]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: provide an mlock threshold
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
48
49 /*
50  * Lock for (sysadmin-configurable) counter reservations:
51  */
52 static DEFINE_SPINLOCK(perf_resource_lock);
53
54 /*
55  * Architecture provided APIs - weak aliases:
56  */
57 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
58 {
59         return NULL;
60 }
61
62 u64 __weak hw_perf_save_disable(void)           { return 0; }
63 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
64 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
65 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
66                struct perf_cpu_context *cpuctx,
67                struct perf_counter_context *ctx, int cpu)
68 {
69         return 0;
70 }
71
72 void __weak perf_counter_print_debug(void)      { }
73
74 static void
75 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
76 {
77         struct perf_counter *group_leader = counter->group_leader;
78
79         /*
80          * Depending on whether it is a standalone or sibling counter,
81          * add it straight to the context's counter list, or to the group
82          * leader's sibling list:
83          */
84         if (counter->group_leader == counter)
85                 list_add_tail(&counter->list_entry, &ctx->counter_list);
86         else {
87                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
88                 group_leader->nr_siblings++;
89         }
90
91         list_add_rcu(&counter->event_entry, &ctx->event_list);
92 }
93
94 static void
95 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
96 {
97         struct perf_counter *sibling, *tmp;
98
99         list_del_init(&counter->list_entry);
100         list_del_rcu(&counter->event_entry);
101
102         if (counter->group_leader != counter)
103                 counter->group_leader->nr_siblings--;
104
105         /*
106          * If this was a group counter with sibling counters then
107          * upgrade the siblings to singleton counters by adding them
108          * to the context list directly:
109          */
110         list_for_each_entry_safe(sibling, tmp,
111                                  &counter->sibling_list, list_entry) {
112
113                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
114                 sibling->group_leader = sibling;
115         }
116 }
117
118 static void
119 counter_sched_out(struct perf_counter *counter,
120                   struct perf_cpu_context *cpuctx,
121                   struct perf_counter_context *ctx)
122 {
123         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
124                 return;
125
126         counter->state = PERF_COUNTER_STATE_INACTIVE;
127         counter->tstamp_stopped = ctx->time;
128         counter->pmu->disable(counter);
129         counter->oncpu = -1;
130
131         if (!is_software_counter(counter))
132                 cpuctx->active_oncpu--;
133         ctx->nr_active--;
134         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
135                 cpuctx->exclusive = 0;
136 }
137
138 static void
139 group_sched_out(struct perf_counter *group_counter,
140                 struct perf_cpu_context *cpuctx,
141                 struct perf_counter_context *ctx)
142 {
143         struct perf_counter *counter;
144
145         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
146                 return;
147
148         counter_sched_out(group_counter, cpuctx, ctx);
149
150         /*
151          * Schedule out siblings (if any):
152          */
153         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
154                 counter_sched_out(counter, cpuctx, ctx);
155
156         if (group_counter->hw_event.exclusive)
157                 cpuctx->exclusive = 0;
158 }
159
160 /*
161  * Cross CPU call to remove a performance counter
162  *
163  * We disable the counter on the hardware level first. After that we
164  * remove it from the context list.
165  */
166 static void __perf_counter_remove_from_context(void *info)
167 {
168         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
169         struct perf_counter *counter = info;
170         struct perf_counter_context *ctx = counter->ctx;
171         unsigned long flags;
172         u64 perf_flags;
173
174         /*
175          * If this is a task context, we need to check whether it is
176          * the current task context of this cpu. If not it has been
177          * scheduled out before the smp call arrived.
178          */
179         if (ctx->task && cpuctx->task_ctx != ctx)
180                 return;
181
182         spin_lock_irqsave(&ctx->lock, flags);
183
184         counter_sched_out(counter, cpuctx, ctx);
185
186         counter->task = NULL;
187         ctx->nr_counters--;
188
189         /*
190          * Protect the list operation against NMI by disabling the
191          * counters on a global level. NOP for non NMI based counters.
192          */
193         perf_flags = hw_perf_save_disable();
194         list_del_counter(counter, ctx);
195         hw_perf_restore(perf_flags);
196
197         if (!ctx->task) {
198                 /*
199                  * Allow more per task counters with respect to the
200                  * reservation:
201                  */
202                 cpuctx->max_pertask =
203                         min(perf_max_counters - ctx->nr_counters,
204                             perf_max_counters - perf_reserved_percpu);
205         }
206
207         spin_unlock_irqrestore(&ctx->lock, flags);
208 }
209
210
211 /*
212  * Remove the counter from a task's (or a CPU's) list of counters.
213  *
214  * Must be called with counter->mutex and ctx->mutex held.
215  *
216  * CPU counters are removed with a smp call. For task counters we only
217  * call when the task is on a CPU.
218  */
219 static void perf_counter_remove_from_context(struct perf_counter *counter)
220 {
221         struct perf_counter_context *ctx = counter->ctx;
222         struct task_struct *task = ctx->task;
223
224         if (!task) {
225                 /*
226                  * Per cpu counters are removed via an smp call and
227                  * the removal is always sucessful.
228                  */
229                 smp_call_function_single(counter->cpu,
230                                          __perf_counter_remove_from_context,
231                                          counter, 1);
232                 return;
233         }
234
235 retry:
236         task_oncpu_function_call(task, __perf_counter_remove_from_context,
237                                  counter);
238
239         spin_lock_irq(&ctx->lock);
240         /*
241          * If the context is active we need to retry the smp call.
242          */
243         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
244                 spin_unlock_irq(&ctx->lock);
245                 goto retry;
246         }
247
248         /*
249          * The lock prevents that this context is scheduled in so we
250          * can remove the counter safely, if the call above did not
251          * succeed.
252          */
253         if (!list_empty(&counter->list_entry)) {
254                 ctx->nr_counters--;
255                 list_del_counter(counter, ctx);
256                 counter->task = NULL;
257         }
258         spin_unlock_irq(&ctx->lock);
259 }
260
261 static inline u64 perf_clock(void)
262 {
263         return cpu_clock(smp_processor_id());
264 }
265
266 /*
267  * Update the record of the current time in a context.
268  */
269 static void update_context_time(struct perf_counter_context *ctx)
270 {
271         u64 now = perf_clock();
272
273         ctx->time += now - ctx->timestamp;
274         ctx->timestamp = now;
275 }
276
277 /*
278  * Update the total_time_enabled and total_time_running fields for a counter.
279  */
280 static void update_counter_times(struct perf_counter *counter)
281 {
282         struct perf_counter_context *ctx = counter->ctx;
283         u64 run_end;
284
285         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
286                 return;
287
288         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
289
290         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291                 run_end = counter->tstamp_stopped;
292         else
293                 run_end = ctx->time;
294
295         counter->total_time_running = run_end - counter->tstamp_running;
296 }
297
298 /*
299  * Update total_time_enabled and total_time_running for all counters in a group.
300  */
301 static void update_group_times(struct perf_counter *leader)
302 {
303         struct perf_counter *counter;
304
305         update_counter_times(leader);
306         list_for_each_entry(counter, &leader->sibling_list, list_entry)
307                 update_counter_times(counter);
308 }
309
310 /*
311  * Cross CPU call to disable a performance counter
312  */
313 static void __perf_counter_disable(void *info)
314 {
315         struct perf_counter *counter = info;
316         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317         struct perf_counter_context *ctx = counter->ctx;
318         unsigned long flags;
319
320         /*
321          * If this is a per-task counter, need to check whether this
322          * counter's task is the current task on this cpu.
323          */
324         if (ctx->task && cpuctx->task_ctx != ctx)
325                 return;
326
327         spin_lock_irqsave(&ctx->lock, flags);
328
329         /*
330          * If the counter is on, turn it off.
331          * If it is in error state, leave it in error state.
332          */
333         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334                 update_context_time(ctx);
335                 update_counter_times(counter);
336                 if (counter == counter->group_leader)
337                         group_sched_out(counter, cpuctx, ctx);
338                 else
339                         counter_sched_out(counter, cpuctx, ctx);
340                 counter->state = PERF_COUNTER_STATE_OFF;
341         }
342
343         spin_unlock_irqrestore(&ctx->lock, flags);
344 }
345
346 /*
347  * Disable a counter.
348  */
349 static void perf_counter_disable(struct perf_counter *counter)
350 {
351         struct perf_counter_context *ctx = counter->ctx;
352         struct task_struct *task = ctx->task;
353
354         if (!task) {
355                 /*
356                  * Disable the counter on the cpu that it's on
357                  */
358                 smp_call_function_single(counter->cpu, __perf_counter_disable,
359                                          counter, 1);
360                 return;
361         }
362
363  retry:
364         task_oncpu_function_call(task, __perf_counter_disable, counter);
365
366         spin_lock_irq(&ctx->lock);
367         /*
368          * If the counter is still active, we need to retry the cross-call.
369          */
370         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
371                 spin_unlock_irq(&ctx->lock);
372                 goto retry;
373         }
374
375         /*
376          * Since we have the lock this context can't be scheduled
377          * in, so we can change the state safely.
378          */
379         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
380                 update_counter_times(counter);
381                 counter->state = PERF_COUNTER_STATE_OFF;
382         }
383
384         spin_unlock_irq(&ctx->lock);
385 }
386
387 /*
388  * Disable a counter and all its children.
389  */
390 static void perf_counter_disable_family(struct perf_counter *counter)
391 {
392         struct perf_counter *child;
393
394         perf_counter_disable(counter);
395
396         /*
397          * Lock the mutex to protect the list of children
398          */
399         mutex_lock(&counter->mutex);
400         list_for_each_entry(child, &counter->child_list, child_list)
401                 perf_counter_disable(child);
402         mutex_unlock(&counter->mutex);
403 }
404
405 static int
406 counter_sched_in(struct perf_counter *counter,
407                  struct perf_cpu_context *cpuctx,
408                  struct perf_counter_context *ctx,
409                  int cpu)
410 {
411         if (counter->state <= PERF_COUNTER_STATE_OFF)
412                 return 0;
413
414         counter->state = PERF_COUNTER_STATE_ACTIVE;
415         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
416         /*
417          * The new state must be visible before we turn it on in the hardware:
418          */
419         smp_wmb();
420
421         if (counter->pmu->enable(counter)) {
422                 counter->state = PERF_COUNTER_STATE_INACTIVE;
423                 counter->oncpu = -1;
424                 return -EAGAIN;
425         }
426
427         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
428
429         if (!is_software_counter(counter))
430                 cpuctx->active_oncpu++;
431         ctx->nr_active++;
432
433         if (counter->hw_event.exclusive)
434                 cpuctx->exclusive = 1;
435
436         return 0;
437 }
438
439 /*
440  * Return 1 for a group consisting entirely of software counters,
441  * 0 if the group contains any hardware counters.
442  */
443 static int is_software_only_group(struct perf_counter *leader)
444 {
445         struct perf_counter *counter;
446
447         if (!is_software_counter(leader))
448                 return 0;
449
450         list_for_each_entry(counter, &leader->sibling_list, list_entry)
451                 if (!is_software_counter(counter))
452                         return 0;
453
454         return 1;
455 }
456
457 /*
458  * Work out whether we can put this counter group on the CPU now.
459  */
460 static int group_can_go_on(struct perf_counter *counter,
461                            struct perf_cpu_context *cpuctx,
462                            int can_add_hw)
463 {
464         /*
465          * Groups consisting entirely of software counters can always go on.
466          */
467         if (is_software_only_group(counter))
468                 return 1;
469         /*
470          * If an exclusive group is already on, no other hardware
471          * counters can go on.
472          */
473         if (cpuctx->exclusive)
474                 return 0;
475         /*
476          * If this group is exclusive and there are already
477          * counters on the CPU, it can't go on.
478          */
479         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
480                 return 0;
481         /*
482          * Otherwise, try to add it if all previous groups were able
483          * to go on.
