]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_counter.c
perf_counter: theres more to overflow than writing events
[karo-tx-linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42  * Mutex for (sysadmin-configurable) counter reservations:
43  */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47  * Architecture provided APIs - weak aliases:
48  */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52         return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void)           { return 0; }
56 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59                struct perf_cpu_context *cpuctx,
60                struct perf_counter_context *ctx, int cpu)
61 {
62         return 0;
63 }
64
65 void __weak perf_counter_print_debug(void)      { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70         struct perf_counter *group_leader = counter->group_leader;
71
72         /*
73          * Depending on whether it is a standalone or sibling counter,
74          * add it straight to the context's counter list, or to the group
75          * leader's sibling list:
76          */
77         if (counter->group_leader == counter)
78                 list_add_tail(&counter->list_entry, &ctx->counter_list);
79         else {
80                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81                 group_leader->nr_siblings++;
82         }
83
84         list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90         struct perf_counter *sibling, *tmp;
91
92         list_del_init(&counter->list_entry);
93         list_del_rcu(&counter->event_entry);
94
95         if (counter->group_leader != counter)
96                 counter->group_leader->nr_siblings--;
97
98         /*
99          * If this was a group counter with sibling counters then
100          * upgrade the siblings to singleton counters by adding them
101          * to the context list directly:
102          */
103         list_for_each_entry_safe(sibling, tmp,
104                                  &counter->sibling_list, list_entry) {
105
106                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107                 sibling->group_leader = sibling;
108         }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113                   struct perf_cpu_context *cpuctx,
114                   struct perf_counter_context *ctx)
115 {
116         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117                 return;
118
119         counter->state = PERF_COUNTER_STATE_INACTIVE;
120         counter->tstamp_stopped = ctx->time_now;
121         counter->hw_ops->disable(counter);
122         counter->oncpu = -1;
123
124         if (!is_software_counter(counter))
125                 cpuctx->active_oncpu--;
126         ctx->nr_active--;
127         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128                 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133                 struct perf_cpu_context *cpuctx,
134                 struct perf_counter_context *ctx)
135 {
136         struct perf_counter *counter;
137
138         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139                 return;
140
141         counter_sched_out(group_counter, cpuctx, ctx);
142
143         /*
144          * Schedule out siblings (if any):
145          */
146         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147                 counter_sched_out(counter, cpuctx, ctx);
148
149         if (group_counter->hw_event.exclusive)
150                 cpuctx->exclusive = 0;
151 }
152
153 /*
154  * Cross CPU call to remove a performance counter
155  *
156  * We disable the counter on the hardware level first. After that we
157  * remove it from the context list.
158  */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162         struct perf_counter *counter = info;
163         struct perf_counter_context *ctx = counter->ctx;
164         unsigned long flags;
165         u64 perf_flags;
166
167         /*
168          * If this is a task context, we need to check whether it is
169          * the current task context of this cpu. If not it has been
170          * scheduled out before the smp call arrived.
171          */
172         if (ctx->task && cpuctx->task_ctx != ctx)
173                 return;
174
175         curr_rq_lock_irq_save(&flags);
176         spin_lock(&ctx->lock);
177
178         counter_sched_out(counter, cpuctx, ctx);
179
180         counter->task = NULL;
181         ctx->nr_counters--;
182
183         /*
184          * Protect the list operation against NMI by disabling the
185          * counters on a global level. NOP for non NMI based counters.
186          */
187         perf_flags = hw_perf_save_disable();
188         list_del_counter(counter, ctx);
189         hw_perf_restore(perf_flags);
190
191         if (!ctx->task) {
192                 /*
193                  * Allow more per task counters with respect to the
194                  * reservation:
195                  */
196                 cpuctx->max_pertask =
197                         min(perf_max_counters - ctx->nr_counters,
198                             perf_max_counters - perf_reserved_percpu);
199         }
200
201         spin_unlock(&ctx->lock);
202         curr_rq_unlock_irq_restore(&flags);
203 }
204
205
206 /*
207  * Remove the counter from a task's (or a CPU's) list of counters.
208  *
209  * Must be called with counter->mutex and ctx->mutex held.
210  *
211  * CPU counters are removed with a smp call. For task counters we only
212  * call when the task is on a CPU.
213  */
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 {
216         struct perf_counter_context *ctx = counter->ctx;
217         struct task_struct *task = ctx->task;
218
219         if (!task) {
220                 /*
221                  * Per cpu counters are removed via an smp call and
222                  * the removal is always sucessful.
223                  */
224                 smp_call_function_single(counter->cpu,
225                                          __perf_counter_remove_from_context,
226                                          counter, 1);
227                 return;
228         }
229
230 retry:
231         task_oncpu_function_call(task, __perf_counter_remove_from_context,
232                                  counter);
233
234         spin_lock_irq(&ctx->lock);
235         /*
236          * If the context is active we need to retry the smp call.
237          */
238         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239                 spin_unlock_irq(&ctx->lock);
240                 goto retry;
241         }
242
243         /*
244          * The lock prevents that this context is scheduled in so we
245          * can remove the counter safely, if the call above did not
246          * succeed.
247          */
248         if (!list_empty(&counter->list_entry)) {
249                 ctx->nr_counters--;
250                 list_del_counter(counter, ctx);
251                 counter->task = NULL;
252         }
253         spin_unlock_irq(&ctx->lock);
254 }
255
256 /*
257  * Get the current time for this context.
258  * If this is a task context, we use the task's task clock,
259  * or for a per-cpu context, we use the cpu clock.
260  */
261 static u64 get_context_time(struct perf_counter_context *ctx, int update)
262 {
263         struct task_struct *curr = ctx->task;
264
265         if (!curr)
266                 return cpu_clock(smp_processor_id());
267
268         return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
269 }
270
271 /*
272  * Update the record of the current time in a context.
273  */
274 static void update_context_time(struct perf_counter_context *ctx, int update)
275 {
276         ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
277 }
278
279 /*
280  * Update the total_time_enabled and total_time_running fields for a counter.
281  */
282 static void update_counter_times(struct perf_counter *counter)
283 {
284         struct perf_counter_context *ctx = counter->ctx;
285         u64 run_end;
286
287         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
288                 counter->total_time_enabled = ctx->time_now -
289                         counter->tstamp_enabled;
290                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291                         run_end = counter->tstamp_stopped;
292                 else
293                         run_end = ctx->time_now;
294                 counter->total_time_running = run_end - counter->tstamp_running;
295         }
296 }
297
298 /*
299  * Update total_time_enabled and total_time_running for all counters in a group.
300  */
301 static void update_group_times(struct perf_counter *leader)
302 {
303         struct perf_counter *counter;
304
305         update_counter_times(leader);
306         list_for_each_entry(counter, &leader->sibling_list, list_entry)
307                 update_counter_times(counter);
308 }
309
310 /*
311  * Cross CPU call to disable a performance counter
312  */
313 static void __perf_counter_disable(void *info)
314 {
315         struct perf_counter *counter = info;
316         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317         struct perf_counter_context *ctx = counter->ctx;
318         unsigned long flags;
319
320         /*
321          * If this is a per-task counter, need to check whether this
322          * counter's task is the current task on this cpu.
323          */
324         if (ctx->task && cpuctx->task_ctx != ctx)
325                 return;
326
327         curr_rq_lock_irq_save(&flags);
328         spin_lock(&ctx->lock);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx, 1);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock(&ctx->lock);
345         curr_rq_unlock_irq_restore(&flags);
346 }
347
348 /*
349  * Disable a counter.
350  */
351 static void perf_counter_disable(struct perf_counter *counter)
352 {
353         struct perf_counter_context *ctx = counter->ctx;
354         struct task_struct *task = ctx->task;
355
356         if (!task) {
357                 /*
358                  * Disable the counter on the cpu that it's on
359                  */
360                 smp_call_function_single(counter->cpu, __perf_counter_disable,
361                                          counter, 1);
362                 return;
363         }
364
365  retry:
366         task_oncpu_function_call(task, __perf_counter_disable, counter);
367
368         spin_lock_irq(&ctx->lock);
369         /*
370          * If the counter is still active, we need to retry the cross-call.
371          */
372         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
373                 spin_unlock_irq(&ctx->lock);
374                 goto retry;
375         }
376
377         /*
378          * Since we have the lock this context can't be scheduled
379          * in, so we can change the state safely.
380          */
381         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
382                 update_counter_times(counter);
383                 counter->state = PERF_COUNTER_STATE_OFF;
384         }
385
386         spin_unlock_irq(&ctx->lock);
387 }
388
389 /*
390  * Disable a counter and all its children.
391  */
392 static void perf_counter_disable_family(struct perf_counter *counter)
393 {
394         struct perf_counter *child;
395
396         perf_counter_disable(counter);
397
398         /*
399          * Lock the mutex to protect the list of children
400          */
401         mutex_lock(&counter->mutex);
402         list_for_each_entry(child, &counter->child_list, child_list)
403                 perf_counter_disable(child);
404         mutex_unlock(&counter->mutex);
405 }
406
407 static int
408 counter_sched_in(struct perf_counter *counter,
409                  struct perf_cpu_context *cpuctx,
410                  struct perf_counter_context *ctx,
411                  int cpu)
412 {
413         if (counter->state <= PERF_COUNTER_STATE_OFF)
414                 return 0;
415
416         counter->state = PERF_COUNTER_STATE_ACTIVE;
417         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
418         /*
419          * The new state must be visible before we turn it on in the hardware:
420          */
421         smp_wmb();
422
423         if (counter->hw_ops->enable(counter)) {
424                 counter->state = PERF_COUNTER_STATE_INACTIVE;
425                 counter->oncpu = -1;
426                 return -EAGAIN;
427         }
428
429         counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
430
431         if (!is_software_counter(counter))
432                 cpuctx->active_oncpu++;
433         ctx->nr_active++;
434
435         if (counter->hw_event.exclusive)
436                 cpuctx->exclusive = 1;
437
438         return 0;
439 }
440
441 /*
442  * Return 1 for a group consisting entirely of software counters,
443  * 0 if the group contains any hardware counters.
444  */
445 static int is_software_only_group(struct perf_counter *leader)
446 {
447         struct perf_counter *counter;
448
449         if (!is_software_counter(leader))
450                 return 0;
451
452         list_for_each_entry(counter, &leader->sibling_list, list_entry)
453                 if (!is_software_counter(counter))
454                         return 0;
455
456         return 1;
457 }
458
459 /*
460  * Work out whether we can put this counter group on the CPU now.
461  */
462 static int group_can_go_on(struct perf_counter *counter,
463                            struct perf_cpu_context *cpuctx,
464                            int can_add_hw)
465 {
466         /*
467          * Groups consisting entirely of software counters can always go on.
468          */
469         if (is_software_only_group(counter))
470                 return 1;
471         /*
472          * If an exclusive group is already on, no other hardware
473          * counters can go on.
474          */
475         if (cpuctx->exclusive)
476                 return 0;
477         /*
478          * If this group is exclusive and there are already
479          * counters on the CPU, it can't go on.
