]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/perf_event.c
iwl3945: disable power save
[karo-tx-linux.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/irq_regs.h>
33
34 /*
35  * Each CPU has a list of per CPU events:
36  */
37 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38
39 int perf_max_events __read_mostly = 1;
40 static int perf_reserved_percpu __read_mostly;
41 static int perf_overcommit __read_mostly = 1;
42
43 static atomic_t nr_events __read_mostly;
44 static atomic_t nr_mmap_events __read_mostly;
45 static atomic_t nr_comm_events __read_mostly;
46 static atomic_t nr_task_events __read_mostly;
47
48 /*
49  * perf event paranoia level:
50  *  -1 - not paranoid at all
51  *   0 - disallow raw tracepoint access for unpriv
52  *   1 - disallow cpu events for unpriv
53  *   2 - disallow kernel profiling for unpriv
54  */
55 int sysctl_perf_event_paranoid __read_mostly = 1;
56
57 static inline bool perf_paranoid_tracepoint_raw(void)
58 {
59         return sysctl_perf_event_paranoid > -1;
60 }
61
62 static inline bool perf_paranoid_cpu(void)
63 {
64         return sysctl_perf_event_paranoid > 0;
65 }
66
67 static inline bool perf_paranoid_kernel(void)
68 {
69         return sysctl_perf_event_paranoid > 1;
70 }
71
72 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
73
74 /*
75  * max perf event sample rate
76  */
77 int sysctl_perf_event_sample_rate __read_mostly = 100000;
78
79 static atomic64_t perf_event_id;
80
81 /*
82  * Lock for (sysadmin-configurable) event reservations:
83  */
84 static DEFINE_SPINLOCK(perf_resource_lock);
85
86 /*
87  * Architecture provided APIs - weak aliases:
88  */
89 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
90 {
91         return NULL;
92 }
93
94 void __weak hw_perf_disable(void)               { barrier(); }
95 void __weak hw_perf_enable(void)                { barrier(); }
96
97 void __weak hw_perf_event_setup(int cpu)        { barrier(); }
98 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
99
100 int __weak
101 hw_perf_group_sched_in(struct perf_event *group_leader,
102                struct perf_cpu_context *cpuctx,
103                struct perf_event_context *ctx, int cpu)
104 {
105         return 0;
106 }
107
108 void __weak perf_event_print_debug(void)        { }
109
110 static DEFINE_PER_CPU(int, perf_disable_count);
111
112 void __perf_disable(void)
113 {
114         __get_cpu_var(perf_disable_count)++;
115 }
116
117 bool __perf_enable(void)
118 {
119         return !--__get_cpu_var(perf_disable_count);
120 }
121
122 void perf_disable(void)
123 {
124         __perf_disable();
125         hw_perf_disable();
126 }
127
128 void perf_enable(void)
129 {
130         if (__perf_enable())
131                 hw_perf_enable();
132 }
133
134 static void get_ctx(struct perf_event_context *ctx)
135 {
136         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
137 }
138
139 static void free_ctx(struct rcu_head *head)
140 {
141         struct perf_event_context *ctx;
142
143         ctx = container_of(head, struct perf_event_context, rcu_head);
144         kfree(ctx);
145 }
146
147 static void put_ctx(struct perf_event_context *ctx)
148 {
149         if (atomic_dec_and_test(&ctx->refcount)) {
150                 if (ctx->parent_ctx)
151                         put_ctx(ctx->parent_ctx);
152                 if (ctx->task)
153                         put_task_struct(ctx->task);
154                 call_rcu(&ctx->rcu_head, free_ctx);
155         }
156 }
157
158 static void unclone_ctx(struct perf_event_context *ctx)
159 {
160         if (ctx->parent_ctx) {
161                 put_ctx(ctx->parent_ctx);
162                 ctx->parent_ctx = NULL;
163         }
164 }
165
166 /*
167  * If we inherit events we want to return the parent event id
168  * to userspace.
169  */
170 static u64 primary_event_id(struct perf_event *event)
171 {
172         u64 id = event->id;
173
174         if (event->parent)
175                 id = event->parent->id;
176
177         return id;
178 }
179
180 /*
181  * Get the perf_event_context for a task and lock it.
182  * This has to cope with with the fact that until it is locked,
183  * the context could get moved to another task.
184  */
185 static struct perf_event_context *
186 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187 {
188         struct perf_event_context *ctx;
189
190         rcu_read_lock();
191  retry:
192         ctx = rcu_dereference(task->perf_event_ctxp);
193         if (ctx) {
194                 /*
195                  * If this context is a clone of another, it might
196                  * get swapped for another underneath us by
197                  * perf_event_task_sched_out, though the
198                  * rcu_read_lock() protects us from any context
199                  * getting freed.  Lock the context and check if it
200                  * got swapped before we could get the lock, and retry
201                  * if so.  If we locked the right context, then it
202                  * can't get swapped on us any more.
203                  */
204                 spin_lock_irqsave(&ctx->lock, *flags);
205                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206                         spin_unlock_irqrestore(&ctx->lock, *flags);
207                         goto retry;
208                 }
209
210                 if (!atomic_inc_not_zero(&ctx->refcount)) {
211                         spin_unlock_irqrestore(&ctx->lock, *flags);
212                         ctx = NULL;
213                 }
214         }
215         rcu_read_unlock();
216         return ctx;
217 }
218
219 /*
220  * Get the context for a task and increment its pin_count so it
221  * can't get swapped to another task.  This also increments its
222  * reference count so that the context can't get freed.
223  */
224 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225 {
226         struct perf_event_context *ctx;
227         unsigned long flags;
228
229         ctx = perf_lock_task_context(task, &flags);
230         if (ctx) {
231                 ++ctx->pin_count;
232                 spin_unlock_irqrestore(&ctx->lock, flags);
233         }
234         return ctx;
235 }
236
237 static void perf_unpin_context(struct perf_event_context *ctx)
238 {
239         unsigned long flags;
240
241         spin_lock_irqsave(&ctx->lock, flags);
242         --ctx->pin_count;
243         spin_unlock_irqrestore(&ctx->lock, flags);
244         put_ctx(ctx);
245 }
246
247 /*
248  * Add a event from the lists for its context.
249  * Must be called with ctx->mutex and ctx->lock held.
250  */
251 static void
252 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253 {
254         struct perf_event *group_leader = event->group_leader;
255
256         /*
257          * Depending on whether it is a standalone or sibling event,
258          * add it straight to the context's event list, or to the group
259          * leader's sibling list:
260          */
261         if (group_leader == event)
262                 list_add_tail(&event->group_entry, &ctx->group_list);
263         else {
264                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
265                 group_leader->nr_siblings++;
266         }
267
268         list_add_rcu(&event->event_entry, &ctx->event_list);
269         ctx->nr_events++;
270         if (event->attr.inherit_stat)
271                 ctx->nr_stat++;
272 }
273
274 /*
275  * Remove a event from the lists for its context.
276  * Must be called with ctx->mutex and ctx->lock held.
277  */
278 static void
279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281         struct perf_event *sibling, *tmp;
282
283         if (list_empty(&event->group_entry))
284                 return;
285         ctx->nr_events--;
286         if (event->attr.inherit_stat)
287                 ctx->nr_stat--;
288
289         list_del_init(&event->group_entry);
290         list_del_rcu(&event->event_entry);
291
292         if (event->group_leader != event)
293                 event->group_leader->nr_siblings--;
294
295         /*
296          * If this was a group event with sibling events then
297          * upgrade the siblings to singleton events by adding them
298          * to the context list directly:
299          */
300         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301
302                 list_move_tail(&sibling->group_entry, &ctx->group_list);
303                 sibling->group_leader = sibling;
304         }
305 }
306
307 static void
308 event_sched_out(struct perf_event *event,
309                   struct perf_cpu_context *cpuctx,
310                   struct perf_event_context *ctx)
311 {
312         if (event->state != PERF_EVENT_STATE_ACTIVE)
313                 return;
314
315         event->state = PERF_EVENT_STATE_INACTIVE;
316         if (event->pending_disable) {
317                 event->pending_disable = 0;
318                 event->state = PERF_EVENT_STATE_OFF;
319         }
320         event->tstamp_stopped = ctx->time;
321         event->pmu->disable(event);
322         event->oncpu = -1;
323
324         if (!is_software_event(event))
325                 cpuctx->active_oncpu--;
326         ctx->nr_active--;
327         if (event->attr.exclusive || !cpuctx->active_oncpu)
328                 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_event *group_event,
333                 struct perf_cpu_context *cpuctx,
334                 struct perf_event_context *ctx)
335 {
336         struct perf_event *event;
337
338         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339                 return;
340
341         event_sched_out(group_event, cpuctx, ctx);
342
343         /*
344          * Schedule out siblings (if any):
345          */
346         list_for_each_entry(event, &group_event->sibling_list, group_entry)
347                 event_sched_out(event, cpuctx, ctx);
348
349         if (group_event->attr.exclusive)
350                 cpuctx->exclusive = 0;
351 }
352
353 /*
354  * Cross CPU call to remove a performance event
355  *
356  * We disable the event on the hardware level first. After that we
357  * remove it from the context list.
358  */
359 static void __perf_event_remove_from_context(void *info)
360 {
361         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362         struct perf_event *event = info;
363         struct perf_event_context *ctx = event->ctx;
364
365         /*
366          * If this is a task context, we need to check whether it is
367          * the current task context of this cpu. If not it has been
368          * scheduled out before the smp call arrived.
369          */
370         if (ctx->task && cpuctx->task_ctx != ctx)
371                 return;
372
373         spin_lock(&ctx->lock);
374         /*
375          * Protect the list operation against NMI by disabling the
376          * events on a global level.
377          */
378         perf_disable();
379
380         event_sched_out(event, cpuctx, ctx);
381
382         list_del_event(event, ctx);
383
384         if (!ctx->task) {
385                 /*
386                  * Allow more per task events with respect to the
387                  * reservation:
388                  */
389                 cpuctx->max_pertask =
390                         min(perf_max_events - ctx->nr_events,
391                             perf_max_events - perf_reserved_percpu);
392         }
393
394         perf_enable();
395         spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400  * Remove the event from a task's (or a CPU's) list of events.
401  *
402  * Must be called with ctx->mutex held.
403  *
404  * CPU events are removed with a smp call. For task events we only
405  * call when the task is on a CPU.
406  *
407  * If event->ctx is a cloned context, callers must make sure that
408  * every task struct that event->ctx->task could possibly point to
409  * remains valid.  This is OK when called from perf_release since
410  * that only calls us on the top-level context, which can't be a clone.
411  * When called from perf_event_exit_task, it's OK because the
412  * context has been detached from its task.
413  */
414 static void perf_event_remove_from_context(struct perf_event *event)
415 {
416         struct perf_event_context *ctx = event->ctx;
417         struct task_struct *task = ctx->task;
418
419         if (!task) {
420                 /*
421                  * Per cpu events are removed via an smp call and
422                  * the removal is always sucessful.
423                  */
424                 smp_call_function_single(event->cpu,
425                                          __perf_event_remove_from_context,
426                                          event, 1);
427                 return;
428         }
429
430 retry:
431         task_oncpu_function_call(task, __perf_event_remove_from_context,
432                                  event);
433
434         spin_lock_irq(&ctx->lock);
435         /*
436          * If the context is active we need to retry the smp call.
437          */
438         if (ctx->nr_active && !list_empty(&event->group_entry)) {
439                 spin_unlock_irq(&ctx->lock);
440                 goto retry;
441         }
442
443         /*
444          * The lock prevents that this context is scheduled in so we
445          * can remove the event safely, if the call above did not
446          * succeed.
447          */
448         if (!list_empty(&event->group_entry)) {
449                 list_del_event(event, ctx);
450         }
451         spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456         return cpu_clock(smp_processor_id());
457 }
458
459 /*
460  * Update the record of the current time in a context.
461  */
462 static void update_context_time(struct perf_event_context *ctx)
463 {
464         u64 now = perf_clock();
465
466         ctx->time += now - ctx->timestamp;
467         ctx->timestamp = now;
468 }
469
470 /*
471  * Update the total_time_enabled and total_time_running fields for a event.
472  */
473 static void update_event_times(struct perf_event *event)
474 {
475         struct perf_event_context *ctx = event->ctx;
476         u64 run_end;
477
478         if (event->state < PERF_EVENT_STATE_INACTIVE ||
479             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480                 return;
481
482         event->total_time_enabled = ctx->time - event->tstamp_enabled;
483
484         if (event->state == PERF_EVENT_STATE_INACTIVE)
485                 run_end = event->tstamp_stopped;
486         else
487                 run_end = ctx->time;
488
489         event->total_time_running = run_end - event->tstamp_running;
490 }
491
492 /*
493  * Update total_time_enabled and total_time_running for all events in a group.
494  */
495 static void update_group_times(struct perf_event *leader)
496 {
497         struct perf_event *event;
498
499         update_event_times(leader);
500         list_for_each_entry(event, &leader->sibling_list, group_entry)
501                 update_event_times(event);
502 }
503
504 /*
505  * Cross CPU call to disable a performance event
506  */
507 static void __perf_event_disable(void *info)
508 {
509         struct perf_event *event = info;
510         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511         struct perf_event_context *ctx = event->ctx;
512
513         /*
514          * If this is a per-task event, need to check whether this
515          * event's task is the current task on this cpu.
516          */
517         if (ctx->task && cpuctx->task_ctx != ctx)
518                 return;
519
520         spin_lock(&ctx->lock);
521
522         /*
523          * If the event is on, turn it off.
524          * If it is in error state, leave it in error state.
525          */
526         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527                 update_context_time(ctx);
528                 update_group_times(event);
529                 if (event == event->group_leader)
530                         group_sched_out(event, cpuctx, ctx);
531                 else
532                         event_sched_out(event, cpuctx, ctx);
533                 event->state = PERF_EVENT_STATE_OFF;
534         }
535
536         spin_unlock(&ctx->lock);
537 }
538
539 /*
540  * Disable a event.
541  *
542  * If event->ctx is a cloned context, callers must make sure that
543  * every task struct that event->ctx->task could possibly point to
544  * remains valid.  This condition is satisifed when called through
545  * perf_event_for_each_child or perf_event_for_each because they
546  * hold the top-level event's child_mutex, so any descendant that
547  * goes to exit will block in sync_child_event.
548  * When called from perf_pending_event it's OK because event->ctx
549  * is the current context on this CPU and preemption is disabled,
550  * hence we can't get into perf_event_task_sched_out for this context.
551  */
552 static void perf_event_disable(struct perf_event *event)
553 {
554         struct perf_event_context *ctx = event->ctx;
555         struct task_struct *task = ctx->task;
556
557         if (!task) {
558                 /*
559                  * Disable the event on the cpu that it's on
560                  */
561                 smp_call_function_single(event->cpu, __perf_event_disable,
562                                          event, 1);
563                 return;
564         }
565
566  retry:
567         task_oncpu_function_call(task, __perf_event_disable, event);
568
569         spin_lock_irq(&ctx->lock);
570         /*
571          * If the event is still active, we need to retry the cross-call.
572          */
573         if (event->state == PERF_EVENT_STATE_ACTIVE) {
574                 spin_unlock_irq(&ctx->lock);
575                 goto retry;
576         }
577
578         /*
579          * Since we have the lock this context can't be scheduled
580          * in, so we can change the state safely.
581          */
582         if (event->state == PERF_EVENT_STATE_INACTIVE) {
583                 update_group_times(event);
584                 event->state = PERF_EVENT_STATE_OFF;
585         }
586
587         spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 event_sched_in(struct perf_event *event,
592                  struct perf_cpu_context *cpuctx,
593                  struct perf_event_context *ctx,
594                  int cpu)
595 {
596         if (event->state <= PERF_EVENT_STATE_OFF)
597                 return 0;
598
599         event->state = PERF_EVENT_STATE_ACTIVE;
600         event->oncpu = cpu;     /* TODO: put 'cpu' into cpuctx->cpu */
601         /*
602          * The new state must be visible before we turn it on in the hardware:
603          */
604         smp_wmb();
605
606         if (event->pmu->enable(event)) {
607                 event->state = PERF_EVENT_STATE_INACTIVE;
608                 event->oncpu = -1;
609                 return -EAGAIN;
610         }
611
612         event->tstamp_running += ctx->time - event->tstamp_stopped;
613
614         if (!is_software_event(event))
615                 cpuctx->active_oncpu++;
616         ctx->nr_active++;
617
618         if (event->attr.exclusive)
619                 cpuctx->exclusive = 1;
620
621         return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_event *group_event,
626                struct perf_cpu_context *cpuctx,
627                struct perf_event_context *ctx,
628                int cpu)
629 {
630         struct perf_event *event, *partial_group;
631         int ret;
632
633         if (group_event->state == PERF_EVENT_STATE_OFF)
634                 return 0;
635
636         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637         if (ret)
638                 return ret < 0 ? ret : 0;
639
640         if (event_sched_in(group_event, cpuctx, ctx, cpu))
641                 return -EAGAIN;
642
643         /*
644          * Schedule in siblings as one group (if any):
645          */
646         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
647                 if (event_sched_in(event, cpuctx, ctx, cpu)) {
648                         partial_group = event;
649                         goto group_error;
650                 }
651         }
652
653         return 0;
654
655 group_error:
656         /*
657          * Groups can be scheduled in as one unit only, so undo any
658          * partial group before returning:
659          */
660         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661                 if (event == partial_group)
662                         break;
663                 event_sched_out(event, cpuctx, ctx);
664         }
665         event_sched_out(group_event, cpuctx, ctx);
666
667         return -EAGAIN;
668 }
669
670 /*
671  * Return 1 for a group consisting entirely of software events,
672  * 0 if the group contains any hardware events.
673  */
674 static int is_software_only_group(struct perf_event *leader)
675 {
676         struct perf_event *event;
677
678         if (!is_software_event(leader))
679                 return 0;
680
681         list_for_each_entry(event, &leader->sibling_list, group_entry)
682                 if (!is_software_event(event))
683                         return 0;
684
685         return 1;
686 }
687
688 /*
689  * Work out whether we can put this event group on the CPU now.
690  */
691 static int group_can_go_on(struct perf_event *event,
692                            struct perf_cpu_context *cpuctx,
693                            int can_add_hw)
694 {
695         /*
696          * Groups consisting entirely of software events can always go on.
697          */
698         if (is_software_only_group(event))
699                 return 1;
700         /*
701          * If an exclusive group is already on, no other hardware
702          * events can go on.
