2901         return NULL;
2902 }
2903 #endif
2904
2905 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2906 {
2907         const struct pmu *pmu = NULL;
2908
2909         /*
2910          * Software counters (currently) can't in general distinguish
2911          * between user, kernel and hypervisor events.
2912          * However, context switches and cpu migrations are considered
2913          * to be kernel events, and page faults are never hypervisor
2914          * events.
2915          */
2916         switch (perf_event_id(&counter->hw_event)) {
2917         case PERF_COUNT_CPU_CLOCK:
2918                 pmu = &perf_ops_cpu_clock;
2919
2920                 break;
2921         case PERF_COUNT_TASK_CLOCK:
2922                 /*
2923                  * If the user instantiates this as a per-cpu counter,
2924                  * use the cpu_clock counter instead.
2925                  */
2926                 if (counter->ctx->task)
2927                         pmu = &perf_ops_task_clock;
2928                 else
2929                         pmu = &perf_ops_cpu_clock;
2930
2931                 break;
2932         case PERF_COUNT_PAGE_FAULTS:
2933         case PERF_COUNT_PAGE_FAULTS_MIN:
2934         case PERF_COUNT_PAGE_FAULTS_MAJ:
2935         case PERF_COUNT_CONTEXT_SWITCHES:
2936                 pmu = &perf_ops_generic;
2937                 break;
2938         case PERF_COUNT_CPU_MIGRATIONS:
2939                 if (!counter->hw_event.exclude_kernel)
2940                         pmu = &perf_ops_cpu_migrations;
2941                 break;
2942         }
2943
2944         return pmu;
2945 }
2946
2947 /*
2948  * Allocate and initialize a counter structure
2949  */
2950 static struct perf_counter *
2951 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2952                    int cpu,
2953                    struct perf_counter_context *ctx,
2954                    struct perf_counter *group_leader,
2955                    gfp_t gfpflags)
2956 {
2957         const struct pmu *pmu;
2958         struct perf_counter *counter;
2959         struct hw_perf_counter *hwc;
2960         long err;
2961
2962         counter = kzalloc(sizeof(*counter), gfpflags);
2963         if (!counter)
2964                 return ERR_PTR(-ENOMEM);
2965
2966         /*
2967          * Single counters are their own group leaders, with an
2968          * empty sibling list:
2969          */
2970         if (!group_leader)
2971                 group_leader = counter;
2972
2973         mutex_init(&counter->mutex);
2974         INIT_LIST_HEAD(&counter->list_entry);
2975         INIT_LIST_HEAD(&counter->event_entry);
2976         INIT_LIST_HEAD(&counter->sibling_list);
2977         init_waitqueue_head(&counter->waitq);
2978
2979         mutex_init(&counter->mmap_mutex);
2980
2981         INIT_LIST_HEAD(&counter->child_list);
2982
2983         counter->cpu                    = cpu;
2984         counter->hw_event               = *hw_event;
2985         counter->group_leader           = group_leader;
2986         counter->pmu                    = NULL;
2987         counter->ctx                    = ctx;
2988
2989         counter->state = PERF_COUNTER_STATE_INACTIVE;
2990         if (hw_event->disabled)
2991                 counter->state = PERF_COUNTER_STATE_OFF;
2992
2993         pmu = NULL;
2994
2995         hwc = &counter->hw;
2996         if (hw_event->freq && hw_event->irq_freq)
2997                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
2998         else
2999                 hwc->irq_period = hw_event->irq_period;
3000
3001         /*
3002          * we currently do not support PERF_RECORD_GROUP on inherited counters
3003          */
3004         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3005                 goto done;
3006
3007         if (perf_event_raw(hw_event)) {
3008                 pmu = hw_perf_counter_init(counter);
3009                 goto done;
3010         }
3011
3012         switch (perf_event_type(hw_event)) {
3013         case PERF_TYPE_HARDWARE:
3014                 pmu = hw_perf_counter_init(counter);
3015                 break;
3016
3017         case PERF_TYPE_SOFTWARE:
3018                 pmu = sw_perf_counter_init(counter);
3019                 break;
3020
3021         case PERF_TYPE_TRACEPOINT:
3022                 pmu = tp_perf_counter_init(counter);
3023                 break;
3024         }
3025 done:
3026         err = 0;
3027         if (!pmu)
3028                 err = -EINVAL;
3029         else if (IS_ERR(pmu))
3030                 err = PTR_ERR(pmu);
3031
3032         if (err) {
3033                 kfree(counter);
3034                 return ERR_PTR(err);
3035         }
3036
3037         counter->pmu = pmu;
3038
3039         atomic_inc(&nr_counters);
3040         if (counter->hw_event.mmap)
3041                 atomic_inc(&nr_mmap_tracking);
3042         if (counter->hw_event.munmap)
3043                 atomic_inc(&nr_munmap_tracking);
3044         if (counter->hw_event.comm)
3045                 atomic_inc(&nr_comm_tracking);
3046