480          */
481         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
482                 return 0;
483         /*
484          * Otherwise, try to add it if all previous groups were able
485          * to go on.
486          */
487         return can_add_hw;
488 }
489
490 static void add_counter_to_ctx(struct perf_counter *counter,
491                                struct perf_counter_context *ctx)
492 {
493         list_add_counter(counter, ctx);
494         ctx->nr_counters++;
495         counter->prev_state = PERF_COUNTER_STATE_OFF;
496         counter->tstamp_enabled = ctx->time_now;
497         counter->tstamp_running = ctx->time_now;
498         counter->tstamp_stopped = ctx->time_now;
499 }
500
501 /*
502  * Cross CPU call to install and enable a performance counter
503  */
504 static void __perf_install_in_context(void *info)
505 {
506         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
507         struct perf_counter *counter = info;
508         struct perf_counter_context *ctx = counter->ctx;
509         struct perf_counter *leader = counter->group_leader;
510         int cpu = smp_processor_id();
511         unsigned long flags;
512         u64 perf_flags;
513         int err;
514
515         /*
516          * If this is a task context, we need to check whether it is
517          * the current task context of this cpu. If not it has been
518          * scheduled out before the smp call arrived.
519          */
520         if (ctx->task && cpuctx->task_ctx != ctx)
521                 return;
522
523         curr_rq_lock_irq_save(&flags);
524         spin_lock(&ctx->lock);
525         update_context_time(ctx, 1);
526
527         /*
528          * Protect the list operation against NMI by disabling the
529          * counters on a global level. NOP for non NMI based counters.
530          */
531         perf_flags = hw_perf_save_disable();
532
533         add_counter_to_ctx(counter, ctx);
534
535         /*
536          * Don't put the counter on if it is disabled or if
537          * it is in a group and the group isn't on.
538          */
539         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
540             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
541                 goto unlock;
542
543         /*
544          * An exclusive counter can't go on if there are already active
545          * hardware counters, and no hardware counter can go on if there
546          * is already an exclusive counter on.
547          */
548         if (!group_can_go_on(counter, cpuctx, 1))
549                 err = -EEXIST;
550         else
551                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
552
553         if (err) {
554                 /*
555                  * This counter couldn't go on.  If it is in a group
556                  * then we have to pull the whole group off.
557                  * If the counter group is pinned then put it in error state.
558                  */
559                 if (leader != counter)
560                         group_sched_out(leader, cpuctx, ctx);
561                 if (leader->hw_event.pinned) {
562                         update_group_times(leader);
563                         leader->state = PERF_COUNTER_STATE_ERROR;
564                 }
565         }
566
567         if (!err && !ctx->task && cpuctx->max_pertask)
568                 cpuctx->max_pertask--;
569
570  unlock:
571         hw_perf_restore(perf_flags);
572
573         spin_unlock(&ctx->lock);
574         curr_rq_unlock_irq_restore(&flags);
575 }
576
577 /*
578  * Attach a performance counter to a context
579  *
580  * First we add the counter to the list with the hardware enable bit
581  * in counter->hw_config cleared.
582  *
583  * If the counter is attached to a task which is on a CPU we use a smp
584  * call to enable it in the task context. The task might have been
585  * scheduled away, but we check this in the smp call again.
586  *
587  * Must be called with ctx->mutex held.
588  */
589 static void
590 perf_install_in_context(struct perf_counter_context *ctx,
591                         struct perf_counter *counter,
592                         int cpu)
593 {
594         struct task_struct *task = ctx->task;
595
596         if (!task) {
597                 /*
598                  * Per cpu counters are installed via an smp call and
599                  * the install is always sucessful.
600                  */
601                 smp_call_function_single(cpu, __perf_install_in_context,
602                                          counter, 1);
603                 return;
604         }
605
606         counter->task = task;
607 retry:
608         task_oncpu_function_call(task, __perf_install_in_context,
609                                  counter);
610
611         spin_lock_irq(&ctx->lock);
612         /*
613          * we need to retry the smp call.
614          */
615         if (ctx->is_active && list_empty(&counter->list_entry)) {
616                 spin_unlock_irq(&ctx->lock);
617                 goto retry;
618         }
619
620         /*
621          * The lock prevents that this context is scheduled in so we
622          * can add the counter safely, if it the call above did not
623          * succeed.
624          */
625         if (list_empty(&counter->list_entry))
626                 add_counter_to_ctx(counter, ctx);
627         spin_unlock_irq(&ctx->lock);
628 }
629
630 /*
631  * Cross CPU call to enable a performance counter
632  */
633 static void __perf_counter_enable(void *info)
634 {
635         struct perf_counter *counter = info;
636         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
637         struct perf_counter_context *ctx = counter->ctx;
638         struct perf_counter *leader = counter->group_leader;
639         unsigned long flags;
640         int err;
641
642         /*
643          * If this is a per-task counter, need to check whether this
644          * counter's task is the current task on this cpu.
645          */
646         if (ctx->task && cpuctx->task_ctx != ctx)
647                 return;
648
649         curr_rq_lock_irq_save(&flags);
650         spin_lock(&ctx->lock);
651         update_context_time(ctx, 1);
652
653         counter->prev_state = counter->state;
654         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
655                 goto unlock;
656         counter->state = PERF_COUNTER_STATE_INACTIVE;
657         counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658
659         /*
660          * If the counter is in a group and isn't the group leader,
661          * then don't put it on unless the group is on.
662          */
663         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
664                 goto unlock;
665
666         if (!group_can_go_on(counter, cpuctx, 1))
667                 err = -EEXIST;
668         else
669                 err = counter_sched_in(counter, cpuctx, ctx,
670                                        smp_processor_id());
671
672         if (err) {
673                 /*
674                  * If this counter can't go on and it's part of a
675                  * group, then the whole group has to come off.
676                  */
677                 if (leader != counter)
678                         group_sched_out(leader, cpuctx, ctx);
679                 if (leader->hw_event.pinned) {
680                         update_group_times(leader);
681                         leader->state = PERF_COUNTER_STATE_ERROR;
682                 }
683         }
684
685  unlock:
686         spin_unlock(&ctx->lock);
687         curr_rq_unlock_irq_restore(&flags);
688 }
689
690 /*
691  * Enable a counter.
692  */
693 static void perf_counter_enable(struct perf_counter *counter)
694 {
695         struct perf_counter_context *ctx = counter->ctx;
696         struct task_struct *task = ctx->task;
697
698         if (!task) {
699                 /*
700                  * Enable the counter on the cpu that it's on
701                  */
702                 smp_call_function_single(counter->cpu, __perf_counter_enable,
703                                          counter, 1);
704                 return;
705         }
706
707         spin_lock_irq(&ctx->lock);
708         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
709                 goto out;
710
711         /*
712          * If the counter is in error state, clear that first.
713          * That way, if we see the counter in error state below, we
714          * know that it has gone back into error state, as distinct
715          * from the task having been scheduled away before the
716          * cross-call arrived.
717          */
718         if (counter->state == PERF_COUNTER_STATE_ERROR)
719                 counter->state = PERF_COUNTER_STATE_OFF;
720
721  retry:
722         spin_unlock_irq(&ctx->lock);
723         task_oncpu_function_call(task, __perf_counter_enable, counter);
724
725         spin_lock_irq(&ctx->lock);
726
727         /*
728          * If the context is active and the counter is still off,
729          * we need to retry the cross-call.
730          */
731         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
732                 goto retry;
733
734         /*
735          * Since we have the lock this context can't be scheduled
736          * in, so we can change the state safely.
737          */
738         if (counter->state == PERF_COUNTER_STATE_OFF) {
739                 counter->state = PERF_COUNTER_STATE_INACTIVE;
740                 counter->tstamp_enabled = ctx->time_now -
741                         counter->total_time_enabled;
742         }
743  out:
744         spin_unlock_irq(&ctx->lock);
745 }
746
747 /*
748  * Enable a counter and all its children.
749  */
750 static void perf_counter_enable_family(struct perf_counter *counter)
751 {
752         struct perf_counter *child;
753
754         perf_counter_enable(counter);
755
756         /*
757          * Lock the mutex to protect the list of children
758          */
759         mutex_lock(&counter->mutex);
760         list_for_each_entry(child, &counter->child_list, child_list)
761                 perf_counter_enable(child);
762         mutex_unlock(&counter->mutex);
763 }
764
765 void __perf_counter_sched_out(struct perf_counter_context *ctx,
766                               struct perf_cpu_context *cpuctx)
767 {
768         struct perf_counter *counter;
769         u64 flags;
770
771         spin_lock(&ctx->lock);
772         ctx->is_active = 0;
773         if (likely(!ctx->nr_counters))
774                 goto out;
775         update_context_time(ctx, 0);
776
777         flags = hw_perf_save_disable();
778         if (ctx->nr_active) {
779                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
780                         group_sched_out(counter, cpuctx, ctx);
781         }
782         hw_perf_restore(flags);
783  out:
784         spin_unlock(&ctx->lock);
785 }
786
787 /*
788  * Called from scheduler to remove the counters of the current task,
789  * with interrupts disabled.
790  *
791  * We stop each counter and update the counter value in counter->count.
792  *
793  * This does not protect us against NMI, but disable()
794  * sets the disabled bit in the control field of counter _before_
795  * accessing the counter control register. If a NMI hits, then it will
796  * not restart the counter.
797  */
798 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 {
800         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
801         struct perf_counter_context *ctx = &task->perf_counter_ctx;
802         struct pt_regs *regs;
803
804         if (likely(!cpuctx->task_ctx))
805                 return;
806
807         regs = task_pt_regs(task);
808         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
809         __perf_counter_sched_out(ctx, cpuctx);
810
811         cpuctx->task_ctx = NULL;
812 }
813
814 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815 {
816         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
817 }
818
819 static int
820 group_sched_in(struct perf_counter *group_counter,
821                struct perf_cpu_context *cpuctx,
822                struct perf_counter_context *ctx,
823                int cpu)
824 {
825         struct perf_counter *counter, *partial_group;
826         int ret;
827
828         if (group_counter->state == PERF_COUNTER_STATE_OFF)
829                 return 0;
830
831         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
832         if (ret)
833                 return ret < 0 ? ret : 0;
834
835         group_counter->prev_state = group_counter->state;
836         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
837                 return -EAGAIN;
838
839         /*
840          * Schedule in siblings as one group (if any):
841          */
842         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
843                 counter->prev_state = counter->state;
844                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
845                         partial_group = counter;
846                         goto group_error;
847                 }
848         }
849
850         return 0;
851
852 group_error:
853         /*
854          * Groups can be scheduled in as one unit only, so undo any
855          * partial group before returning:
856          */
857         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
858                 if (counter == partial_group)
859                         break;
860                 counter_sched_out(counter, cpuctx, ctx);
861         }
862         counter_sched_out(group_counter, cpuctx, ctx);
863
864         return -EAGAIN;
865 }
866
867 static void
868 __perf_counter_sched_in(struct perf_counter_context *ctx,
869                         struct perf_cpu_context *cpuctx, int cpu)
870 {
871         struct perf_counter *counter;
872         u64 flags;
873         int can_add_hw = 1;
874
875         spin_lock(&ctx->lock);
876         ctx->is_active = 1;
877         if (likely(!ctx->nr_counters))
878                 goto out;
879
880         /*
881          * Add any time since the last sched_out to the lost time
882          * so it doesn't get included in the total_time_enabled and
883          * total_time_running measures for counters in the context.