703          */
704         if (cpuctx->exclusive)
705                 return 0;
706         /*
707          * If this group is exclusive and there are already
708          * events on the CPU, it can't go on.
709          */
710         if (event->attr.exclusive && cpuctx->active_oncpu)
711                 return 0;
712         /*
713          * Otherwise, try to add it if all previous groups were able
714          * to go on.
715          */
716         return can_add_hw;
717 }
718
719 static void add_event_to_ctx(struct perf_event *event,
720                                struct perf_event_context *ctx)
721 {
722         list_add_event(event, ctx);
723         event->tstamp_enabled = ctx->time;
724         event->tstamp_running = ctx->time;
725         event->tstamp_stopped = ctx->time;
726 }
727
728 /*
729  * Cross CPU call to install and enable a performance event
730  *
731  * Must be called with ctx->mutex held
732  */
733 static void __perf_install_in_context(void *info)
734 {
735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736         struct perf_event *event = info;
737         struct perf_event_context *ctx = event->ctx;
738         struct perf_event *leader = event->group_leader;
739         int cpu = smp_processor_id();
740         int err;
741
742         /*
743          * If this is a task context, we need to check whether it is
744          * the current task context of this cpu. If not it has been
745          * scheduled out before the smp call arrived.
746          * Or possibly this is the right context but it isn't
747          * on this cpu because it had no events.
748          */
749         if (ctx->task && cpuctx->task_ctx != ctx) {
750                 if (cpuctx->task_ctx || ctx->task != current)
751                         return;
752                 cpuctx->task_ctx = ctx;
753         }
754
755         spin_lock(&ctx->lock);
756         ctx->is_active = 1;
757         update_context_time(ctx);
758
759         /*
760          * Protect the list operation against NMI by disabling the
761          * events on a global level. NOP for non NMI based events.
762          */
763         perf_disable();
764
765         add_event_to_ctx(event, ctx);
766
767         /*
768          * Don't put the event on if it is disabled or if
769          * it is in a group and the group isn't on.
770          */
771         if (event->state != PERF_EVENT_STATE_INACTIVE ||
772             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773                 goto unlock;
774
775         /*
776          * An exclusive event can't go on if there are already active
777          * hardware events, and no hardware event can go on if there
778          * is already an exclusive event on.
779          */
780         if (!group_can_go_on(event, cpuctx, 1))
781                 err = -EEXIST;
782         else
783                 err = event_sched_in(event, cpuctx, ctx, cpu);
784
785         if (err) {
786                 /*
787                  * This event couldn't go on.  If it is in a group
788                  * then we have to pull the whole group off.
789                  * If the event group is pinned then put it in error state.
790                  */
791                 if (leader != event)
792                         group_sched_out(leader, cpuctx, ctx);
793                 if (leader->attr.pinned) {
794                         update_group_times(leader);
795                         leader->state = PERF_EVENT_STATE_ERROR;
796                 }
797         }
798
799         if (!err && !ctx->task && cpuctx->max_pertask)
800                 cpuctx->max_pertask--;
801
802  unlock:
803         perf_enable();
804
805         spin_unlock(&ctx->lock);
806 }
807
808 /*
809  * Attach a performance event to a context
810  *
811  * First we add the event to the list with the hardware enable bit
812  * in event->hw_config cleared.
813  *
814  * If the event is attached to a task which is on a CPU we use a smp
815  * call to enable it in the task context. The task might have been
816  * scheduled away, but we check this in the smp call again.
817  *
818  * Must be called with ctx->mutex held.
819  */
820 static void
821 perf_install_in_context(struct perf_event_context *ctx,
822                         struct perf_event *event,
823                         int cpu)
824 {
825         struct task_struct *task = ctx->task;
826
827         if (!task) {
828                 /*
829                  * Per cpu events are installed via an smp call and
830                  * the install is always sucessful.
831                  */
832                 smp_call_function_single(cpu, __perf_install_in_context,
833                                          event, 1);
834                 return;
835         }
836
837 retry:
838         task_oncpu_function_call(task, __perf_install_in_context,
839                                  event);
840
841         spin_lock_irq(&ctx->lock);
842         /*
843          * we need to retry the smp call.
844          */
845         if (ctx->is_active && list_empty(&event->group_entry)) {
846                 spin_unlock_irq(&ctx->lock);
847                 goto retry;
848         }
849
850         /*
851          * The lock prevents that this context is scheduled in so we
852          * can add the event safely, if it the call above did not
853          * succeed.
854          */
855         if (list_empty(&event->group_entry))
856                 add_event_to_ctx(event, ctx);
857         spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861  * Put a event into inactive state and update time fields.
862  * Enabling the leader of a group effectively enables all
863  * the group members that aren't explicitly disabled, so we
864  * have to update their ->tstamp_enabled also.
865  * Note: this works for group members as well as group leaders
866  * since the non-leader members' sibling_lists will be empty.
867  */
868 static void __perf_event_mark_enabled(struct perf_event *event,
869                                         struct perf_event_context *ctx)
870 {
871         struct perf_event *sub;
872
873         event->state = PERF_EVENT_STATE_INACTIVE;
874         event->tstamp_enabled = ctx->time - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry)
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877                         sub->tstamp_enabled =
878                                 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882  * Cross CPU call to enable a performance event
883  */
884 static void __perf_event_enable(void *info)
885 {
886         struct perf_event *event = info;
887         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888         struct perf_event_context *ctx = event->ctx;
889         struct perf_event *leader = event->group_leader;
890         int err;
891
892         /*
893          * If this is a per-task event, need to check whether this
894          * event's task is the current task on this cpu.
895          */
896         if (ctx->task && cpuctx->task_ctx != ctx) {
897                 if (cpuctx->task_ctx || ctx->task != current)
898                         return;
899                 cpuctx->task_ctx = ctx;
900         }
901
902         spin_lock(&ctx->lock);
903         ctx->is_active = 1;
904         update_context_time(ctx);
905
906         if (event->state >= PERF_EVENT_STATE_INACTIVE)
907                 goto unlock;
908         __perf_event_mark_enabled(event, ctx);
909
910         /*
911          * If the event is in a group and isn't the group leader,
912          * then don't put it on unless the group is on.
913          */
914         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915                 goto unlock;
916
917         if (!group_can_go_on(event, cpuctx, 1)) {
918                 err = -EEXIST;
919         } else {
920                 perf_disable();
921                 if (event == leader)
922                         err = group_sched_in(event, cpuctx, ctx,
923                                              smp_processor_id());
924                 else
925                         err = event_sched_in(event, cpuctx, ctx,
926                                                smp_processor_id());
927                 perf_enable();
928         }
929
930         if (err) {
931                 /*
932                  * If this event can't go on and it's part of a
933                  * group, then the whole group has to come off.
934                  */
935                 if (leader != event)
936                         group_sched_out(leader, cpuctx, ctx);
937                 if (leader->attr.pinned) {
938                         update_group_times(leader);
939                         leader->state = PERF_EVENT_STATE_ERROR;
940                 }
941         }
942
943  unlock:
944         spin_unlock(&ctx->lock);
945 }
946
947 /*
948  * Enable a event.
949  *
950  * If event->ctx is a cloned context, callers must make sure that
951  * every task struct that event->ctx->task could possibly point to
952  * remains valid.  This condition is satisfied when called through
953  * perf_event_for_each_child or perf_event_for_each as described
954  * for perf_event_disable.
955  */
956 static void perf_event_enable(struct perf_event *event)
957 {
958         struct perf_event_context *ctx = event->ctx;
959         struct task_struct *task = ctx->task;
960
961         if (!task) {
962                 /*
963                  * Enable the event on the cpu that it's on
964                  */
965                 smp_call_function_single(event->cpu, __perf_event_enable,
966                                          event, 1);
967                 return;
968         }
969
970         spin_lock_irq(&ctx->lock);
971         if (event->state >= PERF_EVENT_STATE_INACTIVE)
972                 goto out;
973
974         /*
975          * If the event is in error state, clear that first.
976          * That way, if we see the event in error state below, we
977          * know that it has gone back into error state, as distinct
978          * from the task having been scheduled away before the
979          * cross-call arrived.
980          */
981         if (event->state == PERF_EVENT_STATE_ERROR)
982                 event->state = PERF_EVENT_STATE_OFF;
983
984  retry:
985         spin_unlock_irq(&ctx->lock);
986         task_oncpu_function_call(task, __perf_event_enable, event);
987
988         spin_lock_irq(&ctx->lock);
989
990         /*
991          * If the context is active and the event is still off,
992          * we need to retry the cross-call.
993          */
994         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995                 goto retry;
996
997         /*
998          * Since we have the lock this context can't be scheduled
999          * in, so we can change the state safely.
1000          */
1001         if (event->state == PERF_EVENT_STATE_OFF)
1002                 __perf_event_mark_enabled(event, ctx);
1003
1004  out:
1005         spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 {
1010         /*
1011          * not supported on inherited events
1012          */
1013         if (event->attr.inherit)
1014                 return -EINVAL;
1015
1016         atomic_add(refresh, &event->event_limit);
1017         perf_event_enable(event);
1018
1019         return 0;
1020 }
1021
1022 void __perf_event_sched_out(struct perf_event_context *ctx,
1023                               struct perf_cpu_context *cpuctx)
1024 {
1025         struct perf_event *event;
1026
1027         spin_lock(&ctx->lock);
1028         ctx->is_active = 0;
1029         if (likely(!ctx->nr_events))
1030                 goto out;
1031         update_context_time(ctx);
1032
1033         perf_disable();
1034         if (ctx->nr_active)
1035                 list_for_each_entry(event, &ctx->group_list, group_entry)
1036                         group_sched_out(event, cpuctx, ctx);
1037
1038         perf_enable();
1039  out:
1040         spin_unlock(&ctx->lock);
1041 }
1042
1043 /*
1044  * Test whether two contexts are equivalent, i.e. whether they
1045  * have both been cloned from the same version of the same context
1046  * and they both have the same number of enabled events.
1047  * If the number of enabled events is the same, then the set
1048  * of enabled events should be the same, because these are both
1049  * inherited contexts, therefore we can't access individual events
1050  * in them directly with an fd; we can only enable/disable all
1051  * events via prctl, or enable/disable all events in a family
1052  * via ioctl, which will have the same effect on both contexts.
1053  */
1054 static int context_equiv(struct perf_event_context *ctx1,
1055                          struct perf_event_context *ctx2)
1056 {
1057         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058                 && ctx1->parent_gen == ctx2->parent_gen
1059                 && !ctx1->pin_count && !ctx2->pin_count;
1060 }
1061
1062 static void __perf_event_read(void *event);
1063
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065                                      struct perf_event *next_event)
1066 {
1067         u64 value;
1068
1069         if (!event->attr.inherit_stat)
1070                 return;
1071
1072         /*
1073          * Update the event value, we cannot use perf_event_read()
1074          * because we're in the middle of a context switch and have IRQs
1075          * disabled, which upsets smp_call_function_single(), however
1076          * we know the event must be on the current CPU, therefore we
1077          * don't need to use it.
1078          */
1079         switch (event->state) {
1080         case PERF_EVENT_STATE_ACTIVE:
1081                 __perf_event_read(event);
1082                 break;
1083
1084         case PERF_EVENT_STATE_INACTIVE:
1085                 update_event_times(event);
1086                 break;
1087
1088         default:
1089                 break;
1090         }
1091
1092         /*
1093          * In order to keep per-task stats reliable we need to flip the event
1094          * values when we flip the contexts.
1095          */
1096         value = atomic64_read(&next_event->count);
1097         value = atomic64_xchg(&event->count, value);
1098         atomic64_set(&next_event->count, value);
1099
1100         swap(event->total_time_enabled, next_event->total_time_enabled);
1101         swap(event->total_time_running, next_event->total_time_running);
1102
1103         /*
1104          * Since we swizzled the values, update the user visible data too.
1105          */
1106         perf_event_update_userpage(event);
1107         perf_event_update_userpage(next_event);
1108 }
1109
1110 #define list_next_entry(pos, member) \
1111         list_entry(pos->member.next, typeof(*pos), member)
1112
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114                                    struct perf_event_context *next_ctx)
1115 {
1116         struct perf_event *event, *next_event;
1117
1118         if (!ctx->nr_stat)
1119                 return;
1120
1121         event = list_first_entry(&ctx->event_list,
1122                                    struct perf_event, event_entry);
1123
1124         next_event = list_first_entry(&next_ctx->event_list,
1125                                         struct perf_event, event_entry);
1126
1127         while (&event->event_entry != &ctx->event_list &&
1128                &next_event->event_entry != &next_ctx->event_list) {
1129
1130                 __perf_event_sync_stat(event, next_event);
1131
1132                 event = list_next_entry(event, event_entry);
1133                 next_event = list_next_entry(next_event, event_entry);
1134         }
1135 }
1136
1137 /*
1138  * Called from scheduler to remove the events of the current task,
1139  * with interrupts disabled.
1140  *
1141  * We stop each event and update the event value in event->count.
1142  *
1143  * This does not protect us against NMI, but disable()
1144  * sets the disabled bit in the control field of event _before_
1145  * accessing the event control register. If a NMI hits, then it will
1146  * not restart the event.
1147  */
1148 void perf_event_task_sched_out(struct task_struct *task,
1149                                  struct task_struct *next, int cpu)
1150 {
1151         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152         struct perf_event_context *ctx = task->perf_event_ctxp;
1153         struct perf_event_context *next_ctx;
1154         struct perf_event_context *parent;
1155         struct pt_regs *regs;
1156         int do_switch = 1;
1157
1158         regs = task_pt_regs(task);
1159         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1160
1161         if (likely(!ctx || !cpuctx->task_ctx))
1162                 return;
1163
1164         update_context_time(ctx);
1165
1166         rcu_read_lock();
1167         parent = rcu_dereference(ctx->parent_ctx);
1168         next_ctx = next->perf_event_ctxp;
1169         if (parent && next_ctx &&
1170             rcu_dereference(next_ctx->parent_ctx) == parent) {
1171                 /*
1172                  * Looks like the two contexts are clones, so we might be
1173                  * able to optimize the context switch.  We lock both
1174                  * contexts and check that they are clones under the
1175                  * lock (including re-checking that neither has been
1176                  * uncloned in the meantime).  It doesn't matter which
1177                  * order we take the locks because no other cpu could
1178                  * be trying to lock both of these tasks.
1179                  */
1180                 spin_lock(&ctx->lock);
1181                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182                 if (context_equiv(ctx, next_ctx)) {
1183                         /*
1184                          * XXX do we need a memory barrier of sorts
1185                          * wrt to rcu_dereference() of perf_event_ctxp
1186                          */
1187                         task->perf_event_ctxp = next_ctx;
1188                         next->perf_event_ctxp = ctx;
1189                         ctx->task = next;
1190                         next_ctx->task = task;
1191                         do_switch = 0;
1192
1193                         perf_event_sync_stat(ctx, next_ctx);
1194                 }
1195                 spin_unlock(&next_ctx->lock);
1196                 spin_unlock(&ctx->lock);
1197         }
1198         rcu_read_unlock();
1199
1200         if (do_switch) {
1201                 __perf_event_sched_out(ctx, cpuctx);
1202                 cpuctx->task_ctx = NULL;
1203         }
1204 }
1205
1206 /*
1207  * Called with IRQs disabled
1208  */
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 {
1211         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213         if (!cpuctx->task_ctx)
1214                 return;
1215
1216         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217                 return;
1218
1219         __perf_event_sched_out(ctx, cpuctx);
1220         cpuctx->task_ctx = NULL;
1221 }
1222
1223 /*
1224  * Called with IRQs disabled
1225  */
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227 {
1228         __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 }
1230
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233                         struct perf_cpu_context *cpuctx, int cpu)
1234 {
1235         struct perf_event *event;
1236         int can_add_hw = 1;
1237
1238         spin_lock(&ctx->lock);
1239         ctx->is_active = 1;
1240         if (likely(!ctx->nr_events))
1241                 goto out;
1242
1243         ctx->timestamp = perf_clock();
1244
1245         perf_disable();
1246
1247         /*
1248          * First go through the list and put on any pinned groups
1249          * in order to give them the best chance of going on.
1250          */
1251         list_for_each_entry(event, &ctx->group_list, group_entry) {
1252                 if (event->state <= PERF_EVENT_STATE_OFF ||
1253                     !event->attr.pinned)
1254                         continue;
1255                 if (event->cpu != -1 && event->cpu != cpu)
1256                         continue;
1257
1258                 if (group_can_go_on(event, cpuctx, 1))
1259                         group_sched_in(event, cpuctx, ctx, cpu);
1260
1261                 /*
1262                  * If this pinned group hasn't been scheduled,
1263                  * put it in error state.
1264                  */
1265                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266                         update_group_times(event);
1267                         event->state = PERF_EVENT_STATE_ERROR;
1268                 }
1269         }
1270
1271         list_for_each_entry(event, &ctx->group_list, group_entry) {
1272                 /*
1273                  * Ignore events in OFF or ERROR state, and
1274                  * ignore pinned events since we did them already.
1275                  */
1276                 if (event->state <= PERF_EVENT_STATE_OFF ||
1277                     event->attr.pinned)
1278                         continue;
1279
1280                 /*
1281                  * Listen to the 'cpu' scheduling filter constraint
1282                  * of events:
1283                  */
1284                 if (event->cpu != -1 && event->cpu != cpu)
1285                         continue;
1286
1287                 if (group_can_go_on(event, cpuctx, can_add_hw))
1288                         if (group_sched_in(event, cpuctx, ctx, cpu))
1289                                 can_add_hw = 0;
1290         }
1291         perf_enable();
1292  out:
1293         spin_unlock(&ctx->lock);
1294 }
1295
1296 /*
1297  * Called from scheduler to add the events of the current task
1298  * with interrupts disabled.
1299  *
1300  * We restore the event value and then enable it.
1301  *
1302  * This does not protect us against NMI, but enable()
1303  * sets the enabled bit in the control field of event _before_
1304  * accessing the event control register. If a NMI hits, then it will
1305  * keep the event running.