484          */
485         return can_add_hw;
486 }
487
488 static void add_counter_to_ctx(struct perf_counter *counter,
489                                struct perf_counter_context *ctx)
490 {
491         list_add_counter(counter, ctx);
492         ctx->nr_counters++;
493         counter->prev_state = PERF_COUNTER_STATE_OFF;
494         counter->tstamp_enabled = ctx->time;
495         counter->tstamp_running = ctx->time;
496         counter->tstamp_stopped = ctx->time;
497 }
498
499 /*
500  * Cross CPU call to install and enable a performance counter
501  */
502 static void __perf_install_in_context(void *info)
503 {
504         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
505         struct perf_counter *counter = info;
506         struct perf_counter_context *ctx = counter->ctx;
507         struct perf_counter *leader = counter->group_leader;
508         int cpu = smp_processor_id();
509         unsigned long flags;
510         u64 perf_flags;
511         int err;
512
513         /*
514          * If this is a task context, we need to check whether it is
515          * the current task context of this cpu. If not it has been
516          * scheduled out before the smp call arrived.
517          */
518         if (ctx->task && cpuctx->task_ctx != ctx)
519                 return;
520
521         spin_lock_irqsave(&ctx->lock, flags);
522         update_context_time(ctx);
523
524         /*
525          * Protect the list operation against NMI by disabling the
526          * counters on a global level. NOP for non NMI based counters.
527          */
528         perf_flags = hw_perf_save_disable();
529
530         add_counter_to_ctx(counter, ctx);
531
532         /*
533          * Don't put the counter on if it is disabled or if
534          * it is in a group and the group isn't on.
535          */
536         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
537             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
538                 goto unlock;
539
540         /*
541          * An exclusive counter can't go on if there are already active
542          * hardware counters, and no hardware counter can go on if there
543          * is already an exclusive counter on.
544          */
545         if (!group_can_go_on(counter, cpuctx, 1))
546                 err = -EEXIST;
547         else
548                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
549
550         if (err) {
551                 /*
552                  * This counter couldn't go on.  If it is in a group
553                  * then we have to pull the whole group off.
554                  * If the counter group is pinned then put it in error state.
555                  */
556                 if (leader != counter)
557                         group_sched_out(leader, cpuctx, ctx);
558                 if (leader->hw_event.pinned) {
559                         update_group_times(leader);
560                         leader->state = PERF_COUNTER_STATE_ERROR;
561                 }
562         }
563
564         if (!err && !ctx->task && cpuctx->max_pertask)
565                 cpuctx->max_pertask--;
566
567  unlock:
568         hw_perf_restore(perf_flags);
569
570         spin_unlock_irqrestore(&ctx->lock, flags);
571 }
572
573 /*
574  * Attach a performance counter to a context
575  *
576  * First we add the counter to the list with the hardware enable bit
577  * in counter->hw_config cleared.
578  *
579  * If the counter is attached to a task which is on a CPU we use a smp
580  * call to enable it in the task context. The task might have been
581  * scheduled away, but we check this in the smp call again.
582  *
583  * Must be called with ctx->mutex held.
584  */
585 static void
586 perf_install_in_context(struct perf_counter_context *ctx,
587                         struct perf_counter *counter,
588                         int cpu)
589 {
590         struct task_struct *task = ctx->task;
591
592         if (!task) {
593                 /*
594                  * Per cpu counters are installed via an smp call and
595                  * the install is always sucessful.
596                  */
597                 smp_call_function_single(cpu, __perf_install_in_context,
598                                          counter, 1);
599                 return;
600         }
601
602         counter->task = task;
603 retry:
604         task_oncpu_function_call(task, __perf_install_in_context,
605                                  counter);
606
607         spin_lock_irq(&ctx->lock);
608         /*
609          * we need to retry the smp call.
610          */
611         if (ctx->is_active && list_empty(&counter->list_entry)) {
612                 spin_unlock_irq(&ctx->lock);
613                 goto retry;
614         }
615
616         /*
617          * The lock prevents that this context is scheduled in so we
618          * can add the counter safely, if it the call above did not
619          * succeed.
620          */
621         if (list_empty(&counter->list_entry))
622                 add_counter_to_ctx(counter, ctx);
623         spin_unlock_irq(&ctx->lock);
624 }
625
626 /*
627  * Cross CPU call to enable a performance counter
628  */
629 static void __perf_counter_enable(void *info)
630 {
631         struct perf_counter *counter = info;
632         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
633         struct perf_counter_context *ctx = counter->ctx;
634         struct perf_counter *leader = counter->group_leader;
635         unsigned long flags;
636         int err;
637
638         /*
639          * If this is a per-task counter, need to check whether this
640          * counter's task is the current task on this cpu.
641          */
642         if (ctx->task && cpuctx->task_ctx != ctx)
643                 return;
644
645         spin_lock_irqsave(&ctx->lock, flags);
646         update_context_time(ctx);
647
648         counter->prev_state = counter->state;
649         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
650                 goto unlock;
651         counter->state = PERF_COUNTER_STATE_INACTIVE;
652         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653
654         /*
655          * If the counter is in a group and isn't the group leader,
656          * then don't put it on unless the group is on.
657          */
658         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
659                 goto unlock;
660
661         if (!group_can_go_on(counter, cpuctx, 1))
662                 err = -EEXIST;
663         else
664                 err = counter_sched_in(counter, cpuctx, ctx,
665                                        smp_processor_id());
666
667         if (err) {
668                 /*
669                  * If this counter can't go on and it's part of a
670                  * group, then the whole group has to come off.
671                  */
672                 if (leader != counter)
673                         group_sched_out(leader, cpuctx, ctx);
674                 if (leader->hw_event.pinned) {
675                         update_group_times(leader);
676                         leader->state = PERF_COUNTER_STATE_ERROR;
677                 }
678         }
679
680  unlock:
681         spin_unlock_irqrestore(&ctx->lock, flags);
682 }
683
684 /*
685  * Enable a counter.
686  */
687 static void perf_counter_enable(struct perf_counter *counter)
688 {
689         struct perf_counter_context *ctx = counter->ctx;
690         struct task_struct *task = ctx->task;
691
692         if (!task) {
693                 /*
694                  * Enable the counter on the cpu that it's on
695                  */
696                 smp_call_function_single(counter->cpu, __perf_counter_enable,
697                                          counter, 1);
698                 return;
699         }
700
701         spin_lock_irq(&ctx->lock);
702         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
703                 goto out;
704
705         /*
706          * If the counter is in error state, clear that first.
707          * That way, if we see the counter in error state below, we
708          * know that it has gone back into error state, as distinct
709          * from the task having been scheduled away before the
710          * cross-call arrived.
711          */
712         if (counter->state == PERF_COUNTER_STATE_ERROR)
713                 counter->state = PERF_COUNTER_STATE_OFF;
714
715  retry:
716         spin_unlock_irq(&ctx->lock);
717         task_oncpu_function_call(task, __perf_counter_enable, counter);
718
719         spin_lock_irq(&ctx->lock);
720
721         /*
722          * If the context is active and the counter is still off,
723          * we need to retry the cross-call.
724          */
725         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
726                 goto retry;
727
728         /*
729          * Since we have the lock this context can't be scheduled
730          * in, so we can change the state safely.
731          */
732         if (counter->state == PERF_COUNTER_STATE_OFF) {
733                 counter->state = PERF_COUNTER_STATE_INACTIVE;
734                 counter->tstamp_enabled =
735                         ctx->time - counter->total_time_enabled;
736         }
737  out:
738         spin_unlock_irq(&ctx->lock);
739 }
740
741 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
742 {
743         atomic_add(refresh, &counter->event_limit);
744         perf_counter_enable(counter);
745 }
746
747 /*
748  * Enable a counter and all its children.
749  */
750 static void perf_counter_enable_family(struct perf_counter *counter)
751 {
752         struct perf_counter *child;
753
754         perf_counter_enable(counter);
755
756         /*
757          * Lock the mutex to protect the list of children
758          */
759         mutex_lock(&counter->mutex);
760         list_for_each_entry(child, &counter->child_list, child_list)
761                 perf_counter_enable(child);
762         mutex_unlock(&counter->mutex);
763 }
764
765 void __perf_counter_sched_out(struct perf_counter_context *ctx,
766                               struct perf_cpu_context *cpuctx)
767 {
768         struct perf_counter *counter;
769         u64 flags;
770
771         spin_lock(&ctx->lock);
772         ctx->is_active = 0;
773         if (likely(!ctx->nr_counters))
774                 goto out;
775         update_context_time(ctx);
776
777         flags = hw_perf_save_disable();
778         if (ctx->nr_active) {
779                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
780                         group_sched_out(counter, cpuctx, ctx);
781         }
782         hw_perf_restore(flags);
783  out:
784         spin_unlock(&ctx->lock);
785 }
786
787 /*
788  * Called from scheduler to remove the counters of the current task,
789  * with interrupts disabled.
790  *
791  * We stop each counter and update the counter value in counter->count.
792  *
793  * This does not protect us against NMI, but disable()
794  * sets the disabled bit in the control field of counter _before_
795  * accessing the counter control register. If a NMI hits, then it will
796  * not restart the counter.
797  */
798 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 {
800         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
801         struct perf_counter_context *ctx = &task->perf_counter_ctx;
802         struct pt_regs *regs;
803
804         if (likely(!cpuctx->task_ctx))
805                 return;
806
807         update_context_time(ctx);
808
809         regs = task_pt_regs(task);
810         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
811         __perf_counter_sched_out(ctx, cpuctx);
812
813         cpuctx->task_ctx = NULL;
814 }
815
816 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
817 {
818         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
819 }
820
821 static int
822 group_sched_in(struct perf_counter *group_counter,
823                struct perf_cpu_context *cpuctx,
824                struct perf_counter_context *ctx,
825                int cpu)
826 {
827         struct perf_counter *counter, *partial_group;
828         int ret;
829
830         if (group_counter->state == PERF_COUNTER_STATE_OFF)
831                 return 0;
832
833         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
834         if (ret)
835                 return ret < 0 ? ret : 0;
836
837         group_counter->prev_state = group_counter->state;
838         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
839                 return -EAGAIN;
840
841         /*
842          * Schedule in siblings as one group (if any):
843          */
844         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
845                 counter->prev_state = counter->state;
846                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
847                         partial_group = counter;
848                         goto group_error;
849                 }
850         }
851
852         return 0;
853
854 group_error:
855         /*
856          * Groups can be scheduled in as one unit only, so undo any
857          * partial group before returning:
858          */
859         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
860                 if (counter == partial_group)
861                         break;
862                 counter_sched_out(counter, cpuctx, ctx);
863         }
864         counter_sched_out(group_counter, cpuctx, ctx);
865
866         return -EAGAIN;
867 }
868
869 static void
870 __perf_counter_sched_in(struct perf_counter_context *ctx,
871                         struct perf_cpu_context *cpuctx, int cpu)
872 {
873         struct perf_counter *counter;
874         u64 flags;
875         int can_add_hw = 1;
876
877         spin_lock(&ctx->lock);
878         ctx->is_active = 1;
879         if (likely(!ctx->nr_counters))
880                 goto out;
881
882         ctx->timestamp = perf_clock();
883
884         flags = hw_perf_save_disable();
885
886         /*
887          * First go through the list and put on any pinned groups
888          * in order to give them the best chance of going on.
889          */
890         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
891                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
892                     !counter->hw_event.pinned)
893                         continue;
894                 if (counter->cpu != -1 && counter->cpu != cpu)
895                         continue;
896
897                 if (group_can_go_on(counter, cpuctx, 1))
898                         group_sched_in(counter, cpuctx, ctx, cpu);
899
900                 /*
901                  * If this pinned group hasn't been scheduled,
902                  * put it in error state.
903                  */
904                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
905                         update_group_times(counter);
906                         counter->state = PERF_COUNTER_STATE_ERROR;
907                 }
908         }
909
910         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
911                 /*
912                  * Ignore counters in OFF or ERROR state, and
913                  * ignore pinned counters since we did them already.