884          */
885         ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
886
887         flags = hw_perf_save_disable();
888
889         /*
890          * First go through the list and put on any pinned groups
891          * in order to give them the best chance of going on.
892          */
893         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
894                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
895                     !counter->hw_event.pinned)
896                         continue;
897                 if (counter->cpu != -1 && counter->cpu != cpu)
898                         continue;
899
900                 if (group_can_go_on(counter, cpuctx, 1))
901                         group_sched_in(counter, cpuctx, ctx, cpu);
902
903                 /*
904                  * If this pinned group hasn't been scheduled,
905                  * put it in error state.
906                  */
907                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
908                         update_group_times(counter);
909                         counter->state = PERF_COUNTER_STATE_ERROR;
910                 }
911         }
912
913         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
914                 /*
915                  * Ignore counters in OFF or ERROR state, and
916                  * ignore pinned counters since we did them already.
917                  */
918                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
919                     counter->hw_event.pinned)
920                         continue;
921
922                 /*
923                  * Listen to the 'cpu' scheduling filter constraint
924                  * of counters:
925                  */
926                 if (counter->cpu != -1 && counter->cpu != cpu)
927                         continue;
928
929                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
930                         if (group_sched_in(counter, cpuctx, ctx, cpu))
931                                 can_add_hw = 0;
932                 }
933         }
934         hw_perf_restore(flags);
935  out:
936         spin_unlock(&ctx->lock);
937 }
938
939 /*
940  * Called from scheduler to add the counters of the current task
941  * with interrupts disabled.
942  *
943  * We restore the counter value and then enable it.
944  *
945  * This does not protect us against NMI, but enable()
946  * sets the enabled bit in the control field of counter _before_
947  * accessing the counter control register. If a NMI hits, then it will
948  * keep the counter running.
949  */
950 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
951 {
952         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953         struct perf_counter_context *ctx = &task->perf_counter_ctx;
954
955         __perf_counter_sched_in(ctx, cpuctx, cpu);
956         cpuctx->task_ctx = ctx;
957 }
958
959 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
960 {
961         struct perf_counter_context *ctx = &cpuctx->ctx;
962
963         __perf_counter_sched_in(ctx, cpuctx, cpu);
964 }
965
966 int perf_counter_task_disable(void)
967 {
968         struct task_struct *curr = current;
969         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970         struct perf_counter *counter;
971         unsigned long flags;
972         u64 perf_flags;
973         int cpu;
974
975         if (likely(!ctx->nr_counters))
976                 return 0;
977
978         curr_rq_lock_irq_save(&flags);
979         cpu = smp_processor_id();
980
981         /* force the update of the task clock: */
982         __task_delta_exec(curr, 1);
983
984         perf_counter_task_sched_out(curr, cpu);
985
986         spin_lock(&ctx->lock);
987
988         /*
989          * Disable all the counters:
990          */
991         perf_flags = hw_perf_save_disable();
992
993         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995                         update_group_times(counter);
996                         counter->state = PERF_COUNTER_STATE_OFF;
997                 }
998         }
999
1000         hw_perf_restore(perf_flags);
1001
1002         spin_unlock(&ctx->lock);
1003
1004         curr_rq_unlock_irq_restore(&flags);
1005
1006         return 0;
1007 }
1008
1009 int perf_counter_task_enable(void)
1010 {
1011         struct task_struct *curr = current;
1012         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1013         struct perf_counter *counter;
1014         unsigned long flags;
1015         u64 perf_flags;
1016         int cpu;
1017
1018         if (likely(!ctx->nr_counters))
1019                 return 0;
1020
1021         curr_rq_lock_irq_save(&flags);
1022         cpu = smp_processor_id();
1023
1024         /* force the update of the task clock: */
1025         __task_delta_exec(curr, 1);
1026
1027         perf_counter_task_sched_out(curr, cpu);
1028
1029         spin_lock(&ctx->lock);
1030
1031         /*
1032          * Disable all the counters:
1033          */
1034         perf_flags = hw_perf_save_disable();
1035
1036         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037                 if (counter->state > PERF_COUNTER_STATE_OFF)
1038                         continue;
1039                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1040                 counter->tstamp_enabled = ctx->time_now -
1041                         counter->total_time_enabled;
1042                 counter->hw_event.disabled = 0;
1043         }
1044         hw_perf_restore(perf_flags);
1045
1046         spin_unlock(&ctx->lock);
1047
1048         perf_counter_task_sched_in(curr, cpu);
1049
1050         curr_rq_unlock_irq_restore(&flags);
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * Round-robin a context's counters:
1057  */
1058 static void rotate_ctx(struct perf_counter_context *ctx)
1059 {
1060         struct perf_counter *counter;
1061         u64 perf_flags;
1062
1063         if (!ctx->nr_counters)
1064                 return;
1065
1066         spin_lock(&ctx->lock);
1067         /*
1068          * Rotate the first entry last (works just fine for group counters too):
1069          */
1070         perf_flags = hw_perf_save_disable();
1071         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1072                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1073                 break;
1074         }
1075         hw_perf_restore(perf_flags);
1076
1077         spin_unlock(&ctx->lock);
1078 }
1079
1080 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1081 {
1082         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1083         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1084         const int rotate_percpu = 0;
1085
1086         if (rotate_percpu)
1087                 perf_counter_cpu_sched_out(cpuctx);
1088         perf_counter_task_sched_out(curr, cpu);
1089
1090         if (rotate_percpu)
1091                 rotate_ctx(&cpuctx->ctx);
1092         rotate_ctx(ctx);
1093
1094         if (rotate_percpu)
1095                 perf_counter_cpu_sched_in(cpuctx, cpu);
1096         perf_counter_task_sched_in(curr, cpu);
1097 }
1098
1099 /*
1100  * Cross CPU call to read the hardware counter
1101  */
1102 static void __read(void *info)
1103 {
1104         struct perf_counter *counter = info;
1105         struct perf_counter_context *ctx = counter->ctx;
1106         unsigned long flags;
1107
1108         curr_rq_lock_irq_save(&flags);
1109         if (ctx->is_active)
1110                 update_context_time(ctx, 1);
1111         counter->hw_ops->read(counter);
1112         update_counter_times(counter);
1113         curr_rq_unlock_irq_restore(&flags);
1114 }
1115
1116 static u64 perf_counter_read(struct perf_counter *counter)
1117 {
1118         /*
1119          * If counter is enabled and currently active on a CPU, update the
1120          * value in the counter structure:
1121          */
1122         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1123                 smp_call_function_single(counter->oncpu,
1124                                          __read, counter, 1);
1125         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1126                 update_counter_times(counter);
1127         }
1128
1129         return atomic64_read(&counter->count);
1130 }
1131
1132 static void put_context(struct perf_counter_context *ctx)
1133 {
1134         if (ctx->task)
1135                 put_task_struct(ctx->task);
1136 }
1137
1138 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1139 {
1140         struct perf_cpu_context *cpuctx;
1141         struct perf_counter_context *ctx;
1142         struct task_struct *task;
1143
1144         /*
1145          * If cpu is not a wildcard then this is a percpu counter:
1146          */
1147         if (cpu != -1) {
1148                 /* Must be root to operate on a CPU counter: */
1149                 if (!capable(CAP_SYS_ADMIN))
1150                         return ERR_PTR(-EACCES);
1151
1152                 if (cpu < 0 || cpu > num_possible_cpus())
1153                         return ERR_PTR(-EINVAL);
1154
1155                 /*
1156                  * We could be clever and allow to attach a counter to an
1157                  * offline CPU and activate it when the CPU comes up, but
1158                  * that's for later.
1159                  */
1160                 if (!cpu_isset(cpu, cpu_online_map))
1161                         return ERR_PTR(-ENODEV);
1162
1163                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1164                 ctx = &cpuctx->ctx;
1165
1166                 return ctx;
1167         }
1168
1169         rcu_read_lock();
1170         if (!pid)
1171                 task = current;
1172         else
1173                 task = find_task_by_vpid(pid);
1174         if (task)
1175                 get_task_struct(task);
1176         rcu_read_unlock();
1177
1178         if (!task)
1179                 return ERR_PTR(-ESRCH);
1180
1181         ctx = &task->perf_counter_ctx;
1182         ctx->task = task;
1183
1184         /* Reuse ptrace permission checks for now. */
1185         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1186                 put_context(ctx);
1187                 return ERR_PTR(-EACCES);
1188         }
1189
1190         return ctx;
1191 }
1192
1193 static void free_counter_rcu(struct rcu_head *head)
1194 {
1195         struct perf_counter *counter;
1196
1197         counter = container_of(head, struct perf_counter, rcu_head);
1198         kfree(counter);
1199 }
1200
1201 static void perf_pending_sync(struct perf_counter *counter);
1202
1203 static void free_counter(struct perf_counter *counter)
1204 {
1205         perf_pending_sync(counter);
1206
1207         if (counter->destroy)
1208                 counter->destroy(counter);
1209
1210         call_rcu(&counter->rcu_head, free_counter_rcu);
1211 }
1212
1213 /*
1214  * Called when the last reference to the file is gone.
1215  */
1216 static int perf_release(struct inode *inode, struct file *file)
1217 {
1218         struct perf_counter *counter = file->private_data;
1219         struct perf_counter_context *ctx = counter->ctx;
1220
1221         file->private_data = NULL;
1222
1223         mutex_lock(&ctx->mutex);
1224         mutex_lock(&counter->mutex);
1225
1226         perf_counter_remove_from_context(counter);
1227
1228         mutex_unlock(&counter->mutex);
1229         mutex_unlock(&ctx->mutex);
1230
1231         free_counter(counter);
1232         put_context(ctx);
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Read the performance counter - simple non blocking version for now
1239  */
1240 static ssize_t
1241 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1242 {
1243         u64 values[3];
1244         int n;
1245
1246         /*
1247          * Return end-of-file for a read on a counter that is in
1248          * error state (i.e. because it was pinned but it couldn't be
1249          * scheduled on to the CPU at some point).