1306  */
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 {
1309         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310         struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312         if (likely(!ctx))
1313                 return;
1314         if (cpuctx->task_ctx == ctx)
1315                 return;
1316         __perf_event_sched_in(ctx, cpuctx, cpu);
1317         cpuctx->task_ctx = ctx;
1318 }
1319
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321 {
1322         struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324         __perf_event_sched_in(ctx, cpuctx, cpu);
1325 }
1326
1327 #define MAX_INTERRUPTS (~0ULL)
1328
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1332 {
1333         struct hw_perf_event *hwc = &event->hw;
1334         u64 period, sample_period;
1335         s64 delta;
1336
1337         events *= hwc->sample_period;
1338         period = div64_u64(events, event->attr.sample_freq);
1339
1340         delta = (s64)(period - hwc->sample_period);
1341         delta = (delta + 7) / 8; /* low pass filter */
1342
1343         sample_period = hwc->sample_period + delta;
1344
1345         if (!sample_period)
1346                 sample_period = 1;
1347
1348         hwc->sample_period = sample_period;
1349 }
1350
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352 {
1353         struct perf_event *event;
1354         struct hw_perf_event *hwc;
1355         u64 interrupts, freq;
1356
1357         spin_lock(&ctx->lock);
1358         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360                         continue;
1361
1362                 hwc = &event->hw;
1363
1364                 interrupts = hwc->interrupts;
1365                 hwc->interrupts = 0;
1366
1367                 /*
1368                  * unthrottle events on the tick
1369                  */
1370                 if (interrupts == MAX_INTERRUPTS) {
1371                         perf_log_throttle(event, 1);
1372                         event->pmu->unthrottle(event);
1373                         interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374                 }
1375
1376                 if (!event->attr.freq || !event->attr.sample_freq)
1377                         continue;
1378
1379                 /*
1380                  * if the specified freq < HZ then we need to skip ticks
1381                  */
1382                 if (event->attr.sample_freq < HZ) {
1383                         freq = event->attr.sample_freq;
1384
1385                         hwc->freq_count += freq;
1386                         hwc->freq_interrupts += interrupts;
1387
1388                         if (hwc->freq_count < HZ)
1389                                 continue;
1390
1391                         interrupts = hwc->freq_interrupts;
1392                         hwc->freq_interrupts = 0;
1393                         hwc->freq_count -= HZ;
1394                 } else
1395                         freq = HZ;
1396
1397                 perf_adjust_period(event, freq * interrupts);
1398
1399                 /*
1400                  * In order to avoid being stalled by an (accidental) huge
1401                  * sample period, force reset the sample period if we didn't
1402                  * get any events in this freq period.
1403                  */
1404                 if (!interrupts) {
1405                         perf_disable();
1406                         event->pmu->disable(event);
1407                         atomic64_set(&hwc->period_left, 0);
1408                         event->pmu->enable(event);
1409                         perf_enable();
1410                 }
1411         }
1412         spin_unlock(&ctx->lock);
1413 }
1414
1415 /*
1416  * Round-robin a context's events:
1417  */
1418 static void rotate_ctx(struct perf_event_context *ctx)
1419 {
1420         struct perf_event *event;
1421
1422         if (!ctx->nr_events)
1423                 return;
1424
1425         spin_lock(&ctx->lock);
1426         /*
1427          * Rotate the first entry last (works just fine for group events too):
1428          */
1429         perf_disable();
1430         list_for_each_entry(event, &ctx->group_list, group_entry) {
1431                 list_move_tail(&event->group_entry, &ctx->group_list);
1432                 break;
1433         }
1434         perf_enable();
1435
1436         spin_unlock(&ctx->lock);
1437 }
1438
1439 void perf_event_task_tick(struct task_struct *curr, int cpu)
1440 {
1441         struct perf_cpu_context *cpuctx;
1442         struct perf_event_context *ctx;
1443
1444         if (!atomic_read(&nr_events))
1445                 return;
1446
1447         cpuctx = &per_cpu(perf_cpu_context, cpu);
1448         ctx = curr->perf_event_ctxp;
1449
1450         perf_ctx_adjust_freq(&cpuctx->ctx);
1451         if (ctx)
1452                 perf_ctx_adjust_freq(ctx);
1453
1454         perf_event_cpu_sched_out(cpuctx);
1455         if (ctx)
1456                 __perf_event_task_sched_out(ctx);
1457
1458         rotate_ctx(&cpuctx->ctx);
1459         if (ctx)
1460                 rotate_ctx(ctx);
1461
1462         perf_event_cpu_sched_in(cpuctx, cpu);
1463         if (ctx)
1464                 perf_event_task_sched_in(curr, cpu);
1465 }
1466
1467 /*
1468  * Enable all of a task's events that have been marked enable-on-exec.
1469  * This expects task == current.
1470  */
1471 static void perf_event_enable_on_exec(struct task_struct *task)
1472 {
1473         struct perf_event_context *ctx;
1474         struct perf_event *event;
1475         unsigned long flags;
1476         int enabled = 0;
1477
1478         local_irq_save(flags);
1479         ctx = task->perf_event_ctxp;
1480         if (!ctx || !ctx->nr_events)
1481                 goto out;
1482
1483         __perf_event_task_sched_out(ctx);
1484
1485         spin_lock(&ctx->lock);
1486
1487         list_for_each_entry(event, &ctx->group_list, group_entry) {
1488                 if (!event->attr.enable_on_exec)
1489                         continue;
1490                 event->attr.enable_on_exec = 0;
1491                 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492                         continue;
1493                 __perf_event_mark_enabled(event, ctx);
1494                 enabled = 1;
1495         }
1496
1497         /*
1498          * Unclone this context if we enabled any event.
1499          */
1500         if (enabled)
1501                 unclone_ctx(ctx);
1502
1503         spin_unlock(&ctx->lock);
1504
1505         perf_event_task_sched_in(task, smp_processor_id());
1506  out:
1507         local_irq_restore(flags);
1508 }
1509
1510 /*
1511  * Cross CPU call to read the hardware event
1512  */
1513 static void __perf_event_read(void *info)
1514 {
1515         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516         struct perf_event *event = info;
1517         struct perf_event_context *ctx = event->ctx;
1518         unsigned long flags;
1519
1520         /*
1521          * If this is a task context, we need to check whether it is
1522          * the current task context of this cpu.  If not it has been
1523          * scheduled out before the smp call arrived.  In that case
1524          * event->count would have been updated to a recent sample
1525          * when the event was scheduled out.
1526          */
1527         if (ctx->task && cpuctx->task_ctx != ctx)
1528                 return;
1529
1530         local_irq_save(flags);
1531         if (ctx->is_active)
1532                 update_context_time(ctx);
1533         event->pmu->read(event);
1534         update_event_times(event);
1535         local_irq_restore(flags);
1536 }
1537
1538 static u64 perf_event_read(struct perf_event *event)
1539 {
1540         /*
1541          * If event is enabled and currently active on a CPU, update the
1542          * value in the event structure:
1543          */
1544         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1545                 smp_call_function_single(event->oncpu,
1546                                          __perf_event_read, event, 1);
1547         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1548                 update_event_times(event);
1549         }
1550
1551         return atomic64_read(&event->count);
1552 }
1553
1554 /*
1555  * Initialize the perf_event context in a task_struct:
1556  */
1557 static void
1558 __perf_event_init_context(struct perf_event_context *ctx,
1559                             struct task_struct *task)
1560 {
1561         memset(ctx, 0, sizeof(*ctx));
1562         spin_lock_init(&ctx->lock);
1563         mutex_init(&ctx->mutex);
1564         INIT_LIST_HEAD(&ctx->group_list);
1565         INIT_LIST_HEAD(&ctx->event_list);
1566         atomic_set(&ctx->refcount, 1);
1567         ctx->task = task;
1568 }
1569
1570 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1571 {
1572         struct perf_event_context *ctx;
1573         struct perf_cpu_context *cpuctx;
1574         struct task_struct *task;
1575         unsigned long flags;
1576         int err;
1577
1578         /*
1579          * If cpu is not a wildcard then this is a percpu event:
1580          */
1581         if (cpu != -1) {
1582                 /* Must be root to operate on a CPU event: */
1583                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1584                         return ERR_PTR(-EACCES);
1585
1586                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1587                         return ERR_PTR(-EINVAL);
1588
1589                 /*
1590                  * We could be clever and allow to attach a event to an
1591                  * offline CPU and activate it when the CPU comes up, but
1592                  * that's for later.
1593                  */
1594                 if (!cpu_isset(cpu, cpu_online_map))
1595                         return ERR_PTR(-ENODEV);
1596
1597                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1598                 ctx = &cpuctx->ctx;
1599                 get_ctx(ctx);
1600
1601                 return ctx;
1602         }
1603
1604         rcu_read_lock();
1605         if (!pid)
1606                 task = current;
1607         else
1608                 task = find_task_by_vpid(pid);
1609         if (task)
1610                 get_task_struct(task);
1611         rcu_read_unlock();
1612
1613         if (!task)
1614                 return ERR_PTR(-ESRCH);
1615
1616         /*
1617          * Can't attach events to a dying task.
1618          */
1619         err = -ESRCH;
1620         if (task->flags & PF_EXITING)
1621                 goto errout;
1622
1623         /* Reuse ptrace permission checks for now. */
1624         err = -EACCES;
1625         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1626                 goto errout;
1627
1628  retry:
1629         ctx = perf_lock_task_context(task, &flags);
1630         if (ctx) {
1631                 unclone_ctx(ctx);
1632                 spin_unlock_irqrestore(&ctx->lock, flags);
1633         }
1634
1635         if (!ctx) {
1636                 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1637                 err = -ENOMEM;
1638                 if (!ctx)
1639                         goto errout;
1640                 __perf_event_init_context(ctx, task);
1641                 get_ctx(ctx);
1642                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1643                         /*
1644                          * We raced with some other task; use
1645                          * the context they set.
1646                          */
1647                         kfree(ctx);
1648                         goto retry;
1649                 }
1650                 get_task_struct(task);
1651         }
1652
1653         put_task_struct(task);
1654         return ctx;
1655
1656  errout:
1657         put_task_struct(task);
1658         return ERR_PTR(err);
1659 }
1660
1661 static void free_event_rcu(struct rcu_head *head)
1662 {
1663         struct perf_event *event;
1664
1665         event = container_of(head, struct perf_event, rcu_head);
1666         if (event->ns)
1667                 put_pid_ns(event->ns);
1668         kfree(event);
1669 }
1670
1671 static void perf_pending_sync(struct perf_event *event);
1672
1673 static void free_event(struct perf_event *event)
1674 {
1675         perf_pending_sync(event);
1676
1677         if (!event->parent) {
1678                 atomic_dec(&nr_events);
1679                 if (event->attr.mmap)
1680                         atomic_dec(&nr_mmap_events);
1681                 if (event->attr.comm)
1682                         atomic_dec(&nr_comm_events);
1683                 if (event->attr.task)
1684                         atomic_dec(&nr_task_events);
1685         }
1686
1687         if (event->output) {
1688                 fput(event->output->filp);
1689                 event->output = NULL;
1690         }
1691
1692         if (event->destroy)
1693                 event->destroy(event);
1694
1695         put_ctx(event->ctx);
1696         call_rcu(&event->rcu_head, free_event_rcu);
1697 }
1698
1699 /*
1700  * Called when the last reference to the file is gone.
1701  */
1702 static int perf_release(struct inode *inode, struct file *file)
1703 {
1704         struct perf_event *event = file->private_data;
1705         struct perf_event_context *ctx = event->ctx;
1706
1707         file->private_data = NULL;
1708
1709         WARN_ON_ONCE(ctx->parent_ctx);
1710         mutex_lock(&ctx->mutex);
1711         perf_event_remove_from_context(event);
1712         mutex_unlock(&ctx->mutex);
1713
1714         mutex_lock(&event->owner->perf_event_mutex);
1715         list_del_init(&event->owner_entry);
1716         mutex_unlock(&event->owner->perf_event_mutex);
1717         put_task_struct(event->owner);
1718
1719         free_event(event);
1720
1721         return 0;
1722 }
1723
1724 static int perf_event_read_size(struct perf_event *event)
1725 {
1726         int entry = sizeof(u64); /* value */
1727         int size = 0;
1728         int nr = 1;
1729
1730         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1731                 size += sizeof(u64);
1732
1733         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1734                 size += sizeof(u64);
1735
1736         if (event->attr.read_format & PERF_FORMAT_ID)
1737                 entry += sizeof(u64);
1738
1739         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1740                 nr += event->group_leader->nr_siblings;
1741                 size += sizeof(u64);
1742         }
1743
1744         size += entry * nr;
1745
1746         return size;
1747 }
1748
1749 static u64 perf_event_read_value(struct perf_event *event)
1750 {
1751         struct perf_event *child;
1752         u64 total = 0;
1753
1754         total += perf_event_read(event);
1755         list_for_each_entry(child, &event->child_list, child_list)
1756                 total += perf_event_read(child);
1757
1758         return total;
1759 }
1760
1761 static int perf_event_read_entry(struct perf_event *event,
1762                                    u64 read_format, char __user *buf)
1763 {
1764         int n = 0, count = 0;
1765         u64 values[2];
1766
1767         values[n++] = perf_event_read_value(event);
1768         if (read_format & PERF_FORMAT_ID)
1769                 values[n++] = primary_event_id(event);
1770
1771         count = n * sizeof(u64);
1772
1773         if (copy_to_user(buf, values, count))
1774                 return -EFAULT;
1775
1776         return count;
1777 }
1778
1779 static int perf_event_read_group(struct perf_event *event,
1780                                    u64 read_format, char __user *buf)
1781 {
1782         struct perf_event *leader = event->group_leader, *sub;
1783         int n = 0, size = 0, err = -EFAULT;
1784         u64 values[3];
1785
1786         values[n++] = 1 + leader->nr_siblings;
1787         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1788                 values[n++] = leader->total_time_enabled +
1789                         atomic64_read(&leader->child_total_time_enabled);
1790         }
1791         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1792                 values[n++] = leader->total_time_running +
1793                         atomic64_read(&leader->child_total_time_running);
1794         }
1795
1796         size = n * sizeof(u64);
1797
1798         if (copy_to_user(buf, values, size))
1799                 return -EFAULT;
1800
1801         err = perf_event_read_entry(leader, read_format, buf + size);
1802         if (err < 0)
1803                 return err;
1804
1805         size += err;
1806
1807         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1808                 err = perf_event_read_entry(sub, read_format,
1809                                 buf + size);
1810                 if (err < 0)
1811                         return err;
1812
1813                 size += err;
1814         }
1815
1816         return size;
1817 }
1818
1819 static int perf_event_read_one(struct perf_event *event,
1820                                  u64 read_format, char __user *buf)
1821 {
1822         u64 values[4];
1823         int n = 0;
1824
1825         values[n++] = perf_event_read_value(event);
1826         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1827                 values[n++] = event->total_time_enabled +
1828                         atomic64_read(&event->child_total_time_enabled);
1829         }
1830         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1831                 values[n++] = event->total_time_running +
1832                         atomic64_read(&event->child_total_time_running);
1833         }
1834         if (read_format & PERF_FORMAT_ID)
1835                 values[n++] = primary_event_id(event);
1836
1837         if (copy_to_user(buf, values, n * sizeof(u64)))
1838                 return -EFAULT;
1839
1840         return n * sizeof(u64);
1841 }
1842
1843 /*
1844  * Read the performance event - simple non blocking version for now
1845  */
1846 static ssize_t
1847 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1848 {
1849         u64 read_format = event->attr.read_format;
1850         int ret;
1851
1852         /*
1853          * Return end-of-file for a read on a event that is in
1854          * error state (i.e. because it was pinned but it couldn't be
1855          * scheduled on to the CPU at some point).
1856          */
1857         if (event->state == PERF_EVENT_STATE_ERROR)
1858                 return 0;
1859
1860         if (count < perf_event_read_size(event))
1861                 return -ENOSPC;
1862
1863         WARN_ON_ONCE(event->ctx->parent_ctx);
1864         mutex_lock(&event->child_mutex);
1865         if (read_format & PERF_FORMAT_GROUP)
1866                 ret = perf_event_read_group(event, read_format, buf);
1867         else
1868                 ret = perf_event_read_one(event, read_format, buf);
1869         mutex_unlock(&event->child_mutex);
1870
1871         return ret;
1872 }
1873
1874 static ssize_t
1875 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1876 {
1877         struct perf_event *event = file->private_data;
1878
1879         return perf_read_hw(event, buf, count);
1880 }
1881
1882 static unsigned int perf_poll(struct file *file, poll_table *wait)
1883 {
1884         struct perf_event *event = file->private_data;
1885         struct perf_mmap_data *data;
1886         unsigned int events = POLL_HUP;
1887
1888         rcu_read_lock();
1889         data = rcu_dereference(event->data);
1890         if (data)
1891                 events = atomic_xchg(&data->poll, 0);
1892         rcu_read_unlock();
1893
1894         poll_wait(file, &event->waitq, wait);
1895
1896         return events;
1897 }
1898
1899 static void perf_event_reset(struct perf_event *event)
1900 {
1901         (void)perf_event_read(event);
1902         atomic64_set(&event->count, 0);
1903         perf_event_update_userpage(event);
1904 }
1905
1906 /*
1907  * Holding the top-level event's child_mutex means that any
1908  * descendant process that has inherited this event will block
1909  * in sync_child_event if it goes to exit, thus satisfying the
1910  * task existence requirements of perf_event_enable/disable.
