]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: call hw_perf_save_disable/restore around group_sched_in
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void)           { return 0; }
64 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67                struct perf_cpu_context *cpuctx,
68                struct perf_counter_context *ctx, int cpu)
69 {
70         return 0;
71 }
72
73 void __weak perf_counter_print_debug(void)      { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78         struct perf_counter *group_leader = counter->group_leader;
79
80         /*
81          * Depending on whether it is a standalone or sibling counter,
82          * add it straight to the context's counter list, or to the group
83          * leader's sibling list:
84          */
85         if (group_leader == counter)
86                 list_add_tail(&counter->list_entry, &ctx->counter_list);
87         else {
88                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89                 group_leader->nr_siblings++;
90         }
91
92         list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98         struct perf_counter *sibling, *tmp;
99
100         list_del_init(&counter->list_entry);
101         list_del_rcu(&counter->event_entry);
102
103         if (counter->group_leader != counter)
104                 counter->group_leader->nr_siblings--;
105
106         /*
107          * If this was a group counter with sibling counters then
108          * upgrade the siblings to singleton counters by adding them
109          * to the context list directly:
110          */
111         list_for_each_entry_safe(sibling, tmp,
112                                  &counter->sibling_list, list_entry) {
113
114                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115                 sibling->group_leader = sibling;
116         }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121                   struct perf_cpu_context *cpuctx,
122                   struct perf_counter_context *ctx)
123 {
124         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125                 return;
126
127         counter->state = PERF_COUNTER_STATE_INACTIVE;
128         counter->tstamp_stopped = ctx->time;
129         counter->pmu->disable(counter);
130         counter->oncpu = -1;
131
132         if (!is_software_counter(counter))
133                 cpuctx->active_oncpu--;
134         ctx->nr_active--;
135         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136                 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141                 struct perf_cpu_context *cpuctx,
142                 struct perf_counter_context *ctx)
143 {
144         struct perf_counter *counter;
145
146         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147                 return;
148
149         counter_sched_out(group_counter, cpuctx, ctx);
150
151         /*
152          * Schedule out siblings (if any):
153          */
154         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155                 counter_sched_out(counter, cpuctx, ctx);
156
157         if (group_counter->hw_event.exclusive)
158                 cpuctx->exclusive = 0;
159 }
160
161 /*
162  * Cross CPU call to remove a performance counter
163  *
164  * We disable the counter on the hardware level first. After that we
165  * remove it from the context list.
166  */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170         struct perf_counter *counter = info;
171         struct perf_counter_context *ctx = counter->ctx;
172         unsigned long flags;
173         u64 perf_flags;
174
175         /*
176          * If this is a task context, we need to check whether it is
177          * the current task context of this cpu. If not it has been
178          * scheduled out before the smp call arrived.
179          */
180         if (ctx->task && cpuctx->task_ctx != ctx)
181                 return;
182
183         spin_lock_irqsave(&ctx->lock, flags);
184
185         counter_sched_out(counter, cpuctx, ctx);
186
187         counter->task = NULL;
188         ctx->nr_counters--;
189
190         /*
191          * Protect the list operation against NMI by disabling the
192          * counters on a global level. NOP for non NMI based counters.
193          */
194         perf_flags = hw_perf_save_disable();
195         list_del_counter(counter, ctx);
196         hw_perf_restore(perf_flags);
197
198         if (!ctx->task) {
199                 /*
200                  * Allow more per task counters with respect to the
201                  * reservation:
202                  */
203                 cpuctx->max_pertask =
204                         min(perf_max_counters - ctx->nr_counters,
205                             perf_max_counters - perf_reserved_percpu);
206         }
207
208         spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213  * Remove the counter from a task's (or a CPU's) list of counters.
214  *
215  * Must be called with counter->mutex and ctx->mutex held.
216  *
217  * CPU counters are removed with a smp call. For task counters we only
218  * call when the task is on a CPU.
219  */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222         struct perf_counter_context *ctx = counter->ctx;
223         struct task_struct *task = ctx->task;
224
225         if (!task) {
226                 /*
227                  * Per cpu counters are removed via an smp call and
228                  * the removal is always sucessful.
229                  */
230                 smp_call_function_single(counter->cpu,
231                                          __perf_counter_remove_from_context,
232                                          counter, 1);
233                 return;
234         }
235
236 retry:
237         task_oncpu_function_call(task, __perf_counter_remove_from_context,
238                                  counter);
239
240         spin_lock_irq(&ctx->lock);
241         /*
242          * If the context is active we need to retry the smp call.
243          */
244         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245                 spin_unlock_irq(&ctx->lock);
246                 goto retry;
247         }
248
249         /*
250          * The lock prevents that this context is scheduled in so we
251          * can remove the counter safely, if the call above did not
252          * succeed.
253          */
254         if (!list_empty(&counter->list_entry)) {
255                 ctx->nr_counters--;
256                 list_del_counter(counter, ctx);
257                 counter->task = NULL;
258         }
259         spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264         return cpu_clock(smp_processor_id());
265 }
266
267 /*
268  * Update the record of the current time in a context.
269  */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272         u64 now = perf_clock();
273
274         ctx->time += now - ctx->timestamp;
275         ctx->timestamp = now;
276 }
277
278 /*
279  * Update the total_time_enabled and total_time_running fields for a counter.
280  */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283         struct perf_counter_context *ctx = counter->ctx;
284         u64 run_end;
285
286         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287                 return;
288
289         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292                 run_end = counter->tstamp_stopped;
293         else
294                 run_end = ctx->time;
295
296         counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300  * Update total_time_enabled and total_time_running for all counters in a group.
301  */
302 static void update_group_times(struct perf_counter *leader)
303 {
304         struct perf_counter *counter;
305
306         update_counter_times(leader);
307         list_for_each_entry(counter, &leader->sibling_list, list_entry)
308                 update_counter_times(counter);
309 }
310
311 /*
312  * Cross CPU call to disable a performance counter
313  */
314 static void __perf_counter_disable(void *info)
315 {
316         struct perf_counter *counter = info;
317         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318         struct perf_counter_context *ctx = counter->ctx;
319         unsigned long flags;
320
321         /*
322          * If this is a per-task counter, need to check whether this
323          * counter's task is the current task on this cpu.
324          */
325         if (ctx->task && cpuctx->task_ctx != ctx)
326                 return;
327
328         spin_lock_irqsave(&ctx->lock, flags);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348  * Disable a counter.
349  */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Disable the counter on the cpu that it's on
358                  */
359                 smp_call_function_single(counter->cpu, __perf_counter_disable,
360                                          counter, 1);
361                 return;
362         }
363
364  retry:
365         task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367         spin_lock_irq(&ctx->lock);
368         /*
369          * If the counter is still active, we need to retry the cross-call.
370          */
371         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372                 spin_unlock_irq(&ctx->lock);
373                 goto retry;
374         }
375
376         /*
377          * Since we have the lock this context can't be scheduled
378          * in, so we can change the state safely.
379          */
380         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381                 update_counter_times(counter);
382                 counter->state = PERF_COUNTER_STATE_OFF;
383         }
384
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390                  struct perf_cpu_context *cpuctx,
391                  struct perf_counter_context *ctx,
392                  int cpu)
393 {
394         if (counter->state <= PERF_COUNTER_STATE_OFF)
395                 return 0;
396
397         counter->state = PERF_COUNTER_STATE_ACTIVE;
398         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
399         /*
400          * The new state must be visible before we turn it on in the hardware:
401          */
402         smp_wmb();
403
404         if (counter->pmu->enable(counter)) {
405                 counter->state = PERF_COUNTER_STATE_INACTIVE;
406                 counter->oncpu = -1;
407                 return -EAGAIN;
408         }
409
410         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412         if (!is_software_counter(counter))
413                 cpuctx->active_oncpu++;
414         ctx->nr_active++;
415
416         if (counter->hw_event.exclusive)
417                 cpuctx->exclusive = 1;
418
419         return 0;
420 }
421
422 static int
423 group_sched_in(struct perf_counter *group_counter,
424                struct perf_cpu_context *cpuctx,
425                struct perf_counter_context *ctx,
426                int cpu)
427 {
428         struct perf_counter *counter, *partial_group;
429         int ret;
430
431         if (group_counter->state == PERF_COUNTER_STATE_OFF)
432                 return 0;
433
434         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
435         if (ret)
436                 return ret < 0 ? ret : 0;
437
438         group_counter->prev_state = group_counter->state;
439         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
440                 return -EAGAIN;
441
442         /*
443          * Schedule in siblings as one group (if any):
444          */
445         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
446                 counter->prev_state = counter->state;
447                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
448                         partial_group = counter;
449                         goto group_error;
450                 }
451         }
452
453         return 0;
454
455 group_error:
456         /*
457          * Groups can be scheduled in as one unit only, so undo any
458          * partial group before returning:
459          */
460         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
461                 if (counter == partial_group)
462                         break;
463                 counter_sched_out(counter, cpuctx, ctx);
464         }
465         counter_sched_out(group_counter, cpuctx, ctx);
466
467         return -EAGAIN;
468 }
469
470 /*
471  * Return 1 for a group consisting entirely of software counters,
472  * 0 if the group contains any hardware counters.
473  */
474 static int is_software_only_group(struct perf_counter *leader)
475 {
476         struct perf_counter *counter;
477
478         if (!is_software_counter(leader))
479                 return 0;
480
481         list_for_each_entry(counter, &leader->sibling_list, list_entry)
482                 if (!is_software_counter(counter))
483                         return 0;
484
485         return 1;
486 }
487
488 /*
489  * Work out whether we can put this counter group on the CPU now.
490  */
491 static int group_can_go_on(struct perf_counter *counter,
492                            struct perf_cpu_context *cpuctx,
493                            int can_add_hw)
494 {
495         /*
496          * Groups consisting entirely of software counters can always go on.
497          */
498         if (is_software_only_group(counter))
499                 return 1;
500         /*
501          * If an exclusive group is already on, no other hardware
502          * counters can go on.
503          */
504         if (cpuctx->exclusive)
505                 return 0;
506         /*
507          * If this group is exclusive and there are already
508          * counters on the CPU, it can't go on.
509          */
510         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
511                 return 0;
512         /*
513          * Otherwise, try to add it if all previous groups were able
514          * to go on.
515          */
516         return can_add_hw;
517 }
518
519 static void add_counter_to_ctx(struct perf_counter *counter,
520                                struct perf_counter_context *ctx)
521 {
522         list_add_counter(counter, ctx);
523         ctx->nr_counters++;
524         counter->prev_state = PERF_COUNTER_STATE_OFF;
525         counter->tstamp_enabled = ctx->time;
526         counter->tstamp_running = ctx->time;
527         counter->tstamp_stopped = ctx->time;
528 }
529
530 /*
531  * Cross CPU call to install and enable a performance counter
532  */
533 static void __perf_install_in_context(void *info)
534 {
535         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
536         struct perf_counter *counter = info;
537         struct perf_counter_context *ctx = counter->ctx;
538         struct perf_counter *leader = counter->group_leader;
539         int cpu = smp_processor_id();
540         unsigned long flags;
541         u64 perf_flags;
542         int err;
543
544         /*
545          * If this is a task context, we need to check whether it is
546          * the current task context of this cpu. If not it has been
547          * scheduled out before the smp call arrived.
548          */
549         if (ctx->task && cpuctx->task_ctx != ctx)
550                 return;
551
552         spin_lock_irqsave(&ctx->lock, flags);
553         update_context_time(ctx);
554
555         /*
556          * Protect the list operation against NMI by disabling the
557          * counters on a global level. NOP for non NMI based counters.
558          */
559         perf_flags = hw_perf_save_disable();
560
561         add_counter_to_ctx(counter, ctx);
562
563         /*
564          * Don't put the counter on if it is disabled or if
565          * it is in a group and the group isn't on.
566          */
567         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
568             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
569                 goto unlock;
570
571         /*
572          * An exclusive counter can't go on if there are already active
573          * hardware counters, and no hardware counter can go on if there
574          * is already an exclusive counter on.