1250          */
1251         if (counter->state == PERF_COUNTER_STATE_ERROR)
1252                 return 0;
1253
1254         mutex_lock(&counter->mutex);
1255         values[0] = perf_counter_read(counter);
1256         n = 1;
1257         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1258                 values[n++] = counter->total_time_enabled +
1259                         atomic64_read(&counter->child_total_time_enabled);
1260         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1261                 values[n++] = counter->total_time_running +
1262                         atomic64_read(&counter->child_total_time_running);
1263         mutex_unlock(&counter->mutex);
1264
1265         if (count < n * sizeof(u64))
1266                 return -EINVAL;
1267         count = n * sizeof(u64);
1268
1269         if (copy_to_user(buf, values, count))
1270                 return -EFAULT;
1271
1272         return count;
1273 }
1274
1275 static ssize_t
1276 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1277 {
1278         struct perf_counter *counter = file->private_data;
1279
1280         return perf_read_hw(counter, buf, count);
1281 }
1282
1283 static unsigned int perf_poll(struct file *file, poll_table *wait)
1284 {
1285         struct perf_counter *counter = file->private_data;
1286         struct perf_mmap_data *data;
1287         unsigned int events;
1288
1289         rcu_read_lock();
1290         data = rcu_dereference(counter->data);
1291         if (data)
1292                 events = atomic_xchg(&data->wakeup, 0);
1293         else
1294                 events = POLL_HUP;
1295         rcu_read_unlock();
1296
1297         poll_wait(file, &counter->waitq, wait);
1298
1299         return events;
1300 }
1301
1302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1303 {
1304         struct perf_counter *counter = file->private_data;
1305         int err = 0;
1306
1307         switch (cmd) {
1308         case PERF_COUNTER_IOC_ENABLE:
1309                 perf_counter_enable_family(counter);
1310                 break;
1311         case PERF_COUNTER_IOC_DISABLE:
1312                 perf_counter_disable_family(counter);
1313                 break;
1314         default:
1315                 err = -ENOTTY;
1316         }
1317         return err;
1318 }
1319
1320 /*
1321  * Callers need to ensure there can be no nesting of this function, otherwise
1322  * the seqlock logic goes bad. We can not serialize this because the arch
1323  * code calls this from NMI context.
1324  */
1325 void perf_counter_update_userpage(struct perf_counter *counter)
1326 {
1327         struct perf_mmap_data *data;
1328         struct perf_counter_mmap_page *userpg;
1329
1330         rcu_read_lock();
1331         data = rcu_dereference(counter->data);
1332         if (!data)
1333                 goto unlock;
1334
1335         userpg = data->user_page;
1336
1337         /*
1338          * Disable preemption so as to not let the corresponding user-space
1339          * spin too long if we get preempted.
1340          */
1341         preempt_disable();
1342         ++userpg->lock;
1343         barrier();
1344         userpg->index = counter->hw.idx;
1345         userpg->offset = atomic64_read(&counter->count);
1346         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1347                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1348
1349         barrier();
1350         ++userpg->lock;
1351         preempt_enable();
1352 unlock:
1353         rcu_read_unlock();
1354 }
1355
1356 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1357 {
1358         struct perf_counter *counter = vma->vm_file->private_data;
1359         struct perf_mmap_data *data;
1360         int ret = VM_FAULT_SIGBUS;
1361
1362         rcu_read_lock();
1363         data = rcu_dereference(counter->data);
1364         if (!data)
1365                 goto unlock;
1366
1367         if (vmf->pgoff == 0) {
1368                 vmf->page = virt_to_page(data->user_page);
1369         } else {
1370                 int nr = vmf->pgoff - 1;
1371
1372                 if ((unsigned)nr > data->nr_pages)
1373                         goto unlock;
1374
1375                 vmf->page = virt_to_page(data->data_pages[nr]);
1376         }
1377         get_page(vmf->page);
1378         ret = 0;
1379 unlock:
1380         rcu_read_unlock();
1381
1382         return ret;
1383 }
1384
1385 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1386 {
1387         struct perf_mmap_data *data;
1388         unsigned long size;
1389         int i;
1390
1391         WARN_ON(atomic_read(&counter->mmap_count));
1392
1393         size = sizeof(struct perf_mmap_data);
1394         size += nr_pages * sizeof(void *);
1395
1396         data = kzalloc(size, GFP_KERNEL);
1397         if (!data)
1398                 goto fail;
1399
1400         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1401         if (!data->user_page)
1402                 goto fail_user_page;
1403
1404         for (i = 0; i < nr_pages; i++) {
1405                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1406                 if (!data->data_pages[i])
1407                         goto fail_data_pages;
1408         }
1409
1410         data->nr_pages = nr_pages;
1411
1412         rcu_assign_pointer(counter->data, data);
1413
1414         return 0;
1415
1416 fail_data_pages:
1417         for (i--; i >= 0; i--)
1418                 free_page((unsigned long)data->data_pages[i]);
1419
1420         free_page((unsigned long)data->user_page);
1421
1422 fail_user_page:
1423         kfree(data);
1424
1425 fail:
1426         return -ENOMEM;
1427 }
1428
1429 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1430 {
1431         struct perf_mmap_data *data = container_of(rcu_head,
1432                         struct perf_mmap_data, rcu_head);
1433         int i;
1434
1435         free_page((unsigned long)data->user_page);
1436         for (i = 0; i < data->nr_pages; i++)
1437                 free_page((unsigned long)data->data_pages[i]);
1438         kfree(data);
1439 }
1440
1441 static void perf_mmap_data_free(struct perf_counter *counter)
1442 {
1443         struct perf_mmap_data *data = counter->data;
1444
1445         WARN_ON(atomic_read(&counter->mmap_count));
1446
1447         rcu_assign_pointer(counter->data, NULL);
1448         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1449 }
1450
1451 static void perf_mmap_open(struct vm_area_struct *vma)
1452 {
1453         struct perf_counter *counter = vma->vm_file->private_data;
1454
1455         atomic_inc(&counter->mmap_count);
1456 }
1457
1458 static void perf_mmap_close(struct vm_area_struct *vma)
1459 {
1460         struct perf_counter *counter = vma->vm_file->private_data;
1461
1462         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1463                                       &counter->mmap_mutex)) {
1464                 perf_mmap_data_free(counter);
1465                 mutex_unlock(&counter->mmap_mutex);
1466         }
1467 }
1468
1469 static struct vm_operations_struct perf_mmap_vmops = {
1470         .open = perf_mmap_open,
1471         .close = perf_mmap_close,
1472         .fault = perf_mmap_fault,
1473 };
1474
1475 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1476 {
1477         struct perf_counter *counter = file->private_data;
1478         unsigned long vma_size;
1479         unsigned long nr_pages;
1480         unsigned long locked, lock_limit;
1481         int ret = 0;
1482
1483         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1484                 return -EINVAL;
1485
1486         vma_size = vma->vm_end - vma->vm_start;
1487         nr_pages = (vma_size / PAGE_SIZE) - 1;
1488
1489         /*
1490          * If we have data pages ensure they're a power-of-two number, so we
1491          * can do bitmasks instead of modulo.
1492          */
1493         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1494                 return -EINVAL;
1495
1496         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1497                 return -EINVAL;
1498
1499         if (vma->vm_pgoff != 0)
1500                 return -EINVAL;
1501
1502         locked = vma_size >>  PAGE_SHIFT;
1503         locked += vma->vm_mm->locked_vm;
1504
1505         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1506         lock_limit >>= PAGE_SHIFT;
1507
1508         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1509                 return -EPERM;
1510
1511         mutex_lock(&counter->mmap_mutex);
1512         if (atomic_inc_not_zero(&counter->mmap_count))
1513                 goto out;
1514
1515         WARN_ON(counter->data);
1516         ret = perf_mmap_data_alloc(counter, nr_pages);
1517         if (!ret)
1518                 atomic_set(&counter->mmap_count, 1);
1519 out:
1520         mutex_unlock(&counter->mmap_mutex);
1521
1522         vma->vm_flags &= ~VM_MAYWRITE;
1523         vma->vm_flags |= VM_RESERVED;
1524         vma->vm_ops = &perf_mmap_vmops;
1525
1526         return ret;
1527 }
1528
1529 static int perf_fasync(int fd, struct file *filp, int on)
1530 {
1531         struct perf_counter *counter = filp->private_data;
1532         struct inode *inode = filp->f_path.dentry->d_inode;
1533         int retval;
1534
1535         mutex_lock(&inode->i_mutex);
1536         retval = fasync_helper(fd, filp, on, &counter->fasync);
1537         mutex_unlock(&inode->i_mutex);
1538
1539         if (retval < 0)
1540                 return retval;
1541
1542         return 0;
1543 }
1544
1545 static const struct file_operations perf_fops = {
1546         .release                = perf_release,
1547         .read                   = perf_read,
1548         .poll                   = perf_poll,
1549         .unlocked_ioctl         = perf_ioctl,
1550         .compat_ioctl           = perf_ioctl,
1551         .mmap                   = perf_mmap,
1552         .fasync                 = perf_fasync,
1553 };
1554
1555 /*
1556  * Perf counter wakeup
1557  *
1558  * If there's data, ensure we set the poll() state and publish everything
1559  * to user-space before waking everybody up.
1560  */
1561
1562 void perf_counter_wakeup(struct perf_counter *counter)
1563 {
1564         struct perf_mmap_data *data;
1565
1566         rcu_read_lock();
1567         data = rcu_dereference(counter->data);
1568         if (data) {
1569                 atomic_set(&data->wakeup, POLL_IN);
1570                 /*
1571                  * Ensure all data writes are issued before updating the
1572                  * user-space data head information. The matching rmb()
1573                  * will be in userspace after reading this value.
1574                  */
1575                 smp_wmb();
1576                 data->user_page->data_head = atomic_read(&data->head);
1577         }
1578         rcu_read_unlock();
1579
1580         wake_up_all(&counter->waitq);
1581         kill_fasync(&counter->fasync, SIGIO, POLL_IN);
1582 }
1583
1584 static void perf_pending_wakeup(struct perf_pending_entry *entry)
1585 {
1586         struct perf_counter *counter = container_of(entry,
1587                         struct perf_counter, pending);
1588
1589         perf_counter_wakeup(counter);
1590 }
1591
1592 /*
1593  * Pending wakeups
1594  *
1595  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1596  *
1597  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1598  * single linked list and use cmpxchg() to add entries lockless.
1599  */
1600
1601 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1602
1603 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1604         PENDING_TAIL,
1605 };
1606
1607 static void perf_pending_queue(struct perf_pending_entry *entry,
1608                                void (*func)(struct perf_pending_entry *))
1609 {
1610         struct perf_pending_entry **head;
1611
1612         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1613                 return;
1614
1615         entry->func = func;
1616
1617         head = &get_cpu_var(perf_pending_head);
1618
1619         do {
1620                 entry->next = *head;
1621         } while (cmpxchg(head, entry->next, entry) != entry->next);
1622
1623         set_perf_counter_pending();
1624
1625         put_cpu_var(perf_pending_head);
1626 }
1627
1628 static int __perf_pending_run(void)
1629 {
1630         struct perf_pending_entry *list;
1631         int nr = 0;
1632
1633         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1634         while (list != PENDING_TAIL) {
1635                 void (*func)(struct perf_pending_entry *);
1636                 struct perf_pending_entry *entry = list;
1637
1638                 list = list->next;
1639
1640                 func = entry->func;
1641                 entry->next = NULL;
1642                 /*
1643                  * Ensure we observe the unqueue before we issue the wakeup,
1644                  * so that we won't be waiting forever.
