]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
perf events: Separate the routines handling the PERF_SAMPLE_ identity fields
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48  * perf event paranoia level:
49  *  -1 - not paranoid at all
50  *   0 - disallow raw tracepoint access for unpriv
51  *   1 - disallow cpu events for unpriv
52  *   2 - disallow kernel profiling for unpriv
53  */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59  * max perf event sample rate
60  */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void)        { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69         return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74         int *count = this_cpu_ptr(pmu->pmu_disable_count);
75         if (!(*count)++)
76                 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81         int *count = this_cpu_ptr(pmu->pmu_disable_count);
82         if (!--(*count))
83                 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90  * because they're strictly cpu affine and rotate_start is called with IRQs
91  * disabled, while rotate_context is called from IRQ context.
92  */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96         struct list_head *head = &__get_cpu_var(rotation_list);
97
98         WARN_ON(!irqs_disabled());
99
100         if (list_empty(&cpuctx->rotation_list))
101                 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_event_context *ctx;
112
113         ctx = container_of(head, struct perf_event_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130         if (ctx->parent_ctx) {
131                 put_ctx(ctx->parent_ctx);
132                 ctx->parent_ctx = NULL;
133         }
134 }
135
136 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
137 {
138         /*
139          * only top level events have the pid namespace they were created in
140          */
141         if (event->parent)
142                 event = event->parent;
143
144         return task_tgid_nr_ns(p, event->ns);
145 }
146
147 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
148 {
149         /*
150          * only top level events have the pid namespace they were created in
151          */
152         if (event->parent)
153                 event = event->parent;
154
155         return task_pid_nr_ns(p, event->ns);
156 }
157
158 /*
159  * If we inherit events we want to return the parent event id
160  * to userspace.
161  */
162 static u64 primary_event_id(struct perf_event *event)
163 {
164         u64 id = event->id;
165
166         if (event->parent)
167                 id = event->parent->id;
168
169         return id;
170 }
171
172 /*
173  * Get the perf_event_context for a task and lock it.
174  * This has to cope with with the fact that until it is locked,
175  * the context could get moved to another task.
176  */
177 static struct perf_event_context *
178 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
179 {
180         struct perf_event_context *ctx;
181
182         rcu_read_lock();
183 retry:
184         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
185         if (ctx) {
186                 /*
187                  * If this context is a clone of another, it might
188                  * get swapped for another underneath us by
189                  * perf_event_task_sched_out, though the
190                  * rcu_read_lock() protects us from any context
191                  * getting freed.  Lock the context and check if it
192                  * got swapped before we could get the lock, and retry
193                  * if so.  If we locked the right context, then it
194                  * can't get swapped on us any more.
195                  */
196                 raw_spin_lock_irqsave(&ctx->lock, *flags);
197                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
198                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
199                         goto retry;
200                 }
201
202                 if (!atomic_inc_not_zero(&ctx->refcount)) {
203                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
204                         ctx = NULL;
205                 }
206         }
207         rcu_read_unlock();
208         return ctx;
209 }
210
211 /*
212  * Get the context for a task and increment its pin_count so it
213  * can't get swapped to another task.  This also increments its
214  * reference count so that the context can't get freed.
215  */
216 static struct perf_event_context *
217 perf_pin_task_context(struct task_struct *task, int ctxn)
218 {
219         struct perf_event_context *ctx;
220         unsigned long flags;
221
222         ctx = perf_lock_task_context(task, ctxn, &flags);
223         if (ctx) {
224                 ++ctx->pin_count;
225                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
226         }
227         return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_event_context *ctx)
231 {
232         unsigned long flags;
233
234         raw_spin_lock_irqsave(&ctx->lock, flags);
235         --ctx->pin_count;
236         raw_spin_unlock_irqrestore(&ctx->lock, flags);
237         put_ctx(ctx);
238 }
239
240 static inline u64 perf_clock(void)
241 {
242         return local_clock();
243 }
244
245 /*
246  * Update the record of the current time in a context.
247  */
248 static void update_context_time(struct perf_event_context *ctx)
249 {
250         u64 now = perf_clock();
251
252         ctx->time += now - ctx->timestamp;
253         ctx->timestamp = now;
254 }
255
256 /*
257  * Update the total_time_enabled and total_time_running fields for a event.
258  */
259 static void update_event_times(struct perf_event *event)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         u64 run_end;
263
264         if (event->state < PERF_EVENT_STATE_INACTIVE ||
265             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
266                 return;
267
268         if (ctx->is_active)
269                 run_end = ctx->time;
270         else
271                 run_end = event->tstamp_stopped;
272
273         event->total_time_enabled = run_end - event->tstamp_enabled;
274
275         if (event->state == PERF_EVENT_STATE_INACTIVE)
276                 run_end = event->tstamp_stopped;
277         else
278                 run_end = ctx->time;
279
280         event->total_time_running = run_end - event->tstamp_running;
281 }
282
283 /*
284  * Update total_time_enabled and total_time_running for all events in a group.
285  */
286 static void update_group_times(struct perf_event *leader)
287 {
288         struct perf_event *event;
289
290         update_event_times(leader);
291         list_for_each_entry(event, &leader->sibling_list, group_entry)
292                 update_event_times(event);
293 }
294
295 static struct list_head *
296 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
297 {
298         if (event->attr.pinned)
299                 return &ctx->pinned_groups;
300         else
301                 return &ctx->flexible_groups;
302 }
303
304 /*
305  * Add a event from the lists for its context.
306  * Must be called with ctx->mutex and ctx->lock held.
307  */
308 static void
309 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
310 {
311         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
312         event->attach_state |= PERF_ATTACH_CONTEXT;
313
314         /*
315          * If we're a stand alone event or group leader, we go to the context
316          * list, group events are kept attached to the group so that
317          * perf_group_detach can, at all times, locate all siblings.
318          */
319         if (event->group_leader == event) {
320                 struct list_head *list;
321
322                 if (is_software_event(event))
323                         event->group_flags |= PERF_GROUP_SOFTWARE;
324
325                 list = ctx_group_list(event, ctx);
326                 list_add_tail(&event->group_entry, list);
327         }
328
329         list_add_rcu(&event->event_entry, &ctx->event_list);
330         if (!ctx->nr_events)
331                 perf_pmu_rotate_start(ctx->pmu);
332         ctx->nr_events++;
333         if (event->attr.inherit_stat)
334                 ctx->nr_stat++;
335 }
336
337 /*
338  * Called at perf_event creation and when events are attached/detached from a
339  * group.
340  */
341 static void perf_event__read_size(struct perf_event *event)
342 {
343         int entry = sizeof(u64); /* value */
344         int size = 0;
345         int nr = 1;
346
347         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
348                 size += sizeof(u64);
349
350         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
351                 size += sizeof(u64);
352
353         if (event->attr.read_format & PERF_FORMAT_ID)
354                 entry += sizeof(u64);
355
356         if (event->attr.read_format & PERF_FORMAT_GROUP) {
357                 nr += event->group_leader->nr_siblings;
358                 size += sizeof(u64);
359         }
360
361         size += entry * nr;
362         event->read_size = size;
363 }
364
365 static void perf_event__header_size(struct perf_event *event)
366 {
367         struct perf_sample_data *data;
368         u64 sample_type = event->attr.sample_type;
369         u16 size = 0;
370
371         perf_event__read_size(event);
372
373         if (sample_type & PERF_SAMPLE_IP)
374                 size += sizeof(data->ip);
375
376         if (sample_type & PERF_SAMPLE_ADDR)
377                 size += sizeof(data->addr);
378
379         if (sample_type & PERF_SAMPLE_PERIOD)
380                 size += sizeof(data->period);
381
382         if (sample_type & PERF_SAMPLE_READ)
383                 size += event->read_size;
384
385         event->header_size = size;
386 }
387
388 static void perf_event__id_header_size(struct perf_event *event)
389 {
390         struct perf_sample_data *data;
391         u64 sample_type = event->attr.sample_type;
392         u16 size = 0;
393
394         if (sample_type & PERF_SAMPLE_TID)
395                 size += sizeof(data->tid_entry);
396
397         if (sample_type & PERF_SAMPLE_TIME)
398                 size += sizeof(data->time);
399
400         if (sample_type & PERF_SAMPLE_ID)
401                 size += sizeof(data->id);
402
403         if (sample_type & PERF_SAMPLE_STREAM_ID)
404                 size += sizeof(data->stream_id);
405
406         if (sample_type & PERF_SAMPLE_CPU)
407                 size += sizeof(data->cpu_entry);
408
409         event->id_header_size = size;
410 }
411
412 static void perf_group_attach(struct perf_event *event)
413 {
414         struct perf_event *group_leader = event->group_leader, *pos;
415
416         /*
417          * We can have double attach due to group movement in perf_event_open.
418          */
419         if (event->attach_state & PERF_ATTACH_GROUP)
420                 return;
421
422         event->attach_state |= PERF_ATTACH_GROUP;
423
424         if (group_leader == event)
425                 return;
426
427         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
428                         !is_software_event(event))
429                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
430
431         list_add_tail(&event->group_entry, &group_leader->sibling_list);
432         group_leader->nr_siblings++;
433
434         perf_event__header_size(group_leader);
435
436         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
437                 perf_event__header_size(pos);
438 }
439
440 /*
441  * Remove a event from the lists for its context.
442  * Must be called with ctx->mutex and ctx->lock held.
443  */
444 static void
445 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
446 {
447         /*
448          * We can have double detach due to exit/hot-unplug + close.
449          */
450         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
451                 return;
452
453         event->attach_state &= ~PERF_ATTACH_CONTEXT;
454
455         ctx->nr_events--;
456         if (event->attr.inherit_stat)
457                 ctx->nr_stat--;
458
459         list_del_rcu(&event->event_entry);
460
461         if (event->group_leader == event)
462                 list_del_init(&event->group_entry);
463
464         update_group_times(event);
465
466         /*
467          * If event was in error state, then keep it
468          * that way, otherwise bogus counts will be
469          * returned on read(). The only way to get out
470          * of error state is by explicit re-enabling
471          * of the event
472          */
473         if (event->state > PERF_EVENT_STATE_OFF)
474                 event->state = PERF_EVENT_STATE_OFF;
475 }
476
477 static void perf_group_detach(struct perf_event *event)
478 {
479         struct perf_event *sibling, *tmp;
480         struct list_head *list = NULL;
481
482         /*
483          * We can have double detach due to exit/hot-unplug + close.
484          */
485         if (!(event->attach_state & PERF_ATTACH_GROUP))
486                 return;
487
488         event->attach_state &= ~PERF_ATTACH_GROUP;
489
490         /*
491          * If this is a sibling, remove it from its group.
492          */
493         if (event->group_leader != event) {
494                 list_del_init(&event->group_entry);
495                 event->group_leader->nr_siblings--;
496                 goto out;
497         }
498
499         if (!list_empty(&event->group_entry))
500                 list = &event->group_entry;
501
502         /*
503          * If this was a group event with sibling events then
504          * upgrade the siblings to singleton events by adding them
505          * to whatever list we are on.
506          */
507         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
508                 if (list)
509                         list_move_tail(&sibling->group_entry, list);
510                 sibling->group_leader = sibling;
511
512                 /* Inherit group flags from the previous leader */
513                 sibling->group_flags = event->group_flags;
514         }
515
516 out:
517         perf_event__header_size(event->group_leader);
518
519         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
520                 perf_event__header_size(tmp);
521 }
522
523 static inline int
524 event_filter_match(struct perf_event *event)
525 {
526         return event->cpu == -1 || event->cpu == smp_processor_id();
527 }
528
529 static void
530 event_sched_out(struct perf_event *event,
531                   struct perf_cpu_context *cpuctx,
532                   struct perf_event_context *ctx)
533 {
534         u64 delta;
535         /*
536          * An event which could not be activated because of
537          * filter mismatch still needs to have its timings
538          * maintained, otherwise bogus information is return
539          * via read() for time_enabled, time_running:
540          */
541         if (event->state == PERF_EVENT_STATE_INACTIVE
542             && !event_filter_match(event)) {
543                 delta = ctx->time - event->tstamp_stopped;
544                 event->tstamp_running += delta;
545                 event->tstamp_stopped = ctx->time;
546         }
547
548         if (event->state != PERF_EVENT_STATE_ACTIVE)
549                 return;
550
551         event->state = PERF_EVENT_STATE_INACTIVE;
552         if (event->pending_disable) {
553                 event->pending_disable = 0;
554                 event->state = PERF_EVENT_STATE_OFF;
555         }
556         event->tstamp_stopped = ctx->time;
557         event->pmu->del(event, 0);
558         event->oncpu = -1;
559
560         if (!is_software_event(event))
561                 cpuctx->active_oncpu--;
562         ctx->nr_active--;
563         if (event->attr.exclusive || !cpuctx->active_oncpu)
564                 cpuctx->exclusive = 0;
565 }
566
567 static void
568 group_sched_out(struct perf_event *group_event,
569                 struct perf_cpu_context *cpuctx,
570                 struct perf_event_context *ctx)
571 {
572         struct perf_event *event;
573         int state = group_event->state;
574
575         event_sched_out(group_event, cpuctx, ctx);
576
577         /*
578          * Schedule out siblings (if any):
579          */
580         list_for_each_entry(event, &group_event->sibling_list, group_entry)
581                 event_sched_out(event, cpuctx, ctx);
582
583         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
584                 cpuctx->exclusive = 0;
585 }
586
587 static inline struct perf_cpu_context *
588 __get_cpu_context(struct perf_event_context *ctx)
589 {
590         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
591 }
592
593 /*
594  * Cross CPU call to remove a performance event
595  *
596  * We disable the event on the hardware level first. After that we
597  * remove it from the context list.
598  */
599 static void __perf_event_remove_from_context(void *info)
600 {
601         struct perf_event *event = info;
602         struct perf_event_context *ctx = event->ctx;
603         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
604
605         /*
606          * If this is a task context, we need to check whether it is
607          * the current task context of this cpu. If not it has been
608          * scheduled out before the smp call arrived.
609          */
610         if (ctx->task && cpuctx->task_ctx != ctx)
611                 return;
612
613         raw_spin_lock(&ctx->lock);
614
615         event_sched_out(event, cpuctx, ctx);
616
617         list_del_event(event, ctx);
618
619         raw_spin_unlock(&ctx->lock);
620 }
621
622
623 /*
624  * Remove the event from a task's (or a CPU's) list of events.
625  *
626  * Must be called with ctx->mutex held.
627  *
628  * CPU events are removed with a smp call. For task events we only
629  * call when the task is on a CPU.
630  *
631  * If event->ctx is a cloned context, callers must make sure that
632  * every task struct that event->ctx->task could possibly point to
633  * remains valid.  This is OK when called from perf_release since
634  * that only calls us on the top-level context, which can't be a clone.
635  * When called from perf_event_exit_task, it's OK because the
636  * context has been detached from its task.
637  */
638 static void perf_event_remove_from_context(struct perf_event *event)
639 {
640         struct perf_event_context *ctx = event->ctx;
641         struct task_struct *task = ctx->task;
642
643         if (!task) {
644                 /*
645                  * Per cpu events are removed via an smp call and
646                  * the removal is always successful.
647                  */
648                 smp_call_function_single(event->cpu,
649                                          __perf_event_remove_from_context,
650                                          event, 1);
651                 return;
652         }
653
654 retry:
655         task_oncpu_function_call(task, __perf_event_remove_from_context,
656                                  event);
657
658         raw_spin_lock_irq(&ctx->lock);
659         /*
660          * If the context is active we need to retry the smp call.
661          */
662         if (ctx->nr_active && !list_empty(&event->group_entry)) {
663                 raw_spin_unlock_irq(&ctx->lock);
664                 goto retry;
665         }
666
667         /*
668          * The lock prevents that this context is scheduled in so we
669          * can remove the event safely, if the call above did not
670          * succeed.
671          */
672         if (!list_empty(&event->group_entry))
673                 list_del_event(event, ctx);
674         raw_spin_unlock_irq(&ctx->lock);
675 }
676
677 /*
678  * Cross CPU call to disable a performance event
679  */
680 static void __perf_event_disable(void *info)
681 {
682         struct perf_event *event = info;
683         struct perf_event_context *ctx = event->ctx;
684         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
685
686         /*
687          * If this is a per-task event, need to check whether this
688          * event's task is the current task on this cpu.
689          */
690         if (ctx->task && cpuctx->task_ctx != ctx)
691                 return;
692
693         raw_spin_lock(&ctx->lock);
694
695         /*
696          * If the event is on, turn it off.
697          * If it is in error state, leave it in error state.
698          */
699         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
700                 update_context_time(ctx);
701                 update_group_times(event);
702                 if (event == event->group_leader)
703                         group_sched_out(event, cpuctx, ctx);
704                 else
705                         event_sched_out(event, cpuctx, ctx);
706                 event->state = PERF_EVENT_STATE_OFF;
707         }
708
709         raw_spin_unlock(&ctx->lock);
710 }
711
712 /*
713  * Disable a event.
714  *
715  * If event->ctx is a cloned context, callers must make sure that
716  * every task struct that event->ctx->task could possibly point to
717  * remains valid.  This condition is satisifed when called through
718  * perf_event_for_each_child or perf_event_for_each because they
719  * hold the top-level event's child_mutex, so any descendant that
720  * goes to exit will block in sync_child_event.
721  * When called from perf_pending_event it's OK because event->ctx
722  * is the current context on this CPU and preemption is disabled,
723  * hence we can't get into perf_event_task_sched_out for this context.
724  */
725 void perf_event_disable(struct perf_event *event)
726 {
727         struct perf_event_context *ctx = event->ctx;
728         struct task_struct *task = ctx->task;
729
730         if (!task) {
731                 /*
732                  * Disable the event on the cpu that it's on
733                  */
734                 smp_call_function_single(event->cpu, __perf_event_disable,
735                                          event, 1);
736                 return;
737         }
738
739 retry:
740         task_oncpu_function_call(task, __perf_event_disable, event);
741
742         raw_spin_lock_irq(&ctx->lock);
743         /*
744          * If the event is still active, we need to retry the cross-call.
745          */
746         if (event->state == PERF_EVENT_STATE_ACTIVE) {
747                 raw_spin_unlock_irq(&ctx->lock);
748                 goto retry;
749         }
750
751         /*
752          * Since we have the lock this context can't be scheduled
753          * in, so we can change the state safely.
754          */
755         if (event->state == PERF_EVENT_STATE_INACTIVE) {
756                 update_group_times(event);
757                 event->state = PERF_EVENT_STATE_OFF;
758         }
759
760         raw_spin_unlock_irq(&ctx->lock);
761 }
762
763 static int
764 event_sched_in(struct perf_event *event,
765                  struct perf_cpu_context *cpuctx,
766                  struct perf_event_context *ctx)
767 {
768         if (event->state <= PERF_EVENT_STATE_OFF)
769                 return 0;
770
771         event->state = PERF_EVENT_STATE_ACTIVE;
772         event->oncpu = smp_processor_id();
773         /*
774          * The new state must be visible before we turn it on in the hardware:
775          */
776         smp_wmb();
777
778         if (event->pmu->add(event, PERF_EF_START)) {
779                 event->state = PERF_EVENT_STATE_INACTIVE;
780                 event->oncpu = -1;
781                 return -EAGAIN;
782         }
783
784         event->tstamp_running += ctx->time - event->tstamp_stopped;
785
786         event->shadow_ctx_time = ctx->time - ctx->timestamp;
787
788         if (!is_software_event(event))
789                 cpuctx->active_oncpu++;
790         ctx->nr_active++;
791
792         if (event->attr.exclusive)
793                 cpuctx->exclusive = 1;
794
795         return 0;
796 }
797
798 static int
799 group_sched_in(struct perf_event *group_event,
800                struct perf_cpu_context *cpuctx,
801                struct perf_event_context *ctx)
802 {
803         struct perf_event *event, *partial_group = NULL;
804         struct pmu *pmu = group_event->pmu;
805         u64 now = ctx->time;
806         bool simulate = false;
807
808         if (group_event->state == PERF_EVENT_STATE_OFF)
809                 return 0;
810
811         pmu->start_txn(pmu);
812
813         if (event_sched_in(group_event, cpuctx, ctx)) {
814                 pmu->cancel_txn(pmu);
815                 return -EAGAIN;
816         }
817
818         /*
819          * Schedule in siblings as one group (if any):
820          */
821         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
822                 if (event_sched_in(event, cpuctx, ctx)) {
823                         partial_group = event;
824                         goto group_error;
825                 }
826         }
827
828         if (!pmu->commit_txn(pmu))
829                 return 0;
830
831 group_error:
832         /*
833          * Groups can be scheduled in as one unit only, so undo any
834          * partial group before returning:
835          * The events up to the failed event are scheduled out normally,
836          * tstamp_stopped will be updated.
837          *
838          * The failed events and the remaining siblings need to have
839          * their timings updated as if they had gone thru event_sched_in()
840          * and event_sched_out(). This is required to get consistent timings
841          * across the group. This also takes care of the case where the group
842          * could never be scheduled by ensuring tstamp_stopped is set to mark
843          * the time the event was actually stopped, such that time delta
844          * calculation in update_event_times() is correct.
845          */
846         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
847                 if (event == partial_group)
848                         simulate = true;
849
850                 if (simulate) {
851                         event->tstamp_running += now - event->tstamp_stopped;
852                         event->tstamp_stopped = now;
853                 } else {
854                         event_sched_out(event, cpuctx, ctx);
855                 }
856         }
857         event_sched_out(group_event, cpuctx, ctx);
858
859         pmu->cancel_txn(pmu);
860
861         return -EAGAIN;
862 }
863
864 /*
865  * Work out whether we can put this event group on the CPU now.
866  */
867 static int group_can_go_on(struct perf_event *event,
868                            struct perf_cpu_context *cpuctx,
869                            int can_add_hw)
870 {
871         /*
872          * Groups consisting entirely of software events can always go on.
873          */
874         if (event->group_flags & PERF_GROUP_SOFTWARE)
875                 return 1;
876         /*
877          * If an exclusive group is already on, no other hardware
878          * events can go on.