914                  */
915                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
916                     counter->hw_event.pinned)
917                         continue;
918
919                 /*
920                  * Listen to the 'cpu' scheduling filter constraint
921                  * of counters:
922                  */
923                 if (counter->cpu != -1 && counter->cpu != cpu)
924                         continue;
925
926                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
927                         if (group_sched_in(counter, cpuctx, ctx, cpu))
928                                 can_add_hw = 0;
929                 }
930         }
931         hw_perf_restore(flags);
932  out:
933         spin_unlock(&ctx->lock);
934 }
935
936 /*
937  * Called from scheduler to add the counters of the current task
938  * with interrupts disabled.
939  *
940  * We restore the counter value and then enable it.
941  *
942  * This does not protect us against NMI, but enable()
943  * sets the enabled bit in the control field of counter _before_
944  * accessing the counter control register. If a NMI hits, then it will
945  * keep the counter running.
946  */
947 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
948 {
949         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
950         struct perf_counter_context *ctx = &task->perf_counter_ctx;
951
952         __perf_counter_sched_in(ctx, cpuctx, cpu);
953         cpuctx->task_ctx = ctx;
954 }
955
956 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
957 {
958         struct perf_counter_context *ctx = &cpuctx->ctx;
959
960         __perf_counter_sched_in(ctx, cpuctx, cpu);
961 }
962
963 int perf_counter_task_disable(void)
964 {
965         struct task_struct *curr = current;
966         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
967         struct perf_counter *counter;
968         unsigned long flags;
969         u64 perf_flags;
970         int cpu;
971
972         if (likely(!ctx->nr_counters))
973                 return 0;
974
975         local_irq_save(flags);
976         cpu = smp_processor_id();
977
978         perf_counter_task_sched_out(curr, cpu);
979
980         spin_lock(&ctx->lock);
981
982         /*
983          * Disable all the counters:
984          */
985         perf_flags = hw_perf_save_disable();
986
987         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
988                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
989                         update_group_times(counter);
990                         counter->state = PERF_COUNTER_STATE_OFF;
991                 }
992         }
993
994         hw_perf_restore(perf_flags);
995
996         spin_unlock_irqrestore(&ctx->lock, flags);
997
998         return 0;
999 }
1000
1001 int perf_counter_task_enable(void)
1002 {
1003         struct task_struct *curr = current;
1004         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1005         struct perf_counter *counter;
1006         unsigned long flags;
1007         u64 perf_flags;
1008         int cpu;
1009
1010         if (likely(!ctx->nr_counters))
1011                 return 0;
1012
1013         local_irq_save(flags);
1014         cpu = smp_processor_id();
1015
1016         perf_counter_task_sched_out(curr, cpu);
1017
1018         spin_lock(&ctx->lock);
1019
1020         /*
1021          * Disable all the counters:
1022          */
1023         perf_flags = hw_perf_save_disable();
1024
1025         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1026                 if (counter->state > PERF_COUNTER_STATE_OFF)
1027                         continue;
1028                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1029                 counter->tstamp_enabled =
1030                         ctx->time - counter->total_time_enabled;
1031                 counter->hw_event.disabled = 0;
1032         }
1033         hw_perf_restore(perf_flags);
1034
1035         spin_unlock(&ctx->lock);
1036
1037         perf_counter_task_sched_in(curr, cpu);
1038
1039         local_irq_restore(flags);
1040
1041         return 0;
1042 }
1043
1044 /*
1045  * Round-robin a context's counters:
1046  */
1047 static void rotate_ctx(struct perf_counter_context *ctx)
1048 {
1049         struct perf_counter *counter;
1050         u64 perf_flags;
1051
1052         if (!ctx->nr_counters)
1053                 return;
1054
1055         spin_lock(&ctx->lock);
1056         /*
1057          * Rotate the first entry last (works just fine for group counters too):
1058          */
1059         perf_flags = hw_perf_save_disable();
1060         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1061                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1062                 break;
1063         }
1064         hw_perf_restore(perf_flags);
1065
1066         spin_unlock(&ctx->lock);
1067 }
1068
1069 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1070 {
1071         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1072         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1073
1074         perf_counter_cpu_sched_out(cpuctx);
1075         perf_counter_task_sched_out(curr, cpu);
1076
1077         rotate_ctx(&cpuctx->ctx);
1078         rotate_ctx(ctx);
1079
1080         perf_counter_cpu_sched_in(cpuctx, cpu);
1081         perf_counter_task_sched_in(curr, cpu);
1082 }
1083
1084 /*
1085  * Cross CPU call to read the hardware counter
1086  */
1087 static void __read(void *info)
1088 {
1089         struct perf_counter *counter = info;
1090         struct perf_counter_context *ctx = counter->ctx;
1091         unsigned long flags;
1092
1093         local_irq_save(flags);
1094         if (ctx->is_active)
1095                 update_context_time(ctx);
1096         counter->pmu->read(counter);
1097         update_counter_times(counter);
1098         local_irq_restore(flags);
1099 }
1100
1101 static u64 perf_counter_read(struct perf_counter *counter)
1102 {
1103         /*
1104          * If counter is enabled and currently active on a CPU, update the
1105          * value in the counter structure:
1106          */
1107         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1108                 smp_call_function_single(counter->oncpu,
1109                                          __read, counter, 1);
1110         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1111                 update_counter_times(counter);
1112         }
1113
1114         return atomic64_read(&counter->count);
1115 }
1116
1117 static void put_context(struct perf_counter_context *ctx)
1118 {
1119         if (ctx->task)
1120                 put_task_struct(ctx->task);
1121 }
1122
1123 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1124 {
1125         struct perf_cpu_context *cpuctx;
1126         struct perf_counter_context *ctx;
1127         struct task_struct *task;
1128
1129         /*
1130          * If cpu is not a wildcard then this is a percpu counter:
1131          */
1132         if (cpu != -1) {
1133                 /* Must be root to operate on a CPU counter: */
1134                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1135                         return ERR_PTR(-EACCES);
1136
1137                 if (cpu < 0 || cpu > num_possible_cpus())
1138                         return ERR_PTR(-EINVAL);
1139
1140                 /*
1141                  * We could be clever and allow to attach a counter to an
1142                  * offline CPU and activate it when the CPU comes up, but
1143                  * that's for later.
1144                  */
1145                 if (!cpu_isset(cpu, cpu_online_map))
1146                         return ERR_PTR(-ENODEV);
1147
1148                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1149                 ctx = &cpuctx->ctx;
1150
1151                 return ctx;
1152         }
1153
1154         rcu_read_lock();
1155         if (!pid)
1156                 task = current;
1157         else
1158                 task = find_task_by_vpid(pid);
1159         if (task)
1160                 get_task_struct(task);
1161         rcu_read_unlock();
1162
1163         if (!task)
1164                 return ERR_PTR(-ESRCH);
1165
1166         ctx = &task->perf_counter_ctx;
1167         ctx->task = task;
1168
1169         /* Reuse ptrace permission checks for now. */
1170         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1171                 put_context(ctx);
1172                 return ERR_PTR(-EACCES);
1173         }
1174
1175         return ctx;
1176 }
1177
1178 static void free_counter_rcu(struct rcu_head *head)
1179 {
1180         struct perf_counter *counter;
1181
1182         counter = container_of(head, struct perf_counter, rcu_head);
1183         kfree(counter);
1184 }
1185
1186 static void perf_pending_sync(struct perf_counter *counter);
1187
1188 static void free_counter(struct perf_counter *counter)
1189 {
1190         perf_pending_sync(counter);
1191
1192         if (counter->hw_event.mmap)
1193                 atomic_dec(&nr_mmap_tracking);
1194         if (counter->hw_event.munmap)
1195                 atomic_dec(&nr_munmap_tracking);
1196         if (counter->hw_event.comm)
1197                 atomic_dec(&nr_comm_tracking);
1198
1199         if (counter->destroy)
1200                 counter->destroy(counter);
1201
1202         call_rcu(&counter->rcu_head, free_counter_rcu);
1203 }
1204
1205 /*
1206  * Called when the last reference to the file is gone.
1207  */
1208 static int perf_release(struct inode *inode, struct file *file)
1209 {
1210         struct perf_counter *counter = file->private_data;
1211         struct perf_counter_context *ctx = counter->ctx;
1212
1213         file->private_data = NULL;
1214
1215         mutex_lock(&ctx->mutex);
1216         mutex_lock(&counter->mutex);
1217
1218         perf_counter_remove_from_context(counter);
1219
1220         mutex_unlock(&counter->mutex);
1221         mutex_unlock(&ctx->mutex);
1222
1223         free_counter(counter);
1224         put_context(ctx);
1225
1226         return 0;
1227 }
1228
1229 /*
1230  * Read the performance counter - simple non blocking version for now
1231  */
1232 static ssize_t
1233 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1234 {
1235         u64 values[3];
1236         int n;
1237
1238         /*
1239          * Return end-of-file for a read on a counter that is in
1240          * error state (i.e. because it was pinned but it couldn't be
1241          * scheduled on to the CPU at some point).
1242          */
1243         if (counter->state == PERF_COUNTER_STATE_ERROR)
1244                 return 0;
1245
1246         mutex_lock(&counter->mutex);
1247         values[0] = perf_counter_read(counter);
1248         n = 1;
1249         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1250                 values[n++] = counter->total_time_enabled +
1251                         atomic64_read(&counter->child_total_time_enabled);
1252         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1253                 values[n++] = counter->total_time_running +
1254                         atomic64_read(&counter->child_total_time_running);
1255         mutex_unlock(&counter->mutex);
1256
1257         if (count < n * sizeof(u64))
1258                 return -EINVAL;
1259         count = n * sizeof(u64);
1260
1261         if (copy_to_user(buf, values, count))
1262                 return -EFAULT;
1263
1264         return count;
1265 }
1266
1267 static ssize_t
1268 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1269 {
1270         struct perf_counter *counter = file->private_data;
1271
1272         return perf_read_hw(counter, buf, count);
1273 }
1274
1275 static unsigned int perf_poll(struct file *file, poll_table *wait)
1276 {
1277         struct perf_counter *counter = file->private_data;
1278         struct perf_mmap_data *data;
1279         unsigned int events = POLL_HUP;
1280
1281         rcu_read_lock();
1282         data = rcu_dereference(counter->data);
1283         if (data)
1284                 events = atomic_xchg(&data->poll, 0);
1285         rcu_read_unlock();
1286
1287         poll_wait(file, &counter->waitq, wait);
1288
1289         return events;
1290 }
1291
1292 static void perf_counter_reset(struct perf_counter *counter)
1293 {
1294         atomic_set(&counter->count, 0);
1295 }
1296
1297 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298 {
1299         struct perf_counter *counter = file->private_data;
1300         int err = 0;
1301
1302         switch (cmd) {
1303         case PERF_COUNTER_IOC_ENABLE:
1304                 perf_counter_enable_family(counter);
1305                 break;
1306         case PERF_COUNTER_IOC_DISABLE:
1307                 perf_counter_disable_family(counter);
1308                 break;
1309         case PERF_COUNTER_IOC_REFRESH:
1310                 perf_counter_refresh(counter, arg);
1311                 break;
1312         case PERF_COUNTER_IOC_RESET:
1313                 perf_counter_reset(counter);
1314                 break;
1315         default:
1316                 err = -ENOTTY;
1317         }
1318         return err;
1319 }
1320
1321 /*
1322  * Callers need to ensure there can be no nesting of this function, otherwise
1323  * the seqlock logic goes bad. We can not serialize this because the arch
1324  * code calls this from NMI context.
1325  */
1326 void perf_counter_update_userpage(struct perf_counter *counter)
1327 {
1328         struct perf_mmap_data *data;
1329         struct perf_counter_mmap_page *userpg;
1330
1331         rcu_read_lock();
1332         data = rcu_dereference(counter->data);
1333         if (!data)
1334                 goto unlock;
1335
1336         userpg = data->user_page;
1337
1338         /*
1339          * Disable preemption so as to not let the corresponding user-space
1340          * spin too long if we get preempted.