1645                  * -- see perf_not_pending().
1646                  */
1647                 smp_wmb();
1648
1649                 func(entry);
1650                 nr++;
1651         }
1652
1653         return nr;
1654 }
1655
1656 static inline int perf_not_pending(struct perf_counter *counter)
1657 {
1658         /*
1659          * If we flush on whatever cpu we run, there is a chance we don't
1660          * need to wait.
1661          */
1662         get_cpu();
1663         __perf_pending_run();
1664         put_cpu();
1665
1666         /*
1667          * Ensure we see the proper queue state before going to sleep
1668          * so that we do not miss the wakeup. -- see perf_pending_handle()
1669          */
1670         smp_rmb();
1671         return counter->pending.next == NULL;
1672 }
1673
1674 static void perf_pending_sync(struct perf_counter *counter)
1675 {
1676         wait_event(counter->waitq, perf_not_pending(counter));
1677 }
1678
1679 void perf_counter_do_pending(void)
1680 {
1681         __perf_pending_run();
1682 }
1683
1684 /*
1685  * Callchain support -- arch specific
1686  */
1687
1688 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1689 {
1690         return NULL;
1691 }
1692
1693 /*
1694  * Output
1695  */
1696
1697 struct perf_output_handle {
1698         struct perf_counter     *counter;
1699         struct perf_mmap_data   *data;
1700         unsigned int            offset;
1701         unsigned int            head;
1702         int                     wakeup;
1703         int                     nmi;
1704 };
1705
1706 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1707 {
1708         if (handle->nmi) {
1709                 perf_pending_queue(&handle->counter->pending,
1710                                    perf_pending_wakeup);
1711         } else
1712                 perf_counter_wakeup(handle->counter);
1713 }
1714
1715 static int perf_output_begin(struct perf_output_handle *handle,
1716                              struct perf_counter *counter, unsigned int size,
1717                              int nmi)
1718 {
1719         struct perf_mmap_data *data;
1720         unsigned int offset, head;
1721
1722         rcu_read_lock();
1723         data = rcu_dereference(counter->data);
1724         if (!data)
1725                 goto out;
1726
1727         handle->counter = counter;
1728         handle->nmi     = nmi;
1729
1730         if (!data->nr_pages)
1731                 goto fail;
1732
1733         do {
1734                 offset = head = atomic_read(&data->head);
1735                 head += size;
1736         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1737
1738         handle->data    = data;
1739         handle->offset  = offset;
1740         handle->head    = head;
1741         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1742
1743         return 0;
1744
1745 fail:
1746         __perf_output_wakeup(handle);
1747 out:
1748         rcu_read_unlock();
1749
1750         return -ENOSPC;
1751 }
1752
1753 static void perf_output_copy(struct perf_output_handle *handle,
1754                              void *buf, unsigned int len)
1755 {
1756         unsigned int pages_mask;
1757         unsigned int offset;
1758         unsigned int size;
1759         void **pages;
1760
1761         offset          = handle->offset;
1762         pages_mask      = handle->data->nr_pages - 1;
1763         pages           = handle->data->data_pages;
1764
1765         do {
1766                 unsigned int page_offset;
1767                 int nr;
1768
1769                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1770                 page_offset = offset & (PAGE_SIZE - 1);
1771                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1772
1773                 memcpy(pages[nr] + page_offset, buf, size);
1774
1775                 len         -= size;
1776                 buf         += size;
1777                 offset      += size;
1778         } while (len);
1779
1780         handle->offset = offset;
1781
1782         WARN_ON_ONCE(handle->offset > handle->head);
1783 }
1784
1785 #define perf_output_put(handle, x) \
1786         perf_output_copy((handle), &(x), sizeof(x))
1787
1788 static void perf_output_end(struct perf_output_handle *handle)
1789 {
1790         int wakeup_events = handle->counter->hw_event.wakeup_events;
1791
1792         if (wakeup_events) {
1793                 int events = atomic_inc_return(&handle->data->events);
1794                 if (events >= wakeup_events) {
1795                         atomic_sub(wakeup_events, &handle->data->events);
1796                         __perf_output_wakeup(handle);
1797                 }
1798         } else if (handle->wakeup)
1799                 __perf_output_wakeup(handle);
1800         rcu_read_unlock();
1801 }
1802
1803 static void perf_counter_output(struct perf_counter *counter,
1804                                 int nmi, struct pt_regs *regs)
1805 {
1806         int ret;
1807         u64 record_type = counter->hw_event.record_type;
1808         struct perf_output_handle handle;
1809         struct perf_event_header header;
1810         u64 ip;
1811         struct {
1812                 u32 pid, tid;
1813         } tid_entry;
1814         struct {
1815                 u64 event;
1816                 u64 counter;
1817         } group_entry;
1818         struct perf_callchain_entry *callchain = NULL;
1819         int callchain_size = 0;
1820
1821         header.type = PERF_EVENT_COUNTER_OVERFLOW;
1822         header.size = sizeof(header);
1823
1824         if (record_type & PERF_RECORD_IP) {
1825                 ip = instruction_pointer(regs);
1826                 header.type |= __PERF_EVENT_IP;
1827                 header.size += sizeof(ip);
1828         }
1829
1830         if (record_type & PERF_RECORD_TID) {
1831                 /* namespace issues */
1832                 tid_entry.pid = current->group_leader->pid;
1833                 tid_entry.tid = current->pid;
1834
1835                 header.type |= __PERF_EVENT_TID;
1836                 header.size += sizeof(tid_entry);
1837         }
1838
1839         if (record_type & PERF_RECORD_GROUP) {
1840                 header.type |= __PERF_EVENT_GROUP;
1841                 header.size += sizeof(u64) +
1842                         counter->nr_siblings * sizeof(group_entry);
1843         }
1844
1845         if (record_type & PERF_RECORD_CALLCHAIN) {
1846                 callchain = perf_callchain(regs);
1847
1848                 if (callchain) {
1849                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1850
1851                         header.type |= __PERF_EVENT_CALLCHAIN;
1852                         header.size += callchain_size;
1853                 }
1854         }
1855
1856         ret = perf_output_begin(&handle, counter, header.size, nmi);
1857         if (ret)
1858                 return;
1859
1860         perf_output_put(&handle, header);
1861
1862         if (record_type & PERF_RECORD_IP)
1863                 perf_output_put(&handle, ip);
1864
1865         if (record_type & PERF_RECORD_TID)
1866                 perf_output_put(&handle, tid_entry);
1867
1868         if (record_type & PERF_RECORD_GROUP) {
1869                 struct perf_counter *leader, *sub;
1870                 u64 nr = counter->nr_siblings;
1871
1872                 perf_output_put(&handle, nr);
1873
1874                 leader = counter->group_leader;
1875                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1876                         if (sub != counter)
1877                                 sub->hw_ops->read(sub);
1878
1879                         group_entry.event = sub->hw_event.config;
1880                         group_entry.counter = atomic64_read(&sub->count);
1881
1882                         perf_output_put(&handle, group_entry);
1883                 }
1884         }
1885
1886         if (callchain)
1887                 perf_output_copy(&handle, callchain, callchain_size);
1888
1889         perf_output_end(&handle);
1890 }
1891
1892 /*
1893  * mmap tracking
1894  */
1895
1896 struct perf_mmap_event {
1897         struct file     *file;
1898         char            *file_name;
1899         int             file_size;
1900
1901         struct {
1902                 struct perf_event_header        header;
1903
1904                 u32                             pid;
1905                 u32                             tid;
1906                 u64                             start;
1907                 u64                             len;
1908                 u64                             pgoff;
1909         } event;
1910 };
1911
1912 static void perf_counter_mmap_output(struct perf_counter *counter,
1913                                      struct perf_mmap_event *mmap_event)
1914 {
1915         struct perf_output_handle handle;
1916         int size = mmap_event->event.header.size;
1917         int ret = perf_output_begin(&handle, counter, size, 0);
1918
1919         if (ret)
1920                 return;
1921
1922         perf_output_put(&handle, mmap_event->event);
1923         perf_output_copy(&handle, mmap_event->file_name,
1924                                    mmap_event->file_size);
1925         perf_output_end(&handle);
1926 }
1927
1928 static int perf_counter_mmap_match(struct perf_counter *counter,
1929                                    struct perf_mmap_event *mmap_event)
1930 {
1931         if (counter->hw_event.mmap &&
1932             mmap_event->event.header.type == PERF_EVENT_MMAP)
1933                 return 1;
1934
1935         if (counter->hw_event.munmap &&
1936             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1937                 return 1;
1938
1939         return 0;
1940 }
1941
1942 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1943                                   struct perf_mmap_event *mmap_event)
1944 {
1945         struct perf_counter *counter;
1946
1947         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1948                 return;
1949
1950         rcu_read_lock();
1951         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1952                 if (perf_counter_mmap_match(counter, mmap_event))
1953                         perf_counter_mmap_output(counter, mmap_event);
1954         }
1955         rcu_read_unlock();
1956 }
1957
1958 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1959 {
1960         struct perf_cpu_context *cpuctx;
1961         struct file *file = mmap_event->file;
1962         unsigned int size;
1963         char tmp[16];
1964         char *buf = NULL;
1965         char *name;
1966
1967         if (file) {
1968                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
1969                 if (!buf) {
1970                         name = strncpy(tmp, "//enomem", sizeof(tmp));
1971                         goto got_name;
1972                 }
1973                 name = dentry_path(file->f_dentry, buf, PATH_MAX);
1974                 if (IS_ERR(name)) {
1975                         name = strncpy(tmp, "//toolong", sizeof(tmp));
1976                         goto got_name;
1977                 }
1978         } else {
1979                 name = strncpy(tmp, "//anon", sizeof(tmp));
1980                 goto got_name;
1981         }
1982
1983 got_name:
1984         size = ALIGN(strlen(name), sizeof(u64));
1985
1986         mmap_event->file_name = name;
1987         mmap_event->file_size = size;
1988
1989         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
1990
1991         cpuctx = &get_cpu_var(perf_cpu_context);
1992         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
1993         put_cpu_var(perf_cpu_context);
1994
1995         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
1996
1997         kfree(buf);
1998 }
1999
2000 void perf_counter_mmap(unsigned long addr, unsigned long len,
2001                        unsigned long pgoff, struct file *file)
2002 {
2003         struct perf_mmap_event mmap_event = {
2004                 .file   = file,
2005                 .event  = {
2006                         .header = { .type = PERF_EVENT_MMAP, },
2007                         .pid    = current->group_leader->pid,
2008                         .tid    = current->pid,
2009                         .start  = addr,
2010                         .len    = len,
2011                         .pgoff  = pgoff,
2012                 },
2013         };
2014
2015         perf_counter_mmap_event(&mmap_event);
2016 }
2017
2018 void perf_counter_munmap(unsigned long addr, unsigned long len,
2019                          unsigned long pgoff, struct file *file)
2020 {
2021         struct perf_mmap_event mmap_event = {
2022                 .file   = file,
2023                 .event  = {
2024                         .header = { .type = PERF_EVENT_MUNMAP, },
2025                         .pid    = current->group_leader->pid,
2026                         .tid    = current->pid,
2027                         .start  = addr,
2028                         .len    = len,
2029                         .pgoff  = pgoff,
2030                 },
2031         };
2032
2033         perf_counter_mmap_event(&mmap_event);
2034 }
2035
2036 /*
2037  * Generic counter overflow handling.