575          */
576         if (!group_can_go_on(counter, cpuctx, 1))
577                 err = -EEXIST;
578         else
579                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
580
581         if (err) {
582                 /*
583                  * This counter couldn't go on.  If it is in a group
584                  * then we have to pull the whole group off.
585                  * If the counter group is pinned then put it in error state.
586                  */
587                 if (leader != counter)
588                         group_sched_out(leader, cpuctx, ctx);
589                 if (leader->hw_event.pinned) {
590                         update_group_times(leader);
591                         leader->state = PERF_COUNTER_STATE_ERROR;
592                 }
593         }
594
595         if (!err && !ctx->task && cpuctx->max_pertask)
596                 cpuctx->max_pertask--;
597
598  unlock:
599         hw_perf_restore(perf_flags);
600
601         spin_unlock_irqrestore(&ctx->lock, flags);
602 }
603
604 /*
605  * Attach a performance counter to a context
606  *
607  * First we add the counter to the list with the hardware enable bit
608  * in counter->hw_config cleared.
609  *
610  * If the counter is attached to a task which is on a CPU we use a smp
611  * call to enable it in the task context. The task might have been
612  * scheduled away, but we check this in the smp call again.
613  *
614  * Must be called with ctx->mutex held.
615  */
616 static void
617 perf_install_in_context(struct perf_counter_context *ctx,
618                         struct perf_counter *counter,
619                         int cpu)
620 {
621         struct task_struct *task = ctx->task;
622
623         if (!task) {
624                 /*
625                  * Per cpu counters are installed via an smp call and
626                  * the install is always sucessful.
627                  */
628                 smp_call_function_single(cpu, __perf_install_in_context,
629                                          counter, 1);
630                 return;
631         }
632
633         counter->task = task;
634 retry:
635         task_oncpu_function_call(task, __perf_install_in_context,
636                                  counter);
637
638         spin_lock_irq(&ctx->lock);
639         /*
640          * we need to retry the smp call.
641          */
642         if (ctx->is_active && list_empty(&counter->list_entry)) {
643                 spin_unlock_irq(&ctx->lock);
644                 goto retry;
645         }
646
647         /*
648          * The lock prevents that this context is scheduled in so we
649          * can add the counter safely, if it the call above did not
650          * succeed.
651          */
652         if (list_empty(&counter->list_entry))
653                 add_counter_to_ctx(counter, ctx);
654         spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658  * Cross CPU call to enable a performance counter
659  */
660 static void __perf_counter_enable(void *info)
661 {
662         struct perf_counter *counter = info;
663         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
664         struct perf_counter_context *ctx = counter->ctx;
665         struct perf_counter *leader = counter->group_leader;
666         unsigned long pmuflags;
667         unsigned long flags;
668         int err;
669
670         /*
671          * If this is a per-task counter, need to check whether this
672          * counter's task is the current task on this cpu.
673          */
674         if (ctx->task && cpuctx->task_ctx != ctx)
675                 return;
676
677         spin_lock_irqsave(&ctx->lock, flags);
678         update_context_time(ctx);
679
680         counter->prev_state = counter->state;
681         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
682                 goto unlock;
683         counter->state = PERF_COUNTER_STATE_INACTIVE;
684         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
685
686         /*
687          * If the counter is in a group and isn't the group leader,
688          * then don't put it on unless the group is on.
689          */
690         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
691                 goto unlock;
692
693         if (!group_can_go_on(counter, cpuctx, 1)) {
694                 err = -EEXIST;
695         } else {
696                 pmuflags = hw_perf_save_disable();
697                 if (counter == leader)
698                         err = group_sched_in(counter, cpuctx, ctx,
699                                              smp_processor_id());
700                 else
701                         err = counter_sched_in(counter, cpuctx, ctx,
702                                                smp_processor_id());
703                 hw_perf_restore(pmuflags);
704         }
705
706         if (err) {
707                 /*
708                  * If this counter can't go on and it's part of a
709                  * group, then the whole group has to come off.
710                  */
711                 if (leader != counter)
712                         group_sched_out(leader, cpuctx, ctx);
713                 if (leader->hw_event.pinned) {
714                         update_group_times(leader);
715                         leader->state = PERF_COUNTER_STATE_ERROR;
716                 }
717         }
718
719  unlock:
720         spin_unlock_irqrestore(&ctx->lock, flags);
721 }
722
723 /*
724  * Enable a counter.
725  */
726 static void perf_counter_enable(struct perf_counter *counter)
727 {
728         struct perf_counter_context *ctx = counter->ctx;
729         struct task_struct *task = ctx->task;
730
731         if (!task) {
732                 /*
733                  * Enable the counter on the cpu that it's on
734                  */
735                 smp_call_function_single(counter->cpu, __perf_counter_enable,
736                                          counter, 1);
737                 return;
738         }
739
740         spin_lock_irq(&ctx->lock);
741         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
742                 goto out;
743
744         /*
745          * If the counter is in error state, clear that first.
746          * That way, if we see the counter in error state below, we
747          * know that it has gone back into error state, as distinct
748          * from the task having been scheduled away before the
749          * cross-call arrived.
750          */
751         if (counter->state == PERF_COUNTER_STATE_ERROR)
752                 counter->state = PERF_COUNTER_STATE_OFF;
753
754  retry:
755         spin_unlock_irq(&ctx->lock);
756         task_oncpu_function_call(task, __perf_counter_enable, counter);
757
758         spin_lock_irq(&ctx->lock);
759
760         /*
761          * If the context is active and the counter is still off,
762          * we need to retry the cross-call.
763          */
764         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
765                 goto retry;
766
767         /*
768          * Since we have the lock this context can't be scheduled
769          * in, so we can change the state safely.
770          */
771         if (counter->state == PERF_COUNTER_STATE_OFF) {
772                 counter->state = PERF_COUNTER_STATE_INACTIVE;
773                 counter->tstamp_enabled =
774                         ctx->time - counter->total_time_enabled;
775         }
776  out:
777         spin_unlock_irq(&ctx->lock);
778 }
779
780 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
781 {
782         /*
783          * not supported on inherited counters
784          */
785         if (counter->hw_event.inherit)
786                 return -EINVAL;
787
788         atomic_add(refresh, &counter->event_limit);
789         perf_counter_enable(counter);
790
791         return 0;
792 }
793
794 void __perf_counter_sched_out(struct perf_counter_context *ctx,
795                               struct perf_cpu_context *cpuctx)
796 {
797         struct perf_counter *counter;
798         u64 flags;
799
800         spin_lock(&ctx->lock);
801         ctx->is_active = 0;
802         if (likely(!ctx->nr_counters))
803                 goto out;
804         update_context_time(ctx);
805
806         flags = hw_perf_save_disable();
807         if (ctx->nr_active) {
808                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
809                         group_sched_out(counter, cpuctx, ctx);
810         }
811         hw_perf_restore(flags);
812  out:
813         spin_unlock(&ctx->lock);
814 }
815
816 /*
817  * Called from scheduler to remove the counters of the current task,
818  * with interrupts disabled.
819  *
820  * We stop each counter and update the counter value in counter->count.
821  *
822  * This does not protect us against NMI, but disable()
823  * sets the disabled bit in the control field of counter _before_
824  * accessing the counter control register. If a NMI hits, then it will
825  * not restart the counter.
826  */
827 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
828 {
829         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
830         struct perf_counter_context *ctx = &task->perf_counter_ctx;
831         struct pt_regs *regs;
832
833         if (likely(!cpuctx->task_ctx))
834                 return;
835
836         update_context_time(ctx);
837
838         regs = task_pt_regs(task);
839         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
840         __perf_counter_sched_out(ctx, cpuctx);
841
842         cpuctx->task_ctx = NULL;
843 }
844
845 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
846 {
847         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
848
849         __perf_counter_sched_out(ctx, cpuctx);
850         cpuctx->task_ctx = NULL;
851 }
852
853 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
854 {
855         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
856 }
857
858 static void
859 __perf_counter_sched_in(struct perf_counter_context *ctx,
860                         struct perf_cpu_context *cpuctx, int cpu)
861 {
862         struct perf_counter *counter;
863         u64 flags;
864         int can_add_hw = 1;
865
866         spin_lock(&ctx->lock);
867         ctx->is_active = 1;
868         if (likely(!ctx->nr_counters))
869                 goto out;
870
871         ctx->timestamp = perf_clock();
872
873         flags = hw_perf_save_disable();
874
875         /*
876          * First go through the list and put on any pinned groups
877          * in order to give them the best chance of going on.
878          */
879         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
880                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
881                     !counter->hw_event.pinned)
882                         continue;
883                 if (counter->cpu != -1 && counter->cpu != cpu)
884                         continue;
885
886                 if (group_can_go_on(counter, cpuctx, 1))
887                         group_sched_in(counter, cpuctx, ctx, cpu);
888
889                 /*
890                  * If this pinned group hasn't been scheduled,
891                  * put it in error state.
892                  */
893                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
894                         update_group_times(counter);
895                         counter->state = PERF_COUNTER_STATE_ERROR;
896                 }
897         }
898
899         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900                 /*
901                  * Ignore counters in OFF or ERROR state, and
902                  * ignore pinned counters since we did them already.
903                  */
904                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
905                     counter->hw_event.pinned)
906                         continue;
907
908                 /*
909                  * Listen to the 'cpu' scheduling filter constraint
910                  * of counters:
911                  */
912                 if (counter->cpu != -1 && counter->cpu != cpu)
913                         continue;
914
915                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
916                         if (group_sched_in(counter, cpuctx, ctx, cpu))
917                                 can_add_hw = 0;
918                 }
919         }
920         hw_perf_restore(flags);
921  out:
922         spin_unlock(&ctx->lock);
923 }
924
925 /*
926  * Called from scheduler to add the counters of the current task
927  * with interrupts disabled.
928  *
929  * We restore the counter value and then enable it.
930  *
931  * This does not protect us against NMI, but enable()
932  * sets the enabled bit in the control field of counter _before_
933  * accessing the counter control register. If a NMI hits, then it will
934  * keep the counter running.