1341          */
1342         preempt_disable();
1343         ++userpg->lock;
1344         barrier();
1345         userpg->index = counter->hw.idx;
1346         userpg->offset = atomic64_read(&counter->count);
1347         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1348                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1349
1350         barrier();
1351         ++userpg->lock;
1352         preempt_enable();
1353 unlock:
1354         rcu_read_unlock();
1355 }
1356
1357 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1358 {
1359         struct perf_counter *counter = vma->vm_file->private_data;
1360         struct perf_mmap_data *data;
1361         int ret = VM_FAULT_SIGBUS;
1362
1363         rcu_read_lock();
1364         data = rcu_dereference(counter->data);
1365         if (!data)
1366                 goto unlock;
1367
1368         if (vmf->pgoff == 0) {
1369                 vmf->page = virt_to_page(data->user_page);
1370         } else {
1371                 int nr = vmf->pgoff - 1;
1372
1373                 if ((unsigned)nr > data->nr_pages)
1374                         goto unlock;
1375
1376                 vmf->page = virt_to_page(data->data_pages[nr]);
1377         }
1378         get_page(vmf->page);
1379         ret = 0;
1380 unlock:
1381         rcu_read_unlock();
1382
1383         return ret;
1384 }
1385
1386 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1387 {
1388         struct perf_mmap_data *data;
1389         unsigned long size;
1390         int i;
1391
1392         WARN_ON(atomic_read(&counter->mmap_count));
1393
1394         size = sizeof(struct perf_mmap_data);
1395         size += nr_pages * sizeof(void *);
1396
1397         data = kzalloc(size, GFP_KERNEL);
1398         if (!data)
1399                 goto fail;
1400
1401         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1402         if (!data->user_page)
1403                 goto fail_user_page;
1404
1405         for (i = 0; i < nr_pages; i++) {
1406                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1407                 if (!data->data_pages[i])
1408                         goto fail_data_pages;
1409         }
1410
1411         data->nr_pages = nr_pages;
1412
1413         rcu_assign_pointer(counter->data, data);
1414
1415         return 0;
1416
1417 fail_data_pages:
1418         for (i--; i >= 0; i--)
1419                 free_page((unsigned long)data->data_pages[i]);
1420
1421         free_page((unsigned long)data->user_page);
1422
1423 fail_user_page:
1424         kfree(data);
1425
1426 fail:
1427         return -ENOMEM;
1428 }
1429
1430 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1431 {
1432         struct perf_mmap_data *data = container_of(rcu_head,
1433                         struct perf_mmap_data, rcu_head);
1434         int i;
1435
1436         free_page((unsigned long)data->user_page);
1437         for (i = 0; i < data->nr_pages; i++)
1438                 free_page((unsigned long)data->data_pages[i]);
1439         kfree(data);
1440 }
1441
1442 static void perf_mmap_data_free(struct perf_counter *counter)
1443 {
1444         struct perf_mmap_data *data = counter->data;
1445
1446         WARN_ON(atomic_read(&counter->mmap_count));
1447
1448         rcu_assign_pointer(counter->data, NULL);
1449         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1450 }
1451
1452 static void perf_mmap_open(struct vm_area_struct *vma)
1453 {
1454         struct perf_counter *counter = vma->vm_file->private_data;
1455
1456         atomic_inc(&counter->mmap_count);
1457 }
1458
1459 static void perf_mmap_close(struct vm_area_struct *vma)
1460 {
1461         struct perf_counter *counter = vma->vm_file->private_data;
1462
1463         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1464                                       &counter->mmap_mutex)) {
1465                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1466                 perf_mmap_data_free(counter);
1467                 mutex_unlock(&counter->mmap_mutex);
1468         }
1469 }
1470
1471 static struct vm_operations_struct perf_mmap_vmops = {
1472         .open  = perf_mmap_open,
1473         .close = perf_mmap_close,
1474         .fault = perf_mmap_fault,
1475 };
1476
1477 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1478 {
1479         struct perf_counter *counter = file->private_data;
1480         unsigned long vma_size;
1481         unsigned long nr_pages;
1482         unsigned long locked, lock_limit;
1483         int ret = 0;
1484         long extra;
1485
1486         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1487                 return -EINVAL;
1488
1489         vma_size = vma->vm_end - vma->vm_start;
1490         nr_pages = (vma_size / PAGE_SIZE) - 1;
1491
1492         /*
1493          * If we have data pages ensure they're a power-of-two number, so we
1494          * can do bitmasks instead of modulo.
1495          */
1496         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1497                 return -EINVAL;
1498
1499         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1500                 return -EINVAL;
1501
1502         if (vma->vm_pgoff != 0)
1503                 return -EINVAL;
1504
1505         mutex_lock(&counter->mmap_mutex);
1506         if (atomic_inc_not_zero(&counter->mmap_count)) {
1507                 if (nr_pages != counter->data->nr_pages)
1508                         ret = -EINVAL;
1509                 goto unlock;
1510         }
1511
1512         extra = nr_pages /* + 1 only account the data pages */;
1513         extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1514         if (extra < 0)
1515                 extra = 0;
1516
1517         locked = vma->vm_mm->locked_vm + extra;
1518
1519         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1520         lock_limit >>= PAGE_SHIFT;
1521
1522         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1523                 ret = -EPERM;
1524                 goto unlock;
1525         }
1526
1527         WARN_ON(counter->data);
1528         ret = perf_mmap_data_alloc(counter, nr_pages);
1529         if (ret)
1530                 goto unlock;
1531
1532         atomic_set(&counter->mmap_count, 1);
1533         vma->vm_mm->locked_vm += extra;
1534         counter->data->nr_locked = extra;
1535 unlock:
1536         mutex_unlock(&counter->mmap_mutex);
1537
1538         vma->vm_flags &= ~VM_MAYWRITE;
1539         vma->vm_flags |= VM_RESERVED;
1540         vma->vm_ops = &perf_mmap_vmops;
1541
1542         return ret;
1543 }
1544
1545 static int perf_fasync(int fd, struct file *filp, int on)
1546 {
1547         struct perf_counter *counter = filp->private_data;
1548         struct inode *inode = filp->f_path.dentry->d_inode;
1549         int retval;
1550
1551         mutex_lock(&inode->i_mutex);
1552         retval = fasync_helper(fd, filp, on, &counter->fasync);
1553         mutex_unlock(&inode->i_mutex);
1554
1555         if (retval < 0)
1556                 return retval;
1557
1558         return 0;
1559 }
1560
1561 static const struct file_operations perf_fops = {
1562         .release                = perf_release,
1563         .read                   = perf_read,
1564         .poll                   = perf_poll,
1565         .unlocked_ioctl         = perf_ioctl,
1566         .compat_ioctl           = perf_ioctl,
1567         .mmap                   = perf_mmap,
1568         .fasync                 = perf_fasync,
1569 };
1570
1571 /*
1572  * Perf counter wakeup
1573  *
1574  * If there's data, ensure we set the poll() state and publish everything
1575  * to user-space before waking everybody up.
1576  */
1577
1578 void perf_counter_wakeup(struct perf_counter *counter)
1579 {
1580         wake_up_all(&counter->waitq);
1581
1582         if (counter->pending_kill) {
1583                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1584                 counter->pending_kill = 0;
1585         }
1586 }
1587
1588 /*
1589  * Pending wakeups
1590  *
1591  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1592  *
1593  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1594  * single linked list and use cmpxchg() to add entries lockless.
1595  */
1596
1597 static void perf_pending_counter(struct perf_pending_entry *entry)
1598 {
1599         struct perf_counter *counter = container_of(entry,
1600                         struct perf_counter, pending);
1601
1602         if (counter->pending_disable) {
1603                 counter->pending_disable = 0;
1604                 perf_counter_disable(counter);
1605         }
1606
1607         if (counter->pending_wakeup) {
1608                 counter->pending_wakeup = 0;
1609                 perf_counter_wakeup(counter);
1610         }
1611 }
1612
1613 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1614
1615 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1616         PENDING_TAIL,
1617 };
1618
1619 static void perf_pending_queue(struct perf_pending_entry *entry,
1620                                void (*func)(struct perf_pending_entry *))
1621 {
1622         struct perf_pending_entry **head;
1623
1624         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1625                 return;
1626
1627         entry->func = func;
1628
1629         head = &get_cpu_var(perf_pending_head);
1630
1631         do {
1632                 entry->next = *head;
1633         } while (cmpxchg(head, entry->next, entry) != entry->next);
1634
1635         set_perf_counter_pending();
1636
1637         put_cpu_var(perf_pending_head);
1638 }
1639
1640 static int __perf_pending_run(void)
1641 {
1642         struct perf_pending_entry *list;
1643         int nr = 0;
1644
1645         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1646         while (list != PENDING_TAIL) {
1647                 void (*func)(struct perf_pending_entry *);
1648                 struct perf_pending_entry *entry = list;
1649
1650                 list = list->next;
1651
1652                 func = entry->func;
1653                 entry->next = NULL;
1654                 /*
1655                  * Ensure we observe the unqueue before we issue the wakeup,
1656                  * so that we won't be waiting forever.
1657                  * -- see perf_not_pending().
1658                  */
1659                 smp_wmb();
1660
1661                 func(entry);
1662                 nr++;
1663         }
1664
1665         return nr;
1666 }
1667
1668 static inline int perf_not_pending(struct perf_counter *counter)
1669 {
1670         /*
1671          * If we flush on whatever cpu we run, there is a chance we don't
1672          * need to wait.
1673          */
1674         get_cpu();
1675         __perf_pending_run();
1676         put_cpu();
1677
1678         /*
1679          * Ensure we see the proper queue state before going to sleep
1680          * so that we do not miss the wakeup. -- see perf_pending_handle()
1681          */
1682         smp_rmb();
1683         return counter->pending.next == NULL;
1684 }
1685
1686 static void perf_pending_sync(struct perf_counter *counter)
1687 {
1688         wait_event(counter->waitq, perf_not_pending(counter));
1689 }
1690
1691 void perf_counter_do_pending(void)
1692 {
1693         __perf_pending_run();
1694 }
1695
1696 /*
1697  * Callchain support -- arch specific
1698  */
1699
1700 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1701 {
1702         return NULL;
1703 }
1704
1705 /*
1706  * Output
1707  */
1708
1709 struct perf_output_handle {
1710         struct perf_counter     *counter;
1711         struct perf_mmap_data   *data;
1712         unsigned int            offset;
1713         unsigned int            head;
1714         int                     nmi;
1715         int                     overflow;
1716         int                     locked;
1717         unsigned long           flags;
1718 };
1719
1720 static void perf_output_wakeup(struct perf_output_handle *handle)
1721 {
1722         atomic_set(&handle->data->poll, POLL_IN);
1723
1724         if (handle->nmi) {
1725                 handle->counter->pending_wakeup = 1;
1726                 perf_pending_queue(&handle->counter->pending,
1727                                    perf_pending_counter);
1728         } else
1729                 perf_counter_wakeup(handle->counter);
1730 }
1731
1732 /*
1733  * Curious locking construct.
1734  *
1735  * We need to ensure a later event doesn't publish a head when a former
1736  * event isn't done writing. However since we need to deal with NMIs we
1737  * cannot fully serialize things.
1738  *
1739  * What we do is serialize between CPUs so we only have to deal with NMI
1740  * nesting on a single CPU.
1741  *
1742  * We only publish the head (and generate a wakeup) when the outer-most
1743  * event completes.
1744  */
1745 static void perf_output_lock(struct perf_output_handle *handle)
1746 {
1747         struct perf_mmap_data *data = handle->data;
1748         int cpu;
1749
1750         handle->locked = 0;
1751
1752         local_irq_save(handle->flags);
1753         cpu = smp_processor_id();
1754
1755         if (in_nmi() && atomic_read(&data->lock) == cpu)
1756                 return;
1757
1758         while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1759                 cpu_relax();
1760
1761         handle->locked = 1;
1762 }
1763
1764 static void perf_output_unlock(struct perf_output_handle *handle)
1765 {
1766         struct perf_mmap_data *data = handle->data;
1767         int head, cpu;
1768
1769         data->done_head = data->head;
1770
1771         if (!handle->locked)
1772                 goto out;
1773
1774 again:
1775         /*
1776          * The xchg implies a full barrier that ensures all writes are done
1777          * before we publish the new head, matched by a rmb() in userspace when
1778          * reading this position.