879          */
880         if (cpuctx->exclusive)
881                 return 0;
882         /*
883          * If this group is exclusive and there are already
884          * events on the CPU, it can't go on.
885          */
886         if (event->attr.exclusive && cpuctx->active_oncpu)
887                 return 0;
888         /*
889          * Otherwise, try to add it if all previous groups were able
890          * to go on.
891          */
892         return can_add_hw;
893 }
894
895 static void add_event_to_ctx(struct perf_event *event,
896                                struct perf_event_context *ctx)
897 {
898         list_add_event(event, ctx);
899         perf_group_attach(event);
900         event->tstamp_enabled = ctx->time;
901         event->tstamp_running = ctx->time;
902         event->tstamp_stopped = ctx->time;
903 }
904
905 /*
906  * Cross CPU call to install and enable a performance event
907  *
908  * Must be called with ctx->mutex held
909  */
910 static void __perf_install_in_context(void *info)
911 {
912         struct perf_event *event = info;
913         struct perf_event_context *ctx = event->ctx;
914         struct perf_event *leader = event->group_leader;
915         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
916         int err;
917
918         /*
919          * If this is a task context, we need to check whether it is
920          * the current task context of this cpu. If not it has been
921          * scheduled out before the smp call arrived.
922          * Or possibly this is the right context but it isn't
923          * on this cpu because it had no events.
924          */
925         if (ctx->task && cpuctx->task_ctx != ctx) {
926                 if (cpuctx->task_ctx || ctx->task != current)
927                         return;
928                 cpuctx->task_ctx = ctx;
929         }
930
931         raw_spin_lock(&ctx->lock);
932         ctx->is_active = 1;
933         update_context_time(ctx);
934
935         add_event_to_ctx(event, ctx);
936
937         if (event->cpu != -1 && event->cpu != smp_processor_id())
938                 goto unlock;
939
940         /*
941          * Don't put the event on if it is disabled or if
942          * it is in a group and the group isn't on.
943          */
944         if (event->state != PERF_EVENT_STATE_INACTIVE ||
945             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
946                 goto unlock;
947
948         /*
949          * An exclusive event can't go on if there are already active
950          * hardware events, and no hardware event can go on if there
951          * is already an exclusive event on.
952          */
953         if (!group_can_go_on(event, cpuctx, 1))
954                 err = -EEXIST;
955         else
956                 err = event_sched_in(event, cpuctx, ctx);
957
958         if (err) {
959                 /*
960                  * This event couldn't go on.  If it is in a group
961                  * then we have to pull the whole group off.
962                  * If the event group is pinned then put it in error state.
963                  */
964                 if (leader != event)
965                         group_sched_out(leader, cpuctx, ctx);
966                 if (leader->attr.pinned) {
967                         update_group_times(leader);
968                         leader->state = PERF_EVENT_STATE_ERROR;
969                 }
970         }
971
972 unlock:
973         raw_spin_unlock(&ctx->lock);
974 }
975
976 /*
977  * Attach a performance event to a context
978  *
979  * First we add the event to the list with the hardware enable bit
980  * in event->hw_config cleared.
981  *
982  * If the event is attached to a task which is on a CPU we use a smp
983  * call to enable it in the task context. The task might have been
984  * scheduled away, but we check this in the smp call again.
985  *
986  * Must be called with ctx->mutex held.
987  */
988 static void
989 perf_install_in_context(struct perf_event_context *ctx,
990                         struct perf_event *event,
991                         int cpu)
992 {
993         struct task_struct *task = ctx->task;
994
995         event->ctx = ctx;
996
997         if (!task) {
998                 /*
999                  * Per cpu events are installed via an smp call and
1000                  * the install is always successful.
1001                  */
1002                 smp_call_function_single(cpu, __perf_install_in_context,
1003                                          event, 1);
1004                 return;
1005         }
1006
1007 retry:
1008         task_oncpu_function_call(task, __perf_install_in_context,
1009                                  event);
1010
1011         raw_spin_lock_irq(&ctx->lock);
1012         /*
1013          * we need to retry the smp call.
1014          */
1015         if (ctx->is_active && list_empty(&event->group_entry)) {
1016                 raw_spin_unlock_irq(&ctx->lock);
1017                 goto retry;
1018         }
1019
1020         /*
1021          * The lock prevents that this context is scheduled in so we
1022          * can add the event safely, if it the call above did not
1023          * succeed.
1024          */
1025         if (list_empty(&event->group_entry))
1026                 add_event_to_ctx(event, ctx);
1027         raw_spin_unlock_irq(&ctx->lock);
1028 }
1029
1030 /*
1031  * Put a event into inactive state and update time fields.
1032  * Enabling the leader of a group effectively enables all
1033  * the group members that aren't explicitly disabled, so we
1034  * have to update their ->tstamp_enabled also.
1035  * Note: this works for group members as well as group leaders
1036  * since the non-leader members' sibling_lists will be empty.
1037  */
1038 static void __perf_event_mark_enabled(struct perf_event *event,
1039                                         struct perf_event_context *ctx)
1040 {
1041         struct perf_event *sub;
1042
1043         event->state = PERF_EVENT_STATE_INACTIVE;
1044         event->tstamp_enabled = ctx->time - event->total_time_enabled;
1045         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1046                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1047                         sub->tstamp_enabled =
1048                                 ctx->time - sub->total_time_enabled;
1049                 }
1050         }
1051 }
1052
1053 /*
1054  * Cross CPU call to enable a performance event
1055  */
1056 static void __perf_event_enable(void *info)
1057 {
1058         struct perf_event *event = info;
1059         struct perf_event_context *ctx = event->ctx;
1060         struct perf_event *leader = event->group_leader;
1061         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1062         int err;
1063
1064         /*
1065          * If this is a per-task event, need to check whether this
1066          * event's task is the current task on this cpu.
1067          */
1068         if (ctx->task && cpuctx->task_ctx != ctx) {
1069                 if (cpuctx->task_ctx || ctx->task != current)
1070                         return;
1071                 cpuctx->task_ctx = ctx;
1072         }
1073
1074         raw_spin_lock(&ctx->lock);
1075         ctx->is_active = 1;
1076         update_context_time(ctx);
1077
1078         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1079                 goto unlock;
1080         __perf_event_mark_enabled(event, ctx);
1081
1082         if (event->cpu != -1 && event->cpu != smp_processor_id())
1083                 goto unlock;
1084
1085         /*
1086          * If the event is in a group and isn't the group leader,
1087          * then don't put it on unless the group is on.
1088          */
1089         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1090                 goto unlock;
1091
1092         if (!group_can_go_on(event, cpuctx, 1)) {
1093                 err = -EEXIST;
1094         } else {
1095                 if (event == leader)
1096                         err = group_sched_in(event, cpuctx, ctx);
1097                 else
1098                         err = event_sched_in(event, cpuctx, ctx);
1099         }
1100
1101         if (err) {
1102                 /*
1103                  * If this event can't go on and it's part of a
1104                  * group, then the whole group has to come off.
1105                  */
1106                 if (leader != event)
1107                         group_sched_out(leader, cpuctx, ctx);
1108                 if (leader->attr.pinned) {
1109                         update_group_times(leader);
1110                         leader->state = PERF_EVENT_STATE_ERROR;
1111                 }
1112         }
1113
1114 unlock:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Enable a event.
1120  *
1121  * If event->ctx is a cloned context, callers must make sure that
1122  * every task struct that event->ctx->task could possibly point to
1123  * remains valid.  This condition is satisfied when called through
1124  * perf_event_for_each_child or perf_event_for_each as described
1125  * for perf_event_disable.
1126  */
1127 void perf_event_enable(struct perf_event *event)
1128 {
1129         struct perf_event_context *ctx = event->ctx;
1130         struct task_struct *task = ctx->task;
1131
1132         if (!task) {
1133                 /*
1134                  * Enable the event on the cpu that it's on
1135                  */
1136                 smp_call_function_single(event->cpu, __perf_event_enable,
1137                                          event, 1);
1138                 return;
1139         }
1140
1141         raw_spin_lock_irq(&ctx->lock);
1142         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1143                 goto out;
1144
1145         /*
1146          * If the event is in error state, clear that first.
1147          * That way, if we see the event in error state below, we
1148          * know that it has gone back into error state, as distinct
1149          * from the task having been scheduled away before the
1150          * cross-call arrived.
1151          */
1152         if (event->state == PERF_EVENT_STATE_ERROR)
1153                 event->state = PERF_EVENT_STATE_OFF;
1154
1155 retry:
1156         raw_spin_unlock_irq(&ctx->lock);
1157         task_oncpu_function_call(task, __perf_event_enable, event);
1158
1159         raw_spin_lock_irq(&ctx->lock);
1160
1161         /*
1162          * If the context is active and the event is still off,
1163          * we need to retry the cross-call.
1164          */
1165         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1166                 goto retry;
1167
1168         /*
1169          * Since we have the lock this context can't be scheduled
1170          * in, so we can change the state safely.
1171          */
1172         if (event->state == PERF_EVENT_STATE_OFF)
1173                 __perf_event_mark_enabled(event, ctx);
1174
1175 out:
1176         raw_spin_unlock_irq(&ctx->lock);
1177 }
1178
1179 static int perf_event_refresh(struct perf_event *event, int refresh)
1180 {
1181         /*
1182          * not supported on inherited events
1183          */
1184         if (event->attr.inherit || !is_sampling_event(event))
1185                 return -EINVAL;
1186
1187         atomic_add(refresh, &event->event_limit);
1188         perf_event_enable(event);
1189
1190         return 0;
1191 }
1192
1193 enum event_type_t {
1194         EVENT_FLEXIBLE = 0x1,
1195         EVENT_PINNED = 0x2,
1196         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1197 };
1198
1199 static void ctx_sched_out(struct perf_event_context *ctx,
1200                           struct perf_cpu_context *cpuctx,
1201                           enum event_type_t event_type)
1202 {
1203         struct perf_event *event;
1204
1205         raw_spin_lock(&ctx->lock);
1206         perf_pmu_disable(ctx->pmu);
1207         ctx->is_active = 0;
1208         if (likely(!ctx->nr_events))
1209                 goto out;
1210         update_context_time(ctx);
1211
1212         if (!ctx->nr_active)
1213                 goto out;
1214
1215         if (event_type & EVENT_PINNED) {
1216                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1217                         group_sched_out(event, cpuctx, ctx);
1218         }
1219
1220         if (event_type & EVENT_FLEXIBLE) {
1221                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1222                         group_sched_out(event, cpuctx, ctx);
1223         }
1224 out:
1225         perf_pmu_enable(ctx->pmu);
1226         raw_spin_unlock(&ctx->lock);
1227 }
1228
1229 /*
1230  * Test whether two contexts are equivalent, i.e. whether they
1231  * have both been cloned from the same version of the same context
1232  * and they both have the same number of enabled events.
1233  * If the number of enabled events is the same, then the set
1234  * of enabled events should be the same, because these are both
1235  * inherited contexts, therefore we can't access individual events
1236  * in them directly with an fd; we can only enable/disable all
1237  * events via prctl, or enable/disable all events in a family
1238  * via ioctl, which will have the same effect on both contexts.
1239  */
1240 static int context_equiv(struct perf_event_context *ctx1,
1241                          struct perf_event_context *ctx2)
1242 {
1243         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1244                 && ctx1->parent_gen == ctx2->parent_gen
1245                 && !ctx1->pin_count && !ctx2->pin_count;
1246 }
1247
1248 static void __perf_event_sync_stat(struct perf_event *event,
1249                                      struct perf_event *next_event)
1250 {
1251         u64 value;
1252
1253         if (!event->attr.inherit_stat)
1254                 return;
1255
1256         /*
1257          * Update the event value, we cannot use perf_event_read()
1258          * because we're in the middle of a context switch and have IRQs
1259          * disabled, which upsets smp_call_function_single(), however
1260          * we know the event must be on the current CPU, therefore we
1261          * don't need to use it.
1262          */
1263         switch (event->state) {
1264         case PERF_EVENT_STATE_ACTIVE:
1265                 event->pmu->read(event);
1266                 /* fall-through */
1267
1268         case PERF_EVENT_STATE_INACTIVE:
1269                 update_event_times(event);
1270                 break;
1271
1272         default:
1273                 break;
1274         }
1275
1276         /*
1277          * In order to keep per-task stats reliable we need to flip the event
1278          * values when we flip the contexts.
1279          */
1280         value = local64_read(&next_event->count);
1281         value = local64_xchg(&event->count, value);
1282         local64_set(&next_event->count, value);
1283
1284         swap(event->total_time_enabled, next_event->total_time_enabled);
1285         swap(event->total_time_running, next_event->total_time_running);
1286
1287         /*
1288          * Since we swizzled the values, update the user visible data too.
1289          */
1290         perf_event_update_userpage(event);
1291         perf_event_update_userpage(next_event);
1292 }
1293
1294 #define list_next_entry(pos, member) \
1295         list_entry(pos->member.next, typeof(*pos), member)
1296
1297 static void perf_event_sync_stat(struct perf_event_context *ctx,
1298                                    struct perf_event_context *next_ctx)
1299 {
1300         struct perf_event *event, *next_event;
1301
1302         if (!ctx->nr_stat)
1303                 return;
1304
1305         update_context_time(ctx);
1306
1307         event = list_first_entry(&ctx->event_list,
1308                                    struct perf_event, event_entry);
1309
1310         next_event = list_first_entry(&next_ctx->event_list,
1311                                         struct perf_event, event_entry);
1312
1313         while (&event->event_entry != &ctx->event_list &&
1314                &next_event->event_entry != &next_ctx->event_list) {
1315
1316                 __perf_event_sync_stat(event, next_event);
1317
1318                 event = list_next_entry(event, event_entry);
1319                 next_event = list_next_entry(next_event, event_entry);
1320         }
1321 }
1322
1323 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1324                                   struct task_struct *next)
1325 {
1326         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1327         struct perf_event_context *next_ctx;
1328         struct perf_event_context *parent;
1329         struct perf_cpu_context *cpuctx;
1330         int do_switch = 1;
1331
1332         if (likely(!ctx))
1333                 return;
1334
1335         cpuctx = __get_cpu_context(ctx);
1336         if (!cpuctx->task_ctx)
1337                 return;
1338
1339         rcu_read_lock();
1340         parent = rcu_dereference(ctx->parent_ctx);
1341         next_ctx = next->perf_event_ctxp[ctxn];
1342         if (parent && next_ctx &&
1343             rcu_dereference(next_ctx->parent_ctx) == parent) {
1344                 /*
1345                  * Looks like the two contexts are clones, so we might be
1346                  * able to optimize the context switch.  We lock both
1347                  * contexts and check that they are clones under the
1348                  * lock (including re-checking that neither has been
1349                  * uncloned in the meantime).  It doesn't matter which
1350                  * order we take the locks because no other cpu could
1351                  * be trying to lock both of these tasks.
1352                  */
1353                 raw_spin_lock(&ctx->lock);
1354                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1355                 if (context_equiv(ctx, next_ctx)) {
1356                         /*
1357                          * XXX do we need a memory barrier of sorts
1358                          * wrt to rcu_dereference() of perf_event_ctxp
1359                          */
1360                         task->perf_event_ctxp[ctxn] = next_ctx;
1361                         next->perf_event_ctxp[ctxn] = ctx;
1362                         ctx->task = next;
1363                         next_ctx->task = task;
1364                         do_switch = 0;
1365
1366                         perf_event_sync_stat(ctx, next_ctx);
1367                 }
1368                 raw_spin_unlock(&next_ctx->lock);
1369                 raw_spin_unlock(&ctx->lock);
1370         }
1371         rcu_read_unlock();
1372
1373         if (do_switch) {
1374                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1375                 cpuctx->task_ctx = NULL;
1376         }
1377 }
1378
1379 #define for_each_task_context_nr(ctxn)                                  \
1380         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1381
1382 /*
1383  * Called from scheduler to remove the events of the current task,
1384  * with interrupts disabled.
1385  *
1386  * We stop each event and update the event value in event->count.
1387  *
1388  * This does not protect us against NMI, but disable()
1389  * sets the disabled bit in the control field of event _before_
1390  * accessing the event control register. If a NMI hits, then it will
1391  * not restart the event.
1392  */
1393 void __perf_event_task_sched_out(struct task_struct *task,
1394                                  struct task_struct *next)
1395 {
1396         int ctxn;
1397
1398         for_each_task_context_nr(ctxn)
1399                 perf_event_context_sched_out(task, ctxn, next);
1400 }
1401
1402 static void task_ctx_sched_out(struct perf_event_context *ctx,
1403                                enum event_type_t event_type)
1404 {
1405         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1406
1407         if (!cpuctx->task_ctx)
1408                 return;
1409
1410         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1411                 return;
1412
1413         ctx_sched_out(ctx, cpuctx, event_type);
1414         cpuctx->task_ctx = NULL;
1415 }
1416
1417 /*
1418  * Called with IRQs disabled
1419  */
1420 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1421                               enum event_type_t event_type)
1422 {
1423         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1424 }
1425
1426 static void
1427 ctx_pinned_sched_in(struct perf_event_context *ctx,
1428                     struct perf_cpu_context *cpuctx)
1429 {
1430         struct perf_event *event;
1431
1432         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1433                 if (event->state <= PERF_EVENT_STATE_OFF)
1434                         continue;
1435                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1436                         continue;
1437
1438                 if (group_can_go_on(event, cpuctx, 1))
1439                         group_sched_in(event, cpuctx, ctx);
1440
1441                 /*
1442                  * If this pinned group hasn't been scheduled,
1443                  * put it in error state.
1444                  */
1445                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1446                         update_group_times(event);
1447                         event->state = PERF_EVENT_STATE_ERROR;
1448                 }
1449         }
1450 }
1451
1452 static void
1453 ctx_flexible_sched_in(struct perf_event_context *ctx,
1454                       struct perf_cpu_context *cpuctx)
1455 {
1456         struct perf_event *event;
1457         int can_add_hw = 1;
1458
1459         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1460                 /* Ignore events in OFF or ERROR state */
1461                 if (event->state <= PERF_EVENT_STATE_OFF)
1462                         continue;
1463                 /*
1464                  * Listen to the 'cpu' scheduling filter constraint
1465                  * of events:
1466                  */
1467                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1468                         continue;
1469
1470                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1471                         if (group_sched_in(event, cpuctx, ctx))
1472                                 can_add_hw = 0;
1473                 }
1474         }
1475 }
1476
1477 static void
1478 ctx_sched_in(struct perf_event_context *ctx,
1479              struct perf_cpu_context *cpuctx,
1480              enum event_type_t event_type)
1481 {
1482         raw_spin_lock(&ctx->lock);
1483         ctx->is_active = 1;
1484         if (likely(!ctx->nr_events))
1485                 goto out;
1486
1487         ctx->timestamp = perf_clock();
1488
1489         /*
1490          * First go through the list and put on any pinned groups
1491          * in order to give them the best chance of going on.
1492          */
1493         if (event_type & EVENT_PINNED)
1494                 ctx_pinned_sched_in(ctx, cpuctx);
1495
1496         /* Then walk through the lower prio flexible groups */
1497         if (event_type & EVENT_FLEXIBLE)
1498                 ctx_flexible_sched_in(ctx, cpuctx);
1499
1500 out:
1501         raw_spin_unlock(&ctx->lock);
1502 }
1503
1504 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1505                              enum event_type_t event_type)
1506 {
1507         struct perf_event_context *ctx = &cpuctx->ctx;
1508
1509         ctx_sched_in(ctx, cpuctx, event_type);
1510 }
1511
1512 static void task_ctx_sched_in(struct perf_event_context *ctx,
1513                               enum event_type_t event_type)
1514 {
1515         struct perf_cpu_context *cpuctx;
1516
1517         cpuctx = __get_cpu_context(ctx);
1518         if (cpuctx->task_ctx == ctx)
1519                 return;
1520
1521         ctx_sched_in(ctx, cpuctx, event_type);
1522         cpuctx->task_ctx = ctx;
1523 }
1524
1525 void perf_event_context_sched_in(struct perf_event_context *ctx)
1526 {
1527         struct perf_cpu_context *cpuctx;
1528
1529         cpuctx = __get_cpu_context(ctx);
1530         if (cpuctx->task_ctx == ctx)
1531                 return;
1532
1533         perf_pmu_disable(ctx->pmu);
1534         /*
1535          * We want to keep the following priority order:
1536          * cpu pinned (that don't need to move), task pinned,
1537          * cpu flexible, task flexible.
1538          */
1539         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1540
1541         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1542         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1543         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1544
1545         cpuctx->task_ctx = ctx;
1546
1547         /*
1548          * Since these rotations are per-cpu, we need to ensure the
1549          * cpu-context we got scheduled on is actually rotating.
1550          */
1551         perf_pmu_rotate_start(ctx->pmu);
1552         perf_pmu_enable(ctx->pmu);
1553 }
1554
1555 /*
1556  * Called from scheduler to add the events of the current task
1557  * with interrupts disabled.
1558  *
1559  * We restore the event value and then enable it.
1560  *
1561  * This does not protect us against NMI, but enable()
1562  * sets the enabled bit in the control field of event _before_
1563  * accessing the event control register. If a NMI hits, then it will
1564  * keep the event running.
1565  */
1566 void __perf_event_task_sched_in(struct task_struct *task)
1567 {
1568         struct perf_event_context *ctx;
1569         int ctxn;
1570
1571         for_each_task_context_nr(ctxn) {
1572                 ctx = task->perf_event_ctxp[ctxn];
1573                 if (likely(!ctx))
1574                         continue;
1575
1576                 perf_event_context_sched_in(ctx);
1577         }
1578 }
1579
1580 #define MAX_INTERRUPTS (~0ULL)
1581
1582 static void perf_log_throttle(struct perf_event *event, int enable);
1583
1584 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1585 {
1586         u64 frequency = event->attr.sample_freq;
1587         u64 sec = NSEC_PER_SEC;
1588         u64 divisor, dividend;
1589
1590         int count_fls, nsec_fls, frequency_fls, sec_fls;
1591
1592         count_fls = fls64(count);
1593         nsec_fls = fls64(nsec);
1594         frequency_fls = fls64(frequency);
1595         sec_fls = 30;
1596
1597         /*
1598          * We got @count in @nsec, with a target of sample_freq HZ
1599          * the target period becomes:
1600          *
1601          *             @count * 10^9
1602          * period = -------------------
1603          *          @nsec * sample_freq
1604          *
1605          */
1606
1607         /*
1608          * Reduce accuracy by one bit such that @a and @b converge
1609          * to a similar magnitude.