2038  */
2039
2040 int perf_counter_overflow(struct perf_counter *counter,
2041                           int nmi, struct pt_regs *regs)
2042 {
2043         perf_counter_output(counter, nmi, regs);
2044         return 0;
2045 }
2046
2047 /*
2048  * Generic software counter infrastructure
2049  */
2050
2051 static void perf_swcounter_update(struct perf_counter *counter)
2052 {
2053         struct hw_perf_counter *hwc = &counter->hw;
2054         u64 prev, now;
2055         s64 delta;
2056
2057 again:
2058         prev = atomic64_read(&hwc->prev_count);
2059         now = atomic64_read(&hwc->count);
2060         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2061                 goto again;
2062
2063         delta = now - prev;
2064
2065         atomic64_add(delta, &counter->count);
2066         atomic64_sub(delta, &hwc->period_left);
2067 }
2068
2069 static void perf_swcounter_set_period(struct perf_counter *counter)
2070 {
2071         struct hw_perf_counter *hwc = &counter->hw;
2072         s64 left = atomic64_read(&hwc->period_left);
2073         s64 period = hwc->irq_period;
2074
2075         if (unlikely(left <= -period)) {
2076                 left = period;
2077                 atomic64_set(&hwc->period_left, left);
2078         }
2079
2080         if (unlikely(left <= 0)) {
2081                 left += period;
2082                 atomic64_add(period, &hwc->period_left);
2083         }
2084
2085         atomic64_set(&hwc->prev_count, -left);
2086         atomic64_set(&hwc->count, -left);
2087 }
2088
2089 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2090 {
2091         enum hrtimer_restart ret = HRTIMER_RESTART;
2092         struct perf_counter *counter;
2093         struct pt_regs *regs;
2094
2095         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2096         counter->hw_ops->read(counter);
2097
2098         regs = get_irq_regs();
2099         /*
2100          * In case we exclude kernel IPs or are somehow not in interrupt
2101          * context, provide the next best thing, the user IP.
2102          */
2103         if ((counter->hw_event.exclude_kernel || !regs) &&
2104                         !counter->hw_event.exclude_user)
2105                 regs = task_pt_regs(current);
2106
2107         if (regs) {
2108                 if (perf_counter_overflow(counter, 0, regs))
2109                         ret = HRTIMER_NORESTART;
2110         }
2111
2112         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2113
2114         return ret;
2115 }
2116
2117 static void perf_swcounter_overflow(struct perf_counter *counter,
2118                                     int nmi, struct pt_regs *regs)
2119 {
2120         perf_swcounter_update(counter);
2121         perf_swcounter_set_period(counter);
2122         if (perf_counter_overflow(counter, nmi, regs))
2123                 /* soft-disable the counter */
2124                 ;
2125
2126 }
2127
2128 static int perf_swcounter_match(struct perf_counter *counter,
2129                                 enum perf_event_types type,
2130                                 u32 event, struct pt_regs *regs)
2131 {
2132         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2133                 return 0;
2134
2135         if (perf_event_raw(&counter->hw_event))
2136                 return 0;
2137
2138         if (perf_event_type(&counter->hw_event) != type)
2139                 return 0;
2140
2141         if (perf_event_id(&counter->hw_event) != event)
2142                 return 0;
2143
2144         if (counter->hw_event.exclude_user && user_mode(regs))
2145                 return 0;
2146
2147         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2148                 return 0;
2149
2150         return 1;
2151 }
2152
2153 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2154                                int nmi, struct pt_regs *regs)
2155 {
2156         int neg = atomic64_add_negative(nr, &counter->hw.count);
2157         if (counter->hw.irq_period && !neg)
2158                 perf_swcounter_overflow(counter, nmi, regs);
2159 }
2160
2161 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2162                                      enum perf_event_types type, u32 event,
2163                                      u64 nr, int nmi, struct pt_regs *regs)
2164 {
2165         struct perf_counter *counter;
2166
2167         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2168                 return;
2169
2170         rcu_read_lock();
2171         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2172                 if (perf_swcounter_match(counter, type, event, regs))
2173                         perf_swcounter_add(counter, nr, nmi, regs);
2174         }
2175         rcu_read_unlock();
2176 }
2177
2178 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2179 {
2180         if (in_nmi())
2181                 return &cpuctx->recursion[3];
2182
2183         if (in_irq())
2184                 return &cpuctx->recursion[2];
2185
2186         if (in_softirq())
2187                 return &cpuctx->recursion[1];
2188
2189         return &cpuctx->recursion[0];
2190 }
2191
2192 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2193                                    u64 nr, int nmi, struct pt_regs *regs)
2194 {
2195         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2196         int *recursion = perf_swcounter_recursion_context(cpuctx);
2197
2198         if (*recursion)
2199                 goto out;
2200
2201         (*recursion)++;
2202         barrier();
2203
2204         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2205         if (cpuctx->task_ctx) {
2206                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2207                                 nr, nmi, regs);
2208         }
2209
2210         barrier();
2211         (*recursion)--;
2212
2213 out:
2214         put_cpu_var(perf_cpu_context);
2215 }
2216
2217 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2218 {
2219         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2220 }
2221
2222 static void perf_swcounter_read(struct perf_counter *counter)
2223 {
2224         perf_swcounter_update(counter);
2225 }
2226
2227 static int perf_swcounter_enable(struct perf_counter *counter)
2228 {
2229         perf_swcounter_set_period(counter);
2230         return 0;
2231 }
2232
2233 static void perf_swcounter_disable(struct perf_counter *counter)
2234 {
2235         perf_swcounter_update(counter);
2236 }
2237
2238 static const struct hw_perf_counter_ops perf_ops_generic = {
2239         .enable         = perf_swcounter_enable,
2240         .disable        = perf_swcounter_disable,
2241         .read           = perf_swcounter_read,
2242 };
2243
2244 /*
2245  * Software counter: cpu wall time clock
2246  */
2247
2248 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2249 {
2250         int cpu = raw_smp_processor_id();
2251         s64 prev;
2252         u64 now;
2253
2254         now = cpu_clock(cpu);
2255         prev = atomic64_read(&counter->hw.prev_count);
2256         atomic64_set(&counter->hw.prev_count, now);
2257         atomic64_add(now - prev, &counter->count);
2258 }
2259
2260 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2261 {
2262         struct hw_perf_counter *hwc = &counter->hw;
2263         int cpu = raw_smp_processor_id();
2264
2265         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2266         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2267         hwc->hrtimer.function = perf_swcounter_hrtimer;
2268         if (hwc->irq_period) {
2269                 __hrtimer_start_range_ns(&hwc->hrtimer,
2270                                 ns_to_ktime(hwc->irq_period), 0,
2271                                 HRTIMER_MODE_REL, 0);
2272         }
2273
2274         return 0;
2275 }
2276
2277 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2278 {
2279         hrtimer_cancel(&counter->hw.hrtimer);
2280         cpu_clock_perf_counter_update(counter);
2281 }
2282
2283 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2284 {
2285         cpu_clock_perf_counter_update(counter);
2286 }
2287
2288 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2289         .enable         = cpu_clock_perf_counter_enable,
2290         .disable        = cpu_clock_perf_counter_disable,
2291         .read           = cpu_clock_perf_counter_read,
2292 };
2293
2294 /*
2295  * Software counter: task time clock
2296  */
2297
2298 /*
2299  * Called from within the scheduler:
2300  */
2301 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2302 {
2303         struct task_struct *curr = counter->task;
2304         u64 delta;
2305
2306         delta = __task_delta_exec(curr, update);
2307
2308         return curr->se.sum_exec_runtime + delta;
2309 }
2310
2311 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2312 {
2313         u64 prev;
2314         s64 delta;
2315
2316         prev = atomic64_read(&counter->hw.prev_count);
2317
2318         atomic64_set(&counter->hw.prev_count, now);
2319
2320         delta = now - prev;
2321
2322         atomic64_add(delta, &counter->count);
2323 }
2324
2325 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2326 {
2327         struct hw_perf_counter *hwc = &counter->hw;
2328
2329         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2330         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2331         hwc->hrtimer.function = perf_swcounter_hrtimer;
2332         if (hwc->irq_period) {
2333                 __hrtimer_start_range_ns(&hwc->hrtimer,
2334                                 ns_to_ktime(hwc->irq_period), 0,
2335                                 HRTIMER_MODE_REL, 0);
2336         }
2337
2338         return 0;
2339 }
2340
2341 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2342 {
2343         hrtimer_cancel(&counter->hw.hrtimer);
2344         task_clock_perf_counter_update(counter,
2345                         task_clock_perf_counter_val(counter, 0));
2346 }
2347
2348 static void task_clock_perf_counter_read(struct perf_counter *counter)
2349 {
2350         task_clock_perf_counter_update(counter,
2351                         task_clock_perf_counter_val(counter, 1));
2352 }
2353
2354 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2355         .enable         = task_clock_perf_counter_enable,
2356         .disable        = task_clock_perf_counter_disable,
2357         .read           = task_clock_perf_counter_read,
2358 };
2359
2360 /*
2361  * Software counter: cpu migrations
2362  */
2363
2364 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2365 {
2366         struct task_struct *curr = counter->ctx->task;
2367
2368         if (curr)
2369                 return curr->se.nr_migrations;
2370         return cpu_nr_migrations(smp_processor_id());
2371 }
2372
2373 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2374 {
2375         u64 prev, now;
2376         s64 delta;
2377
2378         prev = atomic64_read(&counter->hw.prev_count);
2379         now = get_cpu_migrations(counter);
2380
2381         atomic64_set(&counter->hw.prev_count, now);
2382
2383         delta = now - prev;
2384
2385         atomic64_add(delta, &counter->count);
2386 }
2387
2388 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2389 {
2390         cpu_migrations_perf_counter_update(counter);
2391 }
2392
2393 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2394 {
2395         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2396                 atomic64_set(&counter->hw.prev_count,
2397                              get_cpu_migrations(counter));
2398         return 0;
2399 }
2400
2401 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2402 {
2403         cpu_migrations_perf_counter_update(counter);
2404 }
2405
2406 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2407         .enable         = cpu_migrations_perf_counter_enable,
2408         .disable        = cpu_migrations_perf_counter_disable,
2409         .read           = cpu_migrations_perf_counter_read,
2410 };
2411
2412 #ifdef CONFIG_EVENT_PROFILE
2413 void perf_tpcounter_event(int event_id)
2414 {
2415         struct pt_regs *regs = get_irq_regs();
2416
2417         if (!regs)
2418                 regs = task_pt_regs(current);
2419
2420         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2421 }
2422
2423 extern int ftrace_profile_enable(int);
2424 extern void ftrace_profile_disable(int);
2425
2426 static void tp_perf_counter_destroy(struct perf_counter *counter)
2427 {
2428         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2429 }
2430
2431 static const struct hw_perf_counter_ops *
2432 tp_perf_counter_init(struct perf_counter *counter)
2433 {
2434         int event_id = perf_event_id(&counter->hw_event);
2435         int ret;
2436
2437         ret = ftrace_profile_enable(event_id);
2438         if (ret)
2439                 return NULL;
2440
2441         counter->destroy = tp_perf_counter_destroy;
2442         counter->hw.irq_period = counter->hw_event.irq_period;
2443
2444         return &perf_ops_generic;
2445 }
2446 #else
2447 static const struct hw_perf_counter_ops *
2448 tp_perf_counter_init(struct perf_counter *counter)
2449 {
2450         return NULL;
2451 }
2452 #endif
2453
2454 static const struct hw_perf_counter_ops *
2455 sw_perf_counter_init(struct perf_counter *counter)
2456 {
2457         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2458         const struct hw_perf_counter_ops *hw_ops = NULL;
2459         struct hw_perf_counter *hwc = &counter->hw;
2460
2461         /*
2462          * Software counters (currently) can't in general distinguish
2463          * between user, kernel and hypervisor events.