1779          */
1780         while ((head = atomic_xchg(&data->done_head, 0)))
1781                 data->user_page->data_head = head;
1782
1783         /*
1784          * NMI can happen here, which means we can miss a done_head update.
1785          */
1786
1787         cpu = atomic_xchg(&data->lock, 0);
1788         WARN_ON_ONCE(cpu != smp_processor_id());
1789
1790         /*
1791          * Therefore we have to validate we did not indeed do so.
1792          */
1793         if (unlikely(atomic_read(&data->done_head))) {
1794                 /*
1795                  * Since we had it locked, we can lock it again.
1796                  */
1797                 while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1798                         cpu_relax();
1799
1800                 goto again;
1801         }
1802
1803         if (atomic_xchg(&data->wakeup, 0))
1804                 perf_output_wakeup(handle);
1805 out:
1806         local_irq_restore(handle->flags);
1807 }
1808
1809 static int perf_output_begin(struct perf_output_handle *handle,
1810                              struct perf_counter *counter, unsigned int size,
1811                              int nmi, int overflow)
1812 {
1813         struct perf_mmap_data *data;
1814         unsigned int offset, head;
1815
1816         rcu_read_lock();
1817         data = rcu_dereference(counter->data);
1818         if (!data)
1819                 goto out;
1820
1821         handle->data     = data;
1822         handle->counter  = counter;
1823         handle->nmi      = nmi;
1824         handle->overflow = overflow;
1825
1826         if (!data->nr_pages)
1827                 goto fail;
1828
1829         perf_output_lock(handle);
1830
1831         do {
1832                 offset = head = atomic_read(&data->head);
1833                 head += size;
1834         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1835
1836         handle->offset  = offset;
1837         handle->head    = head;
1838
1839         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1840                 atomic_set(&data->wakeup, 1);
1841
1842         return 0;
1843
1844 fail:
1845         perf_output_wakeup(handle);
1846 out:
1847         rcu_read_unlock();
1848
1849         return -ENOSPC;
1850 }
1851
1852 static void perf_output_copy(struct perf_output_handle *handle,
1853                              void *buf, unsigned int len)
1854 {
1855         unsigned int pages_mask;
1856         unsigned int offset;
1857         unsigned int size;
1858         void **pages;
1859
1860         offset          = handle->offset;
1861         pages_mask      = handle->data->nr_pages - 1;
1862         pages           = handle->data->data_pages;
1863
1864         do {
1865                 unsigned int page_offset;
1866                 int nr;
1867
1868                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1869                 page_offset = offset & (PAGE_SIZE - 1);
1870                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1871
1872                 memcpy(pages[nr] + page_offset, buf, size);
1873
1874                 len         -= size;
1875                 buf         += size;
1876                 offset      += size;
1877         } while (len);
1878
1879         handle->offset = offset;
1880
1881         WARN_ON_ONCE(handle->offset > handle->head);
1882 }
1883
1884 #define perf_output_put(handle, x) \
1885         perf_output_copy((handle), &(x), sizeof(x))
1886
1887 static void perf_output_end(struct perf_output_handle *handle)
1888 {
1889         struct perf_counter *counter = handle->counter;
1890         struct perf_mmap_data *data = handle->data;
1891
1892         int wakeup_events = counter->hw_event.wakeup_events;
1893
1894         if (handle->overflow && wakeup_events) {
1895                 int events = atomic_inc_return(&data->events);
1896                 if (events >= wakeup_events) {
1897                         atomic_sub(wakeup_events, &data->events);
1898                         atomic_set(&data->wakeup, 1);
1899                 }
1900         }
1901
1902         perf_output_unlock(handle);
1903         rcu_read_unlock();
1904 }
1905
1906 static void perf_counter_output(struct perf_counter *counter,
1907                                 int nmi, struct pt_regs *regs, u64 addr)
1908 {
1909         int ret;
1910         u64 record_type = counter->hw_event.record_type;
1911         struct perf_output_handle handle;
1912         struct perf_event_header header;
1913         u64 ip;
1914         struct {
1915                 u32 pid, tid;
1916         } tid_entry;
1917         struct {
1918                 u64 event;
1919                 u64 counter;
1920         } group_entry;
1921         struct perf_callchain_entry *callchain = NULL;
1922         int callchain_size = 0;
1923         u64 time;
1924
1925         header.type = 0;
1926         header.size = sizeof(header);
1927
1928         header.misc = PERF_EVENT_MISC_OVERFLOW;
1929         header.misc |= user_mode(regs) ?
1930                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1931
1932         if (record_type & PERF_RECORD_IP) {
1933                 ip = instruction_pointer(regs);
1934                 header.type |= PERF_RECORD_IP;
1935                 header.size += sizeof(ip);
1936         }
1937
1938         if (record_type & PERF_RECORD_TID) {
1939                 /* namespace issues */
1940                 tid_entry.pid = current->group_leader->pid;
1941                 tid_entry.tid = current->pid;
1942
1943                 header.type |= PERF_RECORD_TID;
1944                 header.size += sizeof(tid_entry);
1945         }
1946
1947         if (record_type & PERF_RECORD_TIME) {
1948                 /*
1949                  * Maybe do better on x86 and provide cpu_clock_nmi()
1950                  */
1951                 time = sched_clock();
1952
1953                 header.type |= PERF_RECORD_TIME;
1954                 header.size += sizeof(u64);
1955         }
1956
1957         if (record_type & PERF_RECORD_ADDR) {
1958                 header.type |= PERF_RECORD_ADDR;
1959                 header.size += sizeof(u64);
1960         }
1961
1962         if (record_type & PERF_RECORD_GROUP) {
1963                 header.type |= PERF_RECORD_GROUP;
1964                 header.size += sizeof(u64) +
1965                         counter->nr_siblings * sizeof(group_entry);
1966         }
1967
1968         if (record_type & PERF_RECORD_CALLCHAIN) {
1969                 callchain = perf_callchain(regs);
1970
1971                 if (callchain) {
1972                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1973
1974                         header.type |= PERF_RECORD_CALLCHAIN;
1975                         header.size += callchain_size;
1976                 }
1977         }
1978
1979         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1980         if (ret)
1981                 return;
1982
1983         perf_output_put(&handle, header);
1984
1985         if (record_type & PERF_RECORD_IP)
1986                 perf_output_put(&handle, ip);
1987
1988         if (record_type & PERF_RECORD_TID)
1989                 perf_output_put(&handle, tid_entry);
1990
1991         if (record_type & PERF_RECORD_TIME)
1992                 perf_output_put(&handle, time);
1993
1994         if (record_type & PERF_RECORD_ADDR)
1995                 perf_output_put(&handle, addr);
1996
1997         if (record_type & PERF_RECORD_GROUP) {
1998                 struct perf_counter *leader, *sub;
1999                 u64 nr = counter->nr_siblings;
2000
2001                 perf_output_put(&handle, nr);
2002
2003                 leader = counter->group_leader;
2004                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2005                         if (sub != counter)
2006                                 sub->pmu->read(sub);
2007
2008                         group_entry.event = sub->hw_event.config;
2009                         group_entry.counter = atomic64_read(&sub->count);
2010
2011                         perf_output_put(&handle, group_entry);
2012                 }
2013         }
2014
2015         if (callchain)
2016                 perf_output_copy(&handle, callchain, callchain_size);
2017
2018         perf_output_end(&handle);
2019 }
2020
2021 /*
2022  * comm tracking
2023  */
2024
2025 struct perf_comm_event {
2026         struct task_struct      *task;
2027         char                    *comm;
2028         int                     comm_size;
2029
2030         struct {
2031                 struct perf_event_header        header;
2032
2033                 u32                             pid;
2034                 u32                             tid;
2035         } event;
2036 };
2037
2038 static void perf_counter_comm_output(struct perf_counter *counter,
2039                                      struct perf_comm_event *comm_event)
2040 {
2041         struct perf_output_handle handle;
2042         int size = comm_event->event.header.size;
2043         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2044
2045         if (ret)
2046                 return;
2047
2048         perf_output_put(&handle, comm_event->event);
2049         perf_output_copy(&handle, comm_event->comm,
2050                                    comm_event->comm_size);
2051         perf_output_end(&handle);
2052 }
2053
2054 static int perf_counter_comm_match(struct perf_counter *counter,
2055                                    struct perf_comm_event *comm_event)
2056 {
2057         if (counter->hw_event.comm &&
2058             comm_event->event.header.type == PERF_EVENT_COMM)
2059                 return 1;
2060
2061         return 0;
2062 }
2063
2064 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2065                                   struct perf_comm_event *comm_event)
2066 {
2067         struct perf_counter *counter;
2068
2069         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2070                 return;
2071
2072         rcu_read_lock();
2073         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2074                 if (perf_counter_comm_match(counter, comm_event))
2075                         perf_counter_comm_output(counter, comm_event);
2076         }
2077         rcu_read_unlock();
2078 }
2079
2080 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2081 {
2082         struct perf_cpu_context *cpuctx;
2083         unsigned int size;
2084         char *comm = comm_event->task->comm;
2085
2086         size = ALIGN(strlen(comm)+1, sizeof(u64));
2087
2088         comm_event->comm = comm;
2089         comm_event->comm_size = size;
2090
2091         comm_event->event.header.size = sizeof(comm_event->event) + size;
2092
2093         cpuctx = &get_cpu_var(perf_cpu_context);
2094         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2095         put_cpu_var(perf_cpu_context);
2096
2097         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2098 }
2099
2100 void perf_counter_comm(struct task_struct *task)
2101 {
2102         struct perf_comm_event comm_event;
2103
2104         if (!atomic_read(&nr_comm_tracking))
2105                 return;
2106        
2107         comm_event = (struct perf_comm_event){
2108                 .task   = task,
2109                 .event  = {
2110                         .header = { .type = PERF_EVENT_COMM, },
2111                         .pid    = task->group_leader->pid,
2112                         .tid    = task->pid,
2113                 },
2114         };
2115
2116         perf_counter_comm_event(&comm_event);
2117 }
2118
2119 /*
2120  * mmap tracking
2121  */
2122
2123 struct perf_mmap_event {
2124         struct file     *file;
2125         char            *file_name;
2126         int             file_size;
2127
2128         struct {
2129                 struct perf_event_header        header;
2130
2131                 u32                             pid;
2132                 u32                             tid;
2133                 u64                             start;
2134                 u64                             len;
2135                 u64                             pgoff;
2136         } event;
2137 };
2138
2139 static void perf_counter_mmap_output(struct perf_counter *counter,
2140                                      struct perf_mmap_event *mmap_event)
2141 {
2142         struct perf_output_handle handle;
2143         int size = mmap_event->event.header.size;
2144         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2145
2146         if (ret)
2147                 return;
2148
2149         perf_output_put(&handle, mmap_event->event);
2150         perf_output_copy(&handle, mmap_event->file_name,
2151                                    mmap_event->file_size);
2152         perf_output_end(&handle);
2153 }
2154
2155 static int perf_counter_mmap_match(struct perf_counter *counter,
2156                                    struct perf_mmap_event *mmap_event)
2157 {
2158         if (counter->hw_event.mmap &&
2159             mmap_event->event.header.type == PERF_EVENT_MMAP)
2160                 return 1;
2161
2162         if (counter->hw_event.munmap &&
2163             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2164                 return 1;
2165
2166         return 0;
2167 }
2168
2169 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2170                                   struct perf_mmap_event *mmap_event)
2171 {
2172         struct perf_counter *counter;
2173
2174         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2175                 return;
2176
2177         rcu_read_lock();
2178         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2179                 if (perf_counter_mmap_match(counter, mmap_event))
2180                         perf_counter_mmap_output(counter, mmap_event);
2181         }
2182         rcu_read_unlock();
2183 }
2184
2185 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2186 {
2187         struct perf_cpu_context *cpuctx;
2188         struct file *file = mmap_event->file;
2189         unsigned int size;
2190         char tmp[16];
2191         char *buf = NULL;
2192         char *name;
2193
2194         if (file) {
2195                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2196                 if (!buf) {
2197                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2198                         goto got_name;
2199                 }
2200                 name = d_path(&file->f_path, buf, PATH_MAX);
2201                 if (IS_ERR(name)) {
2202                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2203                         goto got_name;
2204                 }
2205         } else {
2206                 name = strncpy(tmp, "//anon", sizeof(tmp));
2207                 goto got_name;
2208         }
2209
2210 got_name:
2211         size = ALIGN(strlen(name)+1, sizeof(u64));
2212
2213         mmap_event->file_name = name;
2214         mmap_event->file_size = size;
2215
2216         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2217
2218         cpuctx = &get_cpu_var(perf_cpu_context);
2219         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2220         put_cpu_var(perf_cpu_context);
2221
2222         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2223
2224         kfree(buf);
2225 }
2226
2227 void perf_counter_mmap(unsigned long addr, unsigned long len,
2228                        unsigned long pgoff, struct file *file)
2229 {
2230         struct perf_mmap_event mmap_event;
2231
2232         if (!atomic_read(&nr_mmap_tracking))
2233                 return;
2234
2235         mmap_event = (struct perf_mmap_event){
2236                 .file   = file,
2237                 .event  = {
2238                         .header = { .type = PERF_EVENT_MMAP, },
2239                         .pid    = current->group_leader->pid,
2240                         .tid    = current->pid,
2241                         .start  = addr,
2242                         .len    = len,
2243                         .pgoff  = pgoff,
2244                 },
2245         };
2246
2247         perf_counter_mmap_event(&mmap_event);
2248 }
2249
2250 void perf_counter_munmap(unsigned long addr, unsigned long len,
2251                          unsigned long pgoff, struct file *file)
2252 {
2253         struct perf_mmap_event mmap_event;
2254
2255         if (!atomic_read(&nr_munmap_tracking))
2256                 return;
2257
2258         mmap_event = (struct perf_mmap_event){
2259                 .file   = file,
2260                 .event  = {
2261                         .header = { .type = PERF_EVENT_MUNMAP, },
2262                         .pid    = current->group_leader->pid,
2263                         .tid    = current->pid,
2264                         .start  = addr,
2265                         .len    = len,
2266                         .pgoff  = pgoff,
2267                 },
2268         };
2269
2270         perf_counter_mmap_event(&mmap_event);
2271 }
2272
2273 /*
2274  * Generic counter overflow handling.