1610          */
1611 #define REDUCE_FLS(a, b)                \
1612 do {                                    \
1613         if (a##_fls > b##_fls) {        \
1614                 a >>= 1;                \
1615                 a##_fls--;              \
1616         } else {                        \
1617                 b >>= 1;                \
1618                 b##_fls--;              \
1619         }                               \
1620 } while (0)
1621
1622         /*
1623          * Reduce accuracy until either term fits in a u64, then proceed with
1624          * the other, so that finally we can do a u64/u64 division.
1625          */
1626         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1627                 REDUCE_FLS(nsec, frequency);
1628                 REDUCE_FLS(sec, count);
1629         }
1630
1631         if (count_fls + sec_fls > 64) {
1632                 divisor = nsec * frequency;
1633
1634                 while (count_fls + sec_fls > 64) {
1635                         REDUCE_FLS(count, sec);
1636                         divisor >>= 1;
1637                 }
1638
1639                 dividend = count * sec;
1640         } else {
1641                 dividend = count * sec;
1642
1643                 while (nsec_fls + frequency_fls > 64) {
1644                         REDUCE_FLS(nsec, frequency);
1645                         dividend >>= 1;
1646                 }
1647
1648                 divisor = nsec * frequency;
1649         }
1650
1651         if (!divisor)
1652                 return dividend;
1653
1654         return div64_u64(dividend, divisor);
1655 }
1656
1657 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1658 {
1659         struct hw_perf_event *hwc = &event->hw;
1660         s64 period, sample_period;
1661         s64 delta;
1662
1663         period = perf_calculate_period(event, nsec, count);
1664
1665         delta = (s64)(period - hwc->sample_period);
1666         delta = (delta + 7) / 8; /* low pass filter */
1667
1668         sample_period = hwc->sample_period + delta;
1669
1670         if (!sample_period)
1671                 sample_period = 1;
1672
1673         hwc->sample_period = sample_period;
1674
1675         if (local64_read(&hwc->period_left) > 8*sample_period) {
1676                 event->pmu->stop(event, PERF_EF_UPDATE);
1677                 local64_set(&hwc->period_left, 0);
1678                 event->pmu->start(event, PERF_EF_RELOAD);
1679         }
1680 }
1681
1682 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1683 {
1684         struct perf_event *event;
1685         struct hw_perf_event *hwc;
1686         u64 interrupts, now;
1687         s64 delta;
1688
1689         raw_spin_lock(&ctx->lock);
1690         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1691                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1692                         continue;
1693
1694                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1695                         continue;
1696
1697                 hwc = &event->hw;
1698
1699                 interrupts = hwc->interrupts;
1700                 hwc->interrupts = 0;
1701
1702                 /*
1703                  * unthrottle events on the tick
1704                  */
1705                 if (interrupts == MAX_INTERRUPTS) {
1706                         perf_log_throttle(event, 1);
1707                         event->pmu->start(event, 0);
1708                 }
1709
1710                 if (!event->attr.freq || !event->attr.sample_freq)
1711                         continue;
1712
1713                 event->pmu->read(event);
1714                 now = local64_read(&event->count);
1715                 delta = now - hwc->freq_count_stamp;
1716                 hwc->freq_count_stamp = now;
1717
1718                 if (delta > 0)
1719                         perf_adjust_period(event, period, delta);
1720         }
1721         raw_spin_unlock(&ctx->lock);
1722 }
1723
1724 /*
1725  * Round-robin a context's events:
1726  */
1727 static void rotate_ctx(struct perf_event_context *ctx)
1728 {
1729         raw_spin_lock(&ctx->lock);
1730
1731         /*
1732          * Rotate the first entry last of non-pinned groups. Rotation might be
1733          * disabled by the inheritance code.
1734          */
1735         if (!ctx->rotate_disable)
1736                 list_rotate_left(&ctx->flexible_groups);
1737
1738         raw_spin_unlock(&ctx->lock);
1739 }
1740
1741 /*
1742  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1743  * because they're strictly cpu affine and rotate_start is called with IRQs
1744  * disabled, while rotate_context is called from IRQ context.
1745  */
1746 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1747 {
1748         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1749         struct perf_event_context *ctx = NULL;
1750         int rotate = 0, remove = 1;
1751
1752         if (cpuctx->ctx.nr_events) {
1753                 remove = 0;
1754                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1755                         rotate = 1;
1756         }
1757
1758         ctx = cpuctx->task_ctx;
1759         if (ctx && ctx->nr_events) {
1760                 remove = 0;
1761                 if (ctx->nr_events != ctx->nr_active)
1762                         rotate = 1;
1763         }
1764
1765         perf_pmu_disable(cpuctx->ctx.pmu);
1766         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1767         if (ctx)
1768                 perf_ctx_adjust_freq(ctx, interval);
1769
1770         if (!rotate)
1771                 goto done;
1772
1773         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1774         if (ctx)
1775                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1776
1777         rotate_ctx(&cpuctx->ctx);
1778         if (ctx)
1779                 rotate_ctx(ctx);
1780
1781         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1782         if (ctx)
1783                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1784
1785 done:
1786         if (remove)
1787                 list_del_init(&cpuctx->rotation_list);
1788
1789         perf_pmu_enable(cpuctx->ctx.pmu);
1790 }
1791
1792 void perf_event_task_tick(void)
1793 {
1794         struct list_head *head = &__get_cpu_var(rotation_list);
1795         struct perf_cpu_context *cpuctx, *tmp;
1796
1797         WARN_ON(!irqs_disabled());
1798
1799         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1800                 if (cpuctx->jiffies_interval == 1 ||
1801                                 !(jiffies % cpuctx->jiffies_interval))
1802                         perf_rotate_context(cpuctx);
1803         }
1804 }
1805
1806 static int event_enable_on_exec(struct perf_event *event,
1807                                 struct perf_event_context *ctx)
1808 {
1809         if (!event->attr.enable_on_exec)
1810                 return 0;
1811
1812         event->attr.enable_on_exec = 0;
1813         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1814                 return 0;
1815
1816         __perf_event_mark_enabled(event, ctx);
1817
1818         return 1;
1819 }
1820
1821 /*
1822  * Enable all of a task's events that have been marked enable-on-exec.
1823  * This expects task == current.
1824  */
1825 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1826 {
1827         struct perf_event *event;
1828         unsigned long flags;
1829         int enabled = 0;
1830         int ret;
1831
1832         local_irq_save(flags);
1833         if (!ctx || !ctx->nr_events)
1834                 goto out;
1835
1836         task_ctx_sched_out(ctx, EVENT_ALL);
1837
1838         raw_spin_lock(&ctx->lock);
1839
1840         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1841                 ret = event_enable_on_exec(event, ctx);
1842                 if (ret)
1843                         enabled = 1;
1844         }
1845
1846         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1847                 ret = event_enable_on_exec(event, ctx);
1848                 if (ret)
1849                         enabled = 1;
1850         }
1851
1852         /*
1853          * Unclone this context if we enabled any event.
1854          */
1855         if (enabled)
1856                 unclone_ctx(ctx);
1857
1858         raw_spin_unlock(&ctx->lock);
1859
1860         perf_event_context_sched_in(ctx);
1861 out:
1862         local_irq_restore(flags);
1863 }
1864
1865 /*
1866  * Cross CPU call to read the hardware event
1867  */
1868 static void __perf_event_read(void *info)
1869 {
1870         struct perf_event *event = info;
1871         struct perf_event_context *ctx = event->ctx;
1872         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1873
1874         /*
1875          * If this is a task context, we need to check whether it is
1876          * the current task context of this cpu.  If not it has been
1877          * scheduled out before the smp call arrived.  In that case
1878          * event->count would have been updated to a recent sample
1879          * when the event was scheduled out.
1880          */
1881         if (ctx->task && cpuctx->task_ctx != ctx)
1882                 return;
1883
1884         raw_spin_lock(&ctx->lock);
1885         update_context_time(ctx);
1886         update_event_times(event);
1887         raw_spin_unlock(&ctx->lock);
1888
1889         event->pmu->read(event);
1890 }
1891
1892 static inline u64 perf_event_count(struct perf_event *event)
1893 {
1894         return local64_read(&event->count) + atomic64_read(&event->child_count);
1895 }
1896
1897 static u64 perf_event_read(struct perf_event *event)
1898 {
1899         /*
1900          * If event is enabled and currently active on a CPU, update the
1901          * value in the event structure:
1902          */
1903         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1904                 smp_call_function_single(event->oncpu,
1905                                          __perf_event_read, event, 1);
1906         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1907                 struct perf_event_context *ctx = event->ctx;
1908                 unsigned long flags;
1909
1910                 raw_spin_lock_irqsave(&ctx->lock, flags);
1911                 /*
1912                  * may read while context is not active
1913                  * (e.g., thread is blocked), in that case
1914                  * we cannot update context time
1915                  */
1916                 if (ctx->is_active)
1917                         update_context_time(ctx);
1918                 update_event_times(event);
1919                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1920         }
1921
1922         return perf_event_count(event);
1923 }
1924
1925 /*
1926  * Callchain support
1927  */
1928
1929 struct callchain_cpus_entries {
1930         struct rcu_head                 rcu_head;
1931         struct perf_callchain_entry     *cpu_entries[0];
1932 };
1933
1934 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1935 static atomic_t nr_callchain_events;
1936 static DEFINE_MUTEX(callchain_mutex);
1937 struct callchain_cpus_entries *callchain_cpus_entries;
1938
1939
1940 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1941                                   struct pt_regs *regs)
1942 {
1943 }
1944
1945 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1946                                 struct pt_regs *regs)
1947 {
1948 }
1949
1950 static void release_callchain_buffers_rcu(struct rcu_head *head)
1951 {
1952         struct callchain_cpus_entries *entries;
1953         int cpu;
1954
1955         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1956
1957         for_each_possible_cpu(cpu)
1958                 kfree(entries->cpu_entries[cpu]);
1959
1960         kfree(entries);
1961 }
1962
1963 static void release_callchain_buffers(void)
1964 {
1965         struct callchain_cpus_entries *entries;
1966
1967         entries = callchain_cpus_entries;
1968         rcu_assign_pointer(callchain_cpus_entries, NULL);
1969         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1970 }
1971
1972 static int alloc_callchain_buffers(void)
1973 {
1974         int cpu;
1975         int size;
1976         struct callchain_cpus_entries *entries;
1977
1978         /*
1979          * We can't use the percpu allocation API for data that can be
1980          * accessed from NMI. Use a temporary manual per cpu allocation
1981          * until that gets sorted out.
1982          */
1983         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1984                 num_possible_cpus();
1985
1986         entries = kzalloc(size, GFP_KERNEL);
1987         if (!entries)
1988                 return -ENOMEM;
1989
1990         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1991
1992         for_each_possible_cpu(cpu) {
1993                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1994                                                          cpu_to_node(cpu));
1995                 if (!entries->cpu_entries[cpu])
1996                         goto fail;
1997         }
1998
1999         rcu_assign_pointer(callchain_cpus_entries, entries);
2000
2001         return 0;
2002
2003 fail:
2004         for_each_possible_cpu(cpu)
2005                 kfree(entries->cpu_entries[cpu]);
2006         kfree(entries);
2007
2008         return -ENOMEM;
2009 }
2010
2011 static int get_callchain_buffers(void)
2012 {
2013         int err = 0;
2014         int count;
2015
2016         mutex_lock(&callchain_mutex);
2017
2018         count = atomic_inc_return(&nr_callchain_events);
2019         if (WARN_ON_ONCE(count < 1)) {
2020                 err = -EINVAL;
2021                 goto exit;
2022         }
2023
2024         if (count > 1) {
2025                 /* If the allocation failed, give up */
2026                 if (!callchain_cpus_entries)
2027                         err = -ENOMEM;
2028                 goto exit;
2029         }
2030
2031         err = alloc_callchain_buffers();
2032         if (err)
2033                 release_callchain_buffers();
2034 exit:
2035         mutex_unlock(&callchain_mutex);
2036
2037         return err;
2038 }
2039
2040 static void put_callchain_buffers(void)
2041 {
2042         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2043                 release_callchain_buffers();
2044                 mutex_unlock(&callchain_mutex);
2045         }
2046 }
2047
2048 static int get_recursion_context(int *recursion)
2049 {
2050         int rctx;
2051
2052         if (in_nmi())
2053                 rctx = 3;
2054         else if (in_irq())
2055                 rctx = 2;
2056         else if (in_softirq())
2057                 rctx = 1;
2058         else
2059                 rctx = 0;
2060
2061         if (recursion[rctx])
2062                 return -1;
2063
2064         recursion[rctx]++;
2065         barrier();
2066
2067         return rctx;
2068 }
2069
2070 static inline void put_recursion_context(int *recursion, int rctx)
2071 {
2072         barrier();
2073         recursion[rctx]--;
2074 }
2075
2076 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2077 {
2078         int cpu;
2079         struct callchain_cpus_entries *entries;
2080
2081         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2082         if (*rctx == -1)
2083                 return NULL;
2084
2085         entries = rcu_dereference(callchain_cpus_entries);
2086         if (!entries)
2087                 return NULL;
2088
2089         cpu = smp_processor_id();
2090
2091         return &entries->cpu_entries[cpu][*rctx];
2092 }
2093
2094 static void
2095 put_callchain_entry(int rctx)
2096 {
2097         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2098 }
2099
2100 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2101 {
2102         int rctx;
2103         struct perf_callchain_entry *entry;
2104
2105
2106         entry = get_callchain_entry(&rctx);
2107         if (rctx == -1)
2108                 return NULL;
2109
2110         if (!entry)
2111                 goto exit_put;
2112
2113         entry->nr = 0;
2114
2115         if (!user_mode(regs)) {
2116                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2117                 perf_callchain_kernel(entry, regs);
2118                 if (current->mm)
2119                         regs = task_pt_regs(current);
2120                 else
2121                         regs = NULL;
2122         }
2123
2124         if (regs) {
2125                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2126                 perf_callchain_user(entry, regs);
2127         }
2128
2129 exit_put:
2130         put_callchain_entry(rctx);
2131
2132         return entry;
2133 }
2134
2135 /*
2136  * Initialize the perf_event context in a task_struct:
2137  */
2138 static void __perf_event_init_context(struct perf_event_context *ctx)
2139 {
2140         raw_spin_lock_init(&ctx->lock);
2141         mutex_init(&ctx->mutex);
2142         INIT_LIST_HEAD(&ctx->pinned_groups);
2143         INIT_LIST_HEAD(&ctx->flexible_groups);
2144         INIT_LIST_HEAD(&ctx->event_list);
2145         atomic_set(&ctx->refcount, 1);
2146 }
2147
2148 static struct perf_event_context *
2149 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2150 {
2151         struct perf_event_context *ctx;
2152
2153         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2154         if (!ctx)
2155                 return NULL;
2156
2157         __perf_event_init_context(ctx);
2158         if (task) {
2159                 ctx->task = task;
2160                 get_task_struct(task);
2161         }
2162         ctx->pmu = pmu;
2163
2164         return ctx;
2165 }
2166
2167 static struct task_struct *
2168 find_lively_task_by_vpid(pid_t vpid)
2169 {
2170         struct task_struct *task;
2171         int err;
2172
2173         rcu_read_lock();
2174         if (!vpid)
2175                 task = current;
2176         else
2177                 task = find_task_by_vpid(vpid);
2178         if (task)
2179                 get_task_struct(task);
2180         rcu_read_unlock();
2181
2182         if (!task)
2183                 return ERR_PTR(-ESRCH);
2184
2185         /*
2186          * Can't attach events to a dying task.
2187          */
2188         err = -ESRCH;
2189         if (task->flags & PF_EXITING)
2190                 goto errout;
2191
2192         /* Reuse ptrace permission checks for now. */
2193         err = -EACCES;
2194         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2195                 goto errout;
2196
2197         return task;
2198 errout:
2199         put_task_struct(task);
2200         return ERR_PTR(err);
2201
2202 }
2203
2204 static struct perf_event_context *
2205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2206 {
2207         struct perf_event_context *ctx;
2208         struct perf_cpu_context *cpuctx;
2209         unsigned long flags;
2210         int ctxn, err;
2211
2212         if (!task && cpu != -1) {
2213                 /* Must be root to operate on a CPU event: */
2214                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2215                         return ERR_PTR(-EACCES);
2216
2217                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2218                         return ERR_PTR(-EINVAL);
2219
2220                 /*
2221                  * We could be clever and allow to attach a event to an
2222                  * offline CPU and activate it when the CPU comes up, but
2223                  * that's for later.
2224                  */
2225                 if (!cpu_online(cpu))
2226                         return ERR_PTR(-ENODEV);
2227
2228                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2229                 ctx = &cpuctx->ctx;
2230                 get_ctx(ctx);
2231
2232                 return ctx;
2233         }
2234
2235         err = -EINVAL;
2236         ctxn = pmu->task_ctx_nr;
2237         if (ctxn < 0)
2238                 goto errout;
2239
2240 retry:
2241         ctx = perf_lock_task_context(task, ctxn, &flags);
2242         if (ctx) {
2243                 unclone_ctx(ctx);
2244                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2245         }
2246
2247         if (!ctx) {
2248                 ctx = alloc_perf_context(pmu, task);
2249                 err = -ENOMEM;
2250                 if (!ctx)
2251                         goto errout;
2252
2253                 get_ctx(ctx);
2254
2255                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2256                         /*
2257                          * We raced with some other task; use
2258                          * the context they set.
2259                          */
2260                         put_task_struct(task);
2261                         kfree(ctx);
2262                         goto retry;
2263                 }
2264         }
2265
2266         return ctx;
2267
2268 errout:
2269         return ERR_PTR(err);
2270 }
2271
2272 static void perf_event_free_filter(struct perf_event *event);
2273
2274 static void free_event_rcu(struct rcu_head *head)
2275 {
2276         struct perf_event *event;
2277
2278         event = container_of(head, struct perf_event, rcu_head);
2279         if (event->ns)
2280                 put_pid_ns(event->ns);
2281         perf_event_free_filter(event);
2282         kfree(event);
2283 }
2284
2285 static void perf_buffer_put(struct perf_buffer *buffer);
2286
2287 static void free_event(struct perf_event *event)
2288 {
2289         irq_work_sync(&event->pending);
2290
2291         if (!event->parent) {
2292                 if (event->attach_state & PERF_ATTACH_TASK)
2293                         jump_label_dec(&perf_task_events);
2294                 if (event->attr.mmap || event->attr.mmap_data)
2295                         atomic_dec(&nr_mmap_events);
2296                 if (event->attr.comm)
2297                         atomic_dec(&nr_comm_events);
2298                 if (event->attr.task)
2299                         atomic_dec(&nr_task_events);
2300                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2301                         put_callchain_buffers();
2302         }
2303
2304         if (event->buffer) {
2305                 perf_buffer_put(event->buffer);
2306                 event->buffer = NULL;
2307         }
2308
2309         if (event->destroy)
2310                 event->destroy(event);
2311
2312         if (event->ctx)
2313                 put_ctx(event->ctx);
2314
2315         call_rcu(&event->rcu_head, free_event_rcu);
2316 }
2317
2318 int perf_event_release_kernel(struct perf_event *event)
2319 {
2320         struct perf_event_context *ctx = event->ctx;
2321
2322         /*
2323          * Remove from the PMU, can't get re-enabled since we got
2324          * here because the last ref went.
2325          */
2326         perf_event_disable(event);
2327
2328         WARN_ON_ONCE(ctx->parent_ctx);
2329         /*
2330          * There are two ways this annotation is useful:
2331          *
2332          *  1) there is a lock recursion from perf_event_exit_task
2333          *     see the comment there.
2334          *
2335          *  2) there is a lock-inversion with mmap_sem through
2336          *     perf_event_read_group(), which takes faults while
2337          *     holding ctx->mutex, however this is called after
2338          *     the last filedesc died, so there is no possibility
2339          *     to trigger the AB-BA case.
2340          */
2341         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2342         raw_spin_lock_irq(&ctx->lock);
2343         perf_group_detach(event);
2344         list_del_event(event, ctx);
2345         raw_spin_unlock_irq(&ctx->lock);
2346         mutex_unlock(&ctx->mutex);
2347
2348         free_event(event);
2349
2350         return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2353
2354 /*
2355  * Called when the last reference to the file is gone.
2356  */
2357 static int perf_release(struct inode *inode, struct file *file)
2358 {
2359         struct perf_event *event = file->private_data;
2360         struct task_struct *owner;
2361
2362         file->private_data = NULL;
2363
2364         rcu_read_lock();
2365         owner = ACCESS_ONCE(event->owner);
2366         /*
2367          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2368          * !owner it means the list deletion is complete and we can indeed
2369          * free this event, otherwise we need to serialize on
2370          * owner->perf_event_mutex.
2371          */
2372         smp_read_barrier_depends();
2373         if (owner) {
2374                 /*
2375                  * Since delayed_put_task_struct() also drops the last
2376                  * task reference we can safely take a new reference
2377                  * while holding the rcu_read_lock().
2378                  */
2379                 get_task_struct(owner);
2380         }
2381         rcu_read_unlock();
2382
2383         if (owner) {
2384                 mutex_lock(&owner->perf_event_mutex);
2385                 /*
2386                  * We have to re-check the event->owner field, if it is cleared
2387                  * we raced with perf_event_exit_task(), acquiring the mutex
2388                  * ensured they're done, and we can proceed with freeing the
2389                  * event.