3047         return counter;
3048 }
3049
3050 /**
3051  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3052  *
3053  * @hw_event_uptr:      event type attributes for monitoring/sampling
3054  * @pid:                target pid
3055  * @cpu:                target cpu
3056  * @group_fd:           group leader counter fd
3057  */
3058 SYSCALL_DEFINE5(perf_counter_open,
3059                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3060                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3061 {
3062         struct perf_counter *counter, *group_leader;
3063         struct perf_counter_hw_event hw_event;
3064         struct perf_counter_context *ctx;
3065         struct file *counter_file = NULL;
3066         struct file *group_file = NULL;
3067         int fput_needed = 0;
3068         int fput_needed2 = 0;
3069         int ret;
3070
3071         /* for future expandability... */
3072         if (flags)
3073                 return -EINVAL;
3074
3075         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3076                 return -EFAULT;
3077
3078         /*
3079          * Get the target context (task or percpu):
3080          */
3081         ctx = find_get_context(pid, cpu);
3082         if (IS_ERR(ctx))
3083                 return PTR_ERR(ctx);
3084
3085         /*
3086          * Look up the group leader (we will attach this counter to it):
3087          */
3088         group_leader = NULL;
3089         if (group_fd != -1) {
3090                 ret = -EINVAL;
3091                 group_file = fget_light(group_fd, &fput_needed);
3092                 if (!group_file)
3093                         goto err_put_context;
3094                 if (group_file->f_op != &perf_fops)
3095                         goto err_put_context;
3096
3097                 group_leader = group_file->private_data;
3098                 /*
3099                  * Do not allow a recursive hierarchy (this new sibling
3100                  * becoming part of another group-sibling):
3101                  */
3102                 if (group_leader->group_leader != group_leader)
3103                         goto err_put_context;
3104                 /*
3105                  * Do not allow to attach to a group in a different
3106                  * task or CPU context:
3107                  */
3108                 if (group_leader->ctx != ctx)
3109                         goto err_put_context;
3110                 /*
3111                  * Only a group leader can be exclusive or pinned
3112                  */
3113                 if (hw_event.exclusive || hw_event.pinned)
3114                         goto err_put_context;
3115         }
3116
3117         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3118                                      GFP_KERNEL);
3119         ret = PTR_ERR(counter);
3120         if (IS_ERR(counter))
3121                 goto err_put_context;
3122
3123         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3124         if (ret < 0)
3125                 goto err_free_put_context;
3126
3127         counter_file = fget_light(ret, &fput_needed2);
3128         if (!counter_file)
3129                 goto err_free_put_context;
3130
3131         counter->filp = counter_file;
3132         mutex_lock(&ctx->mutex);
3133         perf_install_in_context(ctx, counter, cpu);
3134         mutex_unlock(&ctx->mutex);
3135
3136         fput_light(counter_file, fput_needed2);
3137
3138 out_fput:
3139         fput_light(group_file, fput_needed);
3140
3141         return ret;
3142
3143 err_free_put_context:
3144         kfree(counter);
3145
3146 err_put_context:
3147         put_context(ctx);
3148
3149         goto out_fput;
3150 }
3151
3152 /*
3153  * Initialize the perf_counter context in a task_struct:
3154  */
3155 static void
3156 __perf_counter_init_context(struct perf_counter_context *ctx,
3157                             struct task_struct *task)
3158 {
3159         memset(ctx, 0, sizeof(*ctx));
3160         spin_lock_init(&ctx->lock);
3161         mutex_init(&ctx->mutex);
3162         INIT_LIST_HEAD(&ctx->counter_list);
3163         INIT_LIST_HEAD(&ctx->event_list);
3164         ctx->task = task;
3165 }
3166
3167 /*
3168  * inherit a counter from parent task to child task:
3169  */
3170 static struct perf_counter *
3171 inherit_counter(struct perf_counter *parent_counter,
3172               struct task_struct *parent,
3173               struct perf_counter_context *parent_ctx,
3174               struct task_struct *child,
3175               struct perf_counter *group_leader,
3176               struct perf_counter_context *child_ctx)
3177 {
3178         struct perf_counter *child_counter;
3179
3180         /*
3181          * Instead of creating recursive hierarchies of counters,
3182          * we link inherited counters back to the original parent,
3183          * which has a filp for sure, which we use as the reference
3184          * count:
3185          */
3186         if (parent_counter->parent)
3187                 parent_counter = parent_counter->parent;
3188