1911  */
1912 static void perf_event_for_each_child(struct perf_event *event,
1913                                         void (*func)(struct perf_event *))
1914 {
1915         struct perf_event *child;
1916
1917         WARN_ON_ONCE(event->ctx->parent_ctx);
1918         mutex_lock(&event->child_mutex);
1919         func(event);
1920         list_for_each_entry(child, &event->child_list, child_list)
1921                 func(child);
1922         mutex_unlock(&event->child_mutex);
1923 }
1924
1925 static void perf_event_for_each(struct perf_event *event,
1926                                   void (*func)(struct perf_event *))
1927 {
1928         struct perf_event_context *ctx = event->ctx;
1929         struct perf_event *sibling;
1930
1931         WARN_ON_ONCE(ctx->parent_ctx);
1932         mutex_lock(&ctx->mutex);
1933         event = event->group_leader;
1934
1935         perf_event_for_each_child(event, func);
1936         func(event);
1937         list_for_each_entry(sibling, &event->sibling_list, group_entry)
1938                 perf_event_for_each_child(event, func);
1939         mutex_unlock(&ctx->mutex);
1940 }
1941
1942 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1943 {
1944         struct perf_event_context *ctx = event->ctx;
1945         unsigned long size;
1946         int ret = 0;
1947         u64 value;
1948
1949         if (!event->attr.sample_period)
1950                 return -EINVAL;
1951
1952         size = copy_from_user(&value, arg, sizeof(value));
1953         if (size != sizeof(value))
1954                 return -EFAULT;
1955
1956         if (!value)
1957                 return -EINVAL;
1958
1959         spin_lock_irq(&ctx->lock);
1960         if (event->attr.freq) {
1961                 if (value > sysctl_perf_event_sample_rate) {
1962                         ret = -EINVAL;
1963                         goto unlock;
1964                 }
1965
1966                 event->attr.sample_freq = value;
1967         } else {
1968                 event->attr.sample_period = value;
1969                 event->hw.sample_period = value;
1970         }
1971 unlock:
1972         spin_unlock_irq(&ctx->lock);
1973
1974         return ret;
1975 }
1976
1977 int perf_event_set_output(struct perf_event *event, int output_fd);
1978
1979 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1980 {
1981         struct perf_event *event = file->private_data;
1982         void (*func)(struct perf_event *);
1983         u32 flags = arg;
1984
1985         switch (cmd) {
1986         case PERF_EVENT_IOC_ENABLE:
1987                 func = perf_event_enable;
1988                 break;
1989         case PERF_EVENT_IOC_DISABLE:
1990                 func = perf_event_disable;
1991                 break;
1992         case PERF_EVENT_IOC_RESET:
1993                 func = perf_event_reset;
1994                 break;
1995
1996         case PERF_EVENT_IOC_REFRESH:
1997                 return perf_event_refresh(event, arg);
1998
1999         case PERF_EVENT_IOC_PERIOD:
2000                 return perf_event_period(event, (u64 __user *)arg);
2001
2002         case PERF_EVENT_IOC_SET_OUTPUT:
2003                 return perf_event_set_output(event, arg);
2004
2005         default:
2006                 return -ENOTTY;
2007         }
2008
2009         if (flags & PERF_IOC_FLAG_GROUP)
2010                 perf_event_for_each(event, func);
2011         else
2012                 perf_event_for_each_child(event, func);
2013
2014         return 0;
2015 }
2016
2017 int perf_event_task_enable(void)
2018 {
2019         struct perf_event *event;
2020
2021         mutex_lock(&current->perf_event_mutex);
2022         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2023                 perf_event_for_each_child(event, perf_event_enable);
2024         mutex_unlock(&current->perf_event_mutex);
2025
2026         return 0;
2027 }
2028
2029 int perf_event_task_disable(void)
2030 {
2031         struct perf_event *event;
2032
2033         mutex_lock(&current->perf_event_mutex);
2034         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2035                 perf_event_for_each_child(event, perf_event_disable);
2036         mutex_unlock(&current->perf_event_mutex);
2037
2038         return 0;
2039 }
2040
2041 #ifndef PERF_EVENT_INDEX_OFFSET
2042 # define PERF_EVENT_INDEX_OFFSET 0
2043 #endif
2044
2045 static int perf_event_index(struct perf_event *event)
2046 {
2047         if (event->state != PERF_EVENT_STATE_ACTIVE)
2048                 return 0;
2049
2050         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2051 }
2052
2053 /*
2054  * Callers need to ensure there can be no nesting of this function, otherwise
2055  * the seqlock logic goes bad. We can not serialize this because the arch
2056  * code calls this from NMI context.
2057  */
2058 void perf_event_update_userpage(struct perf_event *event)
2059 {
2060         struct perf_event_mmap_page *userpg;
2061         struct perf_mmap_data *data;
2062
2063         rcu_read_lock();
2064         data = rcu_dereference(event->data);
2065         if (!data)
2066                 goto unlock;
2067
2068         userpg = data->user_page;
2069
2070         /*
2071          * Disable preemption so as to not let the corresponding user-space
2072          * spin too long if we get preempted.
2073          */
2074         preempt_disable();
2075         ++userpg->lock;
2076         barrier();
2077         userpg->index = perf_event_index(event);
2078         userpg->offset = atomic64_read(&event->count);
2079         if (event->state == PERF_EVENT_STATE_ACTIVE)
2080                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2081
2082         userpg->time_enabled = event->total_time_enabled +
2083                         atomic64_read(&event->child_total_time_enabled);
2084
2085         userpg->time_running = event->total_time_running +
2086                         atomic64_read(&event->child_total_time_running);
2087
2088         barrier();
2089         ++userpg->lock;
2090         preempt_enable();
2091 unlock:
2092         rcu_read_unlock();
2093 }
2094
2095 static unsigned long perf_data_size(struct perf_mmap_data *data)
2096 {
2097         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2098 }
2099
2100 #ifndef CONFIG_PERF_USE_VMALLOC
2101
2102 /*
2103  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2104  */
2105
2106 static struct page *
2107 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2108 {
2109         if (pgoff > data->nr_pages)
2110                 return NULL;
2111
2112         if (pgoff == 0)
2113                 return virt_to_page(data->user_page);
2114
2115         return virt_to_page(data->data_pages[pgoff - 1]);
2116 }
2117
2118 static struct perf_mmap_data *
2119 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2120 {
2121         struct perf_mmap_data *data;
2122         unsigned long size;
2123         int i;
2124
2125         WARN_ON(atomic_read(&event->mmap_count));
2126
2127         size = sizeof(struct perf_mmap_data);
2128         size += nr_pages * sizeof(void *);
2129
2130         data = kzalloc(size, GFP_KERNEL);
2131         if (!data)
2132                 goto fail;
2133
2134         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2135         if (!data->user_page)
2136                 goto fail_user_page;
2137
2138         for (i = 0; i < nr_pages; i++) {
2139                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2140                 if (!data->data_pages[i])
2141                         goto fail_data_pages;
2142         }
2143
2144         data->data_order = 0;
2145         data->nr_pages = nr_pages;
2146
2147         return data;
2148
2149 fail_data_pages:
2150         for (i--; i >= 0; i--)
2151                 free_page((unsigned long)data->data_pages[i]);
2152
2153         free_page((unsigned long)data->user_page);
2154
2155 fail_user_page:
2156         kfree(data);
2157
2158 fail:
2159         return NULL;
2160 }
2161
2162 static void perf_mmap_free_page(unsigned long addr)
2163 {
2164         struct page *page = virt_to_page((void *)addr);
2165
2166         page->mapping = NULL;
2167         __free_page(page);
2168 }
2169
2170 static void perf_mmap_data_free(struct perf_mmap_data *data)
2171 {
2172         int i;
2173
2174         perf_mmap_free_page((unsigned long)data->user_page);
2175         for (i = 0; i < data->nr_pages; i++)
2176                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2177         kfree(data);
2178 }
2179
2180 #else
2181
2182 /*
2183  * Back perf_mmap() with vmalloc memory.
2184  *
2185  * Required for architectures that have d-cache aliasing issues.
2186  */
2187
2188 static struct page *
2189 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2190 {
2191         if (pgoff > (1UL << data->data_order))
2192                 return NULL;
2193
2194         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2195 }
2196
2197 static void perf_mmap_unmark_page(void *addr)
2198 {
2199         struct page *page = vmalloc_to_page(addr);
2200
2201         page->mapping = NULL;
2202 }
2203
2204 static void perf_mmap_data_free_work(struct work_struct *work)
2205 {
2206         struct perf_mmap_data *data;
2207         void *base;
2208         int i, nr;
2209
2210         data = container_of(work, struct perf_mmap_data, work);
2211         nr = 1 << data->data_order;
2212
2213         base = data->user_page;
2214         for (i = 0; i < nr + 1; i++)
2215                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2216
2217         vfree(base);
2218         kfree(data);
2219 }
2220
2221 static void perf_mmap_data_free(struct perf_mmap_data *data)
2222 {
2223         schedule_work(&data->work);
2224 }
2225
2226 static struct perf_mmap_data *
2227 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2228 {
2229         struct perf_mmap_data *data;
2230         unsigned long size;
2231         void *all_buf;
2232
2233         WARN_ON(atomic_read(&event->mmap_count));
2234
2235         size = sizeof(struct perf_mmap_data);
2236         size += sizeof(void *);
2237
2238         data = kzalloc(size, GFP_KERNEL);
2239         if (!data)
2240                 goto fail;
2241
2242         INIT_WORK(&data->work, perf_mmap_data_free_work);
2243
2244         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2245         if (!all_buf)
2246                 goto fail_all_buf;
2247
2248         data->user_page = all_buf;
2249         data->data_pages[0] = all_buf + PAGE_SIZE;
2250         data->data_order = ilog2(nr_pages);
2251         data->nr_pages = 1;
2252
2253         return data;
2254
2255 fail_all_buf:
2256         kfree(data);
2257
2258 fail:
2259         return NULL;
2260 }
2261
2262 #endif
2263
2264 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2265 {
2266         struct perf_event *event = vma->vm_file->private_data;
2267         struct perf_mmap_data *data;
2268         int ret = VM_FAULT_SIGBUS;
2269
2270         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2271                 if (vmf->pgoff == 0)
2272                         ret = 0;
2273                 return ret;
2274         }
2275
2276         rcu_read_lock();
2277         data = rcu_dereference(event->data);
2278         if (!data)
2279                 goto unlock;
2280
2281         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2282                 goto unlock;
2283
2284         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2285         if (!vmf->page)
2286                 goto unlock;
2287
2288         get_page(vmf->page);
2289         vmf->page->mapping = vma->vm_file->f_mapping;
2290         vmf->page->index   = vmf->pgoff;
2291
2292         ret = 0;
2293 unlock:
2294         rcu_read_unlock();
2295
2296         return ret;
2297 }
2298
2299 static void
2300 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2301 {
2302         long max_size = perf_data_size(data);
2303
2304         atomic_set(&data->lock, -1);
2305
2306         if (event->attr.watermark) {
2307                 data->watermark = min_t(long, max_size,
2308                                         event->attr.wakeup_watermark);
2309         }
2310
2311         if (!data->watermark)
2312                 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2313
2314
2315         rcu_assign_pointer(event->data, data);
2316 }
2317
2318 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2319 {
2320         struct perf_mmap_data *data;
2321
2322         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2323         perf_mmap_data_free(data);
2324 }
2325
2326 static void perf_mmap_data_release(struct perf_event *event)
2327 {
2328         struct perf_mmap_data *data = event->data;
2329
2330         WARN_ON(atomic_read(&event->mmap_count));
2331
2332         rcu_assign_pointer(event->data, NULL);
2333         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2334 }
2335
2336 static void perf_mmap_open(struct vm_area_struct *vma)
2337 {
2338         struct perf_event *event = vma->vm_file->private_data;
2339
2340         atomic_inc(&event->mmap_count);
2341 }
2342
2343 static void perf_mmap_close(struct vm_area_struct *vma)
2344 {
2345         struct perf_event *event = vma->vm_file->private_data;
2346
2347         WARN_ON_ONCE(event->ctx->parent_ctx);
2348         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2349                 unsigned long size = perf_data_size(event->data);
2350                 struct user_struct *user = current_user();
2351
2352                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2353                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2354                 perf_mmap_data_release(event);
2355                 mutex_unlock(&event->mmap_mutex);
2356         }
2357 }
2358
2359 static const struct vm_operations_struct perf_mmap_vmops = {
2360         .open           = perf_mmap_open,
2361         .close          = perf_mmap_close,
2362         .fault          = perf_mmap_fault,
2363         .page_mkwrite   = perf_mmap_fault,
2364 };
2365
2366 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2367 {
2368         struct perf_event *event = file->private_data;
2369         unsigned long user_locked, user_lock_limit;
2370         struct user_struct *user = current_user();
2371         unsigned long locked, lock_limit;
2372         struct perf_mmap_data *data;
2373         unsigned long vma_size;
2374         unsigned long nr_pages;
2375         long user_extra, extra;
2376         int ret = 0;
2377
2378         if (!(vma->vm_flags & VM_SHARED))
2379                 return -EINVAL;
2380
2381         vma_size = vma->vm_end - vma->vm_start;
2382         nr_pages = (vma_size / PAGE_SIZE) - 1;
2383
2384         /*
2385          * If we have data pages ensure they're a power-of-two number, so we
2386          * can do bitmasks instead of modulo.
2387          */
2388         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2389                 return -EINVAL;
2390
2391         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2392                 return -EINVAL;
2393
2394         if (vma->vm_pgoff != 0)
2395                 return -EINVAL;
2396
2397         WARN_ON_ONCE(event->ctx->parent_ctx);
2398         mutex_lock(&event->mmap_mutex);
2399         if (event->output) {
2400                 ret = -EINVAL;
2401                 goto unlock;
2402         }
2403
2404         if (atomic_inc_not_zero(&event->mmap_count)) {
2405                 if (nr_pages != event->data->nr_pages)
2406                         ret = -EINVAL;
2407                 goto unlock;
2408         }
2409
2410         user_extra = nr_pages + 1;
2411         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2412
2413         /*
2414          * Increase the limit linearly with more CPUs:
2415          */
2416         user_lock_limit *= num_online_cpus();
2417
2418         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2419
2420         extra = 0;
2421         if (user_locked > user_lock_limit)
2422                 extra = user_locked - user_lock_limit;
2423
2424         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2425         lock_limit >>= PAGE_SHIFT;
2426         locked = vma->vm_mm->locked_vm + extra;
2427
2428         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2429                 !capable(CAP_IPC_LOCK)) {
2430                 ret = -EPERM;
2431                 goto unlock;
2432         }
2433
2434         WARN_ON(event->data);
2435
2436         data = perf_mmap_data_alloc(event, nr_pages);
2437         ret = -ENOMEM;
2438         if (!data)
2439                 goto unlock;
2440
2441         ret = 0;
2442         perf_mmap_data_init(event, data);
2443
2444         atomic_set(&event->mmap_count, 1);
2445         atomic_long_add(user_extra, &user->locked_vm);
2446         vma->vm_mm->locked_vm += extra;
2447         event->data->nr_locked = extra;
2448         if (vma->vm_flags & VM_WRITE)
2449                 event->data->writable = 1;
2450
2451 unlock:
2452         mutex_unlock(&event->mmap_mutex);
2453
2454         vma->vm_flags |= VM_RESERVED;
2455         vma->vm_ops = &perf_mmap_vmops;
2456
2457         return ret;
2458 }
2459
2460 static int perf_fasync(int fd, struct file *filp, int on)
2461 {
2462         struct inode *inode = filp->f_path.dentry->d_inode;
2463         struct perf_event *event = filp->private_data;
2464         int retval;
2465
2466         mutex_lock(&inode->i_mutex);
2467         retval = fasync_helper(fd, filp, on, &event->fasync);
2468         mutex_unlock(&inode->i_mutex);
2469
2470         if (retval < 0)
2471                 return retval;
2472
2473         return 0;
2474 }
2475
2476 static const struct file_operations perf_fops = {
2477         .release                = perf_release,
2478         .read                   = perf_read,
2479         .poll                   = perf_poll,
2480         .unlocked_ioctl         = perf_ioctl,
2481         .compat_ioctl           = perf_ioctl,
2482         .mmap                   = perf_mmap,
2483         .fasync                 = perf_fasync,
2484 };
2485
2486 /*
2487  * Perf event wakeup
2488  *
2489  * If there's data, ensure we set the poll() state and publish everything
2490  * to user-space before waking everybody up.
2491  */
2492
2493 void perf_event_wakeup(struct perf_event *event)
2494 {
2495         wake_up_all(&event->waitq);
2496
2497         if (event->pending_kill) {
2498                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2499                 event->pending_kill = 0;
2500         }
2501 }
2502
2503 /*
2504  * Pending wakeups
2505  *
2506  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2507  *
2508  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2509  * single linked list and use cmpxchg() to add entries lockless.
2510  */
2511
2512 static void perf_pending_event(struct perf_pending_entry *entry)
2513 {
2514         struct perf_event *event = container_of(entry,
2515                         struct perf_event, pending);
2516
2517         if (event->pending_disable) {
2518                 event->pending_disable = 0;
2519                 __perf_event_disable(event);
2520         }
2521
2522         if (event->pending_wakeup) {
2523                 event->pending_wakeup = 0;
2524                 perf_event_wakeup(event);
2525         }
2526 }
2527
2528 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2529
2530 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2531         PENDING_TAIL,
2532 };
2533
2534 static void perf_pending_queue(struct perf_pending_entry *entry,
2535                                void (*func)(struct perf_pending_entry *))
2536 {
2537         struct perf_pending_entry **head;
2538
2539         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2540                 return;
2541
2542         entry->func = func;
2543
2544         head = &get_cpu_var(perf_pending_head);
2545
2546         do {
2547                 entry->next = *head;
2548         } while (cmpxchg(head, entry->next, entry) != entry->next);
2549
2550         set_perf_event_pending();
2551
2552         put_cpu_var(perf_pending_head);
2553 }
2554
2555 static int __perf_pending_run(void)
2556 {
2557         struct perf_pending_entry *list;
2558         int nr = 0;
2559
2560         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2561         while (list != PENDING_TAIL) {
2562                 void (*func)(struct perf_pending_entry *);
2563                 struct perf_pending_entry *entry = list;
2564
2565                 list = list->next;
2566
2567                 func = entry->func;
2568                 entry->next = NULL;
2569                 /*
2570                  * Ensure we observe the unqueue before we issue the wakeup,
2571                  * so that we won't be waiting forever.
2572                  * -- see perf_not_pending().
2573                  */
2574                 smp_wmb();
2575
2576                 func(entry);
2577                 nr++;
2578         }
2579
2580         return nr;
2581 }
2582
2583 static inline int perf_not_pending(struct perf_event *event)
2584 {
2585         /*
2586          * If we flush on whatever cpu we run, there is a chance we don't
2587          * need to wait.