935  */
936 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
937 {
938         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
939         struct perf_counter_context *ctx = &task->perf_counter_ctx;
940
941         __perf_counter_sched_in(ctx, cpuctx, cpu);
942         cpuctx->task_ctx = ctx;
943 }
944
945 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
946 {
947         struct perf_counter_context *ctx = &cpuctx->ctx;
948
949         __perf_counter_sched_in(ctx, cpuctx, cpu);
950 }
951
952 int perf_counter_task_disable(void)
953 {
954         struct task_struct *curr = current;
955         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
956         struct perf_counter *counter;
957         unsigned long flags;
958         u64 perf_flags;
959
960         if (likely(!ctx->nr_counters))
961                 return 0;
962
963         local_irq_save(flags);
964
965         __perf_counter_task_sched_out(ctx);
966
967         spin_lock(&ctx->lock);
968
969         /*
970          * Disable all the counters:
971          */
972         perf_flags = hw_perf_save_disable();
973
974         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
975                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
976                         update_group_times(counter);
977                         counter->state = PERF_COUNTER_STATE_OFF;
978                 }
979         }
980
981         hw_perf_restore(perf_flags);
982
983         spin_unlock_irqrestore(&ctx->lock, flags);
984
985         return 0;
986 }
987
988 int perf_counter_task_enable(void)
989 {
990         struct task_struct *curr = current;
991         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
992         struct perf_counter *counter;
993         unsigned long flags;
994         u64 perf_flags;
995         int cpu;
996
997         if (likely(!ctx->nr_counters))
998                 return 0;
999
1000         local_irq_save(flags);
1001         cpu = smp_processor_id();
1002
1003         __perf_counter_task_sched_out(ctx);
1004
1005         spin_lock(&ctx->lock);
1006
1007         /*
1008          * Disable all the counters:
1009          */
1010         perf_flags = hw_perf_save_disable();
1011
1012         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1013                 if (counter->state > PERF_COUNTER_STATE_OFF)
1014                         continue;
1015                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1016                 counter->tstamp_enabled =
1017                         ctx->time - counter->total_time_enabled;
1018                 counter->hw_event.disabled = 0;
1019         }
1020         hw_perf_restore(perf_flags);
1021
1022         spin_unlock(&ctx->lock);
1023
1024         perf_counter_task_sched_in(curr, cpu);
1025
1026         local_irq_restore(flags);
1027
1028         return 0;
1029 }
1030
1031 /*
1032  * Round-robin a context's counters:
1033  */
1034 static void rotate_ctx(struct perf_counter_context *ctx)
1035 {
1036         struct perf_counter *counter;
1037         u64 perf_flags;
1038
1039         if (!ctx->nr_counters)
1040                 return;
1041
1042         spin_lock(&ctx->lock);
1043         /*
1044          * Rotate the first entry last (works just fine for group counters too):
1045          */
1046         perf_flags = hw_perf_save_disable();
1047         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1048                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1049                 break;
1050         }
1051         hw_perf_restore(perf_flags);
1052
1053         spin_unlock(&ctx->lock);
1054 }
1055
1056 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1057 {
1058         struct perf_cpu_context *cpuctx;
1059         struct perf_counter_context *ctx;
1060
1061         if (!atomic_read(&nr_counters))
1062                 return;
1063
1064         cpuctx = &per_cpu(perf_cpu_context, cpu);
1065         ctx = &curr->perf_counter_ctx;
1066
1067         perf_counter_cpu_sched_out(cpuctx);
1068         __perf_counter_task_sched_out(ctx);
1069
1070         rotate_ctx(&cpuctx->ctx);
1071         rotate_ctx(ctx);
1072
1073         perf_counter_cpu_sched_in(cpuctx, cpu);
1074         perf_counter_task_sched_in(curr, cpu);
1075 }
1076
1077 /*
1078  * Cross CPU call to read the hardware counter
1079  */
1080 static void __read(void *info)
1081 {
1082         struct perf_counter *counter = info;
1083         struct perf_counter_context *ctx = counter->ctx;
1084         unsigned long flags;
1085
1086         local_irq_save(flags);
1087         if (ctx->is_active)
1088                 update_context_time(ctx);
1089         counter->pmu->read(counter);
1090         update_counter_times(counter);
1091         local_irq_restore(flags);
1092 }
1093
1094 static u64 perf_counter_read(struct perf_counter *counter)
1095 {
1096         /*
1097          * If counter is enabled and currently active on a CPU, update the
1098          * value in the counter structure:
1099          */
1100         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1101                 smp_call_function_single(counter->oncpu,
1102                                          __read, counter, 1);
1103         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1104                 update_counter_times(counter);
1105         }
1106
1107         return atomic64_read(&counter->count);
1108 }
1109
1110 static void put_context(struct perf_counter_context *ctx)
1111 {
1112         if (ctx->task)
1113                 put_task_struct(ctx->task);
1114 }
1115
1116 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1117 {
1118         struct perf_cpu_context *cpuctx;
1119         struct perf_counter_context *ctx;
1120         struct task_struct *task;
1121
1122         /*
1123          * If cpu is not a wildcard then this is a percpu counter:
1124          */
1125         if (cpu != -1) {
1126                 /* Must be root to operate on a CPU counter: */
1127                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1128                         return ERR_PTR(-EACCES);
1129
1130                 if (cpu < 0 || cpu > num_possible_cpus())
1131                         return ERR_PTR(-EINVAL);
1132
1133                 /*
1134                  * We could be clever and allow to attach a counter to an
1135                  * offline CPU and activate it when the CPU comes up, but
1136                  * that's for later.
1137                  */
1138                 if (!cpu_isset(cpu, cpu_online_map))
1139                         return ERR_PTR(-ENODEV);
1140
1141                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1142                 ctx = &cpuctx->ctx;
1143
1144                 return ctx;
1145         }
1146
1147         rcu_read_lock();
1148         if (!pid)
1149                 task = current;
1150         else
1151                 task = find_task_by_vpid(pid);
1152         if (task)
1153                 get_task_struct(task);
1154         rcu_read_unlock();
1155
1156         if (!task)
1157                 return ERR_PTR(-ESRCH);
1158
1159         ctx = &task->perf_counter_ctx;
1160         ctx->task = task;
1161
1162         /* Reuse ptrace permission checks for now. */
1163         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1164                 put_context(ctx);
1165                 return ERR_PTR(-EACCES);
1166         }
1167
1168         return ctx;
1169 }
1170
1171 static void free_counter_rcu(struct rcu_head *head)
1172 {
1173         struct perf_counter *counter;
1174
1175         counter = container_of(head, struct perf_counter, rcu_head);
1176         kfree(counter);
1177 }
1178
1179 static void perf_pending_sync(struct perf_counter *counter);
1180
1181 static void free_counter(struct perf_counter *counter)
1182 {
1183         perf_pending_sync(counter);
1184
1185         atomic_dec(&nr_counters);
1186         if (counter->hw_event.mmap)
1187                 atomic_dec(&nr_mmap_tracking);
1188         if (counter->hw_event.munmap)
1189                 atomic_dec(&nr_munmap_tracking);
1190         if (counter->hw_event.comm)
1191                 atomic_dec(&nr_comm_tracking);
1192
1193         if (counter->destroy)
1194                 counter->destroy(counter);
1195
1196         call_rcu(&counter->rcu_head, free_counter_rcu);
1197 }
1198
1199 /*
1200  * Called when the last reference to the file is gone.
1201  */
1202 static int perf_release(struct inode *inode, struct file *file)
1203 {
1204         struct perf_counter *counter = file->private_data;
1205         struct perf_counter_context *ctx = counter->ctx;
1206
1207         file->private_data = NULL;
1208
1209         mutex_lock(&ctx->mutex);
1210         mutex_lock(&counter->mutex);
1211
1212         perf_counter_remove_from_context(counter);
1213
1214         mutex_unlock(&counter->mutex);
1215         mutex_unlock(&ctx->mutex);
1216
1217         free_counter(counter);
1218         put_context(ctx);
1219
1220         return 0;
1221 }
1222
1223 /*
1224  * Read the performance counter - simple non blocking version for now
1225  */
1226 static ssize_t
1227 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1228 {
1229         u64 values[3];
1230         int n;
1231
1232         /*
1233          * Return end-of-file for a read on a counter that is in
1234          * error state (i.e. because it was pinned but it couldn't be
1235          * scheduled on to the CPU at some point).
1236          */
1237         if (counter->state == PERF_COUNTER_STATE_ERROR)
1238                 return 0;
1239
1240         mutex_lock(&counter->mutex);
1241         values[0] = perf_counter_read(counter);
1242         n = 1;
1243         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1244                 values[n++] = counter->total_time_enabled +
1245                         atomic64_read(&counter->child_total_time_enabled);
1246         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1247                 values[n++] = counter->total_time_running +
1248                         atomic64_read(&counter->child_total_time_running);
1249         mutex_unlock(&counter->mutex);
1250
1251         if (count < n * sizeof(u64))
1252                 return -EINVAL;
1253         count = n * sizeof(u64);
1254
1255         if (copy_to_user(buf, values, count))
1256                 return -EFAULT;
1257
1258         return count;
1259 }
1260
1261 static ssize_t
1262 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1263 {
1264         struct perf_counter *counter = file->private_data;
1265
1266         return perf_read_hw(counter, buf, count);
1267 }
1268
1269 static unsigned int perf_poll(struct file *file, poll_table *wait)
1270 {
1271         struct perf_counter *counter = file->private_data;
1272         struct perf_mmap_data *data;
1273         unsigned int events = POLL_HUP;
1274
1275         rcu_read_lock();
1276         data = rcu_dereference(counter->data);
1277         if (data)
1278                 events = atomic_xchg(&data->poll, 0);
1279         rcu_read_unlock();
1280
1281         poll_wait(file, &counter->waitq, wait);
1282
1283         return events;
1284 }
1285
1286 static void perf_counter_reset(struct perf_counter *counter)
1287 {
1288         (void)perf_counter_read(counter);
1289         atomic64_set(&counter->count, 0);
1290         perf_counter_update_userpage(counter);
1291 }
1292
1293 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1294                                           void (*func)(struct perf_counter *))
1295 {
1296         struct perf_counter_context *ctx = counter->ctx;
1297         struct perf_counter *sibling;
1298
1299         spin_lock_irq(&ctx->lock);
1300         counter = counter->group_leader;
1301
1302         func(counter);
1303         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1304                 func(sibling);
1305         spin_unlock_irq(&ctx->lock);
1306 }
1307
1308 static void perf_counter_for_each_child(struct perf_counter *counter,
1309                                         void (*func)(struct perf_counter *))
1310 {
1311         struct perf_counter *child;
1312
1313         mutex_lock(&counter->mutex);
1314         func(counter);
1315         list_for_each_entry(child, &counter->child_list, child_list)
1316                 func(child);
1317         mutex_unlock(&counter->mutex);
1318 }
1319
1320 static void perf_counter_for_each(struct perf_counter *counter,
1321                                   void (*func)(struct perf_counter *))
1322 {
1323         struct perf_counter *child;
1324
1325         mutex_lock(&counter->mutex);
1326         perf_counter_for_each_sibling(counter, func);
1327         list_for_each_entry(child, &counter->child_list, child_list)
1328                 perf_counter_for_each_sibling(child, func);
1329         mutex_unlock(&counter->mutex);
1330 }
1331
1332 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1333 {
1334         struct perf_counter *counter = file->private_data;
1335         void (*func)(struct perf_counter *);
1336         u32 flags = arg;
1337
1338         switch (cmd) {
1339         case PERF_COUNTER_IOC_ENABLE:
1340                 func = perf_counter_enable;
1341                 break;
1342         case PERF_COUNTER_IOC_DISABLE:
1343                 func = perf_counter_disable;
1344                 break;
1345         case PERF_COUNTER_IOC_RESET:
1346                 func = perf_counter_reset;
1347                 break;
1348
1349         case PERF_COUNTER_IOC_REFRESH:
1350                 return perf_counter_refresh(counter, arg);
1351         default:
1352                 return -ENOTTY;
1353         }
1354
1355         if (flags & PERF_IOC_FLAG_GROUP)
1356                 perf_counter_for_each(counter, func);
1357         else
1358                 perf_counter_for_each_child(counter, func);
1359
1360         return 0;
1361 }
1362
1363 /*
1364  * Callers need to ensure there can be no nesting of this function, otherwise
1365  * the seqlock logic goes bad. We can not serialize this because the arch
1366  * code calls this from NMI context.
1367  */
1368 void perf_counter_update_userpage(struct perf_counter *counter)
1369 {
1370         struct perf_mmap_data *data;
1371         struct perf_counter_mmap_page *userpg;
1372
1373         rcu_read_lock();
1374         data = rcu_dereference(counter->data);
1375         if (!data)
1376                 goto unlock;
1377
1378         userpg = data->user_page;
1379
1380         /*
1381          * Disable preemption so as to not let the corresponding user-space
1382          * spin too long if we get preempted.