3189         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3190                                            parent_counter->cpu, child_ctx,
3191                                            group_leader, GFP_KERNEL);
3192         if (IS_ERR(child_counter))
3193                 return child_counter;
3194
3195         /*
3196          * Link it up in the child's context:
3197          */
3198         child_counter->task = child;
3199         add_counter_to_ctx(child_counter, child_ctx);
3200
3201         child_counter->parent = parent_counter;
3202         /*
3203          * inherit into child's child as well:
3204          */
3205         child_counter->hw_event.inherit = 1;
3206
3207         /*
3208          * Get a reference to the parent filp - we will fput it
3209          * when the child counter exits. This is safe to do because
3210          * we are in the parent and we know that the filp still
3211          * exists and has a nonzero count:
3212          */
3213         atomic_long_inc(&parent_counter->filp->f_count);
3214
3215         /*
3216          * Link this into the parent counter's child list
3217          */
3218         mutex_lock(&parent_counter->mutex);
3219         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3220
3221         /*
3222          * Make the child state follow the state of the parent counter,
3223          * not its hw_event.disabled bit.  We hold the parent's mutex,
3224          * so we won't race with perf_counter_{en,dis}able_family.
3225          */
3226         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3227                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3228         else
3229                 child_counter->state = PERF_COUNTER_STATE_OFF;
3230
3231         mutex_unlock(&parent_counter->mutex);
3232
3233         return child_counter;
3234 }
3235
3236 static int inherit_group(struct perf_counter *parent_counter,
3237               struct task_struct *parent,
3238               struct perf_counter_context *parent_ctx,
3239               struct task_struct *child,
3240               struct perf_counter_context *child_ctx)
3241 {
3242         struct perf_counter *leader;
3243         struct perf_counter *sub;
3244         struct perf_counter *child_ctr;
3245
3246         leader = inherit_counter(parent_counter, parent, parent_ctx,
3247                                  child, NULL, child_ctx);
3248         if (IS_ERR(leader))
3249                 return PTR_ERR(leader);
3250         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3251                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3252                                             child, leader, child_ctx);
3253                 if (IS_ERR(child_ctr))
3254                         return PTR_ERR(child_ctr);
3255         }
3256         return 0;
3257 }
3258
3259 static void sync_child_counter(struct perf_counter *child_counter,
3260                                struct perf_counter *parent_counter)
3261 {
3262         u64 child_val;
3263
3264         child_val = atomic64_read(&child_counter->count);
3265
3266         /*
3267          * Add back the child's count to the parent's count:
3268          */
3269         atomic64_add(child_val, &parent_counter->count);
3270         atomic64_add(child_counter->total_time_enabled,
3271                      &parent_counter->child_total_time_enabled);
3272         atomic64_add(child_counter->total_time_running,
3273                      &parent_counter->child_total_time_running);
3274
3275         /*
3276          * Remove this counter from the parent's list
3277          */
3278         mutex_lock(&parent_counter->mutex);
3279         list_del_init(&child_counter->child_list);
3280         mutex_unlock(&parent_counter->mutex);
3281
3282         /*
3283          * Release the parent counter, if this was the last
3284          * reference to it.
3285          */
3286         fput(parent_counter->filp);
3287 }
3288
3289 static void
3290 __perf_counter_exit_task(struct task_struct *child,
3291                          struct perf_counter *child_counter,
3292                          struct perf_counter_context *child_ctx)
3293 {
3294         struct perf_counter *parent_counter;
3295
3296         /*
3297          * If we do not self-reap then we have to wait for the
3298          * child task to unschedule (it will happen for sure),
3299          * so that its counter is at its final count. (This
3300          * condition triggers rarely - child tasks usually get
3301          * off their CPU before the parent has a chance to
3302          * get this far into the reaping action)
3303          */
3304         if (child != current) {
3305                 wait_task_inactive(child, 0);
3306                 update_counter_times(child_counter);
3307                 list_del_counter(child_counter, child_ctx);
3308         } else {
3309                 struct perf_cpu_context *cpuctx;
3310                 unsigned long flags;
3311
3312                 /*
3313                  * Disable and unlink this counter.