2588          */
2589         get_cpu();
2590         __perf_pending_run();
2591         put_cpu();
2592
2593         /*
2594          * Ensure we see the proper queue state before going to sleep
2595          * so that we do not miss the wakeup. -- see perf_pending_handle()
2596          */
2597         smp_rmb();
2598         return event->pending.next == NULL;
2599 }
2600
2601 static void perf_pending_sync(struct perf_event *event)
2602 {
2603         wait_event(event->waitq, perf_not_pending(event));
2604 }
2605
2606 void perf_event_do_pending(void)
2607 {
2608         __perf_pending_run();
2609 }
2610
2611 /*
2612  * Callchain support -- arch specific
2613  */
2614
2615 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2616 {
2617         return NULL;
2618 }
2619
2620 /*
2621  * Output
2622  */
2623 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2624                               unsigned long offset, unsigned long head)
2625 {
2626         unsigned long mask;
2627
2628         if (!data->writable)
2629                 return true;
2630
2631         mask = perf_data_size(data) - 1;
2632
2633         offset = (offset - tail) & mask;
2634         head   = (head   - tail) & mask;
2635
2636         if ((int)(head - offset) < 0)
2637                 return false;
2638
2639         return true;
2640 }
2641
2642 static void perf_output_wakeup(struct perf_output_handle *handle)
2643 {
2644         atomic_set(&handle->data->poll, POLL_IN);
2645
2646         if (handle->nmi) {
2647                 handle->event->pending_wakeup = 1;
2648                 perf_pending_queue(&handle->event->pending,
2649                                    perf_pending_event);
2650         } else
2651                 perf_event_wakeup(handle->event);
2652 }
2653
2654 /*
2655  * Curious locking construct.
2656  *
2657  * We need to ensure a later event_id doesn't publish a head when a former
2658  * event_id isn't done writing. However since we need to deal with NMIs we
2659  * cannot fully serialize things.
2660  *
2661  * What we do is serialize between CPUs so we only have to deal with NMI
2662  * nesting on a single CPU.
2663  *
2664  * We only publish the head (and generate a wakeup) when the outer-most
2665  * event_id completes.
2666  */
2667 static void perf_output_lock(struct perf_output_handle *handle)
2668 {
2669         struct perf_mmap_data *data = handle->data;
2670         int cpu;
2671
2672         handle->locked = 0;
2673
2674         local_irq_save(handle->flags);
2675         cpu = smp_processor_id();
2676
2677         if (in_nmi() && atomic_read(&data->lock) == cpu)
2678                 return;
2679
2680         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2681                 cpu_relax();
2682
2683         handle->locked = 1;
2684 }
2685
2686 static void perf_output_unlock(struct perf_output_handle *handle)
2687 {
2688         struct perf_mmap_data *data = handle->data;
2689         unsigned long head;
2690         int cpu;
2691
2692         data->done_head = data->head;
2693
2694         if (!handle->locked)
2695                 goto out;
2696
2697 again:
2698         /*
2699          * The xchg implies a full barrier that ensures all writes are done
2700          * before we publish the new head, matched by a rmb() in userspace when
2701          * reading this position.
2702          */
2703         while ((head = atomic_long_xchg(&data->done_head, 0)))
2704                 data->user_page->data_head = head;
2705
2706         /*
2707          * NMI can happen here, which means we can miss a done_head update.
2708          */
2709
2710         cpu = atomic_xchg(&data->lock, -1);
2711         WARN_ON_ONCE(cpu != smp_processor_id());
2712
2713         /*
2714          * Therefore we have to validate we did not indeed do so.
2715          */
2716         if (unlikely(atomic_long_read(&data->done_head))) {
2717                 /*
2718                  * Since we had it locked, we can lock it again.
2719                  */
2720                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2721                         cpu_relax();
2722
2723                 goto again;
2724         }
2725
2726         if (atomic_xchg(&data->wakeup, 0))
2727                 perf_output_wakeup(handle);
2728 out:
2729         local_irq_restore(handle->flags);
2730 }
2731
2732 void perf_output_copy(struct perf_output_handle *handle,
2733                       const void *buf, unsigned int len)
2734 {
2735         unsigned int pages_mask;
2736         unsigned long offset;
2737         unsigned int size;
2738         void **pages;
2739
2740         offset          = handle->offset;
2741         pages_mask      = handle->data->nr_pages - 1;
2742         pages           = handle->data->data_pages;
2743
2744         do {
2745                 unsigned long page_offset;
2746                 unsigned long page_size;
2747                 int nr;
2748
2749                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2750                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2751                 page_offset = offset & (page_size - 1);
2752                 size        = min_t(unsigned int, page_size - page_offset, len);
2753
2754                 memcpy(pages[nr] + page_offset, buf, size);
2755
2756                 len         -= size;
2757                 buf         += size;
2758                 offset      += size;
2759         } while (len);
2760
2761         handle->offset = offset;
2762
2763         /*
2764          * Check we didn't copy past our reservation window, taking the
2765          * possible unsigned int wrap into account.
2766          */
2767         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2768 }
2769
2770 int perf_output_begin(struct perf_output_handle *handle,
2771                       struct perf_event *event, unsigned int size,
2772                       int nmi, int sample)
2773 {
2774         struct perf_event *output_event;
2775         struct perf_mmap_data *data;
2776         unsigned long tail, offset, head;
2777         int have_lost;
2778         struct {
2779                 struct perf_event_header header;
2780                 u64                      id;
2781                 u64                      lost;
2782         } lost_event;
2783
2784         rcu_read_lock();
2785         /*
2786          * For inherited events we send all the output towards the parent.
2787          */
2788         if (event->parent)
2789                 event = event->parent;
2790
2791         output_event = rcu_dereference(event->output);
2792         if (output_event)
2793                 event = output_event;
2794
2795         data = rcu_dereference(event->data);
2796         if (!data)
2797                 goto out;
2798
2799         handle->data    = data;
2800         handle->event   = event;
2801         handle->nmi     = nmi;
2802         handle->sample  = sample;
2803
2804         if (!data->nr_pages)
2805                 goto fail;
2806
2807         have_lost = atomic_read(&data->lost);
2808         if (have_lost)
2809                 size += sizeof(lost_event);
2810
2811         perf_output_lock(handle);
2812
2813         do {
2814                 /*
2815                  * Userspace could choose to issue a mb() before updating the
2816                  * tail pointer. So that all reads will be completed before the
2817                  * write is issued.
2818                  */
2819                 tail = ACCESS_ONCE(data->user_page->data_tail);
2820                 smp_rmb();
2821                 offset = head = atomic_long_read(&data->head);
2822                 head += size;
2823                 if (unlikely(!perf_output_space(data, tail, offset, head)))
2824                         goto fail;
2825         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2826
2827         handle->offset  = offset;
2828         handle->head    = head;
2829
2830         if (head - tail > data->watermark)
2831                 atomic_set(&data->wakeup, 1);
2832
2833         if (have_lost) {
2834                 lost_event.header.type = PERF_RECORD_LOST;
2835                 lost_event.header.misc = 0;
2836                 lost_event.header.size = sizeof(lost_event);
2837                 lost_event.id          = event->id;
2838                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2839
2840                 perf_output_put(handle, lost_event);
2841         }
2842
2843         return 0;
2844
2845 fail:
2846         atomic_inc(&data->lost);
2847         perf_output_unlock(handle);
2848 out:
2849         rcu_read_unlock();
2850
2851         return -ENOSPC;
2852 }
2853
2854 void perf_output_end(struct perf_output_handle *handle)
2855 {
2856         struct perf_event *event = handle->event;
2857         struct perf_mmap_data *data = handle->data;
2858
2859         int wakeup_events = event->attr.wakeup_events;
2860
2861         if (handle->sample && wakeup_events) {
2862                 int events = atomic_inc_return(&data->events);
2863                 if (events >= wakeup_events) {
2864                         atomic_sub(wakeup_events, &data->events);
2865                         atomic_set(&data->wakeup, 1);
2866                 }
2867         }
2868
2869         perf_output_unlock(handle);
2870         rcu_read_unlock();
2871 }
2872
2873 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2874 {
2875         /*
2876          * only top level events have the pid namespace they were created in
2877          */
2878         if (event->parent)
2879                 event = event->parent;
2880
2881         return task_tgid_nr_ns(p, event->ns);
2882 }
2883
2884 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2885 {
2886         /*
2887          * only top level events have the pid namespace they were created in
2888          */
2889         if (event->parent)
2890                 event = event->parent;
2891
2892         return task_pid_nr_ns(p, event->ns);
2893 }
2894
2895 static void perf_output_read_one(struct perf_output_handle *handle,
2896                                  struct perf_event *event)
2897 {
2898         u64 read_format = event->attr.read_format;
2899         u64 values[4];
2900         int n = 0;
2901
2902         values[n++] = atomic64_read(&event->count);
2903         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2904                 values[n++] = event->total_time_enabled +
2905                         atomic64_read(&event->child_total_time_enabled);
2906         }
2907         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2908                 values[n++] = event->total_time_running +
2909                         atomic64_read(&event->child_total_time_running);
2910         }
2911         if (read_format & PERF_FORMAT_ID)
2912                 values[n++] = primary_event_id(event);
2913
2914         perf_output_copy(handle, values, n * sizeof(u64));
2915 }
2916
2917 /*
2918  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2919  */
2920 static void perf_output_read_group(struct perf_output_handle *handle,
2921                             struct perf_event *event)
2922 {
2923         struct perf_event *leader = event->group_leader, *sub;
2924         u64 read_format = event->attr.read_format;
2925         u64 values[5];
2926         int n = 0;
2927
2928         values[n++] = 1 + leader->nr_siblings;
2929
2930         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2931                 values[n++] = leader->total_time_enabled;
2932
2933         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2934                 values[n++] = leader->total_time_running;
2935
2936         if (leader != event)
2937                 leader->pmu->read(leader);
2938
2939         values[n++] = atomic64_read(&leader->count);
2940         if (read_format & PERF_FORMAT_ID)
2941                 values[n++] = primary_event_id(leader);
2942
2943         perf_output_copy(handle, values, n * sizeof(u64));
2944
2945         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2946                 n = 0;
2947
2948                 if (sub != event)
2949                         sub->pmu->read(sub);
2950
2951                 values[n++] = atomic64_read(&sub->count);
2952                 if (read_format & PERF_FORMAT_ID)
2953                         values[n++] = primary_event_id(sub);
2954
2955                 perf_output_copy(handle, values, n * sizeof(u64));
2956         }
2957 }
2958
2959 static void perf_output_read(struct perf_output_handle *handle,
2960                              struct perf_event *event)
2961 {
2962         if (event->attr.read_format & PERF_FORMAT_GROUP)
2963                 perf_output_read_group(handle, event);
2964         else
2965                 perf_output_read_one(handle, event);
2966 }
2967
2968 void perf_output_sample(struct perf_output_handle *handle,
2969                         struct perf_event_header *header,
2970                         struct perf_sample_data *data,
2971                         struct perf_event *event)
2972 {
2973         u64 sample_type = data->type;
2974
2975         perf_output_put(handle, *header);
2976
2977         if (sample_type & PERF_SAMPLE_IP)
2978                 perf_output_put(handle, data->ip);
2979
2980         if (sample_type & PERF_SAMPLE_TID)
2981                 perf_output_put(handle, data->tid_entry);
2982
2983         if (sample_type & PERF_SAMPLE_TIME)
2984                 perf_output_put(handle, data->time);
2985
2986         if (sample_type & PERF_SAMPLE_ADDR)
2987                 perf_output_put(handle, data->addr);
2988
2989         if (sample_type & PERF_SAMPLE_ID)
2990                 perf_output_put(handle, data->id);
2991
2992         if (sample_type & PERF_SAMPLE_STREAM_ID)
2993                 perf_output_put(handle, data->stream_id);
2994
2995         if (sample_type & PERF_SAMPLE_CPU)
2996                 perf_output_put(handle, data->cpu_entry);
2997
2998         if (sample_type & PERF_SAMPLE_PERIOD)
2999                 perf_output_put(handle, data->period);
3000
3001         if (sample_type & PERF_SAMPLE_READ)
3002                 perf_output_read(handle, event);
3003
3004         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3005                 if (data->callchain) {
3006                         int size = 1;
3007
3008                         if (data->callchain)
3009                                 size += data->callchain->nr;
3010
3011                         size *= sizeof(u64);
3012
3013                         perf_output_copy(handle, data->callchain, size);
3014                 } else {
3015                         u64 nr = 0;
3016                         perf_output_put(handle, nr);
3017                 }
3018         }
3019
3020         if (sample_type & PERF_SAMPLE_RAW) {
3021                 if (data->raw) {
3022                         perf_output_put(handle, data->raw->size);
3023                         perf_output_copy(handle, data->raw->data,
3024                                          data->raw->size);
3025                 } else {
3026                         struct {
3027                                 u32     size;
3028                                 u32     data;
3029                         } raw = {
3030                                 .size = sizeof(u32),
3031                                 .data = 0,
3032                         };
3033                         perf_output_put(handle, raw);
3034                 }
3035         }
3036 }
3037
3038 void perf_prepare_sample(struct perf_event_header *header,
3039                          struct perf_sample_data *data,
3040                          struct perf_event *event,
3041                          struct pt_regs *regs)
3042 {
3043         u64 sample_type = event->attr.sample_type;
3044
3045         data->type = sample_type;
3046
3047         header->type = PERF_RECORD_SAMPLE;
3048         header->size = sizeof(*header);
3049
3050         header->misc = 0;
3051         header->misc |= perf_misc_flags(regs);
3052
3053         if (sample_type & PERF_SAMPLE_IP) {
3054                 data->ip = perf_instruction_pointer(regs);
3055
3056                 header->size += sizeof(data->ip);
3057         }
3058
3059         if (sample_type & PERF_SAMPLE_TID) {
3060                 /* namespace issues */
3061                 data->tid_entry.pid = perf_event_pid(event, current);
3062                 data->tid_entry.tid = perf_event_tid(event, current);
3063
3064                 header->size += sizeof(data->tid_entry);
3065         }
3066
3067         if (sample_type & PERF_SAMPLE_TIME) {
3068                 data->time = perf_clock();
3069
3070                 header->size += sizeof(data->time);
3071         }
3072
3073         if (sample_type & PERF_SAMPLE_ADDR)
3074                 header->size += sizeof(data->addr);
3075
3076         if (sample_type & PERF_SAMPLE_ID) {
3077                 data->id = primary_event_id(event);
3078
3079                 header->size += sizeof(data->id);
3080         }
3081
3082         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3083                 data->stream_id = event->id;
3084
3085                 header->size += sizeof(data->stream_id);
3086         }
3087
3088         if (sample_type & PERF_SAMPLE_CPU) {
3089                 data->cpu_entry.cpu             = raw_smp_processor_id();
3090                 data->cpu_entry.reserved        = 0;
3091
3092                 header->size += sizeof(data->cpu_entry);
3093         }
3094
3095         if (sample_type & PERF_SAMPLE_PERIOD)
3096                 header->size += sizeof(data->period);
3097
3098         if (sample_type & PERF_SAMPLE_READ)
3099                 header->size += perf_event_read_size(event);
3100
3101         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3102                 int size = 1;
3103
3104                 data->callchain = perf_callchain(regs);
3105
3106                 if (data->callchain)
3107                         size += data->callchain->nr;
3108
3109                 header->size += size * sizeof(u64);
3110         }
3111
3112         if (sample_type & PERF_SAMPLE_RAW) {
3113                 int size = sizeof(u32);
3114
3115                 if (data->raw)
3116                         size += data->raw->size;
3117                 else
3118                         size += sizeof(u32);
3119
3120                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3121                 header->size += size;
3122         }
3123 }
3124
3125 static void perf_event_output(struct perf_event *event, int nmi,
3126                                 struct perf_sample_data *data,
3127                                 struct pt_regs *regs)
3128 {
3129         struct perf_output_handle handle;
3130         struct perf_event_header header;
3131
3132         perf_prepare_sample(&header, data, event, regs);
3133
3134         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3135                 return;
3136
3137         perf_output_sample(&handle, &header, data, event);
3138
3139         perf_output_end(&handle);
3140 }
3141
3142 /*
3143  * read event_id
3144  */
3145
3146 struct perf_read_event {
3147         struct perf_event_header        header;
3148
3149         u32                             pid;
3150         u32                             tid;
3151 };
3152
3153 static void
3154 perf_event_read_event(struct perf_event *event,
3155                         struct task_struct *task)
3156 {
3157         struct perf_output_handle handle;
3158         struct perf_read_event read_event = {
3159                 .header = {
3160                         .type = PERF_RECORD_READ,
3161                         .misc = 0,
3162                         .size = sizeof(read_event) + perf_event_read_size(event),
3163                 },
3164                 .pid = perf_event_pid(event, task),
3165                 .tid = perf_event_tid(event, task),
3166         };
3167         int ret;
3168
3169         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3170         if (ret)
3171                 return;
3172
3173         perf_output_put(&handle, read_event);
3174         perf_output_read(&handle, event);
3175
3176         perf_output_end(&handle);
3177 }
3178
3179 /*
3180  * task tracking -- fork/exit
3181  *
3182  * enabled by: attr.comm | attr.mmap | attr.task
3183  */
3184
3185 struct perf_task_event {
3186         struct task_struct              *task;
3187         struct perf_event_context       *task_ctx;
3188
3189         struct {
3190                 struct perf_event_header        header;
3191
3192                 u32                             pid;
3193                 u32                             ppid;
3194                 u32                             tid;
3195                 u32                             ptid;
3196                 u64                             time;
3197         } event_id;
3198 };
3199
3200 static void perf_event_task_output(struct perf_event *event,
3201                                      struct perf_task_event *task_event)
3202 {
3203         struct perf_output_handle handle;
3204         int size;
3205         struct task_struct *task = task_event->task;
3206         int ret;
3207
3208         size  = task_event->event_id.header.size;
3209         ret = perf_output_begin(&handle, event, size, 0, 0);
3210
3211         if (ret)
3212                 return;
3213
3214         task_event->event_id.pid = perf_event_pid(event, task);
3215         task_event->event_id.ppid = perf_event_pid(event, current);
3216
3217         task_event->event_id.tid = perf_event_tid(event, task);
3218         task_event->event_id.ptid = perf_event_tid(event, current);
3219
3220         task_event->event_id.time = perf_clock();
3221
3222         perf_output_put(&handle, task_event->event_id);
3223
3224         perf_output_end(&handle);
3225 }
3226
3227 static int perf_event_task_match(struct perf_event *event)
3228 {
3229         if (event->attr.comm || event->attr.mmap || event->attr.task)
3230                 return 1;
3231
3232         return 0;
3233 }
3234
3235 static void perf_event_task_ctx(struct perf_event_context *ctx,
3236                                   struct perf_task_event *task_event)
3237 {
3238         struct perf_event *event;
3239
3240         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3241                 return;
3242
3243         rcu_read_lock();
3244         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3245                 if (perf_event_task_match(event))
3246                         perf_event_task_output(event, task_event);
3247         }
3248         rcu_read_unlock();
3249 }
3250
3251 static void perf_event_task_event(struct perf_task_event *task_event)
3252 {
3253         struct perf_cpu_context *cpuctx;
3254         struct perf_event_context *ctx = task_event->task_ctx;
3255
3256         cpuctx = &get_cpu_var(perf_cpu_context);
3257         perf_event_task_ctx(&cpuctx->ctx, task_event);
3258         put_cpu_var(perf_cpu_context);
3259
3260         rcu_read_lock();
3261         if (!ctx)
3262                 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3263         if (ctx)
3264                 perf_event_task_ctx(ctx, task_event);
3265         rcu_read_unlock();
3266 }
3267
3268 static void perf_event_task(struct task_struct *task,
3269                               struct perf_event_context *task_ctx,
3270                               int new)
3271 {
3272         struct perf_task_event task_event;
3273
3274         if (!atomic_read(&nr_comm_events) &&
3275             !atomic_read(&nr_mmap_events) &&
3276             !atomic_read(&nr_task_events))
3277                 return;
3278
3279         task_event = (struct perf_task_event){
3280                 .task     = task,
3281                 .task_ctx = task_ctx,
3282                 .event_id    = {
3283                         .header = {
3284                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3285                                 .misc = 0,
3286                                 .size = sizeof(task_event.event_id),
3287                         },
3288                         /* .pid  */
3289                         /* .ppid */
3290                         /* .tid  */
3291                         /* .ptid */
3292                 },
3293         };
3294
3295         perf_event_task_event(&task_event);
3296 }
3297
3298 void perf_event_fork(struct task_struct *task)
3299 {
3300         perf_event_task(task, NULL, 1);
3301 }
3302
3303 /*
3304  * comm tracking
3305  */
3306
3307 struct perf_comm_event {
3308         struct task_struct      *task;
3309         char                    *comm;
3310         int                     comm_size;
3311
3312         struct {
3313                 struct perf_event_header        header;
3314
3315                 u32                             pid;
3316                 u32                             tid;
3317         } event_id;
3318 };
3319
3320 static void perf_event_comm_output(struct perf_event *event,
3321                                      struct perf_comm_event *comm_event)
3322 {
3323         struct perf_output_handle handle;
3324         int size = comm_event->event_id.header.size;
3325         int ret = perf_output_begin(&handle, event, size, 0, 0);
3326
3327         if (ret)
3328                 return;
3329
3330         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3331         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3332
3333         perf_output_put(&handle, comm_event->event_id);
3334         perf_output_copy(&handle, comm_event->comm,
3335                                    comm_event->comm_size);
3336         perf_output_end(&handle);
3337 }
3338
3339 static int perf_event_comm_match(struct perf_event *event)
3340 {
3341         if (event->attr.comm)
3342                 return 1;
3343
3344         return 0;
3345 }
3346
3347 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3348                                   struct perf_comm_event *comm_event)
3349 {
3350         struct perf_event *event;
3351
3352         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3353                 return;
3354
3355         rcu_read_lock();
3356         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3357                 if (perf_event_comm_match(event))
3358                         perf_event_comm_output(event, comm_event);
3359         }
3360         rcu_read_unlock();
3361 }
3362
3363 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3364 {
3365         struct perf_cpu_context *cpuctx;
3366         struct perf_event_context *ctx;
3367         unsigned int size;
3368         char comm[TASK_COMM_LEN];
3369
3370         memset(comm, 0, sizeof(comm));
3371         strncpy(comm, comm_event->task->comm, sizeof(comm));
3372         size = ALIGN(strlen(comm)+1, sizeof(u64));
3373
3374         comm_event->comm = comm;
3375         comm_event->comm_size = size;
3376
3377         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3378
3379         cpuctx = &get_cpu_var(perf_cpu_context);
3380         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3381         put_cpu_var(perf_cpu_context);
3382
3383         rcu_read_lock();
3384         /*
3385          * doesn't really matter which of the child contexts the
3386          * events ends up in.