1383          */
1384         preempt_disable();
1385         ++userpg->lock;
1386         barrier();
1387         userpg->index = counter->hw.idx;
1388         userpg->offset = atomic64_read(&counter->count);
1389         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1390                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1391
1392         barrier();
1393         ++userpg->lock;
1394         preempt_enable();
1395 unlock:
1396         rcu_read_unlock();
1397 }
1398
1399 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1400 {
1401         struct perf_counter *counter = vma->vm_file->private_data;
1402         struct perf_mmap_data *data;
1403         int ret = VM_FAULT_SIGBUS;
1404
1405         rcu_read_lock();
1406         data = rcu_dereference(counter->data);
1407         if (!data)
1408                 goto unlock;
1409
1410         if (vmf->pgoff == 0) {
1411                 vmf->page = virt_to_page(data->user_page);
1412         } else {
1413                 int nr = vmf->pgoff - 1;
1414
1415                 if ((unsigned)nr > data->nr_pages)
1416                         goto unlock;
1417
1418                 vmf->page = virt_to_page(data->data_pages[nr]);
1419         }
1420         get_page(vmf->page);
1421         ret = 0;
1422 unlock:
1423         rcu_read_unlock();
1424
1425         return ret;
1426 }
1427
1428 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1429 {
1430         struct perf_mmap_data *data;
1431         unsigned long size;
1432         int i;
1433
1434         WARN_ON(atomic_read(&counter->mmap_count));
1435
1436         size = sizeof(struct perf_mmap_data);
1437         size += nr_pages * sizeof(void *);
1438
1439         data = kzalloc(size, GFP_KERNEL);
1440         if (!data)
1441                 goto fail;
1442
1443         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1444         if (!data->user_page)
1445                 goto fail_user_page;
1446
1447         for (i = 0; i < nr_pages; i++) {
1448                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1449                 if (!data->data_pages[i])
1450                         goto fail_data_pages;
1451         }
1452
1453         data->nr_pages = nr_pages;
1454         atomic_set(&data->lock, -1);
1455
1456         rcu_assign_pointer(counter->data, data);
1457
1458         return 0;
1459
1460 fail_data_pages:
1461         for (i--; i >= 0; i--)
1462                 free_page((unsigned long)data->data_pages[i]);
1463
1464         free_page((unsigned long)data->user_page);
1465
1466 fail_user_page:
1467         kfree(data);
1468
1469 fail:
1470         return -ENOMEM;
1471 }
1472
1473 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1474 {
1475         struct perf_mmap_data *data = container_of(rcu_head,
1476                         struct perf_mmap_data, rcu_head);
1477         int i;
1478
1479         free_page((unsigned long)data->user_page);
1480         for (i = 0; i < data->nr_pages; i++)
1481                 free_page((unsigned long)data->data_pages[i]);
1482         kfree(data);
1483 }
1484
1485 static void perf_mmap_data_free(struct perf_counter *counter)
1486 {
1487         struct perf_mmap_data *data = counter->data;
1488
1489         WARN_ON(atomic_read(&counter->mmap_count));
1490
1491         rcu_assign_pointer(counter->data, NULL);
1492         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1493 }
1494
1495 static void perf_mmap_open(struct vm_area_struct *vma)
1496 {
1497         struct perf_counter *counter = vma->vm_file->private_data;
1498
1499         atomic_inc(&counter->mmap_count);
1500 }
1501
1502 static void perf_mmap_close(struct vm_area_struct *vma)
1503 {
1504         struct perf_counter *counter = vma->vm_file->private_data;
1505
1506         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1507                                       &counter->mmap_mutex)) {
1508                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1509                 perf_mmap_data_free(counter);
1510                 mutex_unlock(&counter->mmap_mutex);
1511         }
1512 }
1513
1514 static struct vm_operations_struct perf_mmap_vmops = {
1515         .open  = perf_mmap_open,
1516         .close = perf_mmap_close,
1517         .fault = perf_mmap_fault,
1518 };
1519
1520 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1521 {
1522         struct perf_counter *counter = file->private_data;
1523         unsigned long vma_size;
1524         unsigned long nr_pages;
1525         unsigned long locked, lock_limit;
1526         int ret = 0;
1527         long extra;
1528
1529         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1530                 return -EINVAL;
1531
1532         vma_size = vma->vm_end - vma->vm_start;
1533         nr_pages = (vma_size / PAGE_SIZE) - 1;
1534
1535         /*
1536          * If we have data pages ensure they're a power-of-two number, so we
1537          * can do bitmasks instead of modulo.
1538          */
1539         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1540                 return -EINVAL;
1541
1542         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1543                 return -EINVAL;
1544
1545         if (vma->vm_pgoff != 0)
1546                 return -EINVAL;
1547
1548         mutex_lock(&counter->mmap_mutex);
1549         if (atomic_inc_not_zero(&counter->mmap_count)) {
1550                 if (nr_pages != counter->data->nr_pages)
1551                         ret = -EINVAL;
1552                 goto unlock;
1553         }
1554
1555         extra = nr_pages /* + 1 only account the data pages */;
1556         extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1557         if (extra < 0)
1558                 extra = 0;
1559
1560         locked = vma->vm_mm->locked_vm + extra;
1561
1562         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1563         lock_limit >>= PAGE_SHIFT;
1564
1565         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1566                 ret = -EPERM;
1567                 goto unlock;
1568         }
1569
1570         WARN_ON(counter->data);
1571         ret = perf_mmap_data_alloc(counter, nr_pages);
1572         if (ret)
1573                 goto unlock;
1574
1575         atomic_set(&counter->mmap_count, 1);
1576         vma->vm_mm->locked_vm += extra;
1577         counter->data->nr_locked = extra;
1578 unlock:
1579         mutex_unlock(&counter->mmap_mutex);
1580
1581         vma->vm_flags &= ~VM_MAYWRITE;
1582         vma->vm_flags |= VM_RESERVED;
1583         vma->vm_ops = &perf_mmap_vmops;
1584
1585         return ret;
1586 }
1587
1588 static int perf_fasync(int fd, struct file *filp, int on)
1589 {
1590         struct perf_counter *counter = filp->private_data;
1591         struct inode *inode = filp->f_path.dentry->d_inode;
1592         int retval;
1593
1594         mutex_lock(&inode->i_mutex);
1595         retval = fasync_helper(fd, filp, on, &counter->fasync);
1596         mutex_unlock(&inode->i_mutex);
1597
1598         if (retval < 0)
1599                 return retval;
1600
1601         return 0;
1602 }
1603
1604 static const struct file_operations perf_fops = {
1605         .release                = perf_release,
1606         .read                   = perf_read,
1607         .poll                   = perf_poll,
1608         .unlocked_ioctl         = perf_ioctl,
1609         .compat_ioctl           = perf_ioctl,
1610         .mmap                   = perf_mmap,
1611         .fasync                 = perf_fasync,
1612 };
1613
1614 /*
1615  * Perf counter wakeup
1616  *
1617  * If there's data, ensure we set the poll() state and publish everything
1618  * to user-space before waking everybody up.
1619  */
1620
1621 void perf_counter_wakeup(struct perf_counter *counter)
1622 {
1623         wake_up_all(&counter->waitq);
1624
1625         if (counter->pending_kill) {
1626                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1627                 counter->pending_kill = 0;
1628         }
1629 }
1630
1631 /*
1632  * Pending wakeups
1633  *
1634  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1635  *
1636  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1637  * single linked list and use cmpxchg() to add entries lockless.
1638  */
1639
1640 static void perf_pending_counter(struct perf_pending_entry *entry)
1641 {
1642         struct perf_counter *counter = container_of(entry,
1643                         struct perf_counter, pending);
1644
1645         if (counter->pending_disable) {
1646                 counter->pending_disable = 0;
1647                 perf_counter_disable(counter);
1648         }
1649
1650         if (counter->pending_wakeup) {
1651                 counter->pending_wakeup = 0;
1652                 perf_counter_wakeup(counter);
1653         }
1654 }
1655
1656 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1657
1658 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1659         PENDING_TAIL,
1660 };
1661
1662 static void perf_pending_queue(struct perf_pending_entry *entry,
1663                                void (*func)(struct perf_pending_entry *))
1664 {
1665         struct perf_pending_entry **head;
1666
1667         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1668                 return;
1669
1670         entry->func = func;
1671
1672         head = &get_cpu_var(perf_pending_head);
1673
1674         do {
1675                 entry->next = *head;
1676         } while (cmpxchg(head, entry->next, entry) != entry->next);
1677
1678         set_perf_counter_pending();
1679
1680         put_cpu_var(perf_pending_head);
1681 }
1682
1683 static int __perf_pending_run(void)
1684 {
1685         struct perf_pending_entry *list;
1686         int nr = 0;
1687
1688         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1689         while (list != PENDING_TAIL) {
1690                 void (*func)(struct perf_pending_entry *);
1691                 struct perf_pending_entry *entry = list;
1692
1693                 list = list->next;
1694
1695                 func = entry->func;
1696                 entry->next = NULL;
1697                 /*
1698                  * Ensure we observe the unqueue before we issue the wakeup,
1699                  * so that we won't be waiting forever.
1700                  * -- see perf_not_pending().
1701                  */
1702                 smp_wmb();
1703
1704                 func(entry);
1705                 nr++;
1706         }
1707
1708         return nr;
1709 }
1710
1711 static inline int perf_not_pending(struct perf_counter *counter)
1712 {
1713         /*
1714          * If we flush on whatever cpu we run, there is a chance we don't
1715          * need to wait.
1716          */
1717         get_cpu();
1718         __perf_pending_run();
1719         put_cpu();
1720
1721         /*
1722          * Ensure we see the proper queue state before going to sleep
1723          * so that we do not miss the wakeup. -- see perf_pending_handle()
1724          */
1725         smp_rmb();
1726         return counter->pending.next == NULL;
1727 }
1728
1729 static void perf_pending_sync(struct perf_counter *counter)
1730 {
1731         wait_event(counter->waitq, perf_not_pending(counter));
1732 }
1733
1734 void perf_counter_do_pending(void)
1735 {
1736         __perf_pending_run();
1737 }
1738
1739 /*
1740  * Callchain support -- arch specific
1741  */
1742
1743 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1744 {
1745         return NULL;
1746 }
1747
1748 /*
1749  * Output
1750  */
1751
1752 struct perf_output_handle {
1753         struct perf_counter     *counter;
1754         struct perf_mmap_data   *data;
1755         unsigned int            offset;
1756         unsigned int            head;
1757         int                     nmi;
1758         int                     overflow;
1759         int                     locked;
1760         unsigned long           flags;
1761 };
1762
1763 static void perf_output_wakeup(struct perf_output_handle *handle)
1764 {
1765         atomic_set(&handle->data->poll, POLL_IN);
1766
1767         if (handle->nmi) {
1768                 handle->counter->pending_wakeup = 1;
1769                 perf_pending_queue(&handle->counter->pending,
1770                                    perf_pending_counter);
1771         } else
1772                 perf_counter_wakeup(handle->counter);
1773 }
1774
1775 /*
1776  * Curious locking construct.
1777  *
1778  * We need to ensure a later event doesn't publish a head when a former
1779  * event isn't done writing. However since we need to deal with NMIs we
1780  * cannot fully serialize things.
1781  *
1782  * What we do is serialize between CPUs so we only have to deal with NMI
1783  * nesting on a single CPU.
1784  *
1785  * We only publish the head (and generate a wakeup) when the outer-most
1786  * event completes.
1787  */
1788 static void perf_output_lock(struct perf_output_handle *handle)
1789 {
1790         struct perf_mmap_data *data = handle->data;
1791         int cpu;
1792
1793         handle->locked = 0;
1794
1795         local_irq_save(handle->flags);
1796         cpu = smp_processor_id();
1797
1798         if (in_nmi() && atomic_read(&data->lock) == cpu)
1799                 return;
1800
1801         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1802                 cpu_relax();
1803
1804         handle->locked = 1;
1805 }
1806
1807 static void perf_output_unlock(struct perf_output_handle *handle)
1808 {
1809         struct perf_mmap_data *data = handle->data;
1810         int head, cpu;
1811
1812         data->done_head = data->head;
1813
1814         if (!handle->locked)
1815                 goto out;
1816
1817 again:
1818         /*
1819          * The xchg implies a full barrier that ensures all writes are done
1820          * before we publish the new head, matched by a rmb() in userspace when
1821          * reading this position.
1822          */
1823         while ((head = atomic_xchg(&data->done_head, 0)))
1824                 data->user_page->data_head = head;
1825
1826         /*
1827          * NMI can happen here, which means we can miss a done_head update.
1828          */
1829
1830         cpu = atomic_xchg(&data->lock, -1);
1831         WARN_ON_ONCE(cpu != smp_processor_id());
1832
1833         /*
1834          * Therefore we have to validate we did not indeed do so.
1835          */
1836         if (unlikely(atomic_read(&data->done_head))) {
1837                 /*
1838                  * Since we had it locked, we can lock it again.