2275  */
2276
2277 int perf_counter_overflow(struct perf_counter *counter,
2278                           int nmi, struct pt_regs *regs, u64 addr)
2279 {
2280         int events = atomic_read(&counter->event_limit);
2281         int ret = 0;
2282
2283         counter->pending_kill = POLL_IN;
2284         if (events && atomic_dec_and_test(&counter->event_limit)) {
2285                 ret = 1;
2286                 counter->pending_kill = POLL_HUP;
2287                 if (nmi) {
2288                         counter->pending_disable = 1;
2289                         perf_pending_queue(&counter->pending,
2290                                            perf_pending_counter);
2291                 } else
2292                         perf_counter_disable(counter);
2293         }
2294
2295         perf_counter_output(counter, nmi, regs, addr);
2296         return ret;
2297 }
2298
2299 /*
2300  * Generic software counter infrastructure
2301  */
2302
2303 static void perf_swcounter_update(struct perf_counter *counter)
2304 {
2305         struct hw_perf_counter *hwc = &counter->hw;
2306         u64 prev, now;
2307         s64 delta;
2308
2309 again:
2310         prev = atomic64_read(&hwc->prev_count);
2311         now = atomic64_read(&hwc->count);
2312         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2313                 goto again;
2314
2315         delta = now - prev;
2316
2317         atomic64_add(delta, &counter->count);
2318         atomic64_sub(delta, &hwc->period_left);
2319 }
2320
2321 static void perf_swcounter_set_period(struct perf_counter *counter)
2322 {
2323         struct hw_perf_counter *hwc = &counter->hw;
2324         s64 left = atomic64_read(&hwc->period_left);
2325         s64 period = hwc->irq_period;
2326
2327         if (unlikely(left <= -period)) {
2328                 left = period;
2329                 atomic64_set(&hwc->period_left, left);
2330         }
2331
2332         if (unlikely(left <= 0)) {
2333                 left += period;
2334                 atomic64_add(period, &hwc->period_left);
2335         }
2336
2337         atomic64_set(&hwc->prev_count, -left);
2338         atomic64_set(&hwc->count, -left);
2339 }
2340
2341 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2342 {
2343         enum hrtimer_restart ret = HRTIMER_RESTART;
2344         struct perf_counter *counter;
2345         struct pt_regs *regs;
2346
2347         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2348         counter->pmu->read(counter);
2349
2350         regs = get_irq_regs();
2351         /*
2352          * In case we exclude kernel IPs or are somehow not in interrupt
2353          * context, provide the next best thing, the user IP.
2354          */
2355         if ((counter->hw_event.exclude_kernel || !regs) &&
2356                         !counter->hw_event.exclude_user)
2357                 regs = task_pt_regs(current);
2358
2359         if (regs) {
2360                 if (perf_counter_overflow(counter, 0, regs, 0))
2361                         ret = HRTIMER_NORESTART;
2362         }
2363
2364         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2365
2366         return ret;
2367 }
2368
2369 static void perf_swcounter_overflow(struct perf_counter *counter,
2370                                     int nmi, struct pt_regs *regs, u64 addr)
2371 {
2372         perf_swcounter_update(counter);
2373         perf_swcounter_set_period(counter);
2374         if (perf_counter_overflow(counter, nmi, regs, addr))
2375                 /* soft-disable the counter */
2376                 ;
2377
2378 }
2379
2380 static int perf_swcounter_match(struct perf_counter *counter,
2381                                 enum perf_event_types type,
2382                                 u32 event, struct pt_regs *regs)
2383 {
2384         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2385                 return 0;
2386
2387         if (perf_event_raw(&counter->hw_event))
2388                 return 0;
2389
2390         if (perf_event_type(&counter->hw_event) != type)
2391                 return 0;
2392
2393         if (perf_event_id(&counter->hw_event) != event)
2394                 return 0;
2395
2396         if (counter->hw_event.exclude_user && user_mode(regs))
2397                 return 0;
2398
2399         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2400                 return 0;
2401
2402         return 1;
2403 }
2404
2405 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2406                                int nmi, struct pt_regs *regs, u64 addr)
2407 {
2408         int neg = atomic64_add_negative(nr, &counter->hw.count);
2409         if (counter->hw.irq_period && !neg)
2410                 perf_swcounter_overflow(counter, nmi, regs, addr);
2411 }
2412
2413 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2414                                      enum perf_event_types type, u32 event,
2415                                      u64 nr, int nmi, struct pt_regs *regs,
2416                                      u64 addr)
2417 {
2418         struct perf_counter *counter;
2419
2420         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2421                 return;
2422
2423         rcu_read_lock();
2424         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2425                 if (perf_swcounter_match(counter, type, event, regs))
2426                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2427         }
2428         rcu_read_unlock();
2429 }
2430
2431 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2432 {
2433         if (in_nmi())
2434                 return &cpuctx->recursion[3];
2435
2436         if (in_irq())
2437                 return &cpuctx->recursion[2];
2438
2439         if (in_softirq())
2440                 return &cpuctx->recursion[1];
2441
2442         return &cpuctx->recursion[0];
2443 }
2444
2445 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2446                                    u64 nr, int nmi, struct pt_regs *regs,
2447                                    u64 addr)
2448 {
2449         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2450         int *recursion = perf_swcounter_recursion_context(cpuctx);
2451
2452         if (*recursion)
2453                 goto out;
2454
2455         (*recursion)++;
2456         barrier();
2457
2458         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2459                                  nr, nmi, regs, addr);
2460         if (cpuctx->task_ctx) {
2461                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2462                                          nr, nmi, regs, addr);
2463         }
2464
2465         barrier();
2466         (*recursion)--;
2467
2468 out:
2469         put_cpu_var(perf_cpu_context);
2470 }
2471
2472 void
2473 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2474 {
2475         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2476 }
2477
2478 static void perf_swcounter_read(struct perf_counter *counter)
2479 {
2480         perf_swcounter_update(counter);
2481 }
2482
2483 static int perf_swcounter_enable(struct perf_counter *counter)
2484 {
2485         perf_swcounter_set_period(counter);
2486         return 0;
2487 }
2488
2489 static void perf_swcounter_disable(struct perf_counter *counter)
2490 {
2491         perf_swcounter_update(counter);
2492 }
2493
2494 static const struct pmu perf_ops_generic = {
2495         .enable         = perf_swcounter_enable,
2496         .disable        = perf_swcounter_disable,
2497         .read           = perf_swcounter_read,
2498 };
2499
2500 /*
2501  * Software counter: cpu wall time clock
2502  */
2503
2504 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2505 {
2506         int cpu = raw_smp_processor_id();
2507         s64 prev;
2508         u64 now;
2509
2510         now = cpu_clock(cpu);
2511         prev = atomic64_read(&counter->hw.prev_count);
2512         atomic64_set(&counter->hw.prev_count, now);
2513         atomic64_add(now - prev, &counter->count);
2514 }
2515
2516 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2517 {
2518         struct hw_perf_counter *hwc = &counter->hw;
2519         int cpu = raw_smp_processor_id();
2520
2521         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2522         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2523         hwc->hrtimer.function = perf_swcounter_hrtimer;
2524         if (hwc->irq_period) {
2525                 __hrtimer_start_range_ns(&hwc->hrtimer,
2526                                 ns_to_ktime(hwc->irq_period), 0,
2527                                 HRTIMER_MODE_REL, 0);
2528         }
2529
2530         return 0;
2531 }
2532
2533 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2534 {
2535         hrtimer_cancel(&counter->hw.hrtimer);
2536         cpu_clock_perf_counter_update(counter);
2537 }
2538
2539 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2540 {
2541         cpu_clock_perf_counter_update(counter);
2542 }
2543
2544 static const struct pmu perf_ops_cpu_clock = {
2545         .enable         = cpu_clock_perf_counter_enable,
2546         .disable        = cpu_clock_perf_counter_disable,
2547         .read           = cpu_clock_perf_counter_read,
2548 };
2549
2550 /*
2551  * Software counter: task time clock
2552  */
2553
2554 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2555 {
2556         u64 prev;
2557         s64 delta;
2558
2559         prev = atomic64_xchg(&counter->hw.prev_count, now);
2560         delta = now - prev;
2561         atomic64_add(delta, &counter->count);
2562 }
2563
2564 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2565 {
2566         struct hw_perf_counter *hwc = &counter->hw;
2567         u64 now;
2568
2569         now = counter->ctx->time;
2570
2571         atomic64_set(&hwc->prev_count, now);
2572         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2573         hwc->hrtimer.function = perf_swcounter_hrtimer;
2574         if (hwc->irq_period) {
2575                 __hrtimer_start_range_ns(&hwc->hrtimer,
2576                                 ns_to_ktime(hwc->irq_period), 0,
2577                                 HRTIMER_MODE_REL, 0);
2578         }
2579
2580         return 0;
2581 }
2582
2583 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2584 {
2585         hrtimer_cancel(&counter->hw.hrtimer);
2586         task_clock_perf_counter_update(counter, counter->ctx->time);
2587
2588 }
2589
2590 static void task_clock_perf_counter_read(struct perf_counter *counter)
2591 {
2592         u64 time;
2593
2594         if (!in_nmi()) {
2595                 update_context_time(counter->ctx);
2596                 time = counter->ctx->time;
2597         } else {
2598                 u64 now = perf_clock();
2599                 u64 delta = now - counter->ctx->timestamp;
2600                 time = counter->ctx->time + delta;
2601         }
2602
2603         task_clock_perf_counter_update(counter, time);
2604 }
2605
2606 static const struct pmu perf_ops_task_clock = {
2607         .enable         = task_clock_perf_counter_enable,
2608         .disable        = task_clock_perf_counter_disable,
2609         .read           = task_clock_perf_counter_read,
2610 };
2611
2612 /*
2613  * Software counter: cpu migrations
2614  */
2615
2616 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2617 {
2618         struct task_struct *curr = counter->ctx->task;
2619
2620         if (curr)
2621                 return curr->se.nr_migrations;
2622         return cpu_nr_migrations(smp_processor_id());
2623 }
2624
2625 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2626 {
2627         u64 prev, now;
2628         s64 delta;
2629
2630         prev = atomic64_read(&counter->hw.prev_count);
2631         now = get_cpu_migrations(counter);
2632
2633         atomic64_set(&counter->hw.prev_count, now);
2634
2635         delta = now - prev;
2636
2637         atomic64_add(delta, &counter->count);
2638 }
2639
2640 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2641 {
2642         cpu_migrations_perf_counter_update(counter);
2643 }
2644
2645 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2646 {
2647         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2648                 atomic64_set(&counter->hw.prev_count,
2649                              get_cpu_migrations(counter));
2650         return 0;
2651 }
2652
2653 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2654 {
2655         cpu_migrations_perf_counter_update(counter);
2656 }
2657
2658 static const struct pmu perf_ops_cpu_migrations = {
2659         .enable         = cpu_migrations_perf_counter_enable,
2660         .disable        = cpu_migrations_perf_counter_disable,
2661         .read           = cpu_migrations_perf_counter_read,
2662 };
2663
2664 #ifdef CONFIG_EVENT_PROFILE
2665 void perf_tpcounter_event(int event_id)
2666 {
2667         struct pt_regs *regs = get_irq_regs();
2668
2669         if (!regs)
2670                 regs = task_pt_regs(current);
2671
2672         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2673 }
2674 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2675
2676 extern int ftrace_profile_enable(int);
2677 extern void ftrace_profile_disable(int);
2678
2679 static void tp_perf_counter_destroy(struct perf_counter *counter)
2680 {
2681         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2682 }
2683
2684 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2685 {
2686         int event_id = perf_event_id(&counter->hw_event);
2687         int ret;
2688
2689         ret = ftrace_profile_enable(event_id);
2690         if (ret)
2691                 return NULL;
2692
2693         counter->destroy = tp_perf_counter_destroy;
2694         counter->hw.irq_period = counter->hw_event.irq_period;
2695
2696         return &perf_ops_generic;
2697 }
2698 #else
2699 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2700 {
2701         return NULL;
2702 }
2703 #endif
2704
2705 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2706 {
2707         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2708         const struct pmu *pmu = NULL;
2709         struct hw_perf_counter *hwc = &counter->hw;
2710
2711         /*
2712          * Software counters (currently) can't in general distinguish
2713          * between user, kernel and hypervisor events.