3387          */
3388         ctx = rcu_dereference(current->perf_event_ctxp);
3389         if (ctx)
3390                 perf_event_comm_ctx(ctx, comm_event);
3391         rcu_read_unlock();
3392 }
3393
3394 void perf_event_comm(struct task_struct *task)
3395 {
3396         struct perf_comm_event comm_event;
3397
3398         if (task->perf_event_ctxp)
3399                 perf_event_enable_on_exec(task);
3400
3401         if (!atomic_read(&nr_comm_events))
3402                 return;
3403
3404         comm_event = (struct perf_comm_event){
3405                 .task   = task,
3406                 /* .comm      */
3407                 /* .comm_size */
3408                 .event_id  = {
3409                         .header = {
3410                                 .type = PERF_RECORD_COMM,
3411                                 .misc = 0,
3412                                 /* .size */
3413                         },
3414                         /* .pid */
3415                         /* .tid */
3416                 },
3417         };
3418
3419         perf_event_comm_event(&comm_event);
3420 }
3421
3422 /*
3423  * mmap tracking
3424  */
3425
3426 struct perf_mmap_event {
3427         struct vm_area_struct   *vma;
3428
3429         const char              *file_name;
3430         int                     file_size;
3431
3432         struct {
3433                 struct perf_event_header        header;
3434
3435                 u32                             pid;
3436                 u32                             tid;
3437                 u64                             start;
3438                 u64                             len;
3439                 u64                             pgoff;
3440         } event_id;
3441 };
3442
3443 static void perf_event_mmap_output(struct perf_event *event,
3444                                      struct perf_mmap_event *mmap_event)
3445 {
3446         struct perf_output_handle handle;
3447         int size = mmap_event->event_id.header.size;
3448         int ret = perf_output_begin(&handle, event, size, 0, 0);
3449
3450         if (ret)
3451                 return;
3452
3453         mmap_event->event_id.pid = perf_event_pid(event, current);
3454         mmap_event->event_id.tid = perf_event_tid(event, current);
3455
3456         perf_output_put(&handle, mmap_event->event_id);
3457         perf_output_copy(&handle, mmap_event->file_name,
3458                                    mmap_event->file_size);
3459         perf_output_end(&handle);
3460 }
3461
3462 static int perf_event_mmap_match(struct perf_event *event,
3463                                    struct perf_mmap_event *mmap_event)
3464 {
3465         if (event->attr.mmap)
3466                 return 1;
3467
3468         return 0;
3469 }
3470
3471 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3472                                   struct perf_mmap_event *mmap_event)
3473 {
3474         struct perf_event *event;
3475
3476         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3477                 return;
3478
3479         rcu_read_lock();
3480         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3481                 if (perf_event_mmap_match(event, mmap_event))
3482                         perf_event_mmap_output(event, mmap_event);
3483         }
3484         rcu_read_unlock();
3485 }
3486
3487 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3488 {
3489         struct perf_cpu_context *cpuctx;
3490         struct perf_event_context *ctx;
3491         struct vm_area_struct *vma = mmap_event->vma;
3492         struct file *file = vma->vm_file;
3493         unsigned int size;
3494         char tmp[16];
3495         char *buf = NULL;
3496         const char *name;
3497
3498         memset(tmp, 0, sizeof(tmp));
3499
3500         if (file) {
3501                 /*
3502                  * d_path works from the end of the buffer backwards, so we
3503                  * need to add enough zero bytes after the string to handle
3504                  * the 64bit alignment we do later.
3505                  */
3506                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3507                 if (!buf) {
3508                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3509                         goto got_name;
3510                 }
3511                 name = d_path(&file->f_path, buf, PATH_MAX);
3512                 if (IS_ERR(name)) {
3513                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3514                         goto got_name;
3515                 }
3516         } else {
3517                 if (arch_vma_name(mmap_event->vma)) {
3518                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3519                                        sizeof(tmp));
3520                         goto got_name;
3521                 }
3522
3523                 if (!vma->vm_mm) {
3524                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3525                         goto got_name;
3526                 }
3527
3528                 name = strncpy(tmp, "//anon", sizeof(tmp));
3529                 goto got_name;
3530         }
3531
3532 got_name:
3533         size = ALIGN(strlen(name)+1, sizeof(u64));
3534
3535         mmap_event->file_name = name;
3536         mmap_event->file_size = size;
3537
3538         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3539
3540         cpuctx = &get_cpu_var(perf_cpu_context);
3541         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3542         put_cpu_var(perf_cpu_context);
3543
3544         rcu_read_lock();
3545         /*
3546          * doesn't really matter which of the child contexts the
3547          * events ends up in.
3548          */
3549         ctx = rcu_dereference(current->perf_event_ctxp);
3550         if (ctx)
3551                 perf_event_mmap_ctx(ctx, mmap_event);
3552         rcu_read_unlock();
3553
3554         kfree(buf);
3555 }
3556
3557 void __perf_event_mmap(struct vm_area_struct *vma)
3558 {
3559         struct perf_mmap_event mmap_event;
3560
3561         if (!atomic_read(&nr_mmap_events))
3562                 return;
3563
3564         mmap_event = (struct perf_mmap_event){
3565                 .vma    = vma,
3566                 /* .file_name */
3567                 /* .file_size */
3568                 .event_id  = {
3569                         .header = {
3570                                 .type = PERF_RECORD_MMAP,
3571                                 .misc = 0,
3572                                 /* .size */
3573                         },
3574                         /* .pid */
3575                         /* .tid */
3576                         .start  = vma->vm_start,
3577                         .len    = vma->vm_end - vma->vm_start,
3578                         .pgoff  = vma->vm_pgoff,
3579                 },
3580         };
3581
3582         perf_event_mmap_event(&mmap_event);
3583 }
3584
3585 /*
3586  * IRQ throttle logging
3587  */
3588
3589 static void perf_log_throttle(struct perf_event *event, int enable)
3590 {
3591         struct perf_output_handle handle;
3592         int ret;
3593
3594         struct {
3595                 struct perf_event_header        header;
3596                 u64                             time;
3597                 u64                             id;
3598                 u64                             stream_id;
3599         } throttle_event = {
3600                 .header = {
3601                         .type = PERF_RECORD_THROTTLE,
3602                         .misc = 0,
3603                         .size = sizeof(throttle_event),
3604                 },
3605                 .time           = perf_clock(),
3606                 .id             = primary_event_id(event),
3607                 .stream_id      = event->id,
3608         };
3609
3610         if (enable)
3611                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3612
3613         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3614         if (ret)
3615                 return;
3616
3617         perf_output_put(&handle, throttle_event);
3618         perf_output_end(&handle);
3619 }
3620
3621 /*
3622  * Generic event overflow handling, sampling.
3623  */
3624
3625 static int __perf_event_overflow(struct perf_event *event, int nmi,
3626                                    int throttle, struct perf_sample_data *data,
3627                                    struct pt_regs *regs)
3628 {
3629         int events = atomic_read(&event->event_limit);
3630         struct hw_perf_event *hwc = &event->hw;
3631         int ret = 0;
3632
3633         throttle = (throttle && event->pmu->unthrottle != NULL);
3634
3635         if (!throttle) {
3636                 hwc->interrupts++;
3637         } else {
3638                 if (hwc->interrupts != MAX_INTERRUPTS) {
3639                         hwc->interrupts++;
3640                         if (HZ * hwc->interrupts >
3641                                         (u64)sysctl_perf_event_sample_rate) {
3642                                 hwc->interrupts = MAX_INTERRUPTS;
3643                                 perf_log_throttle(event, 0);
3644                                 ret = 1;
3645                         }
3646                 } else {
3647                         /*
3648                          * Keep re-disabling events even though on the previous
3649                          * pass we disabled it - just in case we raced with a
3650                          * sched-in and the event got enabled again:
3651                          */
3652                         ret = 1;
3653                 }
3654         }
3655
3656         if (event->attr.freq) {
3657                 u64 now = perf_clock();
3658                 s64 delta = now - hwc->freq_stamp;
3659
3660                 hwc->freq_stamp = now;
3661
3662                 if (delta > 0 && delta < TICK_NSEC)
3663                         perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3664         }
3665
3666         /*
3667          * XXX event_limit might not quite work as expected on inherited
3668          * events
3669          */
3670
3671         event->pending_kill = POLL_IN;
3672         if (events && atomic_dec_and_test(&event->event_limit)) {
3673                 ret = 1;
3674                 event->pending_kill = POLL_HUP;
3675                 if (nmi) {
3676                         event->pending_disable = 1;
3677                         perf_pending_queue(&event->pending,
3678                                            perf_pending_event);
3679                 } else
3680                         perf_event_disable(event);
3681         }
3682
3683         perf_event_output(event, nmi, data, regs);
3684         return ret;
3685 }
3686
3687 int perf_event_overflow(struct perf_event *event, int nmi,
3688                           struct perf_sample_data *data,
3689                           struct pt_regs *regs)
3690 {
3691         return __perf_event_overflow(event, nmi, 1, data, regs);
3692 }
3693
3694 /*
3695  * Generic software event infrastructure
3696  */
3697
3698 /*
3699  * We directly increment event->count and keep a second value in
3700  * event->hw.period_left to count intervals. This period event
3701  * is kept in the range [-sample_period, 0] so that we can use the
3702  * sign as trigger.
3703  */
3704
3705 static u64 perf_swevent_set_period(struct perf_event *event)
3706 {
3707         struct hw_perf_event *hwc = &event->hw;
3708         u64 period = hwc->last_period;
3709         u64 nr, offset;
3710         s64 old, val;
3711
3712         hwc->last_period = hwc->sample_period;
3713
3714 again:
3715         old = val = atomic64_read(&hwc->period_left);
3716         if (val < 0)
3717                 return 0;
3718
3719         nr = div64_u64(period + val, period);
3720         offset = nr * period;
3721         val -= offset;
3722         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3723                 goto again;
3724
3725         return nr;
3726 }
3727
3728 static void perf_swevent_overflow(struct perf_event *event,
3729                                     int nmi, struct perf_sample_data *data,
3730                                     struct pt_regs *regs)
3731 {
3732         struct hw_perf_event *hwc = &event->hw;
3733         int throttle = 0;
3734         u64 overflow;
3735
3736         data->period = event->hw.last_period;
3737         overflow = perf_swevent_set_period(event);
3738
3739         if (hwc->interrupts == MAX_INTERRUPTS)
3740                 return;
3741
3742         for (; overflow; overflow--) {
3743                 if (__perf_event_overflow(event, nmi, throttle,
3744                                             data, regs)) {
3745                         /*
3746                          * We inhibit the overflow from happening when
3747                          * hwc->interrupts == MAX_INTERRUPTS.
3748                          */
3749                         break;
3750                 }
3751                 throttle = 1;
3752         }
3753 }
3754
3755 static void perf_swevent_unthrottle(struct perf_event *event)
3756 {
3757         /*
3758          * Nothing to do, we already reset hwc->interrupts.
3759          */
3760 }
3761
3762 static void perf_swevent_add(struct perf_event *event, u64 nr,
3763                                int nmi, struct perf_sample_data *data,
3764                                struct pt_regs *regs)
3765 {
3766         struct hw_perf_event *hwc = &event->hw;
3767
3768         atomic64_add(nr, &event->count);
3769
3770         if (!hwc->sample_period)
3771                 return;
3772
3773         if (!regs)
3774                 return;
3775
3776         if (!atomic64_add_negative(nr, &hwc->period_left))
3777                 perf_swevent_overflow(event, nmi, data, regs);
3778 }
3779
3780 static int perf_swevent_is_counting(struct perf_event *event)
3781 {
3782         /*
3783          * The event is active, we're good!
3784          */
3785         if (event->state == PERF_EVENT_STATE_ACTIVE)
3786                 return 1;
3787
3788         /*
3789          * The event is off/error, not counting.
3790          */
3791         if (event->state != PERF_EVENT_STATE_INACTIVE)
3792                 return 0;
3793
3794         /*
3795          * The event is inactive, if the context is active
3796          * we're part of a group that didn't make it on the 'pmu',
3797          * not counting.
3798          */
3799         if (event->ctx->is_active)
3800                 return 0;
3801
3802         /*
3803          * We're inactive and the context is too, this means the
3804          * task is scheduled out, we're counting events that happen
3805          * to us, like migration events.
3806          */
3807         return 1;
3808 }
3809
3810 static int perf_swevent_match(struct perf_event *event,
3811                                 enum perf_type_id type,
3812                                 u32 event_id, struct pt_regs *regs)
3813 {
3814         if (!perf_swevent_is_counting(event))
3815                 return 0;
3816
3817         if (event->attr.type != type)
3818                 return 0;
3819         if (event->attr.config != event_id)
3820                 return 0;
3821
3822         if (regs) {
3823                 if (event->attr.exclude_user && user_mode(regs))
3824                         return 0;
3825
3826                 if (event->attr.exclude_kernel && !user_mode(regs))
3827                         return 0;
3828         }
3829
3830         return 1;
3831 }
3832
3833 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3834                                      enum perf_type_id type,
3835                                      u32 event_id, u64 nr, int nmi,
3836                                      struct perf_sample_data *data,
3837                                      struct pt_regs *regs)
3838 {
3839         struct perf_event *event;
3840
3841         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3842                 return;
3843
3844         rcu_read_lock();
3845         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3846                 if (perf_swevent_match(event, type, event_id, regs))
3847                         perf_swevent_add(event, nr, nmi, data, regs);
3848         }
3849         rcu_read_unlock();
3850 }
3851
3852 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3853 {
3854         if (in_nmi())
3855                 return &cpuctx->recursion[3];
3856
3857         if (in_irq())
3858                 return &cpuctx->recursion[2];
3859
3860         if (in_softirq())
3861                 return &cpuctx->recursion[1];
3862
3863         return &cpuctx->recursion[0];
3864 }
3865
3866 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3867                                     u64 nr, int nmi,
3868                                     struct perf_sample_data *data,
3869                                     struct pt_regs *regs)
3870 {
3871         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3872         int *recursion = perf_swevent_recursion_context(cpuctx);
3873         struct perf_event_context *ctx;
3874
3875         if (*recursion)
3876                 goto out;
3877
3878         (*recursion)++;
3879         barrier();
3880
3881         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3882                                  nr, nmi, data, regs);
3883         rcu_read_lock();
3884         /*
3885          * doesn't really matter which of the child contexts the
3886          * events ends up in.