1839                  */
1840                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1841                         cpu_relax();
1842
1843                 goto again;
1844         }
1845
1846         if (atomic_xchg(&data->wakeup, 0))
1847                 perf_output_wakeup(handle);
1848 out:
1849         local_irq_restore(handle->flags);
1850 }
1851
1852 static int perf_output_begin(struct perf_output_handle *handle,
1853                              struct perf_counter *counter, unsigned int size,
1854                              int nmi, int overflow)
1855 {
1856         struct perf_mmap_data *data;
1857         unsigned int offset, head;
1858
1859         /*
1860          * For inherited counters we send all the output towards the parent.
1861          */
1862         if (counter->parent)
1863                 counter = counter->parent;
1864
1865         rcu_read_lock();
1866         data = rcu_dereference(counter->data);
1867         if (!data)
1868                 goto out;
1869
1870         handle->data     = data;
1871         handle->counter  = counter;
1872         handle->nmi      = nmi;
1873         handle->overflow = overflow;
1874
1875         if (!data->nr_pages)
1876                 goto fail;
1877
1878         perf_output_lock(handle);
1879
1880         do {
1881                 offset = head = atomic_read(&data->head);
1882                 head += size;
1883         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1884
1885         handle->offset  = offset;
1886         handle->head    = head;
1887
1888         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1889                 atomic_set(&data->wakeup, 1);
1890
1891         return 0;
1892
1893 fail:
1894         perf_output_wakeup(handle);
1895 out:
1896         rcu_read_unlock();
1897
1898         return -ENOSPC;
1899 }
1900
1901 static void perf_output_copy(struct perf_output_handle *handle,
1902                              void *buf, unsigned int len)
1903 {
1904         unsigned int pages_mask;
1905         unsigned int offset;
1906         unsigned int size;
1907         void **pages;
1908
1909         offset          = handle->offset;
1910         pages_mask      = handle->data->nr_pages - 1;
1911         pages           = handle->data->data_pages;
1912
1913         do {
1914                 unsigned int page_offset;
1915                 int nr;
1916
1917                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1918                 page_offset = offset & (PAGE_SIZE - 1);
1919                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1920
1921                 memcpy(pages[nr] + page_offset, buf, size);
1922
1923                 len         -= size;
1924                 buf         += size;
1925                 offset      += size;
1926         } while (len);
1927
1928         handle->offset = offset;
1929
1930         WARN_ON_ONCE(handle->offset > handle->head);
1931 }
1932
1933 #define perf_output_put(handle, x) \
1934         perf_output_copy((handle), &(x), sizeof(x))
1935
1936 static void perf_output_end(struct perf_output_handle *handle)
1937 {
1938         struct perf_counter *counter = handle->counter;
1939         struct perf_mmap_data *data = handle->data;
1940
1941         int wakeup_events = counter->hw_event.wakeup_events;
1942
1943         if (handle->overflow && wakeup_events) {
1944                 int events = atomic_inc_return(&data->events);
1945                 if (events >= wakeup_events) {
1946                         atomic_sub(wakeup_events, &data->events);
1947                         atomic_set(&data->wakeup, 1);
1948                 }
1949         }
1950
1951         perf_output_unlock(handle);
1952         rcu_read_unlock();
1953 }
1954
1955 static void perf_counter_output(struct perf_counter *counter,
1956                                 int nmi, struct pt_regs *regs, u64 addr)
1957 {
1958         int ret;
1959         u64 record_type = counter->hw_event.record_type;
1960         struct perf_output_handle handle;
1961         struct perf_event_header header;
1962         u64 ip;
1963         struct {
1964                 u32 pid, tid;
1965         } tid_entry;
1966         struct {
1967                 u64 event;
1968                 u64 counter;
1969         } group_entry;
1970         struct perf_callchain_entry *callchain = NULL;
1971         int callchain_size = 0;
1972         u64 time;
1973         struct {
1974                 u32 cpu, reserved;
1975         } cpu_entry;
1976
1977         header.type = 0;
1978         header.size = sizeof(header);
1979
1980         header.misc = PERF_EVENT_MISC_OVERFLOW;
1981         header.misc |= user_mode(regs) ?
1982                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1983
1984         if (record_type & PERF_RECORD_IP) {
1985                 ip = instruction_pointer(regs);
1986                 header.type |= PERF_RECORD_IP;
1987                 header.size += sizeof(ip);
1988         }
1989
1990         if (record_type & PERF_RECORD_TID) {
1991                 /* namespace issues */
1992                 tid_entry.pid = current->group_leader->pid;
1993                 tid_entry.tid = current->pid;
1994
1995                 header.type |= PERF_RECORD_TID;
1996                 header.size += sizeof(tid_entry);
1997         }
1998
1999         if (record_type & PERF_RECORD_TIME) {
2000                 /*
2001                  * Maybe do better on x86 and provide cpu_clock_nmi()
2002                  */
2003                 time = sched_clock();
2004
2005                 header.type |= PERF_RECORD_TIME;
2006                 header.size += sizeof(u64);
2007         }
2008
2009         if (record_type & PERF_RECORD_ADDR) {
2010                 header.type |= PERF_RECORD_ADDR;
2011                 header.size += sizeof(u64);
2012         }
2013
2014         if (record_type & PERF_RECORD_CONFIG) {
2015                 header.type |= PERF_RECORD_CONFIG;
2016                 header.size += sizeof(u64);
2017         }
2018
2019         if (record_type & PERF_RECORD_CPU) {
2020                 header.type |= PERF_RECORD_CPU;
2021                 header.size += sizeof(cpu_entry);
2022
2023                 cpu_entry.cpu = raw_smp_processor_id();
2024         }
2025
2026         if (record_type & PERF_RECORD_GROUP) {
2027                 header.type |= PERF_RECORD_GROUP;
2028                 header.size += sizeof(u64) +
2029                         counter->nr_siblings * sizeof(group_entry);
2030         }
2031
2032         if (record_type & PERF_RECORD_CALLCHAIN) {
2033                 callchain = perf_callchain(regs);
2034
2035                 if (callchain) {
2036                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2037
2038                         header.type |= PERF_RECORD_CALLCHAIN;
2039                         header.size += callchain_size;
2040                 }
2041         }
2042
2043         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2044         if (ret)
2045                 return;
2046
2047         perf_output_put(&handle, header);
2048
2049         if (record_type & PERF_RECORD_IP)
2050                 perf_output_put(&handle, ip);
2051
2052         if (record_type & PERF_RECORD_TID)
2053                 perf_output_put(&handle, tid_entry);
2054
2055         if (record_type & PERF_RECORD_TIME)
2056                 perf_output_put(&handle, time);
2057
2058         if (record_type & PERF_RECORD_ADDR)
2059                 perf_output_put(&handle, addr);
2060
2061         if (record_type & PERF_RECORD_CONFIG)
2062                 perf_output_put(&handle, counter->hw_event.config);
2063
2064         if (record_type & PERF_RECORD_CPU)
2065                 perf_output_put(&handle, cpu_entry);
2066
2067         /*
2068          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2069          */
2070         if (record_type & PERF_RECORD_GROUP) {
2071                 struct perf_counter *leader, *sub;
2072                 u64 nr = counter->nr_siblings;
2073
2074                 perf_output_put(&handle, nr);
2075
2076                 leader = counter->group_leader;
2077                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2078                         if (sub != counter)
2079                                 sub->pmu->read(sub);
2080
2081                         group_entry.event = sub->hw_event.config;
2082                         group_entry.counter = atomic64_read(&sub->count);
2083
2084                         perf_output_put(&handle, group_entry);
2085                 }
2086         }
2087
2088         if (callchain)
2089                 perf_output_copy(&handle, callchain, callchain_size);
2090
2091         perf_output_end(&handle);
2092 }
2093
2094 /*
2095  * comm tracking
2096  */
2097
2098 struct perf_comm_event {
2099         struct task_struct      *task;
2100         char                    *comm;
2101         int                     comm_size;
2102
2103         struct {
2104                 struct perf_event_header        header;
2105
2106                 u32                             pid;
2107                 u32                             tid;
2108         } event;
2109 };
2110
2111 static void perf_counter_comm_output(struct perf_counter *counter,
2112                                      struct perf_comm_event *comm_event)
2113 {
2114         struct perf_output_handle handle;
2115         int size = comm_event->event.header.size;
2116         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2117
2118         if (ret)
2119                 return;
2120
2121         perf_output_put(&handle, comm_event->event);
2122         perf_output_copy(&handle, comm_event->comm,
2123                                    comm_event->comm_size);
2124         perf_output_end(&handle);
2125 }
2126
2127 static int perf_counter_comm_match(struct perf_counter *counter,
2128                                    struct perf_comm_event *comm_event)
2129 {
2130         if (counter->hw_event.comm &&
2131             comm_event->event.header.type == PERF_EVENT_COMM)
2132                 return 1;
2133
2134         return 0;
2135 }
2136
2137 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2138                                   struct perf_comm_event *comm_event)
2139 {
2140         struct perf_counter *counter;
2141
2142         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2143                 return;
2144
2145         rcu_read_lock();
2146         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2147                 if (perf_counter_comm_match(counter, comm_event))
2148                         perf_counter_comm_output(counter, comm_event);
2149         }
2150         rcu_read_unlock();
2151 }
2152
2153 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2154 {
2155         struct perf_cpu_context *cpuctx;
2156         unsigned int size;
2157         char *comm = comm_event->task->comm;
2158
2159         size = ALIGN(strlen(comm)+1, sizeof(u64));
2160
2161         comm_event->comm = comm;
2162         comm_event->comm_size = size;
2163
2164         comm_event->event.header.size = sizeof(comm_event->event) + size;
2165
2166         cpuctx = &get_cpu_var(perf_cpu_context);
2167         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2168         put_cpu_var(perf_cpu_context);
2169
2170         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2171 }
2172
2173 void perf_counter_comm(struct task_struct *task)
2174 {
2175         struct perf_comm_event comm_event;
2176
2177         if (!atomic_read(&nr_comm_tracking))
2178                 return;
2179        
2180         comm_event = (struct perf_comm_event){
2181                 .task   = task,
2182                 .event  = {
2183                         .header = { .type = PERF_EVENT_COMM, },
2184                         .pid    = task->group_leader->pid,
2185                         .tid    = task->pid,
2186                 },
2187         };
2188
2189         perf_counter_comm_event(&comm_event);
2190 }
2191
2192 /*
2193  * mmap tracking
2194  */
2195
2196 struct perf_mmap_event {
2197         struct file     *file;
2198         char            *file_name;
2199         int             file_size;
2200
2201         struct {
2202                 struct perf_event_header        header;
2203
2204                 u32                             pid;
2205                 u32                             tid;
2206                 u64                             start;
2207                 u64                             len;
2208                 u64                             pgoff;
2209         } event;
2210 };
2211
2212 static void perf_counter_mmap_output(struct perf_counter *counter,
2213                                      struct perf_mmap_event *mmap_event)
2214 {
2215         struct perf_output_handle handle;
2216         int size = mmap_event->event.header.size;
2217         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2218
2219         if (ret)
2220                 return;
2221
2222         perf_output_put(&handle, mmap_event->event);
2223         perf_output_copy(&handle, mmap_event->file_name,
2224                                    mmap_event->file_size);
2225         perf_output_end(&handle);
2226 }
2227
2228 static int perf_counter_mmap_match(struct perf_counter *counter,
2229                                    struct perf_mmap_event *mmap_event)
2230 {
2231         if (counter->hw_event.mmap &&
2232             mmap_event->event.header.type == PERF_EVENT_MMAP)
2233                 return 1;
2234
2235         if (counter->hw_event.munmap &&
2236             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2237                 return 1;
2238
2239         return 0;
2240 }
2241
2242 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2243                                   struct perf_mmap_event *mmap_event)
2244 {
2245         struct perf_counter *counter;
2246
2247         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2248                 return;
2249
2250         rcu_read_lock();
2251         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2252                 if (perf_counter_mmap_match(counter, mmap_event))
2253                         perf_counter_mmap_output(counter, mmap_event);
2254         }
2255         rcu_read_unlock();
2256 }
2257
2258 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2259 {
2260         struct perf_cpu_context *cpuctx;
2261         struct file *file = mmap_event->file;
2262         unsigned int size;
2263         char tmp[16];
2264         char *buf = NULL;
2265         char *name;
2266
2267         if (file) {
2268                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2269                 if (!buf) {
2270                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2271                         goto got_name;
2272                 }
2273                 name = d_path(&file->f_path, buf, PATH_MAX);
2274                 if (IS_ERR(name)) {
2275                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2276                         goto got_name;
2277                 }
2278         } else {
2279                 name = strncpy(tmp, "//anon", sizeof(tmp));
2280                 goto got_name;
2281         }
2282
2283 got_name:
2284         size = ALIGN(strlen(name)+1, sizeof(u64));
2285
2286         mmap_event->file_name = name;
2287         mmap_event->file_size = size;
2288
2289         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2290
2291         cpuctx = &get_cpu_var(perf_cpu_context);
2292         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2293         put_cpu_var(perf_cpu_context);
2294
2295         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2296
2297         kfree(buf);
2298 }
2299
2300 void perf_counter_mmap(unsigned long addr, unsigned long len,
2301                        unsigned long pgoff, struct file *file)
2302 {
2303         struct perf_mmap_event mmap_event;
2304
2305         if (!atomic_read(&nr_mmap_tracking))
2306                 return;
2307
2308         mmap_event = (struct perf_mmap_event){
2309                 .file   = file,
2310                 .event  = {
2311                         .header = { .type = PERF_EVENT_MMAP, },
2312                         .pid    = current->group_leader->pid,
2313                         .tid    = current->pid,
2314                         .start  = addr,
2315                         .len    = len,
2316                         .pgoff  = pgoff,
2317                 },
2318         };
2319
2320         perf_counter_mmap_event(&mmap_event);
2321 }
2322
2323 void perf_counter_munmap(unsigned long addr, unsigned long len,
2324                          unsigned long pgoff, struct file *file)
2325 {
2326         struct perf_mmap_event mmap_event;
2327
2328         if (!atomic_read(&nr_munmap_tracking))
2329                 return;
2330
2331         mmap_event = (struct perf_mmap_event){
2332                 .file   = file,
2333                 .event  = {
2334                         .header = { .type = PERF_EVENT_MUNMAP, },
2335                         .pid    = current->group_leader->pid,
2336                         .tid    = current->pid,
2337                         .start  = addr,
2338                         .len    = len,
2339                         .pgoff  = pgoff,
2340                 },
2341         };
2342
2343         perf_counter_mmap_event(&mmap_event);
2344 }
2345
2346 /*
2347  * Generic counter overflow handling.