3314                  *
3315                  * Be careful about zapping the list - IRQ/NMI context
3316                  * could still be processing it:
3317                  */
3318                 local_irq_save(flags);
3319                 perf_disable();
3320
3321                 cpuctx = &__get_cpu_var(perf_cpu_context);
3322
3323                 group_sched_out(child_counter, cpuctx, child_ctx);
3324                 update_counter_times(child_counter);
3325
3326                 list_del_counter(child_counter, child_ctx);
3327
3328                 perf_enable();
3329                 local_irq_restore(flags);
3330         }
3331
3332         parent_counter = child_counter->parent;
3333         /*
3334          * It can happen that parent exits first, and has counters
3335          * that are still around due to the child reference. These
3336          * counters need to be zapped - but otherwise linger.
3337          */
3338         if (parent_counter) {
3339                 sync_child_counter(child_counter, parent_counter);
3340                 free_counter(child_counter);
3341         }
3342 }
3343
3344 /*
3345  * When a child task exits, feed back counter values to parent counters.
3346  *
3347  * Note: we may be running in child context, but the PID is not hashed
3348  * anymore so new counters will not be added.
3349  */
3350 void perf_counter_exit_task(struct task_struct *child)
3351 {
3352         struct perf_counter *child_counter, *tmp;
3353         struct perf_counter_context *child_ctx;
3354
3355         WARN_ON_ONCE(child != current);
3356
3357         child_ctx = &child->perf_counter_ctx;
3358
3359         if (likely(!child_ctx->nr_counters))
3360                 return;
3361
3362 again:
3363         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3364                                  list_entry)
3365                 __perf_counter_exit_task(child, child_counter, child_ctx);
3366
3367         /*
3368          * If the last counter was a group counter, it will have appended all
3369          * its siblings to the list, but we obtained 'tmp' before that which
3370          * will still point to the list head terminating the iteration.
3371          */
3372         if (!list_empty(&child_ctx->counter_list))
3373                 goto again;
3374 }
3375
3376 /*
3377  * Initialize the perf_counter context in task_struct
3378  */
3379 void perf_counter_init_task(struct task_struct *child)
3380 {
3381         struct perf_counter_context *child_ctx, *parent_ctx;
3382         struct perf_counter *counter;
3383         struct task_struct *parent = current;
3384
3385         child_ctx  =  &child->perf_counter_ctx;
3386         parent_ctx = &parent->perf_counter_ctx;
3387
3388         __perf_counter_init_context(child_ctx, child);
3389
3390         /*
3391          * This is executed from the parent task context, so inherit
3392          * counters that have been marked for cloning:
3393          */
3394
3395         if (likely(!parent_ctx->nr_counters))
3396                 return;
3397
3398         /*
3399          * Lock the parent list. No need to lock the child - not PID
3400          * hashed yet and not running, so nobody can access it.