3887          */
3888         ctx = rcu_dereference(current->perf_event_ctxp);
3889         if (ctx)
3890                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3891         rcu_read_unlock();
3892
3893         barrier();
3894         (*recursion)--;
3895
3896 out:
3897         put_cpu_var(perf_cpu_context);
3898 }
3899
3900 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3901                             struct pt_regs *regs, u64 addr)
3902 {
3903         struct perf_sample_data data = {
3904                 .addr = addr,
3905         };
3906
3907         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3908                                 &data, regs);
3909 }
3910
3911 static void perf_swevent_read(struct perf_event *event)
3912 {
3913 }
3914
3915 static int perf_swevent_enable(struct perf_event *event)
3916 {
3917         struct hw_perf_event *hwc = &event->hw;
3918
3919         if (hwc->sample_period) {
3920                 hwc->last_period = hwc->sample_period;
3921                 perf_swevent_set_period(event);
3922         }
3923         return 0;
3924 }
3925
3926 static void perf_swevent_disable(struct perf_event *event)
3927 {
3928 }
3929
3930 static const struct pmu perf_ops_generic = {
3931         .enable         = perf_swevent_enable,
3932         .disable        = perf_swevent_disable,
3933         .read           = perf_swevent_read,
3934         .unthrottle     = perf_swevent_unthrottle,
3935 };
3936
3937 /*
3938  * hrtimer based swevent callback
3939  */
3940
3941 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3942 {
3943         enum hrtimer_restart ret = HRTIMER_RESTART;
3944         struct perf_sample_data data;
3945         struct pt_regs *regs;
3946         struct perf_event *event;
3947         u64 period;
3948
3949         event   = container_of(hrtimer, struct perf_event, hw.hrtimer);
3950         event->pmu->read(event);
3951
3952         data.addr = 0;
3953         data.period = event->hw.last_period;
3954         regs = get_irq_regs();
3955         /*
3956          * In case we exclude kernel IPs or are somehow not in interrupt
3957          * context, provide the next best thing, the user IP.
3958          */
3959         if ((event->attr.exclude_kernel || !regs) &&
3960                         !event->attr.exclude_user)
3961                 regs = task_pt_regs(current);
3962
3963         if (regs) {
3964                 if (!(event->attr.exclude_idle && current->pid == 0))
3965                         if (perf_event_overflow(event, 0, &data, regs))
3966                                 ret = HRTIMER_NORESTART;
3967         }
3968
3969         period = max_t(u64, 10000, event->hw.sample_period);
3970         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3971
3972         return ret;
3973 }
3974
3975 static void perf_swevent_start_hrtimer(struct perf_event *event)
3976 {
3977         struct hw_perf_event *hwc = &event->hw;
3978
3979         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3980         hwc->hrtimer.function = perf_swevent_hrtimer;
3981         if (hwc->sample_period) {
3982                 u64 period;
3983
3984                 if (hwc->remaining) {
3985                         if (hwc->remaining < 0)
3986                                 period = 10000;
3987                         else
3988                                 period = hwc->remaining;
3989                         hwc->remaining = 0;
3990                 } else {
3991                         period = max_t(u64, 10000, hwc->sample_period);
3992                 }
3993                 __hrtimer_start_range_ns(&hwc->hrtimer,
3994                                 ns_to_ktime(period), 0,
3995                                 HRTIMER_MODE_REL, 0);
3996         }
3997 }
3998
3999 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4000 {
4001         struct hw_perf_event *hwc = &event->hw;
4002
4003         if (hwc->sample_period) {
4004                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4005                 hwc->remaining = ktime_to_ns(remaining);
4006
4007                 hrtimer_cancel(&hwc->hrtimer);
4008         }
4009 }
4010
4011 /*
4012  * Software event: cpu wall time clock
4013  */
4014
4015 static void cpu_clock_perf_event_update(struct perf_event *event)
4016 {
4017         int cpu = raw_smp_processor_id();
4018         s64 prev;
4019         u64 now;
4020
4021         now = cpu_clock(cpu);
4022         prev = atomic64_read(&event->hw.prev_count);
4023         atomic64_set(&event->hw.prev_count, now);
4024         atomic64_add(now - prev, &event->count);
4025 }
4026
4027 static int cpu_clock_perf_event_enable(struct perf_event *event)
4028 {
4029         struct hw_perf_event *hwc = &event->hw;
4030         int cpu = raw_smp_processor_id();
4031
4032         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4033         perf_swevent_start_hrtimer(event);
4034
4035         return 0;
4036 }
4037
4038 static void cpu_clock_perf_event_disable(struct perf_event *event)
4039 {
4040         perf_swevent_cancel_hrtimer(event);
4041         cpu_clock_perf_event_update(event);
4042 }
4043
4044 static void cpu_clock_perf_event_read(struct perf_event *event)
4045 {
4046         cpu_clock_perf_event_update(event);
4047 }
4048
4049 static const struct pmu perf_ops_cpu_clock = {
4050         .enable         = cpu_clock_perf_event_enable,
4051         .disable        = cpu_clock_perf_event_disable,
4052         .read           = cpu_clock_perf_event_read,
4053 };
4054
4055 /*
4056  * Software event: task time clock
4057  */
4058
4059 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4060 {
4061         u64 prev;
4062         s64 delta;
4063
4064         prev = atomic64_xchg(&event->hw.prev_count, now);
4065         delta = now - prev;
4066         atomic64_add(delta, &event->count);
4067 }
4068
4069 static int task_clock_perf_event_enable(struct perf_event *event)
4070 {
4071         struct hw_perf_event *hwc = &event->hw;
4072         u64 now;
4073
4074         now = event->ctx->time;
4075
4076         atomic64_set(&hwc->prev_count, now);
4077
4078         perf_swevent_start_hrtimer(event);
4079
4080         return 0;
4081 }
4082
4083 static void task_clock_perf_event_disable(struct perf_event *event)
4084 {
4085         perf_swevent_cancel_hrtimer(event);
4086         task_clock_perf_event_update(event, event->ctx->time);
4087
4088 }
4089
4090 static void task_clock_perf_event_read(struct perf_event *event)
4091 {
4092         u64 time;
4093
4094         if (!in_nmi()) {
4095                 update_context_time(event->ctx);
4096                 time = event->ctx->time;
4097         } else {
4098                 u64 now = perf_clock();
4099                 u64 delta = now - event->ctx->timestamp;
4100                 time = event->ctx->time + delta;
4101         }
4102
4103         task_clock_perf_event_update(event, time);
4104 }
4105
4106 static const struct pmu perf_ops_task_clock = {
4107         .enable         = task_clock_perf_event_enable,
4108         .disable        = task_clock_perf_event_disable,
4109         .read           = task_clock_perf_event_read,
4110 };
4111
4112 #ifdef CONFIG_EVENT_PROFILE
4113 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4114                           int entry_size)
4115 {
4116         struct perf_raw_record raw = {
4117                 .size = entry_size,
4118                 .data = record,
4119         };
4120
4121         struct perf_sample_data data = {
4122                 .addr = addr,
4123                 .raw = &raw,
4124         };
4125
4126         struct pt_regs *regs = get_irq_regs();
4127
4128         if (!regs)
4129                 regs = task_pt_regs(current);
4130
4131         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4132                                 &data, regs);
4133 }
4134 EXPORT_SYMBOL_GPL(perf_tp_event);
4135
4136 extern int ftrace_profile_enable(int);
4137 extern void ftrace_profile_disable(int);
4138
4139 static void tp_perf_event_destroy(struct perf_event *event)
4140 {
4141         ftrace_profile_disable(event->attr.config);
4142 }
4143
4144 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4145 {
4146         /*
4147          * Raw tracepoint data is a severe data leak, only allow root to
4148          * have these.
4149          */
4150         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4151                         perf_paranoid_tracepoint_raw() &&
4152                         !capable(CAP_SYS_ADMIN))
4153                 return ERR_PTR(-EPERM);
4154
4155         if (ftrace_profile_enable(event->attr.config))
4156                 return NULL;
4157
4158         event->destroy = tp_perf_event_destroy;
4159
4160         return &perf_ops_generic;
4161 }
4162 #else
4163 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4164 {
4165         return NULL;
4166 }
4167 #endif
4168
4169 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4170
4171 static void sw_perf_event_destroy(struct perf_event *event)
4172 {
4173         u64 event_id = event->attr.config;
4174
4175         WARN_ON(event->parent);
4176
4177         atomic_dec(&perf_swevent_enabled[event_id]);
4178 }
4179
4180 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4181 {
4182         const struct pmu *pmu = NULL;
4183         u64 event_id = event->attr.config;
4184
4185         /*
4186          * Software events (currently) can't in general distinguish
4187          * between user, kernel and hypervisor events.
4188          * However, context switches and cpu migrations are considered
4189          * to be kernel events, and page faults are never hypervisor
4190          * events.
4191          */
4192         switch (event_id) {
4193         case PERF_COUNT_SW_CPU_CLOCK:
4194                 pmu = &perf_ops_cpu_clock;
4195
4196                 break;
4197         case PERF_COUNT_SW_TASK_CLOCK:
4198                 /*
4199                  * If the user instantiates this as a per-cpu event,
4200                  * use the cpu_clock event instead.
4201                  */
4202                 if (event->ctx->task)
4203                         pmu = &perf_ops_task_clock;
4204                 else
4205                         pmu = &perf_ops_cpu_clock;
4206
4207                 break;
4208         case PERF_COUNT_SW_PAGE_FAULTS:
4209         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4210         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4211         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4212         case PERF_COUNT_SW_CPU_MIGRATIONS:
4213                 if (!event->parent) {
4214                         atomic_inc(&perf_swevent_enabled[event_id]);
4215                         event->destroy = sw_perf_event_destroy;
4216                 }
4217                 pmu = &perf_ops_generic;
4218                 break;
4219         }
4220
4221         return pmu;
4222 }
4223
4224 /*
4225  * Allocate and initialize a event structure
4226  */
4227 static struct perf_event *
4228 perf_event_alloc(struct perf_event_attr *attr,
4229                    int cpu,
4230                    struct perf_event_context *ctx,
4231                    struct perf_event *group_leader,
4232                    struct perf_event *parent_event,
4233                    gfp_t gfpflags)
4234 {
4235         const struct pmu *pmu;
4236         struct perf_event *event;
4237         struct hw_perf_event *hwc;
4238         long err;
4239
4240         event = kzalloc(sizeof(*event), gfpflags);
4241         if (!event)
4242                 return ERR_PTR(-ENOMEM);
4243
4244         /*
4245          * Single events are their own group leaders, with an
4246          * empty sibling list:
4247          */
4248         if (!group_leader)
4249                 group_leader = event;
4250
4251         mutex_init(&event->child_mutex);
4252         INIT_LIST_HEAD(&event->child_list);
4253
4254         INIT_LIST_HEAD(&event->group_entry);
4255         INIT_LIST_HEAD(&event->event_entry);
4256         INIT_LIST_HEAD(&event->sibling_list);
4257         init_waitqueue_head(&event->waitq);
4258
4259         mutex_init(&event->mmap_mutex);
4260
4261         event->cpu              = cpu;
4262         event->attr             = *attr;
4263         event->group_leader     = group_leader;
4264         event->pmu              = NULL;
4265         event->ctx              = ctx;
4266         event->oncpu            = -1;
4267
4268         event->parent           = parent_event;
4269
4270         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4271         event->id               = atomic64_inc_return(&perf_event_id);
4272
4273         event->state            = PERF_EVENT_STATE_INACTIVE;
4274
4275         if (attr->disabled)
4276                 event->state = PERF_EVENT_STATE_OFF;
4277
4278         pmu = NULL;
4279
4280         hwc = &event->hw;
4281         hwc->sample_period = attr->sample_period;
4282         if (attr->freq && attr->sample_freq)
4283                 hwc->sample_period = 1;
4284         hwc->last_period = hwc->sample_period;
4285
4286         atomic64_set(&hwc->period_left, hwc->sample_period);
4287
4288         /*
4289          * we currently do not support PERF_FORMAT_GROUP on inherited events
4290          */
4291         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4292                 goto done;
4293
4294         switch (attr->type) {
4295         case PERF_TYPE_RAW:
4296         case PERF_TYPE_HARDWARE:
4297         case PERF_TYPE_HW_CACHE:
4298                 pmu = hw_perf_event_init(event);
4299                 break;
4300
4301         case PERF_TYPE_SOFTWARE:
4302                 pmu = sw_perf_event_init(event);
4303                 break;
4304
4305         case PERF_TYPE_TRACEPOINT:
4306                 pmu = tp_perf_event_init(event);
4307                 break;
4308
4309         default:
4310                 break;
4311         }
4312 done:
4313         err = 0;
4314         if (!pmu)
4315                 err = -EINVAL;
4316         else if (IS_ERR(pmu))
4317                 err = PTR_ERR(pmu);
4318
4319         if (err) {
4320                 if (event->ns)
4321                         put_pid_ns(event->ns);
4322                 kfree(event);
4323                 return ERR_PTR(err);
4324         }
4325
4326         event->pmu = pmu;
4327
4328         if (!event->parent) {
4329                 atomic_inc(&nr_events);
4330                 if (event->attr.mmap)
4331                         atomic_inc(&nr_mmap_events);
4332                 if (event->attr.comm)
4333                         atomic_inc(&nr_comm_events);
4334                 if (event->attr.task)
4335                         atomic_inc(&nr_task_events);
4336         }
4337
4338         return event;
4339 }
4340
4341 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4342                           struct perf_event_attr *attr)
4343 {
4344         u32 size;
4345         int ret;
4346
4347         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4348                 return -EFAULT;
4349
4350         /*
4351          * zero the full structure, so that a short copy will be nice.
4352          */
4353         memset(attr, 0, sizeof(*attr));
4354
4355         ret = get_user(size, &uattr->size);
4356         if (ret)
4357                 return ret;
4358
4359         if (size > PAGE_SIZE)   /* silly large */
4360                 goto err_size;
4361
4362         if (!size)              /* abi compat */
4363                 size = PERF_ATTR_SIZE_VER0;
4364
4365         if (size < PERF_ATTR_SIZE_VER0)
4366                 goto err_size;
4367
4368         /*
4369          * If we're handed a bigger struct than we know of,
4370          * ensure all the unknown bits are 0 - i.e. new
4371          * user-space does not rely on any kernel feature
4372          * extensions we dont know about yet.
4373          */
4374         if (size > sizeof(*attr)) {
4375                 unsigned char __user *addr;
4376                 unsigned char __user *end;
4377                 unsigned char val;
4378
4379                 addr = (void __user *)uattr + sizeof(*attr);
4380                 end  = (void __user *)uattr + size;
4381
4382                 for (; addr < end; addr++) {
4383                         ret = get_user(val, addr);
4384                         if (ret)
4385                                 return ret;
4386                         if (val)
4387                                 goto err_size;
4388                 }
4389                 size = sizeof(*attr);
4390         }
4391
4392         ret = copy_from_user(attr, uattr, size);
4393         if (ret)
4394                 return -EFAULT;
4395
4396         /*
4397          * If the type exists, the corresponding creation will verify
4398          * the attr->config.
4399          */
4400         if (attr->type >= PERF_TYPE_MAX)
4401                 return -EINVAL;
4402
4403         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4404                 return -EINVAL;
4405
4406         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4407                 return -EINVAL;
4408
4409         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4410                 return -EINVAL;
4411
4412 out:
4413         return ret;
4414
4415 err_size:
4416         put_user(sizeof(*attr), &uattr->size);
4417         ret = -E2BIG;
4418         goto out;
4419 }
4420
4421 int perf_event_set_output(struct perf_event *event, int output_fd)
4422 {
4423         struct perf_event *output_event = NULL;
4424         struct file *output_file = NULL;
4425         struct perf_event *old_output;
4426         int fput_needed = 0;
4427         int ret = -EINVAL;
4428
4429         if (!output_fd)
4430                 goto set;
4431
4432         output_file = fget_light(output_fd, &fput_needed);
4433         if (!output_file)
4434                 return -EBADF;
4435
4436         if (output_file->f_op != &perf_fops)
4437                 goto out;
4438
4439         output_event = output_file->private_data;
4440
4441         /* Don't chain output fds */
4442         if (output_event->output)
4443                 goto out;
4444
4445         /* Don't set an output fd when we already have an output channel */
4446         if (event->data)
4447                 goto out;
4448
4449         atomic_long_inc(&output_file->f_count);
4450
4451 set:
4452         mutex_lock(&event->mmap_mutex);
4453         old_output = event->output;
4454         rcu_assign_pointer(event->output, output_event);
4455         mutex_unlock(&event->mmap_mutex);
4456
4457         if (old_output) {
4458                 /*
4459                  * we need to make sure no existing perf_output_*()
4460                  * is still referencing this event.