2348  */
2349
2350 int perf_counter_overflow(struct perf_counter *counter,
2351                           int nmi, struct pt_regs *regs, u64 addr)
2352 {
2353         int events = atomic_read(&counter->event_limit);
2354         int ret = 0;
2355
2356         /*
2357          * XXX event_limit might not quite work as expected on inherited
2358          * counters
2359          */
2360
2361         counter->pending_kill = POLL_IN;
2362         if (events && atomic_dec_and_test(&counter->event_limit)) {
2363                 ret = 1;
2364                 counter->pending_kill = POLL_HUP;
2365                 if (nmi) {
2366                         counter->pending_disable = 1;
2367                         perf_pending_queue(&counter->pending,
2368                                            perf_pending_counter);
2369                 } else
2370                         perf_counter_disable(counter);
2371         }
2372
2373         perf_counter_output(counter, nmi, regs, addr);
2374         return ret;
2375 }
2376
2377 /*
2378  * Generic software counter infrastructure
2379  */
2380
2381 static void perf_swcounter_update(struct perf_counter *counter)
2382 {
2383         struct hw_perf_counter *hwc = &counter->hw;
2384         u64 prev, now;
2385         s64 delta;
2386
2387 again:
2388         prev = atomic64_read(&hwc->prev_count);
2389         now = atomic64_read(&hwc->count);
2390         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2391                 goto again;
2392
2393         delta = now - prev;
2394
2395         atomic64_add(delta, &counter->count);
2396         atomic64_sub(delta, &hwc->period_left);
2397 }
2398
2399 static void perf_swcounter_set_period(struct perf_counter *counter)
2400 {
2401         struct hw_perf_counter *hwc = &counter->hw;
2402         s64 left = atomic64_read(&hwc->period_left);
2403         s64 period = hwc->irq_period;
2404
2405         if (unlikely(left <= -period)) {
2406                 left = period;
2407                 atomic64_set(&hwc->period_left, left);
2408         }
2409
2410         if (unlikely(left <= 0)) {
2411                 left += period;
2412                 atomic64_add(period, &hwc->period_left);
2413         }
2414
2415         atomic64_set(&hwc->prev_count, -left);
2416         atomic64_set(&hwc->count, -left);
2417 }
2418
2419 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2420 {
2421         enum hrtimer_restart ret = HRTIMER_RESTART;
2422         struct perf_counter *counter;
2423         struct pt_regs *regs;
2424
2425         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2426         counter->pmu->read(counter);
2427
2428         regs = get_irq_regs();
2429         /*
2430          * In case we exclude kernel IPs or are somehow not in interrupt
2431          * context, provide the next best thing, the user IP.
2432          */
2433         if ((counter->hw_event.exclude_kernel || !regs) &&
2434                         !counter->hw_event.exclude_user)
2435                 regs = task_pt_regs(current);
2436
2437         if (regs) {
2438                 if (perf_counter_overflow(counter, 0, regs, 0))
2439                         ret = HRTIMER_NORESTART;
2440         }
2441
2442         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2443
2444         return ret;
2445 }
2446
2447 static void perf_swcounter_overflow(struct perf_counter *counter,
2448                                     int nmi, struct pt_regs *regs, u64 addr)
2449 {
2450         perf_swcounter_update(counter);
2451         perf_swcounter_set_period(counter);
2452         if (perf_counter_overflow(counter, nmi, regs, addr))
2453                 /* soft-disable the counter */
2454                 ;
2455
2456 }
2457
2458 static int perf_swcounter_match(struct perf_counter *counter,
2459                                 enum perf_event_types type,
2460                                 u32 event, struct pt_regs *regs)
2461 {
2462         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2463                 return 0;
2464
2465         if (perf_event_raw(&counter->hw_event))
2466                 return 0;
2467
2468         if (perf_event_type(&counter->hw_event) != type)
2469                 return 0;
2470
2471         if (perf_event_id(&counter->hw_event) != event)
2472                 return 0;
2473
2474         if (counter->hw_event.exclude_user && user_mode(regs))
2475                 return 0;
2476
2477         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2478                 return 0;
2479
2480         return 1;
2481 }
2482
2483 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2484                                int nmi, struct pt_regs *regs, u64 addr)
2485 {
2486         int neg = atomic64_add_negative(nr, &counter->hw.count);
2487         if (counter->hw.irq_period && !neg)
2488                 perf_swcounter_overflow(counter, nmi, regs, addr);
2489 }
2490
2491 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2492                                      enum perf_event_types type, u32 event,
2493                                      u64 nr, int nmi, struct pt_regs *regs,
2494                                      u64 addr)
2495 {
2496         struct perf_counter *counter;
2497
2498         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2499                 return;
2500
2501         rcu_read_lock();
2502         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2503                 if (perf_swcounter_match(counter, type, event, regs))
2504                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2505         }
2506         rcu_read_unlock();
2507 }
2508
2509 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2510 {
2511         if (in_nmi())
2512                 return &cpuctx->recursion[3];
2513
2514         if (in_irq())
2515                 return &cpuctx->recursion[2];
2516
2517         if (in_softirq())
2518                 return &cpuctx->recursion[1];
2519
2520         return &cpuctx->recursion[0];
2521 }
2522
2523 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2524                                    u64 nr, int nmi, struct pt_regs *regs,
2525                                    u64 addr)
2526 {
2527         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2528         int *recursion = perf_swcounter_recursion_context(cpuctx);
2529
2530         if (*recursion)
2531                 goto out;
2532
2533         (*recursion)++;
2534         barrier();
2535
2536         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2537                                  nr, nmi, regs, addr);
2538         if (cpuctx->task_ctx) {
2539                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2540                                          nr, nmi, regs, addr);
2541         }
2542
2543         barrier();
2544         (*recursion)--;
2545
2546 out:
2547         put_cpu_var(perf_cpu_context);
2548 }
2549
2550 void
2551 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2552 {
2553         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2554 }
2555
2556 static void perf_swcounter_read(struct perf_counter *counter)
2557 {
2558         perf_swcounter_update(counter);
2559 }
2560
2561 static int perf_swcounter_enable(struct perf_counter *counter)
2562 {
2563         perf_swcounter_set_period(counter);
2564         return 0;
2565 }
2566
2567 static void perf_swcounter_disable(struct perf_counter *counter)
2568 {
2569         perf_swcounter_update(counter);
2570 }
2571
2572 static const struct pmu perf_ops_generic = {
2573         .enable         = perf_swcounter_enable,
2574         .disable        = perf_swcounter_disable,
2575         .read           = perf_swcounter_read,
2576 };
2577
2578 /*
2579  * Software counter: cpu wall time clock
2580  */
2581
2582 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2583 {
2584         int cpu = raw_smp_processor_id();
2585         s64 prev;
2586         u64 now;
2587
2588         now = cpu_clock(cpu);
2589         prev = atomic64_read(&counter->hw.prev_count);
2590         atomic64_set(&counter->hw.prev_count, now);
2591         atomic64_add(now - prev, &counter->count);
2592 }
2593
2594 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2595 {
2596         struct hw_perf_counter *hwc = &counter->hw;
2597         int cpu = raw_smp_processor_id();
2598
2599         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2600         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2601         hwc->hrtimer.function = perf_swcounter_hrtimer;
2602         if (hwc->irq_period) {
2603                 __hrtimer_start_range_ns(&hwc->hrtimer,
2604                                 ns_to_ktime(hwc->irq_period), 0,
2605                                 HRTIMER_MODE_REL, 0);
2606         }
2607
2608         return 0;
2609 }
2610
2611 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2612 {
2613         hrtimer_cancel(&counter->hw.hrtimer);
2614         cpu_clock_perf_counter_update(counter);
2615 }
2616
2617 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2618 {
2619         cpu_clock_perf_counter_update(counter);
2620 }
2621
2622 static const struct pmu perf_ops_cpu_clock = {
2623         .enable         = cpu_clock_perf_counter_enable,
2624         .disable        = cpu_clock_perf_counter_disable,
2625         .read           = cpu_clock_perf_counter_read,
2626 };
2627
2628 /*
2629  * Software counter: task time clock
2630  */
2631
2632 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2633 {
2634         u64 prev;
2635         s64 delta;
2636
2637         prev = atomic64_xchg(&counter->hw.prev_count, now);
2638         delta = now - prev;
2639         atomic64_add(delta, &counter->count);
2640 }
2641
2642 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2643 {
2644         struct hw_perf_counter *hwc = &counter->hw;
2645         u64 now;
2646
2647         now = counter->ctx->time;
2648
2649         atomic64_set(&hwc->prev_count, now);
2650         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2651         hwc->hrtimer.function = perf_swcounter_hrtimer;
2652         if (hwc->irq_period) {
2653                 __hrtimer_start_range_ns(&hwc->hrtimer,
2654                                 ns_to_ktime(hwc->irq_period), 0,
2655                                 HRTIMER_MODE_REL, 0);
2656         }
2657
2658         return 0;
2659 }
2660
2661 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2662 {
2663         hrtimer_cancel(&counter->hw.hrtimer);
2664         task_clock_perf_counter_update(counter, counter->ctx->time);
2665
2666 }
2667
2668 static void task_clock_perf_counter_read(struct perf_counter *counter)
2669 {
2670         u64 time;
2671
2672         if (!in_nmi()) {
2673                 update_context_time(counter->ctx);
2674                 time = counter->ctx->time;
2675         } else {
2676                 u64 now = perf_clock();
2677                 u64 delta = now - counter->ctx->timestamp;
2678                 time = counter->ctx->time + delta;
2679         }
2680
2681         task_clock_perf_counter_update(counter, time);
2682 }
2683
2684 static const struct pmu perf_ops_task_clock = {
2685         .enable         = task_clock_perf_counter_enable,
2686         .disable        = task_clock_perf_counter_disable,
2687         .read           = task_clock_perf_counter_read,
2688 };
2689
2690 /*
2691  * Software counter: cpu migrations
2692  */
2693
2694 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2695 {
2696         struct task_struct *curr = counter->ctx->task;
2697
2698         if (curr)
2699                 return curr->se.nr_migrations;
2700         return cpu_nr_migrations(smp_processor_id());
2701 }
2702
2703 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2704 {
2705         u64 prev, now;
2706         s64 delta;
2707
2708         prev = atomic64_read(&counter->hw.prev_count);
2709         now = get_cpu_migrations(counter);
2710
2711         atomic64_set(&counter->hw.prev_count, now);
2712
2713         delta = now - prev;
2714
2715         atomic64_add(delta, &counter->count);
2716 }
2717
2718 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2719 {
2720         cpu_migrations_perf_counter_update(counter);
2721 }
2722
2723 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2724 {
2725         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2726                 atomic64_set(&counter->hw.prev_count,
2727                              get_cpu_migrations(counter));
2728         return 0;
2729 }
2730
2731 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2732 {
2733         cpu_migrations_perf_counter_update(counter);
2734 }
2735
2736 static const struct pmu perf_ops_cpu_migrations = {
2737         .enable         = cpu_migrations_perf_counter_enable,
2738         .disable        = cpu_migrations_perf_counter_disable,
2739         .read           = cpu_migrations_perf_counter_read,
2740 };
2741
2742 #ifdef CONFIG_EVENT_PROFILE
2743 void perf_tpcounter_event(int event_id)
2744 {
2745         struct pt_regs *regs = get_irq_regs();
2746
2747         if (!regs)
2748                 regs = task_pt_regs(current);
2749
2750         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2751 }
2752 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2753
2754 extern int ftrace_profile_enable(int);
2755 extern void ftrace_profile_disable(int);
2756
2757 static void tp_perf_counter_destroy(struct perf_counter *counter)
2758 {
2759         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2760 }
2761
2762 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2763 {
2764         int event_id = perf_event_id(&counter->hw_event);
2765         int ret;
2766
2767         ret = ftrace_profile_enable(event_id);
2768         if (ret)
2769                 return NULL;
2770
2771         counter->destroy = tp_perf_counter_destroy;
2772         counter->hw.irq_period = counter->hw_event.irq_period;
2773
2774         return &perf_ops_generic;
2775 }
2776 #else
2777 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2778 {
2779         return NULL;
2780 }
2781 #endif
2782
2783 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2784 {
2785         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2786         const struct pmu *pmu = NULL;
2787         struct hw_perf_counter *hwc = &counter->hw;
2788
2789         /*
2790          * Software counters (currently) can't in general distinguish
2791          * between user, kernel and hypervisor events.