2464          * However, context switches and cpu migrations are considered
2465          * to be kernel events, and page faults are never hypervisor
2466          * events.
2467          */
2468         switch (perf_event_id(&counter->hw_event)) {
2469         case PERF_COUNT_CPU_CLOCK:
2470                 hw_ops = &perf_ops_cpu_clock;
2471
2472                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2473                         hw_event->irq_period = 10000;
2474                 break;
2475         case PERF_COUNT_TASK_CLOCK:
2476                 /*
2477                  * If the user instantiates this as a per-cpu counter,
2478                  * use the cpu_clock counter instead.
2479                  */
2480                 if (counter->ctx->task)
2481                         hw_ops = &perf_ops_task_clock;
2482                 else
2483                         hw_ops = &perf_ops_cpu_clock;
2484
2485                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2486                         hw_event->irq_period = 10000;
2487                 break;
2488         case PERF_COUNT_PAGE_FAULTS:
2489         case PERF_COUNT_PAGE_FAULTS_MIN:
2490         case PERF_COUNT_PAGE_FAULTS_MAJ:
2491         case PERF_COUNT_CONTEXT_SWITCHES:
2492                 hw_ops = &perf_ops_generic;
2493                 break;
2494         case PERF_COUNT_CPU_MIGRATIONS:
2495                 if (!counter->hw_event.exclude_kernel)
2496                         hw_ops = &perf_ops_cpu_migrations;
2497                 break;
2498         }
2499
2500         if (hw_ops)
2501                 hwc->irq_period = hw_event->irq_period;
2502
2503         return hw_ops;
2504 }
2505
2506 /*
2507  * Allocate and initialize a counter structure
2508  */
2509 static struct perf_counter *
2510 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2511                    int cpu,
2512                    struct perf_counter_context *ctx,
2513                    struct perf_counter *group_leader,
2514                    gfp_t gfpflags)
2515 {
2516         const struct hw_perf_counter_ops *hw_ops;
2517         struct perf_counter *counter;
2518         long err;
2519
2520         counter = kzalloc(sizeof(*counter), gfpflags);
2521         if (!counter)
2522                 return ERR_PTR(-ENOMEM);
2523
2524         /*
2525          * Single counters are their own group leaders, with an
2526          * empty sibling list:
2527          */
2528         if (!group_leader)
2529                 group_leader = counter;
2530
2531         mutex_init(&counter->mutex);
2532         INIT_LIST_HEAD(&counter->list_entry);
2533         INIT_LIST_HEAD(&counter->event_entry);
2534         INIT_LIST_HEAD(&counter->sibling_list);
2535         init_waitqueue_head(&counter->waitq);
2536
2537         mutex_init(&counter->mmap_mutex);
2538
2539         INIT_LIST_HEAD(&counter->child_list);
2540
2541         counter->cpu                    = cpu;
2542         counter->hw_event               = *hw_event;
2543         counter->group_leader           = group_leader;
2544         counter->hw_ops                 = NULL;
2545         counter->ctx                    = ctx;
2546
2547         counter->state = PERF_COUNTER_STATE_INACTIVE;
2548         if (hw_event->disabled)
2549                 counter->state = PERF_COUNTER_STATE_OFF;
2550
2551         hw_ops = NULL;
2552
2553         if (perf_event_raw(hw_event)) {
2554                 hw_ops = hw_perf_counter_init(counter);
2555                 goto done;
2556         }
2557
2558         switch (perf_event_type(hw_event)) {
2559         case PERF_TYPE_HARDWARE:
2560                 hw_ops = hw_perf_counter_init(counter);
2561                 break;
2562
2563         case PERF_TYPE_SOFTWARE:
2564                 hw_ops = sw_perf_counter_init(counter);
2565                 break;
2566
2567         case PERF_TYPE_TRACEPOINT:
2568                 hw_ops = tp_perf_counter_init(counter);
2569                 break;
2570         }
2571 done:
2572         err = 0;
2573         if (!hw_ops)
2574                 err = -EINVAL;
2575         else if (IS_ERR(hw_ops))
2576                 err = PTR_ERR(hw_ops);
2577
2578         if (err) {
2579                 kfree(counter);
2580                 return ERR_PTR(err);
2581         }
2582
2583         counter->hw_ops = hw_ops;
2584
2585         return counter;
2586 }
2587
2588 /**
2589  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2590  *
2591  * @hw_event_uptr:      event type attributes for monitoring/sampling
2592  * @pid:                target pid
2593  * @cpu:                target cpu
2594  * @group_fd:           group leader counter fd
2595  */
2596 SYSCALL_DEFINE5(perf_counter_open,
2597                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2598                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2599 {
2600         struct perf_counter *counter, *group_leader;
2601         struct perf_counter_hw_event hw_event;
2602         struct perf_counter_context *ctx;
2603         struct file *counter_file = NULL;
2604         struct file *group_file = NULL;
2605         int fput_needed = 0;
2606         int fput_needed2 = 0;
2607         int ret;
2608
2609         /* for future expandability... */
2610         if (flags)
2611                 return -EINVAL;
2612
2613         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2614                 return -EFAULT;
2615
2616         /*
2617          * Get the target context (task or percpu):
2618          */
2619         ctx = find_get_context(pid, cpu);
2620         if (IS_ERR(ctx))
2621                 return PTR_ERR(ctx);
2622
2623         /*
2624          * Look up the group leader (we will attach this counter to it):
2625          */
2626         group_leader = NULL;
2627         if (group_fd != -1) {
2628                 ret = -EINVAL;
2629                 group_file = fget_light(group_fd, &fput_needed);
2630                 if (!group_file)
2631                         goto err_put_context;
2632                 if (group_file->f_op != &perf_fops)
2633                         goto err_put_context;
2634
2635                 group_leader = group_file->private_data;
2636                 /*
2637                  * Do not allow a recursive hierarchy (this new sibling
2638                  * becoming part of another group-sibling):
2639                  */
2640                 if (group_leader->group_leader != group_leader)
2641                         goto err_put_context;
2642                 /*
2643                  * Do not allow to attach to a group in a different
2644                  * task or CPU context:
2645                  */
2646                 if (group_leader->ctx != ctx)
2647                         goto err_put_context;
2648                 /*
2649                  * Only a group leader can be exclusive or pinned
2650                  */
2651                 if (hw_event.exclusive || hw_event.pinned)
2652                         goto err_put_context;
2653         }
2654
2655         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2656                                      GFP_KERNEL);
2657         ret = PTR_ERR(counter);
2658         if (IS_ERR(counter))
2659                 goto err_put_context;
2660
2661         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2662         if (ret < 0)
2663                 goto err_free_put_context;
2664
2665         counter_file = fget_light(ret, &fput_needed2);
2666         if (!counter_file)
2667                 goto err_free_put_context;
2668
2669         counter->filp = counter_file;
2670         mutex_lock(&ctx->mutex);
2671         perf_install_in_context(ctx, counter, cpu);
2672         mutex_unlock(&ctx->mutex);
2673
2674         fput_light(counter_file, fput_needed2);
2675
2676 out_fput:
2677         fput_light(group_file, fput_needed);
2678
2679         return ret;
2680
2681 err_free_put_context:
2682         kfree(counter);
2683
2684 err_put_context:
2685         put_context(ctx);
2686
2687         goto out_fput;
2688 }
2689
2690 /*
2691  * Initialize the perf_counter context in a task_struct:
2692  */
2693 static void
2694 __perf_counter_init_context(struct perf_counter_context *ctx,
2695                             struct task_struct *task)
2696 {
2697         memset(ctx, 0, sizeof(*ctx));
2698         spin_lock_init(&ctx->lock);
2699         mutex_init(&ctx->mutex);
2700         INIT_LIST_HEAD(&ctx->counter_list);
2701         INIT_LIST_HEAD(&ctx->event_list);
2702         ctx->task = task;
2703 }
2704
2705 /*
2706  * inherit a counter from parent task to child task:
2707  */
2708 static struct perf_counter *
2709 inherit_counter(struct perf_counter *parent_counter,
2710               struct task_struct *parent,
2711               struct perf_counter_context *parent_ctx,
2712               struct task_struct *child,
2713               struct perf_counter *group_leader,
2714               struct perf_counter_context *child_ctx)
2715 {
2716         struct perf_counter *child_counter;
2717
2718         /*
2719          * Instead of creating recursive hierarchies of counters,
2720          * we link inherited counters back to the original parent,
2721          * which has a filp for sure, which we use as the reference
2722          * count:
2723          */
2724         if (parent_counter->parent)
2725                 parent_counter = parent_counter->parent;
2726
2727         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2728                                            parent_counter->cpu, child_ctx,
2729                                            group_leader, GFP_KERNEL);
2730         if (IS_ERR(child_counter))
2731                 return child_counter;
2732
2733         /*
2734          * Link it up in the child's context:
2735          */
2736         child_counter->task = child;
2737         add_counter_to_ctx(child_counter, child_ctx);
2738
2739         child_counter->parent = parent_counter;
2740         /*
2741          * inherit into child's child as well:
2742          */
2743         child_counter->hw_event.inherit = 1;
2744
2745         /*
2746          * Get a reference to the parent filp - we will fput it
2747          * when the child counter exits. This is safe to do because
2748          * we are in the parent and we know that the filp still
2749          * exists and has a nonzero count:
2750          */
2751         atomic_long_inc(&parent_counter->filp->f_count);
2752
2753         /*
2754          * Link this into the parent counter's child list
2755          */
2756         mutex_lock(&parent_counter->mutex);
2757         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2758
2759         /*
2760          * Make the child state follow the state of the parent counter,
2761          * not its hw_event.disabled bit.  We hold the parent's mutex,
2762          * so we won't race with perf_counter_{en,dis}able_family.