2714          * However, context switches and cpu migrations are considered
2715          * to be kernel events, and page faults are never hypervisor
2716          * events.
2717          */
2718         switch (perf_event_id(&counter->hw_event)) {
2719         case PERF_COUNT_CPU_CLOCK:
2720                 pmu = &perf_ops_cpu_clock;
2721
2722                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2723                         hw_event->irq_period = 10000;
2724                 break;
2725         case PERF_COUNT_TASK_CLOCK:
2726                 /*
2727                  * If the user instantiates this as a per-cpu counter,
2728                  * use the cpu_clock counter instead.
2729                  */
2730                 if (counter->ctx->task)
2731                         pmu = &perf_ops_task_clock;
2732                 else
2733                         pmu = &perf_ops_cpu_clock;
2734
2735                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2736                         hw_event->irq_period = 10000;
2737                 break;
2738         case PERF_COUNT_PAGE_FAULTS:
2739         case PERF_COUNT_PAGE_FAULTS_MIN:
2740         case PERF_COUNT_PAGE_FAULTS_MAJ:
2741         case PERF_COUNT_CONTEXT_SWITCHES:
2742                 pmu = &perf_ops_generic;
2743                 break;
2744         case PERF_COUNT_CPU_MIGRATIONS:
2745                 if (!counter->hw_event.exclude_kernel)
2746                         pmu = &perf_ops_cpu_migrations;
2747                 break;
2748         }
2749
2750         if (pmu)
2751                 hwc->irq_period = hw_event->irq_period;
2752
2753         return pmu;
2754 }
2755
2756 /*
2757  * Allocate and initialize a counter structure
2758  */
2759 static struct perf_counter *
2760 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2761                    int cpu,
2762                    struct perf_counter_context *ctx,
2763                    struct perf_counter *group_leader,
2764                    gfp_t gfpflags)
2765 {
2766         const struct pmu *pmu;
2767         struct perf_counter *counter;
2768         long err;
2769
2770         counter = kzalloc(sizeof(*counter), gfpflags);
2771         if (!counter)
2772                 return ERR_PTR(-ENOMEM);
2773
2774         /*
2775          * Single counters are their own group leaders, with an
2776          * empty sibling list:
2777          */
2778         if (!group_leader)
2779                 group_leader = counter;
2780
2781         mutex_init(&counter->mutex);
2782         INIT_LIST_HEAD(&counter->list_entry);
2783         INIT_LIST_HEAD(&counter->event_entry);
2784         INIT_LIST_HEAD(&counter->sibling_list);
2785         init_waitqueue_head(&counter->waitq);
2786
2787         mutex_init(&counter->mmap_mutex);
2788
2789         INIT_LIST_HEAD(&counter->child_list);
2790
2791         counter->cpu                    = cpu;
2792         counter->hw_event               = *hw_event;
2793         counter->group_leader           = group_leader;
2794         counter->pmu                    = NULL;
2795         counter->ctx                    = ctx;
2796
2797         counter->state = PERF_COUNTER_STATE_INACTIVE;
2798         if (hw_event->disabled)
2799                 counter->state = PERF_COUNTER_STATE_OFF;
2800
2801         pmu = NULL;
2802
2803         if (perf_event_raw(hw_event)) {
2804                 pmu = hw_perf_counter_init(counter);
2805                 goto done;
2806         }
2807
2808         switch (perf_event_type(hw_event)) {
2809         case PERF_TYPE_HARDWARE:
2810                 pmu = hw_perf_counter_init(counter);
2811                 break;
2812
2813         case PERF_TYPE_SOFTWARE:
2814                 pmu = sw_perf_counter_init(counter);
2815                 break;
2816
2817         case PERF_TYPE_TRACEPOINT:
2818                 pmu = tp_perf_counter_init(counter);
2819                 break;
2820         }
2821 done:
2822         err = 0;
2823         if (!pmu)
2824                 err = -EINVAL;
2825         else if (IS_ERR(pmu))
2826                 err = PTR_ERR(pmu);
2827
2828         if (err) {
2829                 kfree(counter);
2830                 return ERR_PTR(err);
2831         }
2832
2833         counter->pmu = pmu;
2834
2835         if (counter->hw_event.mmap)
2836                 atomic_inc(&nr_mmap_tracking);
2837         if (counter->hw_event.munmap)
2838                 atomic_inc(&nr_munmap_tracking);
2839         if (counter->hw_event.comm)
2840                 atomic_inc(&nr_comm_tracking);
2841
2842         return counter;
2843 }
2844
2845 /**
2846  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2847  *
2848  * @hw_event_uptr:      event type attributes for monitoring/sampling
2849  * @pid:                target pid
2850  * @cpu:                target cpu
2851  * @group_fd:           group leader counter fd
2852  */
2853 SYSCALL_DEFINE5(perf_counter_open,
2854                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2855                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2856 {
2857         struct perf_counter *counter, *group_leader;
2858         struct perf_counter_hw_event hw_event;
2859         struct perf_counter_context *ctx;
2860         struct file *counter_file = NULL;
2861         struct file *group_file = NULL;
2862         int fput_needed = 0;
2863         int fput_needed2 = 0;
2864         int ret;
2865
2866         /* for future expandability... */
2867         if (flags)
2868                 return -EINVAL;
2869
2870         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2871                 return -EFAULT;
2872
2873         /*
2874          * Get the target context (task or percpu):
2875          */
2876         ctx = find_get_context(pid, cpu);
2877         if (IS_ERR(ctx))
2878                 return PTR_ERR(ctx);
2879
2880         /*
2881          * Look up the group leader (we will attach this counter to it):
2882          */
2883         group_leader = NULL;
2884         if (group_fd != -1) {
2885                 ret = -EINVAL;
2886                 group_file = fget_light(group_fd, &fput_needed);
2887                 if (!group_file)
2888                         goto err_put_context;
2889                 if (group_file->f_op != &perf_fops)
2890                         goto err_put_context;
2891
2892                 group_leader = group_file->private_data;
2893                 /*
2894                  * Do not allow a recursive hierarchy (this new sibling
2895                  * becoming part of another group-sibling):
2896                  */
2897                 if (group_leader->group_leader != group_leader)
2898                         goto err_put_context;
2899                 /*
2900                  * Do not allow to attach to a group in a different
2901                  * task or CPU context:
2902                  */
2903                 if (group_leader->ctx != ctx)
2904                         goto err_put_context;
2905                 /*
2906                  * Only a group leader can be exclusive or pinned
2907                  */
2908                 if (hw_event.exclusive || hw_event.pinned)
2909                         goto err_put_context;
2910         }
2911
2912         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2913                                      GFP_KERNEL);
2914         ret = PTR_ERR(counter);
2915         if (IS_ERR(counter))
2916                 goto err_put_context;
2917
2918         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2919         if (ret < 0)
2920                 goto err_free_put_context;
2921
2922         counter_file = fget_light(ret, &fput_needed2);
2923         if (!counter_file)
2924                 goto err_free_put_context;
2925
2926         counter->filp = counter_file;
2927         mutex_lock(&ctx->mutex);
2928         perf_install_in_context(ctx, counter, cpu);
2929         mutex_unlock(&ctx->mutex);
2930
2931         fput_light(counter_file, fput_needed2);
2932
2933 out_fput:
2934         fput_light(group_file, fput_needed);
2935
2936         return ret;
2937
2938 err_free_put_context:
2939         kfree(counter);
2940
2941 err_put_context:
2942         put_context(ctx);
2943
2944         goto out_fput;
2945 }
2946
2947 /*
2948  * Initialize the perf_counter context in a task_struct:
2949  */
2950 static void
2951 __perf_counter_init_context(struct perf_counter_context *ctx,
2952                             struct task_struct *task)
2953 {
2954         memset(ctx, 0, sizeof(*ctx));
2955         spin_lock_init(&ctx->lock);
2956         mutex_init(&ctx->mutex);
2957         INIT_LIST_HEAD(&ctx->counter_list);
2958         INIT_LIST_HEAD(&ctx->event_list);
2959         ctx->task = task;
2960 }
2961
2962 /*
2963  * inherit a counter from parent task to child task:
2964  */
2965 static struct perf_counter *
2966 inherit_counter(struct perf_counter *parent_counter,
2967               struct task_struct *parent,
2968               struct perf_counter_context *parent_ctx,
2969               struct task_struct *child,
2970               struct perf_counter *group_leader,
2971               struct perf_counter_context *child_ctx)
2972 {
2973         struct perf_counter *child_counter;
2974
2975         /*
2976          * Instead of creating recursive hierarchies of counters,
2977          * we link inherited counters back to the original parent,
2978          * which has a filp for sure, which we use as the reference
2979          * count:
2980          */
2981         if (parent_counter->parent)
2982                 parent_counter = parent_counter->parent;
2983
2984         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2985                                            parent_counter->cpu, child_ctx,
2986                                            group_leader, GFP_KERNEL);
2987         if (IS_ERR(child_counter))
2988                 return child_counter;
2989
2990         /*
2991          * Link it up in the child's context:
2992          */
2993         child_counter->task = child;
2994         add_counter_to_ctx(child_counter, child_ctx);
2995
2996         child_counter->parent = parent_counter;
2997         /*
2998          * inherit into child's child as well:
2999          */
3000         child_counter->hw_event.inherit = 1;
3001
3002         /*
3003          * Get a reference to the parent filp - we will fput it
3004          * when the child counter exits. This is safe to do because
3005          * we are in the parent and we know that the filp still
3006          * exists and has a nonzero count:
3007          */
3008         atomic_long_inc(&parent_counter->filp->f_count);
3009
3010         /*
3011          * Link this into the parent counter's child list
3012          */
3013         mutex_lock(&parent_counter->mutex);
3014         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3015
3016         /*
3017          * Make the child state follow the state of the parent counter,
3018          * not its hw_event.disabled bit.  We hold the parent's mutex,
3019          * so we won't race with perf_counter_{en,dis}able_family.