2792          * However, context switches and cpu migrations are considered
2793          * to be kernel events, and page faults are never hypervisor
2794          * events.
2795          */
2796         switch (perf_event_id(&counter->hw_event)) {
2797         case PERF_COUNT_CPU_CLOCK:
2798                 pmu = &perf_ops_cpu_clock;
2799
2800                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2801                         hw_event->irq_period = 10000;
2802                 break;
2803         case PERF_COUNT_TASK_CLOCK:
2804                 /*
2805                  * If the user instantiates this as a per-cpu counter,
2806                  * use the cpu_clock counter instead.
2807                  */
2808                 if (counter->ctx->task)
2809                         pmu = &perf_ops_task_clock;
2810                 else
2811                         pmu = &perf_ops_cpu_clock;
2812
2813                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2814                         hw_event->irq_period = 10000;
2815                 break;
2816         case PERF_COUNT_PAGE_FAULTS:
2817         case PERF_COUNT_PAGE_FAULTS_MIN:
2818         case PERF_COUNT_PAGE_FAULTS_MAJ:
2819         case PERF_COUNT_CONTEXT_SWITCHES:
2820                 pmu = &perf_ops_generic;
2821                 break;
2822         case PERF_COUNT_CPU_MIGRATIONS:
2823                 if (!counter->hw_event.exclude_kernel)
2824                         pmu = &perf_ops_cpu_migrations;
2825                 break;
2826         }
2827
2828         if (pmu)
2829                 hwc->irq_period = hw_event->irq_period;
2830
2831         return pmu;
2832 }
2833
2834 /*
2835  * Allocate and initialize a counter structure
2836  */
2837 static struct perf_counter *
2838 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2839                    int cpu,
2840                    struct perf_counter_context *ctx,
2841                    struct perf_counter *group_leader,
2842                    gfp_t gfpflags)
2843 {
2844         const struct pmu *pmu;
2845         struct perf_counter *counter;
2846         long err;
2847
2848         counter = kzalloc(sizeof(*counter), gfpflags);
2849         if (!counter)
2850                 return ERR_PTR(-ENOMEM);
2851
2852         /*
2853          * Single counters are their own group leaders, with an
2854          * empty sibling list:
2855          */
2856         if (!group_leader)
2857                 group_leader = counter;
2858
2859         mutex_init(&counter->mutex);
2860         INIT_LIST_HEAD(&counter->list_entry);
2861         INIT_LIST_HEAD(&counter->event_entry);
2862         INIT_LIST_HEAD(&counter->sibling_list);
2863         init_waitqueue_head(&counter->waitq);
2864
2865         mutex_init(&counter->mmap_mutex);
2866
2867         INIT_LIST_HEAD(&counter->child_list);
2868
2869         counter->cpu                    = cpu;
2870         counter->hw_event               = *hw_event;
2871         counter->group_leader           = group_leader;
2872         counter->pmu                    = NULL;
2873         counter->ctx                    = ctx;
2874
2875         counter->state = PERF_COUNTER_STATE_INACTIVE;
2876         if (hw_event->disabled)
2877                 counter->state = PERF_COUNTER_STATE_OFF;
2878
2879         pmu = NULL;
2880
2881         /*
2882          * we currently do not support PERF_RECORD_GROUP on inherited counters
2883          */
2884         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2885                 goto done;
2886
2887         if (perf_event_raw(hw_event)) {
2888                 pmu = hw_perf_counter_init(counter);
2889                 goto done;
2890         }
2891
2892         switch (perf_event_type(hw_event)) {
2893         case PERF_TYPE_HARDWARE:
2894                 pmu = hw_perf_counter_init(counter);
2895                 break;
2896
2897         case PERF_TYPE_SOFTWARE:
2898                 pmu = sw_perf_counter_init(counter);
2899                 break;
2900
2901         case PERF_TYPE_TRACEPOINT:
2902                 pmu = tp_perf_counter_init(counter);
2903                 break;
2904         }
2905 done:
2906         err = 0;
2907         if (!pmu)
2908                 err = -EINVAL;
2909         else if (IS_ERR(pmu))
2910                 err = PTR_ERR(pmu);
2911
2912         if (err) {
2913                 kfree(counter);
2914                 return ERR_PTR(err);
2915         }
2916
2917         counter->pmu = pmu;
2918
2919         atomic_inc(&nr_counters);
2920         if (counter->hw_event.mmap)
2921                 atomic_inc(&nr_mmap_tracking);
2922         if (counter->hw_event.munmap)
2923                 atomic_inc(&nr_munmap_tracking);
2924         if (counter->hw_event.comm)
2925                 atomic_inc(&nr_comm_tracking);
2926
2927         return counter;
2928 }
2929
2930 /**
2931  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2932  *
2933  * @hw_event_uptr:      event type attributes for monitoring/sampling
2934  * @pid:                target pid
2935  * @cpu:                target cpu
2936  * @group_fd:           group leader counter fd
2937  */
2938 SYSCALL_DEFINE5(perf_counter_open,
2939                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2940                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2941 {
2942         struct perf_counter *counter, *group_leader;
2943         struct perf_counter_hw_event hw_event;
2944         struct perf_counter_context *ctx;
2945         struct file *counter_file = NULL;
2946         struct file *group_file = NULL;
2947         int fput_needed = 0;
2948         int fput_needed2 = 0;
2949         int ret;
2950
2951         /* for future expandability... */
2952         if (flags)
2953                 return -EINVAL;
2954
2955         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2956                 return -EFAULT;
2957
2958         /*
2959          * Get the target context (task or percpu):
2960          */
2961         ctx = find_get_context(pid, cpu);
2962         if (IS_ERR(ctx))
2963                 return PTR_ERR(ctx);
2964
2965         /*
2966          * Look up the group leader (we will attach this counter to it):
2967          */
2968         group_leader = NULL;
2969         if (group_fd != -1) {
2970                 ret = -EINVAL;
2971                 group_file = fget_light(group_fd, &fput_needed);
2972                 if (!group_file)
2973                         goto err_put_context;
2974                 if (group_file->f_op != &perf_fops)
2975                         goto err_put_context;
2976
2977                 group_leader = group_file->private_data;
2978                 /*
2979                  * Do not allow a recursive hierarchy (this new sibling
2980                  * becoming part of another group-sibling):
2981                  */
2982                 if (group_leader->group_leader != group_leader)
2983                         goto err_put_context;
2984                 /*
2985                  * Do not allow to attach to a group in a different
2986                  * task or CPU context:
2987                  */
2988                 if (group_leader->ctx != ctx)
2989                         goto err_put_context;
2990                 /*
2991                  * Only a group leader can be exclusive or pinned
2992                  */
2993                 if (hw_event.exclusive || hw_event.pinned)
2994                         goto err_put_context;
2995         }
2996
2997         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2998                                      GFP_KERNEL);
2999         ret = PTR_ERR(counter);
3000         if (IS_ERR(counter))
3001                 goto err_put_context;
3002
3003         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3004         if (ret < 0)
3005                 goto err_free_put_context;
3006
3007         counter_file = fget_light(ret, &fput_needed2);
3008         if (!counter_file)
3009                 goto err_free_put_context;
3010
3011         counter->filp = counter_file;
3012         mutex_lock(&ctx->mutex);
3013         perf_install_in_context(ctx, counter, cpu);
3014         mutex_unlock(&ctx->mutex);
3015
3016         fput_light(counter_file, fput_needed2);
3017
3018 out_fput:
3019         fput_light(group_file, fput_needed);
3020
3021         return ret;
3022
3023 err_free_put_context:
3024         kfree(counter);
3025
3026 err_put_context:
3027         put_context(ctx);
3028
3029         goto out_fput;
3030 }
3031
3032 /*
3033  * Initialize the perf_counter context in a task_struct:
3034  */
3035 static void
3036 __perf_counter_init_context(struct perf_counter_context *ctx,
3037                             struct task_struct *task)
3038 {
3039         memset(ctx, 0, sizeof(*ctx));
3040         spin_lock_init(&ctx->lock);
3041         mutex_init(&ctx->mutex);
3042         INIT_LIST_HEAD(&ctx->counter_list);
3043         INIT_LIST_HEAD(&ctx->event_list);
3044         ctx->task = task;
3045 }
3046
3047 /*
3048  * inherit a counter from parent task to child task:
3049  */
3050 static struct perf_counter *
3051 inherit_counter(struct perf_counter *parent_counter,
3052               struct task_struct *parent,
3053               struct perf_counter_context *parent_ctx,
3054               struct task_struct *child,
3055               struct perf_counter *group_leader,
3056               struct perf_counter_context *child_ctx)
3057 {
3058         struct perf_counter *child_counter;
3059
3060         /*
3061          * Instead of creating recursive hierarchies of counters,
3062          * we link inherited counters back to the original parent,
3063          * which has a filp for sure, which we use as the reference
3064          * count:
3065          */
3066         if (parent_counter->parent)
3067                 parent_counter = parent_counter->parent;
3068
3069         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3070                                            parent_counter->cpu, child_ctx,
3071                                            group_leader, GFP_KERNEL);
3072         if (IS_ERR(child_counter))
3073                 return child_counter;
3074
3075         /*
3076          * Link it up in the child's context:
3077          */
3078         child_counter->task = child;
3079         add_counter_to_ctx(child_counter, child_ctx);
3080
3081         child_counter->parent = parent_counter;
3082         /*
3083          * inherit into child's child as well:
3084          */
3085         child_counter->hw_event.inherit = 1;
3086
3087         /*
3088          * Get a reference to the parent filp - we will fput it
3089          * when the child counter exits. This is safe to do because
3090          * we are in the parent and we know that the filp still
3091          * exists and has a nonzero count:
3092          */
3093         atomic_long_inc(&parent_counter->filp->f_count);
3094
3095         /*
3096          * Link this into the parent counter's child list
3097          */
3098         mutex_lock(&parent_counter->mutex);
3099         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3100
3101         /*
3102          * Make the child state follow the state of the parent counter,
3103          * not its hw_event.disabled bit.  We hold the parent's mutex,
3104          * so we won't race with perf_counter_{en,dis}able_family.