2390                  */
2391                 if (event->owner)
2392                         list_del_init(&event->owner_entry);
2393                 mutex_unlock(&owner->perf_event_mutex);
2394                 put_task_struct(owner);
2395         }
2396
2397         return perf_event_release_kernel(event);
2398 }
2399
2400 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2401 {
2402         struct perf_event *child;
2403         u64 total = 0;
2404
2405         *enabled = 0;
2406         *running = 0;
2407
2408         mutex_lock(&event->child_mutex);
2409         total += perf_event_read(event);
2410         *enabled += event->total_time_enabled +
2411                         atomic64_read(&event->child_total_time_enabled);
2412         *running += event->total_time_running +
2413                         atomic64_read(&event->child_total_time_running);
2414
2415         list_for_each_entry(child, &event->child_list, child_list) {
2416                 total += perf_event_read(child);
2417                 *enabled += child->total_time_enabled;
2418                 *running += child->total_time_running;
2419         }
2420         mutex_unlock(&event->child_mutex);
2421
2422         return total;
2423 }
2424 EXPORT_SYMBOL_GPL(perf_event_read_value);
2425
2426 static int perf_event_read_group(struct perf_event *event,
2427                                    u64 read_format, char __user *buf)
2428 {
2429         struct perf_event *leader = event->group_leader, *sub;
2430         int n = 0, size = 0, ret = -EFAULT;
2431         struct perf_event_context *ctx = leader->ctx;
2432         u64 values[5];
2433         u64 count, enabled, running;
2434
2435         mutex_lock(&ctx->mutex);
2436         count = perf_event_read_value(leader, &enabled, &running);
2437
2438         values[n++] = 1 + leader->nr_siblings;
2439         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2440                 values[n++] = enabled;
2441         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2442                 values[n++] = running;
2443         values[n++] = count;
2444         if (read_format & PERF_FORMAT_ID)
2445                 values[n++] = primary_event_id(leader);
2446
2447         size = n * sizeof(u64);
2448
2449         if (copy_to_user(buf, values, size))
2450                 goto unlock;
2451
2452         ret = size;
2453
2454         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2455                 n = 0;
2456
2457                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2458                 if (read_format & PERF_FORMAT_ID)
2459                         values[n++] = primary_event_id(sub);
2460
2461                 size = n * sizeof(u64);
2462
2463                 if (copy_to_user(buf + ret, values, size)) {
2464                         ret = -EFAULT;
2465                         goto unlock;
2466                 }
2467
2468                 ret += size;
2469         }
2470 unlock:
2471         mutex_unlock(&ctx->mutex);
2472
2473         return ret;
2474 }
2475
2476 static int perf_event_read_one(struct perf_event *event,
2477                                  u64 read_format, char __user *buf)
2478 {
2479         u64 enabled, running;
2480         u64 values[4];
2481         int n = 0;
2482
2483         values[n++] = perf_event_read_value(event, &enabled, &running);
2484         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2485                 values[n++] = enabled;
2486         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2487                 values[n++] = running;
2488         if (read_format & PERF_FORMAT_ID)
2489                 values[n++] = primary_event_id(event);
2490
2491         if (copy_to_user(buf, values, n * sizeof(u64)))
2492                 return -EFAULT;
2493
2494         return n * sizeof(u64);
2495 }
2496
2497 /*
2498  * Read the performance event - simple non blocking version for now
2499  */
2500 static ssize_t
2501 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2502 {
2503         u64 read_format = event->attr.read_format;
2504         int ret;
2505
2506         /*
2507          * Return end-of-file for a read on a event that is in
2508          * error state (i.e. because it was pinned but it couldn't be
2509          * scheduled on to the CPU at some point).
2510          */
2511         if (event->state == PERF_EVENT_STATE_ERROR)
2512                 return 0;
2513
2514         if (count < event->read_size)
2515                 return -ENOSPC;
2516
2517         WARN_ON_ONCE(event->ctx->parent_ctx);
2518         if (read_format & PERF_FORMAT_GROUP)
2519                 ret = perf_event_read_group(event, read_format, buf);
2520         else
2521                 ret = perf_event_read_one(event, read_format, buf);
2522
2523         return ret;
2524 }
2525
2526 static ssize_t
2527 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2528 {
2529         struct perf_event *event = file->private_data;
2530
2531         return perf_read_hw(event, buf, count);
2532 }
2533
2534 static unsigned int perf_poll(struct file *file, poll_table *wait)
2535 {
2536         struct perf_event *event = file->private_data;
2537         struct perf_buffer *buffer;
2538         unsigned int events = POLL_HUP;
2539
2540         rcu_read_lock();
2541         buffer = rcu_dereference(event->buffer);
2542         if (buffer)
2543                 events = atomic_xchg(&buffer->poll, 0);
2544         rcu_read_unlock();
2545
2546         poll_wait(file, &event->waitq, wait);
2547
2548         return events;
2549 }
2550
2551 static void perf_event_reset(struct perf_event *event)
2552 {
2553         (void)perf_event_read(event);
2554         local64_set(&event->count, 0);
2555         perf_event_update_userpage(event);
2556 }
2557
2558 /*
2559  * Holding the top-level event's child_mutex means that any
2560  * descendant process that has inherited this event will block
2561  * in sync_child_event if it goes to exit, thus satisfying the
2562  * task existence requirements of perf_event_enable/disable.
2563  */
2564 static void perf_event_for_each_child(struct perf_event *event,
2565                                         void (*func)(struct perf_event *))
2566 {
2567         struct perf_event *child;
2568
2569         WARN_ON_ONCE(event->ctx->parent_ctx);
2570         mutex_lock(&event->child_mutex);
2571         func(event);
2572         list_for_each_entry(child, &event->child_list, child_list)
2573                 func(child);
2574         mutex_unlock(&event->child_mutex);
2575 }
2576
2577 static void perf_event_for_each(struct perf_event *event,
2578                                   void (*func)(struct perf_event *))
2579 {
2580         struct perf_event_context *ctx = event->ctx;
2581         struct perf_event *sibling;
2582
2583         WARN_ON_ONCE(ctx->parent_ctx);
2584         mutex_lock(&ctx->mutex);
2585         event = event->group_leader;
2586
2587         perf_event_for_each_child(event, func);
2588         func(event);
2589         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2590                 perf_event_for_each_child(event, func);
2591         mutex_unlock(&ctx->mutex);
2592 }
2593
2594 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2595 {
2596         struct perf_event_context *ctx = event->ctx;
2597         int ret = 0;
2598         u64 value;
2599
2600         if (!is_sampling_event(event))
2601                 return -EINVAL;
2602
2603         if (copy_from_user(&value, arg, sizeof(value)))
2604                 return -EFAULT;
2605
2606         if (!value)
2607                 return -EINVAL;
2608
2609         raw_spin_lock_irq(&ctx->lock);
2610         if (event->attr.freq) {
2611                 if (value > sysctl_perf_event_sample_rate) {
2612                         ret = -EINVAL;
2613                         goto unlock;
2614                 }
2615
2616                 event->attr.sample_freq = value;
2617         } else {
2618                 event->attr.sample_period = value;
2619                 event->hw.sample_period = value;
2620         }
2621 unlock:
2622         raw_spin_unlock_irq(&ctx->lock);
2623
2624         return ret;
2625 }
2626
2627 static const struct file_operations perf_fops;
2628
2629 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2630 {
2631         struct file *file;
2632
2633         file = fget_light(fd, fput_needed);
2634         if (!file)
2635                 return ERR_PTR(-EBADF);
2636
2637         if (file->f_op != &perf_fops) {
2638                 fput_light(file, *fput_needed);
2639                 *fput_needed = 0;
2640                 return ERR_PTR(-EBADF);
2641         }
2642
2643         return file->private_data;
2644 }
2645
2646 static int perf_event_set_output(struct perf_event *event,
2647                                  struct perf_event *output_event);
2648 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2649
2650 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2651 {
2652         struct perf_event *event = file->private_data;
2653         void (*func)(struct perf_event *);
2654         u32 flags = arg;
2655
2656         switch (cmd) {
2657         case PERF_EVENT_IOC_ENABLE:
2658                 func = perf_event_enable;
2659                 break;
2660         case PERF_EVENT_IOC_DISABLE:
2661                 func = perf_event_disable;
2662                 break;
2663         case PERF_EVENT_IOC_RESET:
2664                 func = perf_event_reset;
2665                 break;
2666
2667         case PERF_EVENT_IOC_REFRESH:
2668                 return perf_event_refresh(event, arg);
2669
2670         case PERF_EVENT_IOC_PERIOD:
2671                 return perf_event_period(event, (u64 __user *)arg);
2672
2673         case PERF_EVENT_IOC_SET_OUTPUT:
2674         {
2675                 struct perf_event *output_event = NULL;
2676                 int fput_needed = 0;
2677                 int ret;
2678
2679                 if (arg != -1) {
2680                         output_event = perf_fget_light(arg, &fput_needed);
2681                         if (IS_ERR(output_event))
2682                                 return PTR_ERR(output_event);
2683                 }
2684
2685                 ret = perf_event_set_output(event, output_event);
2686                 if (output_event)
2687                         fput_light(output_event->filp, fput_needed);
2688
2689                 return ret;
2690         }
2691
2692         case PERF_EVENT_IOC_SET_FILTER:
2693                 return perf_event_set_filter(event, (void __user *)arg);
2694
2695         default:
2696                 return -ENOTTY;
2697         }
2698
2699         if (flags & PERF_IOC_FLAG_GROUP)
2700                 perf_event_for_each(event, func);
2701         else
2702                 perf_event_for_each_child(event, func);
2703
2704         return 0;
2705 }
2706
2707 int perf_event_task_enable(void)
2708 {
2709         struct perf_event *event;
2710
2711         mutex_lock(&current->perf_event_mutex);
2712         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2713                 perf_event_for_each_child(event, perf_event_enable);
2714         mutex_unlock(&current->perf_event_mutex);
2715
2716         return 0;
2717 }
2718
2719 int perf_event_task_disable(void)
2720 {
2721         struct perf_event *event;
2722
2723         mutex_lock(&current->perf_event_mutex);
2724         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2725                 perf_event_for_each_child(event, perf_event_disable);
2726         mutex_unlock(&current->perf_event_mutex);
2727
2728         return 0;
2729 }
2730
2731 #ifndef PERF_EVENT_INDEX_OFFSET
2732 # define PERF_EVENT_INDEX_OFFSET 0
2733 #endif
2734
2735 static int perf_event_index(struct perf_event *event)
2736 {
2737         if (event->hw.state & PERF_HES_STOPPED)
2738                 return 0;
2739
2740         if (event->state != PERF_EVENT_STATE_ACTIVE)
2741                 return 0;
2742
2743         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2744 }
2745
2746 /*
2747  * Callers need to ensure there can be no nesting of this function, otherwise
2748  * the seqlock logic goes bad. We can not serialize this because the arch
2749  * code calls this from NMI context.
2750  */
2751 void perf_event_update_userpage(struct perf_event *event)
2752 {
2753         struct perf_event_mmap_page *userpg;
2754         struct perf_buffer *buffer;
2755
2756         rcu_read_lock();
2757         buffer = rcu_dereference(event->buffer);
2758         if (!buffer)
2759                 goto unlock;
2760
2761         userpg = buffer->user_page;
2762
2763         /*
2764          * Disable preemption so as to not let the corresponding user-space
2765          * spin too long if we get preempted.
2766          */
2767         preempt_disable();
2768         ++userpg->lock;
2769         barrier();
2770         userpg->index = perf_event_index(event);
2771         userpg->offset = perf_event_count(event);
2772         if (event->state == PERF_EVENT_STATE_ACTIVE)
2773                 userpg->offset -= local64_read(&event->hw.prev_count);
2774
2775         userpg->time_enabled = event->total_time_enabled +
2776                         atomic64_read(&event->child_total_time_enabled);
2777
2778         userpg->time_running = event->total_time_running +
2779                         atomic64_read(&event->child_total_time_running);
2780
2781         barrier();
2782         ++userpg->lock;
2783         preempt_enable();
2784 unlock:
2785         rcu_read_unlock();
2786 }
2787
2788 static unsigned long perf_data_size(struct perf_buffer *buffer);
2789
2790 static void
2791 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2792 {
2793         long max_size = perf_data_size(buffer);
2794
2795         if (watermark)
2796                 buffer->watermark = min(max_size, watermark);
2797
2798         if (!buffer->watermark)
2799                 buffer->watermark = max_size / 2;
2800
2801         if (flags & PERF_BUFFER_WRITABLE)
2802                 buffer->writable = 1;
2803
2804         atomic_set(&buffer->refcount, 1);
2805 }
2806
2807 #ifndef CONFIG_PERF_USE_VMALLOC
2808
2809 /*
2810  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2811  */
2812
2813 static struct page *
2814 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2815 {
2816         if (pgoff > buffer->nr_pages)
2817                 return NULL;
2818
2819         if (pgoff == 0)
2820                 return virt_to_page(buffer->user_page);
2821
2822         return virt_to_page(buffer->data_pages[pgoff - 1]);
2823 }
2824
2825 static void *perf_mmap_alloc_page(int cpu)
2826 {
2827         struct page *page;
2828         int node;
2829
2830         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2831         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2832         if (!page)
2833                 return NULL;
2834
2835         return page_address(page);
2836 }
2837
2838 static struct perf_buffer *
2839 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840 {
2841         struct perf_buffer *buffer;
2842         unsigned long size;
2843         int i;
2844
2845         size = sizeof(struct perf_buffer);
2846         size += nr_pages * sizeof(void *);
2847
2848         buffer = kzalloc(size, GFP_KERNEL);
2849         if (!buffer)
2850                 goto fail;
2851
2852         buffer->user_page = perf_mmap_alloc_page(cpu);
2853         if (!buffer->user_page)
2854                 goto fail_user_page;
2855
2856         for (i = 0; i < nr_pages; i++) {
2857                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2858                 if (!buffer->data_pages[i])
2859                         goto fail_data_pages;
2860         }
2861
2862         buffer->nr_pages = nr_pages;
2863
2864         perf_buffer_init(buffer, watermark, flags);
2865
2866         return buffer;
2867
2868 fail_data_pages:
2869         for (i--; i >= 0; i--)
2870                 free_page((unsigned long)buffer->data_pages[i]);
2871
2872         free_page((unsigned long)buffer->user_page);
2873
2874 fail_user_page:
2875         kfree(buffer);
2876
2877 fail:
2878         return NULL;
2879 }
2880
2881 static void perf_mmap_free_page(unsigned long addr)
2882 {
2883         struct page *page = virt_to_page((void *)addr);
2884
2885         page->mapping = NULL;
2886         __free_page(page);
2887 }
2888
2889 static void perf_buffer_free(struct perf_buffer *buffer)
2890 {
2891         int i;
2892
2893         perf_mmap_free_page((unsigned long)buffer->user_page);
2894         for (i = 0; i < buffer->nr_pages; i++)
2895                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2896         kfree(buffer);
2897 }
2898
2899 static inline int page_order(struct perf_buffer *buffer)
2900 {
2901         return 0;
2902 }
2903
2904 #else
2905
2906 /*
2907  * Back perf_mmap() with vmalloc memory.
2908  *
2909  * Required for architectures that have d-cache aliasing issues.
2910  */
2911
2912 static inline int page_order(struct perf_buffer *buffer)
2913 {
2914         return buffer->page_order;
2915 }
2916
2917 static struct page *
2918 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2919 {
2920         if (pgoff > (1UL << page_order(buffer)))
2921                 return NULL;
2922
2923         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2924 }
2925
2926 static void perf_mmap_unmark_page(void *addr)
2927 {
2928         struct page *page = vmalloc_to_page(addr);
2929
2930         page->mapping = NULL;
2931 }
2932
2933 static void perf_buffer_free_work(struct work_struct *work)
2934 {
2935         struct perf_buffer *buffer;
2936         void *base;
2937         int i, nr;
2938
2939         buffer = container_of(work, struct perf_buffer, work);
2940         nr = 1 << page_order(buffer);
2941
2942         base = buffer->user_page;
2943         for (i = 0; i < nr + 1; i++)
2944                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2945
2946         vfree(base);
2947         kfree(buffer);
2948 }
2949
2950 static void perf_buffer_free(struct perf_buffer *buffer)
2951 {
2952         schedule_work(&buffer->work);
2953 }
2954
2955 static struct perf_buffer *
2956 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2957 {
2958         struct perf_buffer *buffer;
2959         unsigned long size;
2960         void *all_buf;
2961
2962         size = sizeof(struct perf_buffer);
2963         size += sizeof(void *);
2964
2965         buffer = kzalloc(size, GFP_KERNEL);
2966         if (!buffer)
2967                 goto fail;
2968
2969         INIT_WORK(&buffer->work, perf_buffer_free_work);
2970
2971         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2972         if (!all_buf)
2973                 goto fail_all_buf;
2974
2975         buffer->user_page = all_buf;
2976         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2977         buffer->page_order = ilog2(nr_pages);
2978         buffer->nr_pages = 1;
2979
2980         perf_buffer_init(buffer, watermark, flags);
2981
2982         return buffer;
2983
2984 fail_all_buf:
2985         kfree(buffer);
2986
2987 fail:
2988         return NULL;
2989 }
2990
2991 #endif
2992
2993 static unsigned long perf_data_size(struct perf_buffer *buffer)
2994 {
2995         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2996 }
2997
2998 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2999 {
3000         struct perf_event *event = vma->vm_file->private_data;
3001         struct perf_buffer *buffer;
3002         int ret = VM_FAULT_SIGBUS;
3003
3004         if (vmf->flags & FAULT_FLAG_MKWRITE) {
3005                 if (vmf->pgoff == 0)
3006                         ret = 0;
3007                 return ret;
3008         }
3009
3010         rcu_read_lock();
3011         buffer = rcu_dereference(event->buffer);
3012         if (!buffer)
3013                 goto unlock;
3014
3015         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3016                 goto unlock;
3017
3018         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3019         if (!vmf->page)
3020                 goto unlock;
3021
3022         get_page(vmf->page);
3023         vmf->page->mapping = vma->vm_file->f_mapping;
3024         vmf->page->index   = vmf->pgoff;
3025
3026         ret = 0;
3027 unlock:
3028         rcu_read_unlock();
3029
3030         return ret;
3031 }
3032
3033 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3034 {
3035         struct perf_buffer *buffer;
3036
3037         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3038         perf_buffer_free(buffer);
3039 }
3040
3041 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3042 {
3043         struct perf_buffer *buffer;
3044
3045         rcu_read_lock();
3046         buffer = rcu_dereference(event->buffer);
3047         if (buffer) {
3048                 if (!atomic_inc_not_zero(&buffer->refcount))
3049                         buffer = NULL;
3050         }
3051         rcu_read_unlock();
3052
3053         return buffer;
3054 }
3055
3056 static void perf_buffer_put(struct perf_buffer *buffer)
3057 {
3058         if (!atomic_dec_and_test(&buffer->refcount))
3059                 return;
3060
3061         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3062 }
3063
3064 static void perf_mmap_open(struct vm_area_struct *vma)
3065 {
3066         struct perf_event *event = vma->vm_file->private_data;
3067
3068         atomic_inc(&event->mmap_count);
3069 }
3070
3071 static void perf_mmap_close(struct vm_area_struct *vma)
3072 {
3073         struct perf_event *event = vma->vm_file->private_data;
3074
3075         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3076                 unsigned long size = perf_data_size(event->buffer);
3077                 struct user_struct *user = event->mmap_user;
3078                 struct perf_buffer *buffer = event->buffer;
3079
3080                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3081                 vma->vm_mm->locked_vm -= event->mmap_locked;
3082                 rcu_assign_pointer(event->buffer, NULL);
3083                 mutex_unlock(&event->mmap_mutex);
3084
3085                 perf_buffer_put(buffer);
3086                 free_uid(user);
3087         }
3088 }
3089
3090 static const struct vm_operations_struct perf_mmap_vmops = {
3091         .open           = perf_mmap_open,
3092         .close          = perf_mmap_close,
3093         .fault          = perf_mmap_fault,
3094         .page_mkwrite   = perf_mmap_fault,
3095 };
3096
3097 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3098 {
3099         struct perf_event *event = file->private_data;
3100         unsigned long user_locked, user_lock_limit;
3101         struct user_struct *user = current_user();
3102         unsigned long locked, lock_limit;
3103         struct perf_buffer *buffer;
3104         unsigned long vma_size;
3105         unsigned long nr_pages;
3106         long user_extra, extra;
3107         int ret = 0, flags = 0;
3108
3109         /*
3110          * Don't allow mmap() of inherited per-task counters. This would
3111          * create a performance issue due to all children writing to the
3112          * same buffer.
3113          */
3114         if (event->cpu == -1 && event->attr.inherit)
3115                 return -EINVAL;
3116
3117         if (!(vma->vm_flags & VM_SHARED))
3118                 return -EINVAL;
3119
3120         vma_size = vma->vm_end - vma->vm_start;
3121         nr_pages = (vma_size / PAGE_SIZE) - 1;
3122
3123         /*
3124          * If we have buffer pages ensure they're a power-of-two number, so we
3125          * can do bitmasks instead of modulo.