3020          */
3021         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3022                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3023         else
3024                 child_counter->state = PERF_COUNTER_STATE_OFF;
3025
3026         mutex_unlock(&parent_counter->mutex);
3027
3028         return child_counter;
3029 }
3030
3031 static int inherit_group(struct perf_counter *parent_counter,
3032               struct task_struct *parent,
3033               struct perf_counter_context *parent_ctx,
3034               struct task_struct *child,
3035               struct perf_counter_context *child_ctx)
3036 {
3037         struct perf_counter *leader;
3038         struct perf_counter *sub;
3039         struct perf_counter *child_ctr;
3040
3041         leader = inherit_counter(parent_counter, parent, parent_ctx,
3042                                  child, NULL, child_ctx);
3043         if (IS_ERR(leader))
3044                 return PTR_ERR(leader);
3045         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3046                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3047                                             child, leader, child_ctx);
3048                 if (IS_ERR(child_ctr))
3049                         return PTR_ERR(child_ctr);
3050         }
3051         return 0;
3052 }
3053
3054 static void sync_child_counter(struct perf_counter *child_counter,
3055                                struct perf_counter *parent_counter)
3056 {
3057         u64 parent_val, child_val;
3058
3059         parent_val = atomic64_read(&parent_counter->count);
3060         child_val = atomic64_read(&child_counter->count);
3061
3062         /*
3063          * Add back the child's count to the parent's count:
3064          */
3065         atomic64_add(child_val, &parent_counter->count);
3066         atomic64_add(child_counter->total_time_enabled,
3067                      &parent_counter->child_total_time_enabled);
3068         atomic64_add(child_counter->total_time_running,
3069                      &parent_counter->child_total_time_running);
3070
3071         /*
3072          * Remove this counter from the parent's list
3073          */
3074         mutex_lock(&parent_counter->mutex);
3075         list_del_init(&child_counter->child_list);
3076         mutex_unlock(&parent_counter->mutex);
3077
3078         /*
3079          * Release the parent counter, if this was the last
3080          * reference to it.
3081          */
3082         fput(parent_counter->filp);
3083 }
3084
3085 static void
3086 __perf_counter_exit_task(struct task_struct *child,
3087                          struct perf_counter *child_counter,
3088                          struct perf_counter_context *child_ctx)
3089 {
3090         struct perf_counter *parent_counter;
3091         struct perf_counter *sub, *tmp;
3092
3093         /*
3094          * If we do not self-reap then we have to wait for the
3095          * child task to unschedule (it will happen for sure),
3096          * so that its counter is at its final count. (This
3097          * condition triggers rarely - child tasks usually get
3098          * off their CPU before the parent has a chance to
3099          * get this far into the reaping action)
3100          */
3101         if (child != current) {
3102                 wait_task_inactive(child, 0);
3103                 list_del_init(&child_counter->list_entry);
3104                 update_counter_times(child_counter);
3105         } else {
3106                 struct perf_cpu_context *cpuctx;
3107                 unsigned long flags;
3108                 u64 perf_flags;
3109
3110                 /*
3111                  * Disable and unlink this counter.
3112                  *
3113                  * Be careful about zapping the list - IRQ/NMI context
3114                  * could still be processing it:
3115                  */
3116                 local_irq_save(flags);
3117                 perf_flags = hw_perf_save_disable();
3118
3119                 cpuctx = &__get_cpu_var(perf_cpu_context);
3120
3121                 group_sched_out(child_counter, cpuctx, child_ctx);
3122                 update_counter_times(child_counter);
3123
3124                 list_del_init(&child_counter->list_entry);
3125
3126                 child_ctx->nr_counters--;
3127
3128                 hw_perf_restore(perf_flags);
3129                 local_irq_restore(flags);
3130         }
3131
3132         parent_counter = child_counter->parent;
3133         /*
3134          * It can happen that parent exits first, and has counters
3135          * that are still around due to the child reference. These
3136          * counters need to be zapped - but otherwise linger.
3137          */
3138         if (parent_counter) {
3139                 sync_child_counter(child_counter, parent_counter);
3140                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3141                                          list_entry) {
3142                         if (sub->parent) {
3143                                 sync_child_counter(sub, sub->parent);
3144                                 free_counter(sub);
3145                         }
3146                 }
3147                 free_counter(child_counter);
3148         }
3149 }
3150
3151 /*
3152  * When a child task exits, feed back counter values to parent counters.
3153  *
3154  * Note: we may be running in child context, but the PID is not hashed
3155  * anymore so new counters will not be added.
3156  */
3157 void perf_counter_exit_task(struct task_struct *child)
3158 {
3159         struct perf_counter *child_counter, *tmp;
3160         struct perf_counter_context *child_ctx;
3161
3162         child_ctx = &child->perf_counter_ctx;
3163
3164         if (likely(!child_ctx->nr_counters))
3165                 return;
3166
3167         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3168                                  list_entry)
3169                 __perf_counter_exit_task(child, child_counter, child_ctx);
3170 }
3171
3172 /*
3173  * Initialize the perf_counter context in task_struct
3174  */
3175 void perf_counter_init_task(struct task_struct *child)
3176 {
3177         struct perf_counter_context *child_ctx, *parent_ctx;
3178         struct perf_counter *counter;
3179         struct task_struct *parent = current;
3180
3181         child_ctx  =  &child->perf_counter_ctx;
3182         parent_ctx = &parent->perf_counter_ctx;
3183
3184         __perf_counter_init_context(child_ctx, child);
3185
3186         /*
3187          * This is executed from the parent task context, so inherit
3188          * counters that have been marked for cloning:
3189          */
3190
3191         if (likely(!parent_ctx->nr_counters))
3192                 return;
3193
3194         /*
3195          * Lock the parent list. No need to lock the child - not PID
3196          * hashed yet and not running, so nobody can access it.
3197          */
3198         mutex_lock(&parent_ctx->mutex);
3199
3200         /*
3201          * We dont have to disable NMIs - we are only looking at
3202          * the list, not manipulating it:
3203          */
3204         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3205                 if (!counter->hw_event.inherit)
3206                         continue;
3207
3208                 if (inherit_group(counter, parent,
3209                                   parent_ctx, child, child_ctx))
3210                         break;
3211         }
3212
3213         mutex_unlock(&parent_ctx->mutex);
3214 }
3215
3216 static void __cpuinit perf_counter_init_cpu(int cpu)
3217 {
3218         struct perf_cpu_context *cpuctx;
3219
3220         cpuctx = &per_cpu(perf_cpu_context, cpu);
3221         __perf_counter_init_context(&cpuctx->ctx, NULL);
3222
3223         spin_lock(&perf_resource_lock);
3224         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3225         spin_unlock(&perf_resource_lock);
3226
3227         hw_perf_counter_setup(cpu);
3228 }
3229
3230 #ifdef CONFIG_HOTPLUG_CPU
3231 static void __perf_counter_exit_cpu(void *info)
3232 {
3233         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3234         struct perf_counter_context *ctx = &cpuctx->ctx;
3235         struct perf_counter *counter, *tmp;
3236
3237         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3238                 __perf_counter_remove_from_context(counter);
3239 }
3240 static void perf_counter_exit_cpu(int cpu)
3241 {
3242         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3243         struct perf_counter_context *ctx = &cpuctx->ctx;
3244
3245         mutex_lock(&ctx->mutex);
3246         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3247         mutex_unlock(&ctx->mutex);
3248 }
3249 #else
3250 static inline void perf_counter_exit_cpu(int cpu) { }
3251 #endif
3252
3253 static int __cpuinit
3254 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3255 {
3256         unsigned int cpu = (long)hcpu;
3257
3258         switch (action) {
3259
3260         case CPU_UP_PREPARE:
3261         case CPU_UP_PREPARE_FROZEN:
3262                 perf_counter_init_cpu(cpu);
3263                 break;
3264
3265         case CPU_DOWN_PREPARE:
3266         case CPU_DOWN_PREPARE_FROZEN:
3267                 perf_counter_exit_cpu(cpu);
3268                 break;
3269
3270         default:
3271                 break;
3272         }
3273
3274         return NOTIFY_OK;
3275 }
3276
3277 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3278         .notifier_call          = perf_cpu_notify,
3279 };
3280
3281 void __init perf_counter_init(void)
3282 {
3283         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3284                         (void *)(long)smp_processor_id());
3285         register_cpu_notifier(&perf_cpu_nb);
3286 }
3287
3288 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3289 {
3290         return sprintf(buf, "%d\n", perf_reserved_percpu);
3291 }
3292
3293 static ssize_t
3294 perf_set_reserve_percpu(struct sysdev_class *class,
3295                         const char *buf,
3296                         size_t count)
3297 {
3298         struct perf_cpu_context *cpuctx;
3299         unsigned long val;
3300         int err, cpu, mpt;
3301
3302         err = strict_strtoul(buf, 10, &val);
3303         if (err)
3304                 return err;
3305         if (val > perf_max_counters)
3306                 return -EINVAL;
3307
3308         spin_lock(&perf_resource_lock);
3309         perf_reserved_percpu = val;
3310         for_each_online_cpu(cpu) {
3311                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3312                 spin_lock_irq(&cpuctx->ctx.lock);
3313                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3314                           perf_max_counters - perf_reserved_percpu);
3315                 cpuctx->max_pertask = mpt;
3316                 spin_unlock_irq(&cpuctx->ctx.lock);
3317         }
3318         spin_unlock(&perf_resource_lock);
3319
3320         return count;
3321 }
3322
3323 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3324 {
3325         return sprintf(buf, "%d\n", perf_overcommit);
3326 }
3327
3328 static ssize_t
3329 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3330 {
3331         unsigned long val;
3332         int err;
3333
3334         err = strict_strtoul(buf, 10, &val);
3335         if (err)
3336                 return err;
3337         if (val > 1)
3338                 return -EINVAL;
3339
3340         spin_lock(&perf_resource_lock);
3341         perf_overcommit = val;
3342         spin_unlock(&perf_resource_lock);
3343
3344         return count;
3345 }
3346
3347 static SYSDEV_CLASS_ATTR(
3348                                 reserve_percpu,
3349                                 0644,
3350                                 perf_show_reserve_percpu,
3351                                 perf_set_reserve_percpu
3352                         );
3353
3354 static SYSDEV_CLASS_ATTR(
3355                                 overcommit,
3356                                 0644,
3357                                 perf_show_overcommit,
3358                                 perf_set_overcommit
3359                         );
3360
3361 static struct attribute *perfclass_attrs[] = {
3362         &attr_reserve_percpu.attr,
3363         &attr_overcommit.attr,
3364         NULL
3365 };
3366
3367 static struct attribute_group perfclass_attr_group = {
3368         .attrs                  = perfclass_attrs,
3369         .name                   = "perf_counters",
3370 };
3371
3372 static int __init perf_counter_sysfs_init(void)
3373 {
3374         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3375                                   &perfclass_attr_group);
3376 }
3377 device_initcall(perf_counter_sysfs_init);