3105          */
3106         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3107                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3108         else
3109                 child_counter->state = PERF_COUNTER_STATE_OFF;
3110
3111         mutex_unlock(&parent_counter->mutex);
3112
3113         return child_counter;
3114 }
3115
3116 static int inherit_group(struct perf_counter *parent_counter,
3117               struct task_struct *parent,
3118               struct perf_counter_context *parent_ctx,
3119               struct task_struct *child,
3120               struct perf_counter_context *child_ctx)
3121 {
3122         struct perf_counter *leader;
3123         struct perf_counter *sub;
3124         struct perf_counter *child_ctr;
3125
3126         leader = inherit_counter(parent_counter, parent, parent_ctx,
3127                                  child, NULL, child_ctx);
3128         if (IS_ERR(leader))
3129                 return PTR_ERR(leader);
3130         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3131                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3132                                             child, leader, child_ctx);
3133                 if (IS_ERR(child_ctr))
3134                         return PTR_ERR(child_ctr);
3135         }
3136         return 0;
3137 }
3138
3139 static void sync_child_counter(struct perf_counter *child_counter,
3140                                struct perf_counter *parent_counter)
3141 {
3142         u64 parent_val, child_val;
3143
3144         parent_val = atomic64_read(&parent_counter->count);
3145         child_val = atomic64_read(&child_counter->count);
3146
3147         /*
3148          * Add back the child's count to the parent's count:
3149          */
3150         atomic64_add(child_val, &parent_counter->count);
3151         atomic64_add(child_counter->total_time_enabled,
3152                      &parent_counter->child_total_time_enabled);
3153         atomic64_add(child_counter->total_time_running,
3154                      &parent_counter->child_total_time_running);
3155
3156         /*
3157          * Remove this counter from the parent's list
3158          */
3159         mutex_lock(&parent_counter->mutex);
3160         list_del_init(&child_counter->child_list);
3161         mutex_unlock(&parent_counter->mutex);
3162
3163         /*
3164          * Release the parent counter, if this was the last
3165          * reference to it.
3166          */
3167         fput(parent_counter->filp);
3168 }
3169
3170 static void
3171 __perf_counter_exit_task(struct task_struct *child,
3172                          struct perf_counter *child_counter,
3173                          struct perf_counter_context *child_ctx)
3174 {
3175         struct perf_counter *parent_counter;
3176         struct perf_counter *sub, *tmp;
3177
3178         /*
3179          * If we do not self-reap then we have to wait for the
3180          * child task to unschedule (it will happen for sure),
3181          * so that its counter is at its final count. (This
3182          * condition triggers rarely - child tasks usually get
3183          * off their CPU before the parent has a chance to
3184          * get this far into the reaping action)
3185          */
3186         if (child != current) {
3187                 wait_task_inactive(child, 0);
3188                 list_del_init(&child_counter->list_entry);
3189                 update_counter_times(child_counter);
3190         } else {
3191                 struct perf_cpu_context *cpuctx;
3192                 unsigned long flags;
3193                 u64 perf_flags;
3194
3195                 /*
3196                  * Disable and unlink this counter.
3197                  *
3198                  * Be careful about zapping the list - IRQ/NMI context
3199                  * could still be processing it:
3200                  */
3201                 local_irq_save(flags);
3202                 perf_flags = hw_perf_save_disable();
3203
3204                 cpuctx = &__get_cpu_var(perf_cpu_context);
3205
3206                 group_sched_out(child_counter, cpuctx, child_ctx);
3207                 update_counter_times(child_counter);
3208
3209                 list_del_init(&child_counter->list_entry);
3210
3211                 child_ctx->nr_counters--;
3212
3213                 hw_perf_restore(perf_flags);
3214                 local_irq_restore(flags);
3215         }
3216
3217         parent_counter = child_counter->parent;
3218         /*
3219          * It can happen that parent exits first, and has counters
3220          * that are still around due to the child reference. These
3221          * counters need to be zapped - but otherwise linger.
3222          */
3223         if (parent_counter) {
3224                 sync_child_counter(child_counter, parent_counter);
3225                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3226                                          list_entry) {
3227                         if (sub->parent) {
3228                                 sync_child_counter(sub, sub->parent);
3229                                 free_counter(sub);
3230                         }
3231                 }
3232                 free_counter(child_counter);
3233         }
3234 }
3235
3236 /*
3237  * When a child task exits, feed back counter values to parent counters.
3238  *
3239  * Note: we may be running in child context, but the PID is not hashed
3240  * anymore so new counters will not be added.
3241  */
3242 void perf_counter_exit_task(struct task_struct *child)
3243 {
3244         struct perf_counter *child_counter, *tmp;
3245         struct perf_counter_context *child_ctx;
3246
3247         child_ctx = &child->perf_counter_ctx;
3248
3249         if (likely(!child_ctx->nr_counters))
3250                 return;
3251
3252         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3253                                  list_entry)
3254                 __perf_counter_exit_task(child, child_counter, child_ctx);
3255 }
3256
3257 /*
3258  * Initialize the perf_counter context in task_struct
3259  */
3260 void perf_counter_init_task(struct task_struct *child)
3261 {
3262         struct perf_counter_context *child_ctx, *parent_ctx;
3263         struct perf_counter *counter;
3264         struct task_struct *parent = current;
3265
3266         child_ctx  =  &child->perf_counter_ctx;
3267         parent_ctx = &parent->perf_counter_ctx;
3268
3269         __perf_counter_init_context(child_ctx, child);
3270
3271         /*
3272          * This is executed from the parent task context, so inherit
3273          * counters that have been marked for cloning:
3274          */
3275
3276         if (likely(!parent_ctx->nr_counters))
3277                 return;
3278
3279         /*
3280          * Lock the parent list. No need to lock the child - not PID
3281          * hashed yet and not running, so nobody can access it.
3282          */
3283         mutex_lock(&parent_ctx->mutex);
3284
3285         /*
3286          * We dont have to disable NMIs - we are only looking at
3287          * the list, not manipulating it:
3288          */
3289         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3290                 if (!counter->hw_event.inherit)
3291                         continue;
3292
3293                 if (inherit_group(counter, parent,
3294                                   parent_ctx, child, child_ctx))
3295                         break;
3296         }
3297
3298         mutex_unlock(&parent_ctx->mutex);
3299 }
3300
3301 static void __cpuinit perf_counter_init_cpu(int cpu)
3302 {
3303         struct perf_cpu_context *cpuctx;
3304
3305         cpuctx = &per_cpu(perf_cpu_context, cpu);
3306         __perf_counter_init_context(&cpuctx->ctx, NULL);
3307
3308         spin_lock(&perf_resource_lock);
3309         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3310         spin_unlock(&perf_resource_lock);
3311
3312         hw_perf_counter_setup(cpu);
3313 }
3314
3315 #ifdef CONFIG_HOTPLUG_CPU
3316 static void __perf_counter_exit_cpu(void *info)
3317 {
3318         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3319         struct perf_counter_context *ctx = &cpuctx->ctx;
3320         struct perf_counter *counter, *tmp;
3321
3322         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3323                 __perf_counter_remove_from_context(counter);
3324 }
3325 static void perf_counter_exit_cpu(int cpu)
3326 {
3327         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3328         struct perf_counter_context *ctx = &cpuctx->ctx;
3329
3330         mutex_lock(&ctx->mutex);
3331         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3332         mutex_unlock(&ctx->mutex);
3333 }
3334 #else
3335 static inline void perf_counter_exit_cpu(int cpu) { }
3336 #endif
3337
3338 static int __cpuinit
3339 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3340 {
3341         unsigned int cpu = (long)hcpu;
3342
3343         switch (action) {
3344
3345         case CPU_UP_PREPARE:
3346         case CPU_UP_PREPARE_FROZEN:
3347                 perf_counter_init_cpu(cpu);
3348                 break;
3349
3350         case CPU_DOWN_PREPARE:
3351         case CPU_DOWN_PREPARE_FROZEN:
3352                 perf_counter_exit_cpu(cpu);
3353                 break;
3354
3355         default:
3356                 break;
3357         }
3358
3359         return NOTIFY_OK;
3360 }
3361
3362 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3363         .notifier_call          = perf_cpu_notify,
3364 };
3365
3366 void __init perf_counter_init(void)
3367 {
3368         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3369                         (void *)(long)smp_processor_id());
3370         register_cpu_notifier(&perf_cpu_nb);
3371 }
3372
3373 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3374 {
3375         return sprintf(buf, "%d\n", perf_reserved_percpu);
3376 }
3377
3378 static ssize_t
3379 perf_set_reserve_percpu(struct sysdev_class *class,
3380                         const char *buf,
3381                         size_t count)
3382 {
3383         struct perf_cpu_context *cpuctx;
3384         unsigned long val;
3385         int err, cpu, mpt;
3386
3387         err = strict_strtoul(buf, 10, &val);
3388         if (err)
3389                 return err;
3390         if (val > perf_max_counters)
3391                 return -EINVAL;
3392
3393         spin_lock(&perf_resource_lock);
3394         perf_reserved_percpu = val;
3395         for_each_online_cpu(cpu) {
3396                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3397                 spin_lock_irq(&cpuctx->ctx.lock);
3398                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3399                           perf_max_counters - perf_reserved_percpu);
3400                 cpuctx->max_pertask = mpt;
3401                 spin_unlock_irq(&cpuctx->ctx.lock);
3402         }
3403         spin_unlock(&perf_resource_lock);
3404
3405         return count;
3406 }
3407
3408 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3409 {
3410         return sprintf(buf, "%d\n", perf_overcommit);
3411 }
3412
3413 static ssize_t
3414 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3415 {
3416         unsigned long val;
3417         int err;
3418
3419         err = strict_strtoul(buf, 10, &val);
3420         if (err)
3421                 return err;
3422         if (val > 1)
3423                 return -EINVAL;
3424
3425         spin_lock(&perf_resource_lock);
3426         perf_overcommit = val;
3427         spin_unlock(&perf_resource_lock);
3428
3429         return count;
3430 }
3431
3432 static SYSDEV_CLASS_ATTR(
3433                                 reserve_percpu,
3434                                 0644,
3435                                 perf_show_reserve_percpu,
3436                                 perf_set_reserve_percpu
3437                         );
3438
3439 static SYSDEV_CLASS_ATTR(
3440                                 overcommit,
3441                                 0644,
3442                                 perf_show_overcommit,
3443                                 perf_set_overcommit
3444                         );
3445
3446 static struct attribute *perfclass_attrs[] = {
3447         &attr_reserve_percpu.attr,
3448         &attr_overcommit.attr,
3449         NULL
3450 };
3451
3452 static struct attribute_group perfclass_attr_group = {
3453         .attrs                  = perfclass_attrs,
3454         .name                   = "perf_counters",
3455 };
3456
3457 static int __init perf_counter_sysfs_init(void)
3458 {
3459         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3460                                   &perfclass_attr_group);
3461 }
3462 device_initcall(perf_counter_sysfs_init);