3126          */
3127         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3128                 return -EINVAL;
3129
3130         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3131                 return -EINVAL;
3132
3133         if (vma->vm_pgoff != 0)
3134                 return -EINVAL;
3135
3136         WARN_ON_ONCE(event->ctx->parent_ctx);
3137         mutex_lock(&event->mmap_mutex);
3138         if (event->buffer) {
3139                 if (event->buffer->nr_pages == nr_pages)
3140                         atomic_inc(&event->buffer->refcount);
3141                 else
3142                         ret = -EINVAL;
3143                 goto unlock;
3144         }
3145
3146         user_extra = nr_pages + 1;
3147         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3148
3149         /*
3150          * Increase the limit linearly with more CPUs:
3151          */
3152         user_lock_limit *= num_online_cpus();
3153
3154         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3155
3156         extra = 0;
3157         if (user_locked > user_lock_limit)
3158                 extra = user_locked - user_lock_limit;
3159
3160         lock_limit = rlimit(RLIMIT_MEMLOCK);
3161         lock_limit >>= PAGE_SHIFT;
3162         locked = vma->vm_mm->locked_vm + extra;
3163
3164         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3165                 !capable(CAP_IPC_LOCK)) {
3166                 ret = -EPERM;
3167                 goto unlock;
3168         }
3169
3170         WARN_ON(event->buffer);
3171
3172         if (vma->vm_flags & VM_WRITE)
3173                 flags |= PERF_BUFFER_WRITABLE;
3174
3175         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3176                                    event->cpu, flags);
3177         if (!buffer) {
3178                 ret = -ENOMEM;
3179                 goto unlock;
3180         }
3181         rcu_assign_pointer(event->buffer, buffer);
3182
3183         atomic_long_add(user_extra, &user->locked_vm);
3184         event->mmap_locked = extra;
3185         event->mmap_user = get_current_user();
3186         vma->vm_mm->locked_vm += event->mmap_locked;
3187
3188 unlock:
3189         if (!ret)
3190                 atomic_inc(&event->mmap_count);
3191         mutex_unlock(&event->mmap_mutex);
3192
3193         vma->vm_flags |= VM_RESERVED;
3194         vma->vm_ops = &perf_mmap_vmops;
3195
3196         return ret;
3197 }
3198
3199 static int perf_fasync(int fd, struct file *filp, int on)
3200 {
3201         struct inode *inode = filp->f_path.dentry->d_inode;
3202         struct perf_event *event = filp->private_data;
3203         int retval;
3204
3205         mutex_lock(&inode->i_mutex);
3206         retval = fasync_helper(fd, filp, on, &event->fasync);
3207         mutex_unlock(&inode->i_mutex);
3208
3209         if (retval < 0)
3210                 return retval;
3211
3212         return 0;
3213 }
3214
3215 static const struct file_operations perf_fops = {
3216         .llseek                 = no_llseek,
3217         .release                = perf_release,
3218         .read                   = perf_read,
3219         .poll                   = perf_poll,
3220         .unlocked_ioctl         = perf_ioctl,
3221         .compat_ioctl           = perf_ioctl,
3222         .mmap                   = perf_mmap,
3223         .fasync                 = perf_fasync,
3224 };
3225
3226 /*
3227  * Perf event wakeup
3228  *
3229  * If there's data, ensure we set the poll() state and publish everything
3230  * to user-space before waking everybody up.
3231  */
3232
3233 void perf_event_wakeup(struct perf_event *event)
3234 {
3235         wake_up_all(&event->waitq);
3236
3237         if (event->pending_kill) {
3238                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3239                 event->pending_kill = 0;
3240         }
3241 }
3242
3243 static void perf_pending_event(struct irq_work *entry)
3244 {
3245         struct perf_event *event = container_of(entry,
3246                         struct perf_event, pending);
3247
3248         if (event->pending_disable) {
3249                 event->pending_disable = 0;
3250                 __perf_event_disable(event);
3251         }
3252
3253         if (event->pending_wakeup) {
3254                 event->pending_wakeup = 0;
3255                 perf_event_wakeup(event);
3256         }
3257 }
3258
3259 /*
3260  * We assume there is only KVM supporting the callbacks.
3261  * Later on, we might change it to a list if there is
3262  * another virtualization implementation supporting the callbacks.
3263  */
3264 struct perf_guest_info_callbacks *perf_guest_cbs;
3265
3266 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3267 {
3268         perf_guest_cbs = cbs;
3269         return 0;
3270 }
3271 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3272
3273 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3274 {
3275         perf_guest_cbs = NULL;
3276         return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3279
3280 /*
3281  * Output
3282  */
3283 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3284                               unsigned long offset, unsigned long head)
3285 {
3286         unsigned long mask;
3287
3288         if (!buffer->writable)
3289                 return true;
3290
3291         mask = perf_data_size(buffer) - 1;
3292
3293         offset = (offset - tail) & mask;
3294         head   = (head   - tail) & mask;
3295
3296         if ((int)(head - offset) < 0)
3297                 return false;
3298
3299         return true;
3300 }
3301
3302 static void perf_output_wakeup(struct perf_output_handle *handle)
3303 {
3304         atomic_set(&handle->buffer->poll, POLL_IN);
3305
3306         if (handle->nmi) {
3307                 handle->event->pending_wakeup = 1;
3308                 irq_work_queue(&handle->event->pending);
3309         } else
3310                 perf_event_wakeup(handle->event);
3311 }
3312
3313 /*
3314  * We need to ensure a later event_id doesn't publish a head when a former
3315  * event isn't done writing. However since we need to deal with NMIs we
3316  * cannot fully serialize things.
3317  *
3318  * We only publish the head (and generate a wakeup) when the outer-most
3319  * event completes.
3320  */
3321 static void perf_output_get_handle(struct perf_output_handle *handle)
3322 {
3323         struct perf_buffer *buffer = handle->buffer;
3324
3325         preempt_disable();
3326         local_inc(&buffer->nest);
3327         handle->wakeup = local_read(&buffer->wakeup);
3328 }
3329
3330 static void perf_output_put_handle(struct perf_output_handle *handle)
3331 {
3332         struct perf_buffer *buffer = handle->buffer;
3333         unsigned long head;
3334
3335 again:
3336         head = local_read(&buffer->head);
3337
3338         /*
3339          * IRQ/NMI can happen here, which means we can miss a head update.
3340          */
3341
3342         if (!local_dec_and_test(&buffer->nest))
3343                 goto out;
3344
3345         /*
3346          * Publish the known good head. Rely on the full barrier implied
3347          * by atomic_dec_and_test() order the buffer->head read and this
3348          * write.
3349          */
3350         buffer->user_page->data_head = head;
3351
3352         /*
3353          * Now check if we missed an update, rely on the (compiler)
3354          * barrier in atomic_dec_and_test() to re-read buffer->head.
3355          */
3356         if (unlikely(head != local_read(&buffer->head))) {
3357                 local_inc(&buffer->nest);
3358                 goto again;
3359         }
3360
3361         if (handle->wakeup != local_read(&buffer->wakeup))
3362                 perf_output_wakeup(handle);
3363
3364 out:
3365         preempt_enable();
3366 }
3367
3368 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3369                       const void *buf, unsigned int len)
3370 {
3371         do {
3372                 unsigned long size = min_t(unsigned long, handle->size, len);
3373
3374                 memcpy(handle->addr, buf, size);
3375
3376                 len -= size;
3377                 handle->addr += size;
3378                 buf += size;
3379                 handle->size -= size;
3380                 if (!handle->size) {
3381                         struct perf_buffer *buffer = handle->buffer;
3382
3383                         handle->page++;
3384                         handle->page &= buffer->nr_pages - 1;
3385                         handle->addr = buffer->data_pages[handle->page];
3386                         handle->size = PAGE_SIZE << page_order(buffer);
3387                 }
3388         } while (len);
3389 }
3390
3391 static void perf_event_header__init_id(struct perf_event_header *header,
3392                                        struct perf_sample_data *data,
3393                                        struct perf_event *event)
3394 {
3395         u64 sample_type = event->attr.sample_type;
3396
3397         data->type = sample_type;
3398         header->size += event->id_header_size;
3399
3400         if (sample_type & PERF_SAMPLE_TID) {
3401                 /* namespace issues */
3402                 data->tid_entry.pid = perf_event_pid(event, current);
3403                 data->tid_entry.tid = perf_event_tid(event, current);
3404         }
3405
3406         if (sample_type & PERF_SAMPLE_TIME)
3407                 data->time = perf_clock();
3408
3409         if (sample_type & PERF_SAMPLE_ID)
3410                 data->id = primary_event_id(event);
3411
3412         if (sample_type & PERF_SAMPLE_STREAM_ID)
3413                 data->stream_id = event->id;
3414
3415         if (sample_type & PERF_SAMPLE_CPU) {
3416                 data->cpu_entry.cpu      = raw_smp_processor_id();
3417                 data->cpu_entry.reserved = 0;
3418         }
3419 }
3420
3421 int perf_output_begin(struct perf_output_handle *handle,
3422                       struct perf_event *event, unsigned int size,
3423                       int nmi, int sample)
3424 {
3425         struct perf_buffer *buffer;
3426         unsigned long tail, offset, head;
3427         int have_lost;
3428         struct {
3429                 struct perf_event_header header;
3430                 u64                      id;
3431                 u64                      lost;
3432         } lost_event;
3433
3434         rcu_read_lock();
3435         /*
3436          * For inherited events we send all the output towards the parent.
3437          */
3438         if (event->parent)
3439                 event = event->parent;
3440
3441         buffer = rcu_dereference(event->buffer);
3442         if (!buffer)
3443                 goto out;
3444
3445         handle->buffer  = buffer;
3446         handle->event   = event;
3447         handle->nmi     = nmi;
3448         handle->sample  = sample;
3449
3450         if (!buffer->nr_pages)
3451                 goto out;
3452
3453         have_lost = local_read(&buffer->lost);
3454         if (have_lost)
3455                 size += sizeof(lost_event);
3456
3457         perf_output_get_handle(handle);
3458
3459         do {
3460                 /*
3461                  * Userspace could choose to issue a mb() before updating the
3462                  * tail pointer. So that all reads will be completed before the
3463                  * write is issued.
3464                  */
3465                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3466                 smp_rmb();
3467                 offset = head = local_read(&buffer->head);
3468                 head += size;
3469                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3470                         goto fail;
3471         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3472
3473         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3474                 local_add(buffer->watermark, &buffer->wakeup);
3475
3476         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3477         handle->page &= buffer->nr_pages - 1;
3478         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3479         handle->addr = buffer->data_pages[handle->page];
3480         handle->addr += handle->size;
3481         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3482
3483         if (have_lost) {
3484                 lost_event.header.type = PERF_RECORD_LOST;
3485                 lost_event.header.misc = 0;
3486                 lost_event.header.size = sizeof(lost_event);
3487                 lost_event.id          = event->id;
3488                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3489
3490                 perf_output_put(handle, lost_event);
3491         }
3492
3493         return 0;
3494
3495 fail:
3496         local_inc(&buffer->lost);
3497         perf_output_put_handle(handle);
3498 out:
3499         rcu_read_unlock();
3500
3501         return -ENOSPC;
3502 }
3503
3504 void perf_output_end(struct perf_output_handle *handle)
3505 {
3506         struct perf_event *event = handle->event;
3507         struct perf_buffer *buffer = handle->buffer;
3508
3509         int wakeup_events = event->attr.wakeup_events;
3510
3511         if (handle->sample && wakeup_events) {
3512                 int events = local_inc_return(&buffer->events);
3513                 if (events >= wakeup_events) {
3514                         local_sub(wakeup_events, &buffer->events);
3515                         local_inc(&buffer->wakeup);
3516                 }
3517         }
3518
3519         perf_output_put_handle(handle);
3520         rcu_read_unlock();
3521 }
3522
3523 static void perf_output_read_one(struct perf_output_handle *handle,
3524                                  struct perf_event *event,
3525                                  u64 enabled, u64 running)
3526 {
3527         u64 read_format = event->attr.read_format;
3528         u64 values[4];
3529         int n = 0;
3530
3531         values[n++] = perf_event_count(event);
3532         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3533                 values[n++] = enabled +
3534                         atomic64_read(&event->child_total_time_enabled);
3535         }
3536         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3537                 values[n++] = running +
3538                         atomic64_read(&event->child_total_time_running);
3539         }
3540         if (read_format & PERF_FORMAT_ID)
3541                 values[n++] = primary_event_id(event);
3542
3543         perf_output_copy(handle, values, n * sizeof(u64));
3544 }
3545
3546 /*
3547  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3548  */
3549 static void perf_output_read_group(struct perf_output_handle *handle,
3550                             struct perf_event *event,
3551                             u64 enabled, u64 running)
3552 {
3553         struct perf_event *leader = event->group_leader, *sub;
3554         u64 read_format = event->attr.read_format;
3555         u64 values[5];
3556         int n = 0;
3557
3558         values[n++] = 1 + leader->nr_siblings;
3559
3560         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3561                 values[n++] = enabled;
3562
3563         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3564                 values[n++] = running;
3565
3566         if (leader != event)
3567                 leader->pmu->read(leader);
3568
3569         values[n++] = perf_event_count(leader);
3570         if (read_format & PERF_FORMAT_ID)
3571                 values[n++] = primary_event_id(leader);
3572
3573         perf_output_copy(handle, values, n * sizeof(u64));
3574
3575         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3576                 n = 0;
3577
3578                 if (sub != event)
3579                         sub->pmu->read(sub);
3580
3581                 values[n++] = perf_event_count(sub);
3582                 if (read_format & PERF_FORMAT_ID)
3583                         values[n++] = primary_event_id(sub);
3584
3585                 perf_output_copy(handle, values, n * sizeof(u64));
3586         }
3587 }
3588
3589 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3590                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3591
3592 static void perf_output_read(struct perf_output_handle *handle,
3593                              struct perf_event *event)
3594 {
3595         u64 enabled = 0, running = 0, now, ctx_time;
3596         u64 read_format = event->attr.read_format;
3597
3598         /*
3599          * compute total_time_enabled, total_time_running
3600          * based on snapshot values taken when the event
3601          * was last scheduled in.
3602          *
3603          * we cannot simply called update_context_time()
3604          * because of locking issue as we are called in
3605          * NMI context
3606          */
3607         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3608                 now = perf_clock();
3609                 ctx_time = event->shadow_ctx_time + now;
3610                 enabled = ctx_time - event->tstamp_enabled;
3611                 running = ctx_time - event->tstamp_running;
3612         }
3613
3614         if (event->attr.read_format & PERF_FORMAT_GROUP)
3615                 perf_output_read_group(handle, event, enabled, running);
3616         else
3617                 perf_output_read_one(handle, event, enabled, running);
3618 }
3619
3620 void perf_output_sample(struct perf_output_handle *handle,
3621                         struct perf_event_header *header,
3622                         struct perf_sample_data *data,
3623                         struct perf_event *event)
3624 {
3625         u64 sample_type = data->type;
3626
3627         perf_output_put(handle, *header);
3628
3629         if (sample_type & PERF_SAMPLE_IP)
3630                 perf_output_put(handle, data->ip);
3631
3632         if (sample_type & PERF_SAMPLE_TID)
3633                 perf_output_put(handle, data->tid_entry);
3634
3635         if (sample_type & PERF_SAMPLE_TIME)
3636                 perf_output_put(handle, data->time);
3637
3638         if (sample_type & PERF_SAMPLE_ADDR)
3639                 perf_output_put(handle, data->addr);
3640
3641         if (sample_type & PERF_SAMPLE_ID)
3642                 perf_output_put(handle, data->id);
3643
3644         if (sample_type & PERF_SAMPLE_STREAM_ID)
3645                 perf_output_put(handle, data->stream_id);
3646
3647         if (sample_type & PERF_SAMPLE_CPU)
3648                 perf_output_put(handle, data->cpu_entry);
3649
3650         if (sample_type & PERF_SAMPLE_PERIOD)
3651                 perf_output_put(handle, data->period);
3652
3653         if (sample_type & PERF_SAMPLE_READ)
3654                 perf_output_read(handle, event);
3655
3656         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3657                 if (data->callchain) {
3658                         int size = 1;
3659
3660                         if (data->callchain)
3661                                 size += data->callchain->nr;
3662
3663                         size *= sizeof(u64);
3664
3665                         perf_output_copy(handle, data->callchain, size);
3666                 } else {
3667                         u64 nr = 0;
3668                         perf_output_put(handle, nr);
3669                 }
3670         }
3671
3672         if (sample_type & PERF_SAMPLE_RAW) {
3673                 if (data->raw) {
3674                         perf_output_put(handle, data->raw->size);
3675                         perf_output_copy(handle, data->raw->data,
3676                                          data->raw->size);
3677                 } else {
3678                         struct {
3679                                 u32     size;
3680                                 u32     data;
3681                         } raw = {
3682                                 .size = sizeof(u32),
3683                                 .data = 0,
3684                         };
3685                         perf_output_put(handle, raw);
3686                 }
3687         }
3688 }
3689
3690 void perf_prepare_sample(struct perf_event_header *header,
3691                          struct perf_sample_data *data,
3692                          struct perf_event *event,
3693                          struct pt_regs *regs)
3694 {
3695         u64 sample_type = event->attr.sample_type;
3696
3697         header->type = PERF_RECORD_SAMPLE;
3698         header->size = sizeof(*header) + event->header_size;
3699
3700         header->misc = 0;
3701         header->misc |= perf_misc_flags(regs);
3702
3703         perf_event_header__init_id(header, data, event);
3704
3705         if (sample_type & PERF_SAMPLE_IP)
3706                 data->ip = perf_instruction_pointer(regs);
3707
3708         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3709                 int size = 1;
3710
3711                 data->callchain = perf_callchain(regs);
3712
3713                 if (data->callchain)
3714                         size += data->callchain->nr;
3715
3716                 header->size += size * sizeof(u64);
3717         }
3718
3719         if (sample_type & PERF_SAMPLE_RAW) {
3720                 int size = sizeof(u32);
3721
3722                 if (data->raw)
3723                         size += data->raw->size;
3724                 else
3725                         size += sizeof(u32);
3726
3727                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3728                 header->size += size;
3729         }
3730 }
3731
3732 static void perf_event_output(struct perf_event *event, int nmi,
3733                                 struct perf_sample_data *data,
3734                                 struct pt_regs *regs)
3735 {
3736         struct perf_output_handle handle;
3737         struct perf_event_header header;
3738
3739         /* protect the callchain buffers */
3740         rcu_read_lock();
3741
3742         perf_prepare_sample(&header, data, event, regs);
3743
3744         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3745                 goto exit;
3746
3747         perf_output_sample(&handle, &header, data, event);
3748
3749         perf_output_end(&handle);
3750
3751 exit:
3752         rcu_read_unlock();
3753 }
3754
3755 /*
3756  * read event_id
3757  */
3758
3759 struct perf_read_event {
3760         struct perf_event_header        header;
3761
3762         u32                             pid;
3763         u32                             tid;
3764 };
3765
3766 static void
3767 perf_event_read_event(struct perf_event *event,
3768                         struct task_struct *task)
3769 {
3770         struct perf_output_handle handle;
3771         struct perf_read_event read_event = {
3772                 .header = {
3773                         .type = PERF_RECORD_READ,
3774                         .misc = 0,
3775                         .size = sizeof(read_event) + event->read_size,
3776                 },
3777                 .pid = perf_event_pid(event, task),
3778                 .tid = perf_event_tid(event, task),
3779         };
3780         int ret;
3781
3782         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3783         if (ret)
3784                 return;
3785
3786         perf_output_put(&handle, read_event);
3787         perf_output_read(&handle, event);
3788
3789         perf_output_end(&handle);
3790 }
3791
3792 /*
3793  * task tracking -- fork/exit
3794  *
3795  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3796  */
3797
3798 struct perf_task_event {
3799         struct task_struct              *task;
3800         struct perf_event_context       *task_ctx;
3801
3802         struct {
3803                 struct perf_event_header        header;
3804
3805                 u32                             pid;
3806                 u32                             ppid;
3807                 u32                             tid;
3808                 u32                             ptid;
3809                 u64                             time;
3810         } event_id;
3811 };
3812
3813 static void perf_event_task_output(struct perf_event *event,
3814                                      struct perf_task_event *task_event)
3815 {
3816         struct perf_output_handle handle;
3817         struct task_struct *task = task_event->task;
3818         int size, ret;
3819
3820         size  = task_event->event_id.header.size;
3821         ret = perf_output_begin(&handle, event, size, 0, 0);
3822
3823         if (ret)
3824                 return;
3825
3826         task_event->event_id.pid = perf_event_pid(event, task);
3827         task_event->event_id.ppid = perf_event_pid(event, current);
3828
3829         task_event->event_id.tid = perf_event_tid(event, task);
3830         task_event->event_id.ptid = perf_event_tid(event, current);
3831
3832         perf_output_put(&handle, task_event->event_id);
3833
3834         perf_output_end(&handle);
3835 }
3836
3837 static int perf_event_task_match(struct perf_event *event)
3838 {
3839         if (event->state < PERF_EVENT_STATE_INACTIVE)
3840                 return 0;
3841
3842         if (event->cpu != -1 && event->cpu != smp_processor_id())
3843                 return 0;
3844
3845         if (event->attr.comm || event->attr.mmap ||
3846             event->attr.mmap_data || event->attr.task)
3847                 return 1;
3848
3849         return 0;
3850 }
3851
3852 static void perf_event_task_ctx(struct perf_event_context *ctx,
3853                                   struct perf_task_event *task_event)
3854 {
3855         struct perf_event *event;
3856
3857         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3858                 if (perf_event_task_match(event))
3859                         perf_event_task_output(event, task_event);
3860         }
3861 }
3862
3863 static void perf_event_task_event(struct perf_task_event *task_event)
3864 {
3865         struct perf_cpu_context *cpuctx;
3866         struct perf_event_context *ctx;
3867         struct pmu *pmu;
3868         int ctxn;
3869
3870         rcu_read_lock();
3871         list_for_each_entry_rcu(pmu, &pmus, entry) {
3872                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3873                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3874
3875                 ctx = task_event->task_ctx;
3876                 if (!ctx) {
3877                         ctxn = pmu->task_ctx_nr;
3878                         if (ctxn < 0)
3879                                 goto next;
3880                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3881                 }
3882                 if (ctx)
3883                         perf_event_task_ctx(ctx, task_event);
3884 next:
3885                 put_cpu_ptr(pmu->pmu_cpu_context);
3886         }
3887         rcu_read_unlock();
3888 }
3889
3890 static void perf_event_task(struct task_struct *task,
3891                               struct perf_event_context *task_ctx,
3892                               int new)
3893 {
3894         struct perf_task_event task_event;
3895
3896         if (!atomic_read(&nr_comm_events) &&
3897             !atomic_read(&nr_mmap_events) &&
3898             !atomic_read(&nr_task_events))
3899                 return;
3900
3901         task_event = (struct perf_task_event){
3902                 .task     = task,
3903                 .task_ctx = task_ctx,
3904                 .event_id    = {
3905                         .header = {
3906                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3907                                 .misc = 0,
3908                                 .size = sizeof(task_event.event_id),
3909                         },
3910                         /* .pid  */
3911                         /* .ppid */
3912                         /* .tid  */
3913                         /* .ptid */
3914                         .time = perf_clock(),
3915                 },
3916         };
3917
3918         perf_event_task_event(&task_event);
3919 }
3920
3921 void perf_event_fork(struct task_struct *task)
3922 {
3923         perf_event_task(task, NULL, 1);
3924 }
3925
3926 /*
3927  * comm tracking
3928  */
3929
3930 struct perf_comm_event {
3931         struct task_struct      *task;
3932         char                    *comm;
3933         int                     comm_size;
3934
3935         struct {
3936                 struct perf_event_header        header;
3937
3938                 u32                             pid;
3939                 u32                             tid;
3940         } event_id;
3941 };
3942
3943 static void perf_event_comm_output(struct perf_event *event,
3944                                      struct perf_comm_event *comm_event)
3945 {
3946         struct perf_output_handle handle;
3947         int size = comm_event->event_id.header.size;
3948         int ret = perf_output_begin(&handle, event, size, 0, 0);
3949
3950         if (ret)
3951                 return;
3952
3953         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3954         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3955
3956         perf_output_put(&handle, comm_event->event_id);
3957         perf_output_copy(&handle, comm_event->comm,
3958                                    comm_event->comm_size);
3959         perf_output_end(&handle);
3960 }
3961
3962 static int perf_event_comm_match(struct perf_event *event)
3963 {
3964         if (event->state < PERF_EVENT_STATE_INACTIVE)
3965                 return 0;
3966
3967         if (event->cpu != -1 && event->cpu != smp_processor_id())
3968                 return 0;
3969
3970         if (event->attr.comm)
3971                 return 1;
3972
3973         return 0;
3974 }
3975
3976 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3977                                   struct perf_comm_event *comm_event)
3978 {
3979         struct perf_event *event;
3980
3981         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3982                 if (perf_event_comm_match(event))
3983                         perf_event_comm_output(event, comm_event);
3984         }
3985 }
3986
3987 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3988 {
3989         struct perf_cpu_context *cpuctx;
3990         struct perf_event_context *ctx;
3991         char comm[TASK_COMM_LEN];
3992         unsigned int size;
3993         struct pmu *pmu;
3994         int ctxn;
3995
3996         memset(comm, 0, sizeof(comm));
3997         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3998         size = ALIGN(strlen(comm)+1, sizeof(u64));
3999
4000         comm_event->comm = comm;
4001         comm_event->comm_size = size;
4002
4003         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4004
4005         rcu_read_lock();
4006         list_for_each_entry_rcu(pmu, &pmus, entry) {
4007                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4008                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4009
4010                 ctxn = pmu->task_ctx_nr;
4011                 if (ctxn < 0)
4012                         goto next;
4013
4014                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4015                 if (ctx)
4016                         perf_event_comm_ctx(ctx, comm_event);
4017 next:
4018                 put_cpu_ptr(pmu->pmu_cpu_context);
4019         }
4020         rcu_read_unlock();
4021 }
4022
4023 void perf_event_comm(struct task_struct *task)
4024 {
4025         struct perf_comm_event comm_event;
4026         struct perf_event_context *ctx;
4027         int ctxn;
4028
4029         for_each_task_context_nr(ctxn) {
4030                 ctx = task->perf_event_ctxp[ctxn];
4031                 if (!ctx)
4032                         continue;
4033
4034                 perf_event_enable_on_exec(ctx);
4035         }
4036
4037         if (!atomic_read(&nr_comm_events))
4038                 return;
4039
4040         comm_event = (struct perf_comm_event){
4041                 .task   = task,
4042                 /* .comm      */
4043                 /* .comm_size */
4044                 .event_id  = {
4045                         .header = {
4046                                 .type = PERF_RECORD_COMM,
4047                                 .misc = 0,
4048                                 /* .size */
4049                         },
4050                         /* .pid */
4051                         /* .tid */
4052                 },
4053         };
4054
4055         perf_event_comm_event(&comm_event);
4056 }
4057
4058 /*
4059  * mmap tracking
4060  */
4061
4062 struct perf_mmap_event {
4063         struct vm_area_struct   *vma;
4064
4065         const char              *file_name;
4066         int                     file_size;
4067
4068         struct {
4069                 struct perf_event_header        header;
4070
4071                 u32                             pid;
4072                 u32                             tid;
4073                 u64                             start;
4074                 u64                             len;
4075                 u64                             pgoff;
4076         } event_id;
4077 };
4078
4079 static void perf_event_mmap_output(struct perf_event *event,
4080                                      struct perf_mmap_event *mmap_event)
4081 {
4082         struct perf_output_handle handle;
4083         int size = mmap_event->event_id.header.size;
4084         int ret = perf_output_begin(&handle, event, size, 0, 0);
4085
4086         if (ret)
4087                 return;
4088
4089         mmap_event->event_id.pid = perf_event_pid(event, current);
4090         mmap_event->event_id.tid = perf_event_tid(event, current);
4091
4092         perf_output_put(&handle, mmap_event->event_id);
4093         perf_output_copy(&handle, mmap_event->file_name,
4094                                    mmap_event->file_size);
4095         perf_output_end(&handle);
4096 }
4097
4098 static int perf_event_mmap_match(struct perf_event *event,
4099                                    struct perf_mmap_event *mmap_event,
4100                                    int executable)
4101 {
4102         if (event->state < PERF_EVENT_STATE_INACTIVE)
4103                 return 0;
4104
4105         if (event->cpu != -1 && event->cpu != smp_processor_id())
4106                 return 0;
4107
4108         if ((!executable && event->attr.mmap_data) ||
4109             (executable && event->attr.mmap))
4110                 return 1;
4111
4112         return 0;
4113 }
4114
4115 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4116                                   struct perf_mmap_event *mmap_event,
4117                                   int executable)
4118 {
4119         struct perf_event *event;
4120
4121         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4122                 if (perf_event_mmap_match(event, mmap_event, executable))
4123                         perf_event_mmap_output(event, mmap_event);
4124         }
4125 }
4126
4127 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4128 {
4129         struct perf_cpu_context *cpuctx;
4130         struct perf_event_context *ctx;
4131         struct vm_area_struct *vma = mmap_event->vma;
4132         struct file *file = vma->vm_file;
4133         unsigned int size;
4134         char tmp[16];
4135         char *buf = NULL;
4136         const char *name;
4137         struct pmu *pmu;
4138         int ctxn;
4139
4140         memset(tmp, 0, sizeof(tmp));
4141
4142         if (file) {
4143                 /*
4144                  * d_path works from the end of the buffer backwards, so we
4145                  * need to add enough zero bytes after the string to handle
4146                  * the 64bit alignment we do later.