3401          */
3402         mutex_lock(&parent_ctx->mutex);
3403
3404         /*
3405          * We dont have to disable NMIs - we are only looking at
3406          * the list, not manipulating it:
3407          */
3408         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3409                 if (counter != counter->group_leader)
3410                         continue;
3411
3412                 if (!counter->hw_event.inherit)
3413                         continue;
3414
3415                 if (inherit_group(counter, parent,
3416                                   parent_ctx, child, child_ctx))
3417                         break;
3418         }
3419
3420         mutex_unlock(&parent_ctx->mutex);
3421 }
3422
3423 static void __cpuinit perf_counter_init_cpu(int cpu)
3424 {
3425         struct perf_cpu_context *cpuctx;
3426
3427         cpuctx = &per_cpu(perf_cpu_context, cpu);
3428         __perf_counter_init_context(&cpuctx->ctx, NULL);
3429
3430         spin_lock(&perf_resource_lock);
3431         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3432         spin_unlock(&perf_resource_lock);
3433
3434         hw_perf_counter_setup(cpu);
3435 }
3436
3437 #ifdef CONFIG_HOTPLUG_CPU
3438 static void __perf_counter_exit_cpu(void *info)
3439 {
3440         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3441         struct perf_counter_context *ctx = &cpuctx->ctx;
3442         struct perf_counter *counter, *tmp;
3443
3444         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3445                 __perf_counter_remove_from_context(counter);
3446 }
3447 static void perf_counter_exit_cpu(int cpu)
3448 {
3449         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3450         struct perf_counter_context *ctx = &cpuctx->ctx;
3451
3452         mutex_lock(&ctx->mutex);
3453         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3454         mutex_unlock(&ctx->mutex);
3455 }
3456 #else
3457 static inline void perf_counter_exit_cpu(int cpu) { }
3458 #endif
3459
3460 static int __cpuinit
3461 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3462 {
3463         unsigned int cpu = (long)hcpu;
3464
3465         switch (action) {
3466
3467         case CPU_UP_PREPARE:
3468         case CPU_UP_PREPARE_FROZEN:
3469                 perf_counter_init_cpu(cpu);
3470                 break;
3471
3472         case CPU_DOWN_PREPARE:
3473         case CPU_DOWN_PREPARE_FROZEN:
3474                 perf_counter_exit_cpu(cpu);
3475                 break;
3476
3477         default:
3478                 break;
3479         }
3480
3481         return NOTIFY_OK;
3482 }
3483
3484 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3485         .notifier_call          = perf_cpu_notify,
3486 };
3487
3488 void __init perf_counter_init(void)
3489 {
3490         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3491                         (void *)(long)smp_processor_id());
3492         register_cpu_notifier(&perf_cpu_nb);
3493 }
3494
3495 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3496 {
3497         return sprintf(buf, "%d\n", perf_reserved_percpu);
3498 }
3499
3500 static ssize_t
3501 perf_set_reserve_percpu(struct sysdev_class *class,
3502                         const char *buf,
3503                         size_t count)
3504 {
3505         struct perf_cpu_context *cpuctx;
3506         unsigned long val;
3507         int err, cpu, mpt;
3508
3509         err = strict_strtoul(buf, 10, &val);
3510         if (err)
3511                 return err;
3512         if (val > perf_max_counters)
3513                 return -EINVAL;
3514
3515         spin_lock(&perf_resource_lock);
3516         perf_reserved_percpu = val;
3517         for_each_online_cpu(cpu) {
3518                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3519                 spin_lock_irq(&cpuctx->ctx.lock);
3520                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3521                           perf_max_counters - perf_reserved_percpu);
3522                 cpuctx->max_pertask = mpt;
3523                 spin_unlock_irq(&cpuctx->ctx.lock);
3524         }
3525         spin_unlock(&perf_resource_lock);
3526
3527         return count;
3528 }
3529
3530 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3531 {
3532         return sprintf(buf, "%d\n", perf_overcommit);
3533 }
3534
3535 static ssize_t
3536 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3537 {
3538         unsigned long val;
3539         int err;
3540
3541         err = strict_strtoul(buf, 10, &val);
3542         if (err)
3543                 return err;
3544         if (val > 1)
3545                 return -EINVAL;
3546
3547         spin_lock(&perf_resource_lock);
3548         perf_overcommit = val;
3549         spin_unlock(&perf_resource_lock);
3550
3551         return count;
3552 }
3553
3554 static SYSDEV_CLASS_ATTR(
3555                                 reserve_percpu,
3556                                 0644,
3557                                 perf_show_reserve_percpu,
3558                                 perf_set_reserve_percpu
3559                         );
3560
3561 static SYSDEV_CLASS_ATTR(
3562                                 overcommit,
3563                                 0644,
3564                                 perf_show_overcommit,
3565                                 perf_set_overcommit
3566                         );
3567
3568 static struct attribute *perfclass_attrs[] = {
3569         &attr_reserve_percpu.attr,
3570         &attr_overcommit.attr,
3571         NULL
3572 };
3573
3574 static struct attribute_group perfclass_attr_group = {
3575         .attrs                  = perfclass_attrs,
3576         .name                   = "perf_counters",
3577 };
3578
3579 static int __init perf_counter_sysfs_init(void)
3580 {
3581         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3582                                   &perfclass_attr_group);
3583 }
3584 device_initcall(perf_counter_sysfs_init);