2763          */
2764         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2765                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2766         else
2767                 child_counter->state = PERF_COUNTER_STATE_OFF;
2768
2769         mutex_unlock(&parent_counter->mutex);
2770
2771         return child_counter;
2772 }
2773
2774 static int inherit_group(struct perf_counter *parent_counter,
2775               struct task_struct *parent,
2776               struct perf_counter_context *parent_ctx,
2777               struct task_struct *child,
2778               struct perf_counter_context *child_ctx)
2779 {
2780         struct perf_counter *leader;
2781         struct perf_counter *sub;
2782         struct perf_counter *child_ctr;
2783
2784         leader = inherit_counter(parent_counter, parent, parent_ctx,
2785                                  child, NULL, child_ctx);
2786         if (IS_ERR(leader))
2787                 return PTR_ERR(leader);
2788         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2789                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2790                                             child, leader, child_ctx);
2791                 if (IS_ERR(child_ctr))
2792                         return PTR_ERR(child_ctr);
2793         }
2794         return 0;
2795 }
2796
2797 static void sync_child_counter(struct perf_counter *child_counter,
2798                                struct perf_counter *parent_counter)
2799 {
2800         u64 parent_val, child_val;
2801
2802         parent_val = atomic64_read(&parent_counter->count);
2803         child_val = atomic64_read(&child_counter->count);
2804
2805         /*
2806          * Add back the child's count to the parent's count:
2807          */
2808         atomic64_add(child_val, &parent_counter->count);
2809         atomic64_add(child_counter->total_time_enabled,
2810                      &parent_counter->child_total_time_enabled);
2811         atomic64_add(child_counter->total_time_running,
2812                      &parent_counter->child_total_time_running);
2813
2814         /*
2815          * Remove this counter from the parent's list
2816          */
2817         mutex_lock(&parent_counter->mutex);
2818         list_del_init(&child_counter->child_list);
2819         mutex_unlock(&parent_counter->mutex);
2820
2821         /*
2822          * Release the parent counter, if this was the last
2823          * reference to it.
2824          */
2825         fput(parent_counter->filp);
2826 }
2827
2828 static void
2829 __perf_counter_exit_task(struct task_struct *child,
2830                          struct perf_counter *child_counter,
2831                          struct perf_counter_context *child_ctx)
2832 {
2833         struct perf_counter *parent_counter;
2834         struct perf_counter *sub, *tmp;
2835
2836         /*
2837          * If we do not self-reap then we have to wait for the
2838          * child task to unschedule (it will happen for sure),
2839          * so that its counter is at its final count. (This
2840          * condition triggers rarely - child tasks usually get
2841          * off their CPU before the parent has a chance to
2842          * get this far into the reaping action)
2843          */
2844         if (child != current) {
2845                 wait_task_inactive(child, 0);
2846                 list_del_init(&child_counter->list_entry);
2847                 update_counter_times(child_counter);
2848         } else {
2849                 struct perf_cpu_context *cpuctx;
2850                 unsigned long flags;
2851                 u64 perf_flags;
2852
2853                 /*
2854                  * Disable and unlink this counter.
2855                  *
2856                  * Be careful about zapping the list - IRQ/NMI context
2857                  * could still be processing it:
2858                  */
2859                 curr_rq_lock_irq_save(&flags);
2860                 perf_flags = hw_perf_save_disable();
2861
2862                 cpuctx = &__get_cpu_var(perf_cpu_context);
2863
2864                 group_sched_out(child_counter, cpuctx, child_ctx);
2865                 update_counter_times(child_counter);
2866
2867                 list_del_init(&child_counter->list_entry);
2868
2869                 child_ctx->nr_counters--;
2870
2871                 hw_perf_restore(perf_flags);
2872                 curr_rq_unlock_irq_restore(&flags);
2873         }
2874
2875         parent_counter = child_counter->parent;
2876         /*
2877          * It can happen that parent exits first, and has counters
2878          * that are still around due to the child reference. These
2879          * counters need to be zapped - but otherwise linger.
2880          */
2881         if (parent_counter) {
2882                 sync_child_counter(child_counter, parent_counter);
2883                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2884                                          list_entry) {
2885                         if (sub->parent) {
2886                                 sync_child_counter(sub, sub->parent);
2887                                 free_counter(sub);
2888                         }
2889                 }
2890                 free_counter(child_counter);
2891         }
2892 }
2893
2894 /*
2895  * When a child task exits, feed back counter values to parent counters.
2896  *
2897  * Note: we may be running in child context, but the PID is not hashed
2898  * anymore so new counters will not be added.
2899  */
2900 void perf_counter_exit_task(struct task_struct *child)
2901 {
2902         struct perf_counter *child_counter, *tmp;
2903         struct perf_counter_context *child_ctx;
2904
2905         child_ctx = &child->perf_counter_ctx;
2906
2907         if (likely(!child_ctx->nr_counters))
2908                 return;
2909
2910         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2911                                  list_entry)
2912                 __perf_counter_exit_task(child, child_counter, child_ctx);
2913 }
2914
2915 /*
2916  * Initialize the perf_counter context in task_struct
2917  */
2918 void perf_counter_init_task(struct task_struct *child)
2919 {
2920         struct perf_counter_context *child_ctx, *parent_ctx;
2921         struct perf_counter *counter;
2922         struct task_struct *parent = current;
2923
2924         child_ctx  =  &child->perf_counter_ctx;
2925         parent_ctx = &parent->perf_counter_ctx;
2926
2927         __perf_counter_init_context(child_ctx, child);
2928
2929         /*
2930          * This is executed from the parent task context, so inherit
2931          * counters that have been marked for cloning:
2932          */
2933
2934         if (likely(!parent_ctx->nr_counters))
2935                 return;
2936
2937         /*
2938          * Lock the parent list. No need to lock the child - not PID
2939          * hashed yet and not running, so nobody can access it.
2940          */
2941         mutex_lock(&parent_ctx->mutex);
2942
2943         /*
2944          * We dont have to disable NMIs - we are only looking at
2945          * the list, not manipulating it:
2946          */
2947         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2948                 if (!counter->hw_event.inherit)
2949                         continue;
2950
2951                 if (inherit_group(counter, parent,
2952                                   parent_ctx, child, child_ctx))
2953                         break;
2954         }
2955
2956         mutex_unlock(&parent_ctx->mutex);
2957 }
2958
2959 static void __cpuinit perf_counter_init_cpu(int cpu)
2960 {
2961         struct perf_cpu_context *cpuctx;
2962
2963         cpuctx = &per_cpu(perf_cpu_context, cpu);
2964         __perf_counter_init_context(&cpuctx->ctx, NULL);
2965
2966         mutex_lock(&perf_resource_mutex);
2967         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2968         mutex_unlock(&perf_resource_mutex);
2969
2970         hw_perf_counter_setup(cpu);
2971 }
2972
2973 #ifdef CONFIG_HOTPLUG_CPU
2974 static void __perf_counter_exit_cpu(void *info)
2975 {
2976         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2977         struct perf_counter_context *ctx = &cpuctx->ctx;
2978         struct perf_counter *counter, *tmp;
2979
2980         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2981                 __perf_counter_remove_from_context(counter);
2982 }
2983 static void perf_counter_exit_cpu(int cpu)
2984 {
2985         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2986         struct perf_counter_context *ctx = &cpuctx->ctx;
2987
2988         mutex_lock(&ctx->mutex);
2989         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2990         mutex_unlock(&ctx->mutex);
2991 }
2992 #else
2993 static inline void perf_counter_exit_cpu(int cpu) { }
2994 #endif
2995
2996 static int __cpuinit
2997 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2998 {
2999         unsigned int cpu = (long)hcpu;
3000
3001         switch (action) {
3002
3003         case CPU_UP_PREPARE:
3004         case CPU_UP_PREPARE_FROZEN:
3005                 perf_counter_init_cpu(cpu);
3006                 break;
3007
3008         case CPU_DOWN_PREPARE:
3009         case CPU_DOWN_PREPARE_FROZEN:
3010                 perf_counter_exit_cpu(cpu);
3011                 break;
3012
3013         default:
3014                 break;
3015         }
3016
3017         return NOTIFY_OK;
3018 }
3019
3020 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3021         .notifier_call          = perf_cpu_notify,
3022 };
3023
3024 static int __init perf_counter_init(void)
3025 {
3026         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3027                         (void *)(long)smp_processor_id());
3028         register_cpu_notifier(&perf_cpu_nb);
3029
3030         return 0;
3031 }
3032 early_initcall(perf_counter_init);
3033
3034 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3035 {
3036         return sprintf(buf, "%d\n", perf_reserved_percpu);
3037 }
3038
3039 static ssize_t
3040 perf_set_reserve_percpu(struct sysdev_class *class,
3041                         const char *buf,
3042                         size_t count)
3043 {
3044         struct perf_cpu_context *cpuctx;
3045         unsigned long val;
3046         int err, cpu, mpt;
3047
3048         err = strict_strtoul(buf, 10, &val);
3049         if (err)
3050                 return err;
3051         if (val > perf_max_counters)
3052                 return -EINVAL;
3053
3054         mutex_lock(&perf_resource_mutex);
3055         perf_reserved_percpu = val;
3056         for_each_online_cpu(cpu) {
3057                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3058                 spin_lock_irq(&cpuctx->ctx.lock);
3059                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3060                           perf_max_counters - perf_reserved_percpu);
3061                 cpuctx->max_pertask = mpt;
3062                 spin_unlock_irq(&cpuctx->ctx.lock);
3063         }
3064         mutex_unlock(&perf_resource_mutex);
3065
3066         return count;
3067 }
3068
3069 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3070 {
3071         return sprintf(buf, "%d\n", perf_overcommit);
3072 }
3073
3074 static ssize_t
3075 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3076 {
3077         unsigned long val;
3078         int err;
3079
3080         err = strict_strtoul(buf, 10, &val);
3081         if (err)
3082                 return err;
3083         if (val > 1)
3084                 return -EINVAL;
3085
3086         mutex_lock(&perf_resource_mutex);
3087         perf_overcommit = val;
3088         mutex_unlock(&perf_resource_mutex);
3089
3090         return count;
3091 }
3092
3093 static SYSDEV_CLASS_ATTR(
3094                                 reserve_percpu,
3095                                 0644,
3096                                 perf_show_reserve_percpu,
3097                                 perf_set_reserve_percpu
3098                         );
3099
3100 static SYSDEV_CLASS_ATTR(
3101                                 overcommit,
3102                                 0644,
3103                                 perf_show_overcommit,
3104                                 perf_set_overcommit
3105                         );
3106
3107 static struct attribute *perfclass_attrs[] = {
3108         &attr_reserve_percpu.attr,
3109         &attr_overcommit.attr,
3110         NULL
3111 };
3112
3113 static struct attribute_group perfclass_attr_group = {
3114         .attrs                  = perfclass_attrs,
3115         .name                   = "perf_counters",
3116 };
3117
3118 static int __init perf_counter_sysfs_init(void)
3119 {
3120         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3121                                   &perfclass_attr_group);
3122 }
3123 device_initcall(perf_counter_sysfs_init);