4147                  */
4148                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4149                 if (!buf) {
4150                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4151                         goto got_name;
4152                 }
4153                 name = d_path(&file->f_path, buf, PATH_MAX);
4154                 if (IS_ERR(name)) {
4155                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4156                         goto got_name;
4157                 }
4158         } else {
4159                 if (arch_vma_name(mmap_event->vma)) {
4160                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4161                                        sizeof(tmp));
4162                         goto got_name;
4163                 }
4164
4165                 if (!vma->vm_mm) {
4166                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4167                         goto got_name;
4168                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4169                                 vma->vm_end >= vma->vm_mm->brk) {
4170                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4171                         goto got_name;
4172                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4173                                 vma->vm_end >= vma->vm_mm->start_stack) {
4174                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4175                         goto got_name;
4176                 }
4177
4178                 name = strncpy(tmp, "//anon", sizeof(tmp));
4179                 goto got_name;
4180         }
4181
4182 got_name:
4183         size = ALIGN(strlen(name)+1, sizeof(u64));
4184
4185         mmap_event->file_name = name;
4186         mmap_event->file_size = size;
4187
4188         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4189
4190         rcu_read_lock();
4191         list_for_each_entry_rcu(pmu, &pmus, entry) {
4192                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4193                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4194                                         vma->vm_flags & VM_EXEC);
4195
4196                 ctxn = pmu->task_ctx_nr;
4197                 if (ctxn < 0)
4198                         goto next;
4199
4200                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4201                 if (ctx) {
4202                         perf_event_mmap_ctx(ctx, mmap_event,
4203                                         vma->vm_flags & VM_EXEC);
4204                 }
4205 next:
4206                 put_cpu_ptr(pmu->pmu_cpu_context);
4207         }
4208         rcu_read_unlock();
4209
4210         kfree(buf);
4211 }
4212
4213 void perf_event_mmap(struct vm_area_struct *vma)
4214 {
4215         struct perf_mmap_event mmap_event;
4216
4217         if (!atomic_read(&nr_mmap_events))
4218                 return;
4219
4220         mmap_event = (struct perf_mmap_event){
4221                 .vma    = vma,
4222                 /* .file_name */
4223                 /* .file_size */
4224                 .event_id  = {
4225                         .header = {
4226                                 .type = PERF_RECORD_MMAP,
4227                                 .misc = PERF_RECORD_MISC_USER,
4228                                 /* .size */
4229                         },
4230                         /* .pid */
4231                         /* .tid */
4232                         .start  = vma->vm_start,
4233                         .len    = vma->vm_end - vma->vm_start,
4234                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4235                 },
4236         };
4237
4238         perf_event_mmap_event(&mmap_event);
4239 }
4240
4241 /*
4242  * IRQ throttle logging
4243  */
4244
4245 static void perf_log_throttle(struct perf_event *event, int enable)
4246 {
4247         struct perf_output_handle handle;
4248         int ret;
4249
4250         struct {
4251                 struct perf_event_header        header;
4252                 u64                             time;
4253                 u64                             id;
4254                 u64                             stream_id;
4255         } throttle_event = {
4256                 .header = {
4257                         .type = PERF_RECORD_THROTTLE,
4258                         .misc = 0,
4259                         .size = sizeof(throttle_event),
4260                 },
4261                 .time           = perf_clock(),
4262                 .id             = primary_event_id(event),
4263                 .stream_id      = event->id,
4264         };
4265
4266         if (enable)
4267                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4268
4269         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4270         if (ret)
4271                 return;
4272
4273         perf_output_put(&handle, throttle_event);
4274         perf_output_end(&handle);
4275 }
4276
4277 /*
4278  * Generic event overflow handling, sampling.
4279  */
4280
4281 static int __perf_event_overflow(struct perf_event *event, int nmi,
4282                                    int throttle, struct perf_sample_data *data,
4283                                    struct pt_regs *regs)
4284 {
4285         int events = atomic_read(&event->event_limit);
4286         struct hw_perf_event *hwc = &event->hw;
4287         int ret = 0;
4288
4289         /*
4290          * Non-sampling counters might still use the PMI to fold short
4291          * hardware counters, ignore those.
4292          */
4293         if (unlikely(!is_sampling_event(event)))
4294                 return 0;
4295
4296         if (!throttle) {
4297                 hwc->interrupts++;
4298         } else {
4299                 if (hwc->interrupts != MAX_INTERRUPTS) {
4300                         hwc->interrupts++;
4301                         if (HZ * hwc->interrupts >
4302                                         (u64)sysctl_perf_event_sample_rate) {
4303                                 hwc->interrupts = MAX_INTERRUPTS;
4304                                 perf_log_throttle(event, 0);
4305                                 ret = 1;
4306                         }
4307                 } else {
4308                         /*
4309                          * Keep re-disabling events even though on the previous
4310                          * pass we disabled it - just in case we raced with a
4311                          * sched-in and the event got enabled again:
4312                          */
4313                         ret = 1;
4314                 }
4315         }
4316
4317         if (event->attr.freq) {
4318                 u64 now = perf_clock();
4319                 s64 delta = now - hwc->freq_time_stamp;
4320
4321                 hwc->freq_time_stamp = now;
4322
4323                 if (delta > 0 && delta < 2*TICK_NSEC)
4324                         perf_adjust_period(event, delta, hwc->last_period);
4325         }
4326
4327         /*
4328          * XXX event_limit might not quite work as expected on inherited
4329          * events
4330          */
4331
4332         event->pending_kill = POLL_IN;
4333         if (events && atomic_dec_and_test(&event->event_limit)) {
4334                 ret = 1;
4335                 event->pending_kill = POLL_HUP;
4336                 if (nmi) {
4337                         event->pending_disable = 1;
4338                         irq_work_queue(&event->pending);
4339                 } else
4340                         perf_event_disable(event);
4341         }
4342
4343         if (event->overflow_handler)
4344                 event->overflow_handler(event, nmi, data, regs);
4345         else
4346                 perf_event_output(event, nmi, data, regs);
4347
4348         return ret;
4349 }
4350
4351 int perf_event_overflow(struct perf_event *event, int nmi,
4352                           struct perf_sample_data *data,
4353                           struct pt_regs *regs)
4354 {
4355         return __perf_event_overflow(event, nmi, 1, data, regs);
4356 }
4357
4358 /*
4359  * Generic software event infrastructure
4360  */
4361
4362 struct swevent_htable {
4363         struct swevent_hlist            *swevent_hlist;
4364         struct mutex                    hlist_mutex;
4365         int                             hlist_refcount;
4366
4367         /* Recursion avoidance in each contexts */
4368         int                             recursion[PERF_NR_CONTEXTS];
4369 };
4370
4371 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4372
4373 /*
4374  * We directly increment event->count and keep a second value in
4375  * event->hw.period_left to count intervals. This period event
4376  * is kept in the range [-sample_period, 0] so that we can use the
4377  * sign as trigger.
4378  */
4379
4380 static u64 perf_swevent_set_period(struct perf_event *event)
4381 {
4382         struct hw_perf_event *hwc = &event->hw;
4383         u64 period = hwc->last_period;
4384         u64 nr, offset;
4385         s64 old, val;
4386
4387         hwc->last_period = hwc->sample_period;
4388
4389 again:
4390         old = val = local64_read(&hwc->period_left);
4391         if (val < 0)
4392                 return 0;
4393
4394         nr = div64_u64(period + val, period);
4395         offset = nr * period;
4396         val -= offset;
4397         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4398                 goto again;
4399
4400         return nr;
4401 }
4402
4403 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4404                                     int nmi, struct perf_sample_data *data,
4405                                     struct pt_regs *regs)
4406 {
4407         struct hw_perf_event *hwc = &event->hw;
4408         int throttle = 0;
4409
4410         data->period = event->hw.last_period;
4411         if (!overflow)
4412                 overflow = perf_swevent_set_period(event);
4413
4414         if (hwc->interrupts == MAX_INTERRUPTS)
4415                 return;
4416
4417         for (; overflow; overflow--) {
4418                 if (__perf_event_overflow(event, nmi, throttle,
4419                                             data, regs)) {
4420                         /*
4421                          * We inhibit the overflow from happening when
4422                          * hwc->interrupts == MAX_INTERRUPTS.
4423                          */
4424                         break;
4425                 }
4426                 throttle = 1;
4427         }
4428 }
4429
4430 static void perf_swevent_event(struct perf_event *event, u64 nr,
4431                                int nmi, struct perf_sample_data *data,
4432                                struct pt_regs *regs)
4433 {
4434         struct hw_perf_event *hwc = &event->hw;
4435
4436         local64_add(nr, &event->count);
4437
4438         if (!regs)
4439                 return;
4440
4441         if (!is_sampling_event(event))
4442                 return;
4443
4444         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4445                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4446
4447         if (local64_add_negative(nr, &hwc->period_left))
4448                 return;
4449
4450         perf_swevent_overflow(event, 0, nmi, data, regs);
4451 }
4452
4453 static int perf_exclude_event(struct perf_event *event,
4454                               struct pt_regs *regs)
4455 {
4456         if (event->hw.state & PERF_HES_STOPPED)
4457                 return 0;
4458
4459         if (regs) {
4460                 if (event->attr.exclude_user && user_mode(regs))
4461                         return 1;
4462
4463                 if (event->attr.exclude_kernel && !user_mode(regs))
4464                         return 1;
4465         }
4466
4467         return 0;
4468 }
4469
4470 static int perf_swevent_match(struct perf_event *event,
4471                                 enum perf_type_id type,
4472                                 u32 event_id,
4473                                 struct perf_sample_data *data,
4474                                 struct pt_regs *regs)
4475 {
4476         if (event->attr.type != type)
4477                 return 0;
4478
4479         if (event->attr.config != event_id)
4480                 return 0;
4481
4482         if (perf_exclude_event(event, regs))
4483                 return 0;
4484
4485         return 1;
4486 }
4487
4488 static inline u64 swevent_hash(u64 type, u32 event_id)
4489 {
4490         u64 val = event_id | (type << 32);
4491
4492         return hash_64(val, SWEVENT_HLIST_BITS);
4493 }
4494
4495 static inline struct hlist_head *
4496 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4497 {
4498         u64 hash = swevent_hash(type, event_id);
4499
4500         return &hlist->heads[hash];
4501 }
4502
4503 /* For the read side: events when they trigger */
4504 static inline struct hlist_head *
4505 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4506 {
4507         struct swevent_hlist *hlist;
4508
4509         hlist = rcu_dereference(swhash->swevent_hlist);
4510         if (!hlist)
4511                 return NULL;
4512
4513         return __find_swevent_head(hlist, type, event_id);
4514 }
4515
4516 /* For the event head insertion and removal in the hlist */
4517 static inline struct hlist_head *
4518 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4519 {
4520         struct swevent_hlist *hlist;
4521         u32 event_id = event->attr.config;
4522         u64 type = event->attr.type;
4523
4524         /*
4525          * Event scheduling is always serialized against hlist allocation
4526          * and release. Which makes the protected version suitable here.
4527          * The context lock guarantees that.
4528          */
4529         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4530                                           lockdep_is_held(&event->ctx->lock));
4531         if (!hlist)
4532                 return NULL;
4533
4534         return __find_swevent_head(hlist, type, event_id);
4535 }
4536
4537 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4538                                     u64 nr, int nmi,
4539                                     struct perf_sample_data *data,
4540                                     struct pt_regs *regs)
4541 {
4542         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4543         struct perf_event *event;
4544         struct hlist_node *node;
4545         struct hlist_head *head;
4546
4547         rcu_read_lock();
4548         head = find_swevent_head_rcu(swhash, type, event_id);
4549         if (!head)
4550                 goto end;
4551
4552         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4553                 if (perf_swevent_match(event, type, event_id, data, regs))
4554                         perf_swevent_event(event, nr, nmi, data, regs);
4555         }
4556 end:
4557         rcu_read_unlock();
4558 }
4559
4560 int perf_swevent_get_recursion_context(void)
4561 {
4562         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4563
4564         return get_recursion_context(swhash->recursion);
4565 }
4566 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4567
4568 void inline perf_swevent_put_recursion_context(int rctx)
4569 {
4570         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4571
4572         put_recursion_context(swhash->recursion, rctx);
4573 }
4574
4575 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4576                             struct pt_regs *regs, u64 addr)
4577 {
4578         struct perf_sample_data data;
4579         int rctx;
4580
4581         preempt_disable_notrace();
4582         rctx = perf_swevent_get_recursion_context();
4583         if (rctx < 0)
4584                 return;
4585
4586         perf_sample_data_init(&data, addr);
4587
4588         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4589
4590         perf_swevent_put_recursion_context(rctx);
4591         preempt_enable_notrace();
4592 }
4593
4594 static void perf_swevent_read(struct perf_event *event)
4595 {
4596 }
4597
4598 static int perf_swevent_add(struct perf_event *event, int flags)
4599 {
4600         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4601         struct hw_perf_event *hwc = &event->hw;
4602         struct hlist_head *head;
4603
4604         if (is_sampling_event(event)) {
4605                 hwc->last_period = hwc->sample_period;
4606                 perf_swevent_set_period(event);
4607         }
4608
4609         hwc->state = !(flags & PERF_EF_START);
4610
4611         head = find_swevent_head(swhash, event);
4612         if (WARN_ON_ONCE(!head))
4613                 return -EINVAL;
4614
4615         hlist_add_head_rcu(&event->hlist_entry, head);
4616
4617         return 0;
4618 }
4619
4620 static void perf_swevent_del(struct perf_event *event, int flags)
4621 {
4622         hlist_del_rcu(&event->hlist_entry);
4623 }
4624
4625 static void perf_swevent_start(struct perf_event *event, int flags)
4626 {
4627         event->hw.state = 0;
4628 }
4629
4630 static void perf_swevent_stop(struct perf_event *event, int flags)
4631 {
4632         event->hw.state = PERF_HES_STOPPED;
4633 }
4634
4635 /* Deref the hlist from the update side */
4636 static inline struct swevent_hlist *
4637 swevent_hlist_deref(struct swevent_htable *swhash)
4638 {
4639         return rcu_dereference_protected(swhash->swevent_hlist,
4640                                          lockdep_is_held(&swhash->hlist_mutex));
4641 }
4642
4643 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4644 {
4645         struct swevent_hlist *hlist;
4646
4647         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4648         kfree(hlist);
4649 }
4650
4651 static void swevent_hlist_release(struct swevent_htable *swhash)
4652 {
4653         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4654
4655         if (!hlist)
4656                 return;
4657
4658         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4659         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4660 }
4661
4662 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4663 {
4664         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4665
4666         mutex_lock(&swhash->hlist_mutex);
4667
4668         if (!--swhash->hlist_refcount)
4669                 swevent_hlist_release(swhash);
4670
4671         mutex_unlock(&swhash->hlist_mutex);
4672 }
4673
4674 static void swevent_hlist_put(struct perf_event *event)
4675 {
4676         int cpu;
4677
4678         if (event->cpu != -1) {
4679                 swevent_hlist_put_cpu(event, event->cpu);
4680                 return;
4681         }
4682
4683         for_each_possible_cpu(cpu)
4684                 swevent_hlist_put_cpu(event, cpu);
4685 }
4686
4687 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4688 {
4689         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4690         int err = 0;
4691
4692         mutex_lock(&swhash->hlist_mutex);
4693
4694         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4695                 struct swevent_hlist *hlist;
4696
4697                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4698                 if (!hlist) {
4699                         err = -ENOMEM;
4700                         goto exit;
4701                 }
4702                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4703         }
4704         swhash->hlist_refcount++;
4705 exit:
4706         mutex_unlock(&swhash->hlist_mutex);
4707
4708         return err;
4709 }
4710
4711 static int swevent_hlist_get(struct perf_event *event)
4712 {
4713         int err;
4714         int cpu, failed_cpu;
4715
4716         if (event->cpu != -1)
4717                 return swevent_hlist_get_cpu(event, event->cpu);
4718
4719         get_online_cpus();
4720         for_each_possible_cpu(cpu) {
4721                 err = swevent_hlist_get_cpu(event, cpu);
4722                 if (err) {
4723                         failed_cpu = cpu;
4724                         goto fail;
4725                 }
4726         }
4727         put_online_cpus();
4728
4729         return 0;
4730 fail:
4731         for_each_possible_cpu(cpu) {
4732                 if (cpu == failed_cpu)
4733                         break;
4734                 swevent_hlist_put_cpu(event, cpu);
4735         }
4736
4737         put_online_cpus();
4738         return err;
4739 }
4740
4741 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4742
4743 static void sw_perf_event_destroy(struct perf_event *event)
4744 {
4745         u64 event_id = event->attr.config;
4746
4747         WARN_ON(event->parent);
4748
4749         jump_label_dec(&perf_swevent_enabled[event_id]);
4750         swevent_hlist_put(event);
4751 }
4752
4753 static int perf_swevent_init(struct perf_event *event)
4754 {
4755         int event_id = event->attr.config;
4756
4757         if (event->attr.type != PERF_TYPE_SOFTWARE)
4758                 return -ENOENT;
4759
4760         switch (event_id) {
4761         case PERF_COUNT_SW_CPU_CLOCK:
4762         case PERF_COUNT_SW_TASK_CLOCK:
4763                 return -ENOENT;
4764
4765         default:
4766                 break;
4767         }
4768
4769         if (event_id > PERF_COUNT_SW_MAX)
4770                 return -ENOENT;
4771
4772         if (!event->parent) {
4773                 int err;
4774
4775                 err = swevent_hlist_get(event);
4776                 if (err)
4777                         return err;
4778
4779                 jump_label_inc(&perf_swevent_enabled[event_id]);
4780                 event->destroy = sw_perf_event_destroy;
4781         }
4782
4783         return 0;
4784 }
4785
4786 static struct pmu perf_swevent = {
4787         .task_ctx_nr    = perf_sw_context,
4788
4789         .event_init     = perf_swevent_init,
4790         .add            = perf_swevent_add,
4791         .del            = perf_swevent_del,
4792         .start          = perf_swevent_start,
4793         .stop           = perf_swevent_stop,
4794         .read           = perf_swevent_read,
4795 };
4796
4797 #ifdef CONFIG_EVENT_TRACING
4798
4799 static int perf_tp_filter_match(struct perf_event *event,
4800                                 struct perf_sample_data *data)
4801 {
4802         void *record = data->raw->data;
4803
4804         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4805                 return 1;
4806         return 0;
4807 }
4808
4809 static int perf_tp_event_match(struct perf_event *event,
4810                                 struct perf_sample_data *data,
4811                                 struct pt_regs *regs)
4812 {
4813         /*
4814          * All tracepoints are from kernel-space.