4461                  */
4462                 synchronize_rcu();
4463                 fput(old_output->filp);
4464         }
4465
4466         ret = 0;
4467 out:
4468         fput_light(output_file, fput_needed);
4469         return ret;
4470 }
4471
4472 /**
4473  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4474  *
4475  * @attr_uptr:  event_id type attributes for monitoring/sampling
4476  * @pid:                target pid
4477  * @cpu:                target cpu
4478  * @group_fd:           group leader event fd
4479  */
4480 SYSCALL_DEFINE5(perf_event_open,
4481                 struct perf_event_attr __user *, attr_uptr,
4482                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4483 {
4484         struct perf_event *event, *group_leader;
4485         struct perf_event_attr attr;
4486         struct perf_event_context *ctx;
4487         struct file *event_file = NULL;
4488         struct file *group_file = NULL;
4489         int fput_needed = 0;
4490         int fput_needed2 = 0;
4491         int err;
4492
4493         /* for future expandability... */
4494         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4495                 return -EINVAL;
4496
4497         err = perf_copy_attr(attr_uptr, &attr);
4498         if (err)
4499                 return err;
4500
4501         if (!attr.exclude_kernel) {
4502                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4503                         return -EACCES;
4504         }
4505
4506         if (attr.freq) {
4507                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4508                         return -EINVAL;
4509         }
4510
4511         /*
4512          * Get the target context (task or percpu):
4513          */
4514         ctx = find_get_context(pid, cpu);
4515         if (IS_ERR(ctx))
4516                 return PTR_ERR(ctx);
4517
4518         /*
4519          * Look up the group leader (we will attach this event to it):
4520          */
4521         group_leader = NULL;
4522         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4523                 err = -EINVAL;
4524                 group_file = fget_light(group_fd, &fput_needed);
4525                 if (!group_file)
4526                         goto err_put_context;
4527                 if (group_file->f_op != &perf_fops)
4528                         goto err_put_context;
4529
4530                 group_leader = group_file->private_data;
4531                 /*
4532                  * Do not allow a recursive hierarchy (this new sibling
4533                  * becoming part of another group-sibling):
4534                  */
4535                 if (group_leader->group_leader != group_leader)
4536                         goto err_put_context;
4537                 /*
4538                  * Do not allow to attach to a group in a different
4539                  * task or CPU context:
4540                  */
4541                 if (group_leader->ctx != ctx)
4542                         goto err_put_context;
4543                 /*
4544                  * Only a group leader can be exclusive or pinned
4545                  */
4546                 if (attr.exclusive || attr.pinned)
4547                         goto err_put_context;
4548         }
4549
4550         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4551                                      NULL, GFP_KERNEL);
4552         err = PTR_ERR(event);
4553         if (IS_ERR(event))
4554                 goto err_put_context;
4555
4556         err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4557         if (err < 0)
4558                 goto err_free_put_context;
4559
4560         event_file = fget_light(err, &fput_needed2);
4561         if (!event_file)
4562                 goto err_free_put_context;
4563
4564         if (flags & PERF_FLAG_FD_OUTPUT) {
4565                 err = perf_event_set_output(event, group_fd);
4566                 if (err)
4567                         goto err_fput_free_put_context;
4568         }
4569
4570         event->filp = event_file;
4571         WARN_ON_ONCE(ctx->parent_ctx);
4572         mutex_lock(&ctx->mutex);
4573         perf_install_in_context(ctx, event, cpu);
4574         ++ctx->generation;
4575         mutex_unlock(&ctx->mutex);
4576
4577         event->owner = current;
4578         get_task_struct(current);
4579         mutex_lock(&current->perf_event_mutex);
4580         list_add_tail(&event->owner_entry, &current->perf_event_list);
4581         mutex_unlock(&current->perf_event_mutex);
4582
4583 err_fput_free_put_context:
4584         fput_light(event_file, fput_needed2);
4585
4586 err_free_put_context:
4587         if (err < 0)
4588                 kfree(event);
4589
4590 err_put_context:
4591         if (err < 0)
4592                 put_ctx(ctx);
4593
4594         fput_light(group_file, fput_needed);
4595
4596         return err;
4597 }
4598
4599 /*
4600  * inherit a event from parent task to child task:
4601  */
4602 static struct perf_event *
4603 inherit_event(struct perf_event *parent_event,
4604               struct task_struct *parent,
4605               struct perf_event_context *parent_ctx,
4606               struct task_struct *child,
4607               struct perf_event *group_leader,
4608               struct perf_event_context *child_ctx)
4609 {
4610         struct perf_event *child_event;
4611
4612         /*
4613          * Instead of creating recursive hierarchies of events,
4614          * we link inherited events back to the original parent,
4615          * which has a filp for sure, which we use as the reference
4616          * count:
4617          */
4618         if (parent_event->parent)
4619                 parent_event = parent_event->parent;
4620
4621         child_event = perf_event_alloc(&parent_event->attr,
4622                                            parent_event->cpu, child_ctx,
4623                                            group_leader, parent_event,
4624                                            GFP_KERNEL);
4625         if (IS_ERR(child_event))
4626                 return child_event;
4627         get_ctx(child_ctx);
4628
4629         /*
4630          * Make the child state follow the state of the parent event,
4631          * not its attr.disabled bit.  We hold the parent's mutex,
4632          * so we won't race with perf_event_{en, dis}able_family.
4633          */
4634         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4635                 child_event->state = PERF_EVENT_STATE_INACTIVE;
4636         else
4637                 child_event->state = PERF_EVENT_STATE_OFF;
4638
4639         if (parent_event->attr.freq)
4640                 child_event->hw.sample_period = parent_event->hw.sample_period;
4641
4642         /*
4643          * Link it up in the child's context:
4644          */
4645         add_event_to_ctx(child_event, child_ctx);
4646
4647         /*
4648          * Get a reference to the parent filp - we will fput it
4649          * when the child event exits. This is safe to do because
4650          * we are in the parent and we know that the filp still
4651          * exists and has a nonzero count:
4652          */
4653         atomic_long_inc(&parent_event->filp->f_count);
4654
4655         /*
4656          * Link this into the parent event's child list
4657          */
4658         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4659         mutex_lock(&parent_event->child_mutex);
4660         list_add_tail(&child_event->child_list, &parent_event->child_list);
4661         mutex_unlock(&parent_event->child_mutex);
4662
4663         return child_event;
4664 }
4665
4666 static int inherit_group(struct perf_event *parent_event,
4667               struct task_struct *parent,
4668               struct perf_event_context *parent_ctx,
4669               struct task_struct *child,
4670               struct perf_event_context *child_ctx)
4671 {
4672         struct perf_event *leader;
4673         struct perf_event *sub;
4674         struct perf_event *child_ctr;
4675
4676         leader = inherit_event(parent_event, parent, parent_ctx,
4677                                  child, NULL, child_ctx);
4678         if (IS_ERR(leader))
4679                 return PTR_ERR(leader);
4680         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4681                 child_ctr = inherit_event(sub, parent, parent_ctx,
4682                                             child, leader, child_ctx);
4683                 if (IS_ERR(child_ctr))
4684                         return PTR_ERR(child_ctr);
4685         }
4686         return 0;
4687 }
4688
4689 static void sync_child_event(struct perf_event *child_event,
4690                                struct task_struct *child)
4691 {
4692         struct perf_event *parent_event = child_event->parent;
4693         u64 child_val;
4694
4695         if (child_event->attr.inherit_stat)
4696                 perf_event_read_event(child_event, child);
4697
4698         child_val = atomic64_read(&child_event->count);
4699
4700         /*
4701          * Add back the child's count to the parent's count:
4702          */
4703         atomic64_add(child_val, &parent_event->count);
4704         atomic64_add(child_event->total_time_enabled,
4705                      &parent_event->child_total_time_enabled);
4706         atomic64_add(child_event->total_time_running,
4707                      &parent_event->child_total_time_running);
4708
4709         /*
4710          * Remove this event from the parent's list
4711          */
4712         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4713         mutex_lock(&parent_event->child_mutex);
4714         list_del_init(&child_event->child_list);
4715         mutex_unlock(&parent_event->child_mutex);
4716
4717         /*
4718          * Release the parent event, if this was the last
4719          * reference to it.
4720          */
4721         fput(parent_event->filp);
4722 }
4723
4724 static void
4725 __perf_event_exit_task(struct perf_event *child_event,
4726                          struct perf_event_context *child_ctx,
4727                          struct task_struct *child)
4728 {
4729         struct perf_event *parent_event;
4730
4731         update_event_times(child_event);
4732         perf_event_remove_from_context(child_event);
4733
4734         parent_event = child_event->parent;
4735         /*
4736          * It can happen that parent exits first, and has events
4737          * that are still around due to the child reference. These
4738          * events need to be zapped - but otherwise linger.
4739          */
4740         if (parent_event) {
4741                 sync_child_event(child_event, child);
4742                 free_event(child_event);
4743         }
4744 }
4745
4746 /*
4747  * When a child task exits, feed back event values to parent events.
4748  */
4749 void perf_event_exit_task(struct task_struct *child)
4750 {
4751         struct perf_event *child_event, *tmp;
4752         struct perf_event_context *child_ctx;
4753         unsigned long flags;
4754
4755         if (likely(!child->perf_event_ctxp)) {
4756                 perf_event_task(child, NULL, 0);
4757                 return;
4758         }
4759
4760         local_irq_save(flags);
4761         /*
4762          * We can't reschedule here because interrupts are disabled,
4763          * and either child is current or it is a task that can't be
4764          * scheduled, so we are now safe from rescheduling changing
4765          * our context.
4766          */
4767         child_ctx = child->perf_event_ctxp;
4768         __perf_event_task_sched_out(child_ctx);
4769
4770         /*
4771          * Take the context lock here so that if find_get_context is
4772          * reading child->perf_event_ctxp, we wait until it has
4773          * incremented the context's refcount before we do put_ctx below.
4774          */
4775         spin_lock(&child_ctx->lock);
4776         child->perf_event_ctxp = NULL;
4777         /*
4778          * If this context is a clone; unclone it so it can't get
4779          * swapped to another process while we're removing all
4780          * the events from it.
4781          */
4782         unclone_ctx(child_ctx);
4783         spin_unlock_irqrestore(&child_ctx->lock, flags);
4784
4785         /*
4786          * Report the task dead after unscheduling the events so that we
4787          * won't get any samples after PERF_RECORD_EXIT. We can however still
4788          * get a few PERF_RECORD_READ events.
4789          */
4790         perf_event_task(child, child_ctx, 0);
4791
4792         /*
4793          * We can recurse on the same lock type through:
4794          *
4795          *   __perf_event_exit_task()
4796          *     sync_child_event()
4797          *       fput(parent_event->filp)
4798          *         perf_release()
4799          *           mutex_lock(&ctx->mutex)
4800          *
4801          * But since its the parent context it won't be the same instance.
4802          */
4803         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4804
4805 again:
4806         list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4807                                  group_entry)
4808                 __perf_event_exit_task(child_event, child_ctx, child);
4809
4810         /*
4811          * If the last event was a group event, it will have appended all
4812          * its siblings to the list, but we obtained 'tmp' before that which
4813          * will still point to the list head terminating the iteration.
4814          */
4815         if (!list_empty(&child_ctx->group_list))
4816                 goto again;
4817
4818         mutex_unlock(&child_ctx->mutex);
4819
4820         put_ctx(child_ctx);
4821 }
4822
4823 /*
4824  * free an unexposed, unused context as created by inheritance by
4825  * init_task below, used by fork() in case of fail.
4826  */
4827 void perf_event_free_task(struct task_struct *task)
4828 {
4829         struct perf_event_context *ctx = task->perf_event_ctxp;
4830         struct perf_event *event, *tmp;
4831
4832         if (!ctx)
4833                 return;
4834
4835         mutex_lock(&ctx->mutex);
4836 again:
4837         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4838                 struct perf_event *parent = event->parent;
4839
4840                 if (WARN_ON_ONCE(!parent))
4841                         continue;
4842
4843                 mutex_lock(&parent->child_mutex);
4844                 list_del_init(&event->child_list);
4845                 mutex_unlock(&parent->child_mutex);
4846
4847                 fput(parent->filp);
4848
4849                 list_del_event(event, ctx);
4850                 free_event(event);
4851         }
4852
4853         if (!list_empty(&ctx->group_list))
4854                 goto again;
4855
4856         mutex_unlock(&ctx->mutex);
4857
4858         put_ctx(ctx);
4859 }
4860
4861 /*
4862  * Initialize the perf_event context in task_struct
4863  */
4864 int perf_event_init_task(struct task_struct *child)
4865 {
4866         struct perf_event_context *child_ctx, *parent_ctx;
4867         struct perf_event_context *cloned_ctx;
4868         struct perf_event *event;
4869         struct task_struct *parent = current;
4870         int inherited_all = 1;
4871         int ret = 0;
4872
4873         child->perf_event_ctxp = NULL;
4874
4875         mutex_init(&child->perf_event_mutex);
4876         INIT_LIST_HEAD(&child->perf_event_list);
4877
4878         if (likely(!parent->perf_event_ctxp))
4879                 return 0;
4880
4881         /*
4882          * This is executed from the parent task context, so inherit
4883          * events that have been marked for cloning.
4884          * First allocate and initialize a context for the child.
4885          */
4886
4887         child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4888         if (!child_ctx)
4889                 return -ENOMEM;
4890
4891         __perf_event_init_context(child_ctx, child);
4892         child->perf_event_ctxp = child_ctx;
4893         get_task_struct(child);
4894
4895         /*
4896          * If the parent's context is a clone, pin it so it won't get
4897          * swapped under us.
4898          */
4899         parent_ctx = perf_pin_task_context(parent);
4900
4901         /*
4902          * No need to check if parent_ctx != NULL here; since we saw
4903          * it non-NULL earlier, the only reason for it to become NULL
4904          * is if we exit, and since we're currently in the middle of
4905          * a fork we can't be exiting at the same time.
4906          */
4907
4908         /*
4909          * Lock the parent list. No need to lock the child - not PID
4910          * hashed yet and not running, so nobody can access it.
4911          */
4912         mutex_lock(&parent_ctx->mutex);
4913
4914         /*
4915          * We dont have to disable NMIs - we are only looking at
4916          * the list, not manipulating it:
4917          */
4918         list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4919
4920                 if (!event->attr.inherit) {
4921                         inherited_all = 0;
4922                         continue;
4923                 }
4924
4925                 ret = inherit_group(event, parent, parent_ctx,
4926                                              child, child_ctx);
4927                 if (ret) {
4928                         inherited_all = 0;
4929                         break;
4930                 }
4931         }
4932
4933         if (inherited_all) {
4934                 /*
4935                  * Mark the child context as a clone of the parent
4936                  * context, or of whatever the parent is a clone of.
4937                  * Note that if the parent is a clone, it could get
4938                  * uncloned at any point, but that doesn't matter
4939                  * because the list of events and the generation
4940                  * count can't have changed since we took the mutex.
4941                  */
4942                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4943                 if (cloned_ctx) {
4944                         child_ctx->parent_ctx = cloned_ctx;
4945                         child_ctx->parent_gen = parent_ctx->parent_gen;
4946                 } else {
4947                         child_ctx->parent_ctx = parent_ctx;
4948                         child_ctx->parent_gen = parent_ctx->generation;
4949                 }
4950                 get_ctx(child_ctx->parent_ctx);
4951         }
4952
4953         mutex_unlock(&parent_ctx->mutex);
4954
4955         perf_unpin_context(parent_ctx);
4956
4957         return ret;
4958 }
4959
4960 static void __cpuinit perf_event_init_cpu(int cpu)
4961 {
4962         struct perf_cpu_context *cpuctx;
4963
4964         cpuctx = &per_cpu(perf_cpu_context, cpu);
4965         __perf_event_init_context(&cpuctx->ctx, NULL);
4966
4967         spin_lock(&perf_resource_lock);
4968         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4969         spin_unlock(&perf_resource_lock);
4970
4971         hw_perf_event_setup(cpu);
4972 }
4973
4974 #ifdef CONFIG_HOTPLUG_CPU
4975 static void __perf_event_exit_cpu(void *info)
4976 {
4977         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4978         struct perf_event_context *ctx = &cpuctx->ctx;
4979         struct perf_event *event, *tmp;
4980
4981         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4982                 __perf_event_remove_from_context(event);
4983 }
4984 static void perf_event_exit_cpu(int cpu)
4985 {
4986         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4987         struct perf_event_context *ctx = &cpuctx->ctx;
4988
4989         mutex_lock(&ctx->mutex);
4990         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4991         mutex_unlock(&ctx->mutex);
4992 }
4993 #else
4994 static inline void perf_event_exit_cpu(int cpu) { }
4995 #endif
4996
4997 static int __cpuinit
4998 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4999 {
5000         unsigned int cpu = (long)hcpu;
5001
5002         switch (action) {
5003
5004         case CPU_UP_PREPARE:
5005         case CPU_UP_PREPARE_FROZEN:
5006                 perf_event_init_cpu(cpu);
5007                 break;
5008
5009         case CPU_ONLINE:
5010         case CPU_ONLINE_FROZEN:
5011                 hw_perf_event_setup_online(cpu);
5012                 break;
5013
5014         case CPU_DOWN_PREPARE:
5015         case CPU_DOWN_PREPARE_FROZEN:
5016                 perf_event_exit_cpu(cpu);
5017                 break;
5018
5019         default:
5020                 break;
5021         }
5022
5023         return NOTIFY_OK;
5024 }
5025
5026 /*
5027  * This has to have a higher priority than migration_notifier in sched.c.
5028  */
5029 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5030         .notifier_call          = perf_cpu_notify,
5031         .priority               = 20,
5032 };
5033
5034 void __init perf_event_init(void)
5035 {
5036         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5037                         (void *)(long)smp_processor_id());
5038         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5039                         (void *)(long)smp_processor_id());
5040         register_cpu_notifier(&perf_cpu_nb);
5041 }
5042
5043 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5044 {
5045         return sprintf(buf, "%d\n", perf_reserved_percpu);
5046 }
5047
5048 static ssize_t
5049 perf_set_reserve_percpu(struct sysdev_class *class,
5050                         const char *buf,
5051                         size_t count)
5052 {
5053         struct perf_cpu_context *cpuctx;
5054         unsigned long val;
5055         int err, cpu, mpt;
5056
5057         err = strict_strtoul(buf, 10, &val);
5058         if (err)
5059                 return err;
5060         if (val > perf_max_events)
5061                 return -EINVAL;
5062
5063         spin_lock(&perf_resource_lock);
5064         perf_reserved_percpu = val;
5065         for_each_online_cpu(cpu) {
5066                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5067                 spin_lock_irq(&cpuctx->ctx.lock);
5068                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5069                           perf_max_events - perf_reserved_percpu);
5070                 cpuctx->max_pertask = mpt;
5071                 spin_unlock_irq(&cpuctx->ctx.lock);
5072         }
5073         spin_unlock(&perf_resource_lock);
5074
5075         return count;
5076 }
5077
5078 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5079 {
5080         return sprintf(buf, "%d\n", perf_overcommit);
5081 }
5082
5083 static ssize_t
5084 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5085 {
5086         unsigned long val;
5087         int err;
5088
5089         err = strict_strtoul(buf, 10, &val);
5090         if (err)
5091                 return err;
5092         if (val > 1)
5093                 return -EINVAL;
5094
5095         spin_lock(&perf_resource_lock);
5096         perf_overcommit = val;
5097         spin_unlock(&perf_resource_lock);
5098
5099         return count;
5100 }
5101
5102 static SYSDEV_CLASS_ATTR(
5103                                 reserve_percpu,
5104                                 0644,
5105                                 perf_show_reserve_percpu,
5106                                 perf_set_reserve_percpu
5107                         );
5108
5109 static SYSDEV_CLASS_ATTR(
5110                                 overcommit,
5111                                 0644,
5112                                 perf_show_overcommit,
5113                                 perf_set_overcommit
5114                         );
5115
5116 static struct attribute *perfclass_attrs[] = {
5117         &attr_reserve_percpu.attr,
5118         &attr_overcommit.attr,
5119         NULL
5120 };
5121
5122 static struct attribute_group perfclass_attr_group = {
5123         .attrs                  = perfclass_attrs,
5124         .name                   = "perf_events",
5125 };
5126
5127 static int __init perf_event_sysfs_init(void)
5128 {
5129         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5130                                   &perfclass_attr_group);
5131 }
5132 device_initcall(perf_event_sysfs_init);