4815          */
4816         if (event->attr.exclude_kernel)
4817                 return 0;
4818
4819         if (!perf_tp_filter_match(event, data))
4820                 return 0;
4821
4822         return 1;
4823 }
4824
4825 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4826                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4827 {
4828         struct perf_sample_data data;
4829         struct perf_event *event;
4830         struct hlist_node *node;
4831
4832         struct perf_raw_record raw = {
4833                 .size = entry_size,
4834                 .data = record,
4835         };
4836
4837         perf_sample_data_init(&data, addr);
4838         data.raw = &raw;
4839
4840         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4841                 if (perf_tp_event_match(event, &data, regs))
4842                         perf_swevent_event(event, count, 1, &data, regs);
4843         }
4844
4845         perf_swevent_put_recursion_context(rctx);
4846 }
4847 EXPORT_SYMBOL_GPL(perf_tp_event);
4848
4849 static void tp_perf_event_destroy(struct perf_event *event)
4850 {
4851         perf_trace_destroy(event);
4852 }
4853
4854 static int perf_tp_event_init(struct perf_event *event)
4855 {
4856         int err;
4857
4858         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4859                 return -ENOENT;
4860
4861         err = perf_trace_init(event);
4862         if (err)
4863                 return err;
4864
4865         event->destroy = tp_perf_event_destroy;
4866
4867         return 0;
4868 }
4869
4870 static struct pmu perf_tracepoint = {
4871         .task_ctx_nr    = perf_sw_context,
4872
4873         .event_init     = perf_tp_event_init,
4874         .add            = perf_trace_add,
4875         .del            = perf_trace_del,
4876         .start          = perf_swevent_start,
4877         .stop           = perf_swevent_stop,
4878         .read           = perf_swevent_read,
4879 };
4880
4881 static inline void perf_tp_register(void)
4882 {
4883         perf_pmu_register(&perf_tracepoint);
4884 }
4885
4886 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4887 {
4888         char *filter_str;
4889         int ret;
4890
4891         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4892                 return -EINVAL;
4893
4894         filter_str = strndup_user(arg, PAGE_SIZE);
4895         if (IS_ERR(filter_str))
4896                 return PTR_ERR(filter_str);
4897
4898         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4899
4900         kfree(filter_str);
4901         return ret;
4902 }
4903
4904 static void perf_event_free_filter(struct perf_event *event)
4905 {
4906         ftrace_profile_free_filter(event);
4907 }
4908
4909 #else
4910
4911 static inline void perf_tp_register(void)
4912 {
4913 }
4914
4915 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4916 {
4917         return -ENOENT;
4918 }
4919
4920 static void perf_event_free_filter(struct perf_event *event)
4921 {
4922 }
4923
4924 #endif /* CONFIG_EVENT_TRACING */
4925
4926 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4927 void perf_bp_event(struct perf_event *bp, void *data)
4928 {
4929         struct perf_sample_data sample;
4930         struct pt_regs *regs = data;
4931
4932         perf_sample_data_init(&sample, bp->attr.bp_addr);
4933
4934         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4935                 perf_swevent_event(bp, 1, 1, &sample, regs);
4936 }
4937 #endif
4938
4939 /*
4940  * hrtimer based swevent callback
4941  */
4942
4943 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4944 {
4945         enum hrtimer_restart ret = HRTIMER_RESTART;
4946         struct perf_sample_data data;
4947         struct pt_regs *regs;
4948         struct perf_event *event;
4949         u64 period;
4950
4951         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4952         event->pmu->read(event);
4953
4954         perf_sample_data_init(&data, 0);
4955         data.period = event->hw.last_period;
4956         regs = get_irq_regs();
4957
4958         if (regs && !perf_exclude_event(event, regs)) {
4959                 if (!(event->attr.exclude_idle && current->pid == 0))
4960                         if (perf_event_overflow(event, 0, &data, regs))
4961                                 ret = HRTIMER_NORESTART;
4962         }
4963
4964         period = max_t(u64, 10000, event->hw.sample_period);
4965         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4966
4967         return ret;
4968 }
4969
4970 static void perf_swevent_start_hrtimer(struct perf_event *event)
4971 {
4972         struct hw_perf_event *hwc = &event->hw;
4973         s64 period;
4974
4975         if (!is_sampling_event(event))
4976                 return;
4977
4978         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4979         hwc->hrtimer.function = perf_swevent_hrtimer;
4980
4981         period = local64_read(&hwc->period_left);
4982         if (period) {
4983                 if (period < 0)
4984                         period = 10000;
4985
4986                 local64_set(&hwc->period_left, 0);
4987         } else {
4988                 period = max_t(u64, 10000, hwc->sample_period);
4989         }
4990         __hrtimer_start_range_ns(&hwc->hrtimer,
4991                                 ns_to_ktime(period), 0,
4992                                 HRTIMER_MODE_REL_PINNED, 0);
4993 }
4994
4995 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4996 {
4997         struct hw_perf_event *hwc = &event->hw;
4998
4999         if (is_sampling_event(event)) {
5000                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5001                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5002
5003                 hrtimer_cancel(&hwc->hrtimer);
5004         }
5005 }
5006
5007 /*
5008  * Software event: cpu wall time clock
5009  */
5010
5011 static void cpu_clock_event_update(struct perf_event *event)
5012 {
5013         s64 prev;
5014         u64 now;
5015
5016         now = local_clock();
5017         prev = local64_xchg(&event->hw.prev_count, now);
5018         local64_add(now - prev, &event->count);
5019 }
5020
5021 static void cpu_clock_event_start(struct perf_event *event, int flags)
5022 {
5023         local64_set(&event->hw.prev_count, local_clock());
5024         perf_swevent_start_hrtimer(event);
5025 }
5026
5027 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5028 {
5029         perf_swevent_cancel_hrtimer(event);
5030         cpu_clock_event_update(event);
5031 }
5032
5033 static int cpu_clock_event_add(struct perf_event *event, int flags)
5034 {
5035         if (flags & PERF_EF_START)
5036                 cpu_clock_event_start(event, flags);
5037
5038         return 0;
5039 }
5040
5041 static void cpu_clock_event_del(struct perf_event *event, int flags)
5042 {
5043         cpu_clock_event_stop(event, flags);
5044 }
5045
5046 static void cpu_clock_event_read(struct perf_event *event)
5047 {
5048         cpu_clock_event_update(event);
5049 }
5050
5051 static int cpu_clock_event_init(struct perf_event *event)
5052 {
5053         if (event->attr.type != PERF_TYPE_SOFTWARE)
5054                 return -ENOENT;
5055
5056         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5057                 return -ENOENT;
5058
5059         return 0;
5060 }
5061
5062 static struct pmu perf_cpu_clock = {
5063         .task_ctx_nr    = perf_sw_context,
5064
5065         .event_init     = cpu_clock_event_init,
5066         .add            = cpu_clock_event_add,
5067         .del            = cpu_clock_event_del,
5068         .start          = cpu_clock_event_start,
5069         .stop           = cpu_clock_event_stop,
5070         .read           = cpu_clock_event_read,
5071 };
5072
5073 /*
5074  * Software event: task time clock
5075  */
5076
5077 static void task_clock_event_update(struct perf_event *event, u64 now)
5078 {
5079         u64 prev;
5080         s64 delta;
5081
5082         prev = local64_xchg(&event->hw.prev_count, now);
5083         delta = now - prev;
5084         local64_add(delta, &event->count);
5085 }
5086
5087 static void task_clock_event_start(struct perf_event *event, int flags)
5088 {
5089         local64_set(&event->hw.prev_count, event->ctx->time);
5090         perf_swevent_start_hrtimer(event);
5091 }
5092
5093 static void task_clock_event_stop(struct perf_event *event, int flags)
5094 {
5095         perf_swevent_cancel_hrtimer(event);
5096         task_clock_event_update(event, event->ctx->time);
5097 }
5098
5099 static int task_clock_event_add(struct perf_event *event, int flags)
5100 {
5101         if (flags & PERF_EF_START)
5102                 task_clock_event_start(event, flags);
5103
5104         return 0;
5105 }
5106
5107 static void task_clock_event_del(struct perf_event *event, int flags)
5108 {
5109         task_clock_event_stop(event, PERF_EF_UPDATE);
5110 }
5111
5112 static void task_clock_event_read(struct perf_event *event)
5113 {
5114         u64 time;
5115
5116         if (!in_nmi()) {
5117                 update_context_time(event->ctx);
5118                 time = event->ctx->time;
5119         } else {
5120                 u64 now = perf_clock();
5121                 u64 delta = now - event->ctx->timestamp;
5122                 time = event->ctx->time + delta;
5123         }
5124
5125         task_clock_event_update(event, time);
5126 }
5127
5128 static int task_clock_event_init(struct perf_event *event)
5129 {
5130         if (event->attr.type != PERF_TYPE_SOFTWARE)
5131                 return -ENOENT;
5132
5133         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5134                 return -ENOENT;
5135
5136         return 0;
5137 }
5138
5139 static struct pmu perf_task_clock = {
5140         .task_ctx_nr    = perf_sw_context,
5141
5142         .event_init     = task_clock_event_init,
5143         .add            = task_clock_event_add,
5144         .del            = task_clock_event_del,
5145         .start          = task_clock_event_start,
5146         .stop           = task_clock_event_stop,
5147         .read           = task_clock_event_read,
5148 };
5149
5150 static void perf_pmu_nop_void(struct pmu *pmu)
5151 {
5152 }
5153
5154 static int perf_pmu_nop_int(struct pmu *pmu)
5155 {
5156         return 0;
5157 }
5158
5159 static void perf_pmu_start_txn(struct pmu *pmu)
5160 {
5161         perf_pmu_disable(pmu);
5162 }
5163
5164 static int perf_pmu_commit_txn(struct pmu *pmu)
5165 {
5166         perf_pmu_enable(pmu);
5167         return 0;
5168 }
5169
5170 static void perf_pmu_cancel_txn(struct pmu *pmu)
5171 {
5172         perf_pmu_enable(pmu);
5173 }
5174
5175 /*
5176  * Ensures all contexts with the same task_ctx_nr have the same
5177  * pmu_cpu_context too.
5178  */
5179 static void *find_pmu_context(int ctxn)
5180 {
5181         struct pmu *pmu;
5182
5183         if (ctxn < 0)
5184                 return NULL;
5185
5186         list_for_each_entry(pmu, &pmus, entry) {
5187                 if (pmu->task_ctx_nr == ctxn)
5188                         return pmu->pmu_cpu_context;
5189         }
5190
5191         return NULL;
5192 }
5193
5194 static void free_pmu_context(void * __percpu cpu_context)
5195 {
5196         struct pmu *pmu;
5197
5198         mutex_lock(&pmus_lock);
5199         /*
5200          * Like a real lame refcount.
5201          */
5202         list_for_each_entry(pmu, &pmus, entry) {
5203                 if (pmu->pmu_cpu_context == cpu_context)
5204                         goto out;
5205         }
5206
5207         free_percpu(cpu_context);
5208 out:
5209         mutex_unlock(&pmus_lock);
5210 }
5211
5212 int perf_pmu_register(struct pmu *pmu)
5213 {
5214         int cpu, ret;
5215
5216         mutex_lock(&pmus_lock);
5217         ret = -ENOMEM;
5218         pmu->pmu_disable_count = alloc_percpu(int);
5219         if (!pmu->pmu_disable_count)
5220                 goto unlock;
5221
5222         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5223         if (pmu->pmu_cpu_context)
5224                 goto got_cpu_context;
5225
5226         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5227         if (!pmu->pmu_cpu_context)
5228                 goto free_pdc;
5229
5230         for_each_possible_cpu(cpu) {
5231                 struct perf_cpu_context *cpuctx;
5232
5233                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5234                 __perf_event_init_context(&cpuctx->ctx);
5235                 cpuctx->ctx.type = cpu_context;
5236                 cpuctx->ctx.pmu = pmu;
5237                 cpuctx->jiffies_interval = 1;
5238                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5239         }
5240
5241 got_cpu_context:
5242         if (!pmu->start_txn) {
5243                 if (pmu->pmu_enable) {
5244                         /*
5245                          * If we have pmu_enable/pmu_disable calls, install
5246                          * transaction stubs that use that to try and batch
5247                          * hardware accesses.
5248                          */
5249                         pmu->start_txn  = perf_pmu_start_txn;
5250                         pmu->commit_txn = perf_pmu_commit_txn;
5251                         pmu->cancel_txn = perf_pmu_cancel_txn;
5252                 } else {
5253                         pmu->start_txn  = perf_pmu_nop_void;
5254                         pmu->commit_txn = perf_pmu_nop_int;
5255                         pmu->cancel_txn = perf_pmu_nop_void;
5256                 }
5257         }
5258
5259         if (!pmu->pmu_enable) {
5260                 pmu->pmu_enable  = perf_pmu_nop_void;
5261                 pmu->pmu_disable = perf_pmu_nop_void;
5262         }
5263
5264         list_add_rcu(&pmu->entry, &pmus);
5265         ret = 0;
5266 unlock:
5267         mutex_unlock(&pmus_lock);
5268
5269         return ret;
5270
5271 free_pdc:
5272         free_percpu(pmu->pmu_disable_count);
5273         goto unlock;
5274 }
5275
5276 void perf_pmu_unregister(struct pmu *pmu)
5277 {
5278         mutex_lock(&pmus_lock);
5279         list_del_rcu(&pmu->entry);
5280         mutex_unlock(&pmus_lock);
5281
5282         /*
5283          * We dereference the pmu list under both SRCU and regular RCU, so
5284          * synchronize against both of those.
5285          */
5286         synchronize_srcu(&pmus_srcu);
5287         synchronize_rcu();
5288
5289         free_percpu(pmu->pmu_disable_count);
5290         free_pmu_context(pmu->pmu_cpu_context);
5291 }
5292
5293 struct pmu *perf_init_event(struct perf_event *event)
5294 {
5295         struct pmu *pmu = NULL;
5296         int idx;
5297
5298         idx = srcu_read_lock(&pmus_srcu);
5299         list_for_each_entry_rcu(pmu, &pmus, entry) {
5300                 int ret = pmu->event_init(event);
5301                 if (!ret)
5302                         goto unlock;
5303
5304                 if (ret != -ENOENT) {
5305                         pmu = ERR_PTR(ret);
5306                         goto unlock;
5307                 }
5308         }
5309         pmu = ERR_PTR(-ENOENT);
5310 unlock:
5311         srcu_read_unlock(&pmus_srcu, idx);
5312
5313         return pmu;
5314 }
5315
5316 /*
5317  * Allocate and initialize a event structure
5318  */
5319 static struct perf_event *
5320 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5321                  struct task_struct *task,
5322                  struct perf_event *group_leader,
5323                  struct perf_event *parent_event,
5324                  perf_overflow_handler_t overflow_handler)
5325 {
5326         struct pmu *pmu;
5327         struct perf_event *event;
5328         struct hw_perf_event *hwc;
5329         long err;
5330
5331         event = kzalloc(sizeof(*event), GFP_KERNEL);
5332         if (!event)
5333                 return ERR_PTR(-ENOMEM);
5334
5335         /*
5336          * Single events are their own group leaders, with an
5337          * empty sibling list:
5338          */
5339         if (!group_leader)
5340                 group_leader = event;
5341
5342         mutex_init(&event->child_mutex);
5343         INIT_LIST_HEAD(&event->child_list);
5344
5345         INIT_LIST_HEAD(&event->group_entry);
5346         INIT_LIST_HEAD(&event->event_entry);
5347         INIT_LIST_HEAD(&event->sibling_list);
5348         init_waitqueue_head(&event->waitq);
5349         init_irq_work(&event->pending, perf_pending_event);
5350
5351         mutex_init(&event->mmap_mutex);
5352
5353         event->cpu              = cpu;
5354         event->attr             = *attr;
5355         event->group_leader     = group_leader;
5356         event->pmu              = NULL;
5357         event->oncpu            = -1;
5358
5359         event->parent           = parent_event;
5360
5361         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5362         event->id               = atomic64_inc_return(&perf_event_id);
5363
5364         event->state            = PERF_EVENT_STATE_INACTIVE;
5365
5366         if (task) {
5367                 event->attach_state = PERF_ATTACH_TASK;
5368 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5369                 /*
5370                  * hw_breakpoint is a bit difficult here..
5371                  */
5372                 if (attr->type == PERF_TYPE_BREAKPOINT)
5373                         event->hw.bp_target = task;
5374 #endif
5375         }
5376
5377         if (!overflow_handler && parent_event)
5378                 overflow_handler = parent_event->overflow_handler;
5379         
5380         event->overflow_handler = overflow_handler;
5381
5382         if (attr->disabled)
5383                 event->state = PERF_EVENT_STATE_OFF;
5384
5385         pmu = NULL;
5386
5387         hwc = &event->hw;
5388         hwc->sample_period = attr->sample_period;
5389         if (attr->freq && attr->sample_freq)
5390                 hwc->sample_period = 1;
5391         hwc->last_period = hwc->sample_period;
5392
5393         local64_set(&hwc->period_left, hwc->sample_period);
5394
5395         /*
5396          * we currently do not support PERF_FORMAT_GROUP on inherited events
5397          */
5398         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5399                 goto done;
5400
5401         pmu = perf_init_event(event);
5402
5403 done:
5404         err = 0;
5405         if (!pmu)
5406                 err = -EINVAL;
5407         else if (IS_ERR(pmu))
5408                 err = PTR_ERR(pmu);
5409
5410         if (err) {
5411                 if (event->ns)
5412                         put_pid_ns(event->ns);
5413                 kfree(event);
5414                 return ERR_PTR(err);
5415         }
5416
5417         event->pmu = pmu;
5418
5419         if (!event->parent) {
5420                 if (event->attach_state & PERF_ATTACH_TASK)
5421                         jump_label_inc(&perf_task_events);
5422                 if (event->attr.mmap || event->attr.mmap_data)
5423                         atomic_inc(&nr_mmap_events);
5424                 if (event->attr.comm)
5425                         atomic_inc(&nr_comm_events);
5426                 if (event->attr.task)
5427                         atomic_inc(&nr_task_events);
5428                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5429                         err = get_callchain_buffers();
5430                         if (err) {
5431                                 free_event(event);
5432                                 return ERR_PTR(err);
5433                         }
5434                 }
5435         }
5436
5437         return event;
5438 }
5439
5440 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5441                           struct perf_event_attr *attr)
5442 {
5443         u32 size;
5444         int ret;
5445
5446         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5447                 return -EFAULT;
5448
5449         /*
5450          * zero the full structure, so that a short copy will be nice.
5451          */
5452         memset(attr, 0, sizeof(*attr));
5453
5454         ret = get_user(size, &uattr->size);
5455         if (ret)
5456                 return ret;
5457
5458         if (size > PAGE_SIZE)   /* silly large */
5459                 goto err_size;
5460
5461         if (!size)              /* abi compat */
5462                 size = PERF_ATTR_SIZE_VER0;
5463
5464         if (size < PERF_ATTR_SIZE_VER0)
5465                 goto err_size;
5466
5467         /*
5468          * If we're handed a bigger struct than we know of,
5469          * ensure all the unknown bits are 0 - i.e. new
5470          * user-space does not rely on any kernel feature
5471          * extensions we dont know about yet.
5472          */
5473         if (size > sizeof(*attr)) {
5474                 unsigned char __user *addr;
5475                 unsigned char __user *end;
5476                 unsigned char val;
5477
5478                 addr = (void __user *)uattr + sizeof(*attr);
5479                 end  = (void __user *)uattr + size;
5480
5481                 for (; addr < end; addr++) {
5482                         ret = get_user(val, addr);
5483                         if (ret)
5484                                 return ret;
5485                         if (val)
5486                                 goto err_size;
5487                 }
5488                 size = sizeof(*attr);
5489         }
5490
5491         ret = copy_from_user(attr, uattr, size);
5492         if (ret)
5493                 return -EFAULT;
5494
5495         /*
5496          * If the type exists, the corresponding creation will verify
5497          * the attr->config.
5498          */
5499         if (attr->type >= PERF_TYPE_MAX)
5500                 return -EINVAL;
5501
5502         if (attr->__reserved_1)
5503                 return -EINVAL;
5504
5505         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5506                 return -EINVAL;
5507
5508         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5509                 return -EINVAL;
5510
5511 out:
5512         return ret;
5513
5514 err_size:
5515         put_user(sizeof(*attr), &uattr->size);
5516         ret = -E2BIG;
5517         goto out;
5518 }
5519
5520 static int
5521 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5522 {
5523         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5524         int ret = -EINVAL;
5525
5526         if (!output_event)
5527                 goto set;
5528
5529         /* don't allow circular references */
5530         if (event == output_event)
5531                 goto out;
5532
5533         /*
5534          * Don't allow cross-cpu buffers
5535          */
5536         if (output_event->cpu != event->cpu)
5537                 goto out;
5538
5539         /*
5540          * If its not a per-cpu buffer, it must be the same task.
5541          */
5542         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5543                 goto out;
5544
5545 set:
5546         mutex_lock(&event->mmap_mutex);
5547         /* Can't redirect output if we've got an active mmap() */
5548         if (atomic_read(&event->mmap_count))
5549                 goto unlock;
5550
5551         if (output_event) {
5552                 /* get the buffer we want to redirect to */
5553                 buffer = perf_buffer_get(output_event);
5554                 if (!buffer)
5555                         goto unlock;
5556         }
5557
5558         old_buffer = event->buffer;
5559         rcu_assign_pointer(event->buffer, buffer);
5560         ret = 0;
5561 unlock:
5562         mutex_unlock(&event->mmap_mutex);
5563
5564         if (old_buffer)
5565                 perf_buffer_put(old_buffer);
5566 out:
5567         return ret;
5568 }
5569
5570 /**
5571  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5572  *
5573  * @attr_uptr:  event_id type attributes for monitoring/sampling
5574  * @pid:                target pid
5575  * @cpu:                target cpu
5576  * @group_fd:           group leader event fd
5577  */
5578 SYSCALL_DEFINE5(perf_event_open,
5579                 struct perf_event_attr __user *, attr_uptr,
5580                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5581 {
5582         struct perf_event *group_leader = NULL, *output_event = NULL;
5583         struct perf_event *event, *sibling;
5584         struct perf_event_attr attr;
5585         struct perf_event_context *ctx;
5586         struct file *event_file = NULL;
5587         struct file *group_file = NULL;
5588         struct task_struct *task = NULL;
5589         struct pmu *pmu;
5590         int event_fd;
5591         int move_group = 0;
5592         int fput_needed = 0;
5593         int err;
5594
5595         /* for future expandability... */
5596         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5597                 return -EINVAL;
5598
5599         err = perf_copy_attr(attr_uptr, &attr);
5600         if (err)
5601                 return err;
5602
5603         if (!attr.exclude_kernel) {
5604                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5605                         return -EACCES;
5606         }
5607
5608         if (attr.freq) {
5609                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5610                         return -EINVAL;
5611         }
5612
5613         event_fd = get_unused_fd_flags(O_RDWR);
5614         if (event_fd < 0)
5615                 return event_fd;
5616
5617         if (group_fd != -1) {
5618                 group_leader = perf_fget_light(group_fd, &fput_needed);
5619                 if (IS_ERR(group_leader)) {
5620                         err = PTR_ERR(group_leader);
5621                         goto err_fd;
5622                 }
5623                 group_file = group_leader->filp;
5624                 if (flags & PERF_FLAG_FD_OUTPUT)
5625                         output_event = group_leader;
5626                 if (flags & PERF_FLAG_FD_NO_GROUP)
5627                         group_leader = NULL;
5628         }
5629
5630         if (pid != -1) {
5631                 task = find_lively_task_by_vpid(pid);
5632                 if (IS_ERR(task)) {
5633                         err = PTR_ERR(task);
5634                         goto err_group_fd;
5635                 }
5636         }
5637
5638         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5639         if (IS_ERR(event)) {
5640                 err = PTR_ERR(event);
5641                 goto err_task;
5642         }
5643
5644         /*
5645          * Special case software events and allow them to be part of
5646          * any hardware group.
5647          */
5648         pmu = event->pmu;
5649
5650         if (group_leader &&
5651             (is_software_event(event) != is_software_event(group_leader))) {
5652                 if (is_software_event(event)) {
5653                         /*
5654                          * If event and group_leader are not both a software
5655                          * event, and event is, then group leader is not.
5656                          *
5657                          * Allow the addition of software events to !software
5658                          * groups, this is safe because software events never
5659                          * fail to schedule.
5660                          */
5661                         pmu = group_leader->pmu;
5662                 } else if (is_software_event(group_leader) &&
5663                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5664                         /*
5665                          * In case the group is a pure software group, and we
5666                          * try to add a hardware event, move the whole group to
5667                          * the hardware context.
5668                          */
5669                         move_group = 1;
5670                 }
5671         }
5672
5673         /*
5674          * Get the target context (task or percpu):
5675          */
5676         ctx = find_get_context(pmu, task, cpu);
5677         if (IS_ERR(ctx)) {
5678                 err = PTR_ERR(ctx);
5679                 goto err_alloc;
5680         }
5681
5682         /*
5683          * Look up the group leader (we will attach this event to it):
5684          */
5685         if (group_leader) {
5686                 err = -EINVAL;
5687
5688                 /*
5689                  * Do not allow a recursive hierarchy (this new sibling
5690                  * becoming part of another group-sibling):
5691                  */
5692                 if (group_leader->group_leader != group_leader)
5693                         goto err_context;
5694                 /*
5695                  * Do not allow to attach to a group in a different
5696                  * task or CPU context:
5697                  */
5698                 if (move_group) {
5699                         if (group_leader->ctx->type != ctx->type)
5700                                 goto err_context;
5701                 } else {
5702                         if (group_leader->ctx != ctx)
5703                                 goto err_context;
5704                 }
5705
5706                 /*
5707                  * Only a group leader can be exclusive or pinned
5708                  */
5709                 if (attr.exclusive || attr.pinned)
5710                         goto err_context;
5711         }
5712
5713         if (output_event) {
5714                 err = perf_event_set_output(event, output_event);
5715                 if (err)
5716                         goto err_context;
5717         }
5718
5719         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5720         if (IS_ERR(event_file)) {
5721                 err = PTR_ERR(event_file);
5722                 goto err_context;
5723         }
5724
5725         if (move_group) {
5726                 struct perf_event_context *gctx = group_leader->ctx;
5727
5728                 mutex_lock(&gctx->mutex);
5729                 perf_event_remove_from_context(group_leader);
5730                 list_for_each_entry(sibling, &group_leader->sibling_list,
5731                                     group_entry) {
5732                         perf_event_remove_from_context(sibling);
5733                         put_ctx(gctx);
5734                 }
5735                 mutex_unlock(&gctx->mutex);
5736                 put_ctx(gctx);
5737         }
5738
5739         event->filp = event_file;
5740         WARN_ON_ONCE(ctx->parent_ctx);
5741         mutex_lock(&ctx->mutex);
5742
5743         if (move_group) {
5744                 perf_install_in_context(ctx, group_leader, cpu);
5745                 get_ctx(ctx);
5746                 list_for_each_entry(sibling, &group_leader->sibling_list,
5747                                     group_entry) {
5748                         perf_install_in_context(ctx, sibling, cpu);
5749                         get_ctx(ctx);
5750                 }
5751         }
5752
5753         perf_install_in_context(ctx, event, cpu);
5754         ++ctx->generation;
5755         mutex_unlock(&ctx->mutex);
5756
5757         event->owner = current;
5758
5759         mutex_lock(&current->perf_event_mutex);
5760         list_add_tail(&event->owner_entry, &current->perf_event_list);
5761         mutex_unlock(&current->perf_event_mutex);
5762
5763         /*
5764          * Precalculate sample_data sizes
5765          */
5766         perf_event__header_size(event);
5767         perf_event__id_header_size(event);
5768
5769         /*
5770          * Drop the reference on the group_event after placing the
5771          * new event on the sibling_list. This ensures destruction
5772          * of the group leader will find the pointer to itself in
5773          * perf_group_detach().
5774          */
5775         fput_light(group_file, fput_needed);
5776         fd_install(event_fd, event_file);
5777         return event_fd;
5778
5779 err_context:
5780         put_ctx(ctx);
5781 err_alloc:
5782         free_event(event);
5783 err_task:
5784         if (task)
5785                 put_task_struct(task);
5786 err_group_fd:
5787         fput_light(group_file, fput_needed);
5788 err_fd:
5789         put_unused_fd(event_fd);
5790         return err;
5791 }
5792
5793 /**
5794  * perf_event_create_kernel_counter
5795  *
5796  * @attr: attributes of the counter to create
5797  * @cpu: cpu in which the counter is bound
5798  * @task: task to profile (NULL for percpu)
5799  */
5800 struct perf_event *
5801 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5802                                  struct task_struct *task,
5803                                  perf_overflow_handler_t overflow_handler)
5804 {
5805         struct perf_event_context *ctx;
5806         struct perf_event *event;
5807         int err;
5808
5809         /*
5810          * Get the target context (task or percpu):
5811          */
5812
5813         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5814         if (IS_ERR(event)) {
5815                 err = PTR_ERR(event);
5816                 goto err;
5817         }
5818
5819         ctx = find_get_context(event->pmu, task, cpu);
5820         if (IS_ERR(ctx)) {
5821                 err = PTR_ERR(ctx);
5822                 goto err_free;
5823         }
5824
5825         event->filp = NULL;
5826         WARN_ON_ONCE(ctx->parent_ctx);
5827         mutex_lock(&ctx->mutex);
5828         perf_install_in_context(ctx, event, cpu);
5829         ++ctx->generation;
5830         mutex_unlock(&ctx->mutex);
5831
5832         return event;
5833
5834 err_free:
5835         free_event(event);
5836 err:
5837         return ERR_PTR(err);
5838 }
5839 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5840
5841 static void sync_child_event(struct perf_event *child_event,
5842                                struct task_struct *child)
5843 {
5844         struct perf_event *parent_event = child_event->parent;
5845         u64 child_val;
5846
5847         if (child_event->attr.inherit_stat)
5848                 perf_event_read_event(child_event, child);
5849
5850         child_val = perf_event_count(child_event);
5851
5852         /*
5853          * Add back the child's count to the parent's count:
5854          */
5855         atomic64_add(child_val, &parent_event->child_count);
5856         atomic64_add(child_event->total_time_enabled,
5857                      &parent_event->child_total_time_enabled);
5858         atomic64_add(child_event->total_time_running,
5859                      &parent_event->child_total_time_running);
5860
5861         /*
5862          * Remove this event from the parent's list
5863          */
5864         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5865         mutex_lock(&parent_event->child_mutex);
5866         list_del_init(&child_event->child_list);
5867         mutex_unlock(&parent_event->child_mutex);
5868
5869         /*
5870          * Release the parent event, if this was the last
5871          * reference to it.
5872          */
5873         fput(parent_event->filp);
5874 }
5875
5876 static void
5877 __perf_event_exit_task(struct perf_event *child_event,
5878                          struct perf_event_context *child_ctx,
5879                          struct task_struct *child)
5880 {
5881         struct perf_event *parent_event;
5882
5883         perf_event_remove_from_context(child_event);
5884
5885         parent_event = child_event->parent;
5886         /*
5887          * It can happen that parent exits first, and has events
5888          * that are still around due to the child reference. These
5889          * events need to be zapped - but otherwise linger.
5890          */
5891         if (parent_event) {
5892                 sync_child_event(child_event, child);
5893                 free_event(child_event);
5894         }
5895 }
5896
5897 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5898 {
5899         struct perf_event *child_event, *tmp;
5900         struct perf_event_context *child_ctx;
5901         unsigned long flags;
5902
5903         if (likely(!child->perf_event_ctxp[ctxn])) {
5904                 perf_event_task(child, NULL, 0);
5905                 return;
5906         }
5907
5908         local_irq_save(flags);
5909         /*
5910          * We can't reschedule here because interrupts are disabled,
5911          * and either child is current or it is a task that can't be
5912          * scheduled, so we are now safe from rescheduling changing
5913          * our context.
5914          */
5915         child_ctx = child->perf_event_ctxp[ctxn];
5916         task_ctx_sched_out(child_ctx, EVENT_ALL);
5917
5918         /*
5919          * Take the context lock here so that if find_get_context is
5920          * reading child->perf_event_ctxp, we wait until it has
5921          * incremented the context's refcount before we do put_ctx below.
5922          */
5923         raw_spin_lock(&child_ctx->lock);
5924         child->perf_event_ctxp[ctxn] = NULL;
5925         /*
5926          * If this context is a clone; unclone it so it can't get
5927          * swapped to another process while we're removing all
5928          * the events from it.
5929          */
5930         unclone_ctx(child_ctx);
5931         update_context_time(child_ctx);
5932         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5933
5934         /*
5935          * Report the task dead after unscheduling the events so that we
5936          * won't get any samples after PERF_RECORD_EXIT. We can however still
5937          * get a few PERF_RECORD_READ events.
5938          */
5939         perf_event_task(child, child_ctx, 0);
5940
5941         /*
5942          * We can recurse on the same lock type through:
5943          *
5944          *   __perf_event_exit_task()
5945          *     sync_child_event()
5946          *       fput(parent_event->filp)
5947          *         perf_release()
5948          *           mutex_lock(&ctx->mutex)
5949          *
5950          * But since its the parent context it won't be the same instance.
5951          */
5952         mutex_lock(&child_ctx->mutex);
5953
5954 again:
5955         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5956                                  group_entry)
5957                 __perf_event_exit_task(child_event, child_ctx, child);
5958
5959         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5960                                  group_entry)
5961                 __perf_event_exit_task(child_event, child_ctx, child);
5962
5963         /*
5964          * If the last event was a group event, it will have appended all
5965          * its siblings to the list, but we obtained 'tmp' before that which
5966          * will still point to the list head terminating the iteration.
5967          */
5968         if (!list_empty(&child_ctx->pinned_groups) ||
5969             !list_empty(&child_ctx->flexible_groups))
5970                 goto again;
5971
5972         mutex_unlock(&child_ctx->mutex);
5973
5974         put_ctx(child_ctx);
5975 }
5976
5977 /*
5978  * When a child task exits, feed back event values to parent events.
5979  */
5980 void perf_event_exit_task(struct task_struct *child)
5981 {
5982         struct perf_event *event, *tmp;
5983         int ctxn;
5984
5985         mutex_lock(&child->perf_event_mutex);
5986         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5987                                  owner_entry) {
5988                 list_del_init(&event->owner_entry);
5989
5990                 /*
5991                  * Ensure the list deletion is visible before we clear
5992                  * the owner, closes a race against perf_release() where
5993                  * we need to serialize on the owner->perf_event_mutex.
5994                  */
5995                 smp_wmb();
5996                 event->owner = NULL;
5997         }
5998         mutex_unlock(&child->perf_event_mutex);
5999
6000         for_each_task_context_nr(ctxn)
6001                 perf_event_exit_task_context(child, ctxn);
6002 }
6003
6004 static void perf_free_event(struct perf_event *event,
6005                             struct perf_event_context *ctx)
6006 {
6007         struct perf_event *parent = event->parent;
6008
6009         if (WARN_ON_ONCE(!parent))
6010                 return;
6011
6012         mutex_lock(&parent->child_mutex);
6013         list_del_init(&event->child_list);
6014         mutex_unlock(&parent->child_mutex);
6015
6016         fput(parent->filp);
6017
6018         perf_group_detach(event);
6019         list_del_event(event, ctx);
6020         free_event(event);
6021 }
6022
6023 /*
6024  * free an unexposed, unused context as created by inheritance by
6025  * perf_event_init_task below, used by fork() in case of fail.
6026  */
6027 void perf_event_free_task(struct task_struct *task)
6028 {
6029         struct perf_event_context *ctx;
6030         struct perf_event *event, *tmp;
6031         int ctxn;
6032
6033         for_each_task_context_nr(ctxn) {
6034                 ctx = task->perf_event_ctxp[ctxn];
6035                 if (!ctx)
6036                         continue;
6037
6038                 mutex_lock(&ctx->mutex);
6039 again:
6040                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6041                                 group_entry)
6042                         perf_free_event(event, ctx);
6043
6044                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6045                                 group_entry)
6046                         perf_free_event(event, ctx);
6047
6048                 if (!list_empty(&ctx->pinned_groups) ||
6049                                 !list_empty(&ctx->flexible_groups))
6050                         goto again;
6051
6052                 mutex_unlock(&ctx->mutex);
6053
6054                 put_ctx(ctx);
6055         }
6056 }
6057
6058 void perf_event_delayed_put(struct task_struct *task)
6059 {
6060         int ctxn;
6061
6062         for_each_task_context_nr(ctxn)
6063                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6064 }
6065
6066 /*
6067  * inherit a event from parent task to child task:
6068  */
6069 static struct perf_event *
6070 inherit_event(struct perf_event *parent_event,
6071               struct task_struct *parent,
6072               struct perf_event_context *parent_ctx,
6073               struct task_struct *child,
6074               struct perf_event *group_leader,
6075               struct perf_event_context *child_ctx)
6076 {
6077         struct perf_event *child_event;
6078         unsigned long flags;
6079
6080         /*
6081          * Instead of creating recursive hierarchies of events,
6082          * we link inherited events back to the original parent,
6083          * which has a filp for sure, which we use as the reference
6084          * count:
6085          */
6086         if (parent_event->parent)
6087                 parent_event = parent_event->parent;
6088
6089         child_event = perf_event_alloc(&parent_event->attr,
6090                                            parent_event->cpu,
6091                                            child,
6092                                            group_leader, parent_event,
6093                                            NULL);
6094         if (IS_ERR(child_event))
6095                 return child_event;
6096         get_ctx(child_ctx);
6097
6098         /*
6099          * Make the child state follow the state of the parent event,
6100          * not its attr.disabled bit.  We hold the parent's mutex,
6101          * so we won't race with perf_event_{en, dis}able_family.
6102          */
6103         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6104                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6105         else
6106                 child_event->state = PERF_EVENT_STATE_OFF;
6107
6108         if (parent_event->attr.freq) {
6109                 u64 sample_period = parent_event->hw.sample_period;
6110                 struct hw_perf_event *hwc = &child_event->hw;
6111
6112                 hwc->sample_period = sample_period;
6113                 hwc->last_period   = sample_period;
6114
6115                 local64_set(&hwc->period_left, sample_period);
6116         }
6117
6118         child_event->ctx = child_ctx;
6119         child_event->overflow_handler = parent_event->overflow_handler;
6120
6121         /*
6122          * Precalculate sample_data sizes
6123          */
6124         perf_event__header_size(child_event);
6125         perf_event__id_header_size(child_event);
6126
6127         /*
6128          * Link it up in the child's context:
6129          */
6130         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6131         add_event_to_ctx(child_event, child_ctx);
6132         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6133
6134         /*
6135          * Get a reference to the parent filp - we will fput it
6136          * when the child event exits. This is safe to do because
6137          * we are in the parent and we know that the filp still
6138          * exists and has a nonzero count:
6139          */
6140         atomic_long_inc(&parent_event->filp->f_count);
6141
6142         /*
6143          * Link this into the parent event's child list
6144          */
6145         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6146         mutex_lock(&parent_event->child_mutex);
6147         list_add_tail(&child_event->child_list, &parent_event->child_list);
6148         mutex_unlock(&parent_event->child_mutex);
6149
6150         return child_event;
6151 }
6152
6153 static int inherit_group(struct perf_event *parent_event,
6154               struct task_struct *parent,
6155               struct perf_event_context *parent_ctx,
6156               struct task_struct *child,
6157               struct perf_event_context *child_ctx)
6158 {
6159         struct perf_event *leader;
6160         struct perf_event *sub;
6161         struct perf_event *child_ctr;
6162
6163         leader = inherit_event(parent_event, parent, parent_ctx,
6164                                  child, NULL, child_ctx);
6165         if (IS_ERR(leader))
6166                 return PTR_ERR(leader);
6167         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6168                 child_ctr = inherit_event(sub, parent, parent_ctx,
6169                                             child, leader, child_ctx);
6170                 if (IS_ERR(child_ctr))
6171                         return PTR_ERR(child_ctr);
6172         }
6173         return 0;
6174 }
6175
6176 static int
6177 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6178                    struct perf_event_context *parent_ctx,
6179                    struct task_struct *child, int ctxn,
6180                    int *inherited_all)
6181 {
6182         int ret;
6183         struct perf_event_context *child_ctx;
6184
6185         if (!event->attr.inherit) {
6186                 *inherited_all = 0;
6187                 return 0;
6188         }
6189
6190         child_ctx = child->perf_event_ctxp[ctxn];
6191         if (!child_ctx) {
6192                 /*
6193                  * This is executed from the parent task context, so
6194                  * inherit events that have been marked for cloning.
6195                  * First allocate and initialize a context for the
6196                  * child.
6197                  */
6198
6199                 child_ctx = alloc_perf_context(event->pmu, child);
6200                 if (!child_ctx)
6201                         return -ENOMEM;
6202
6203                 child->perf_event_ctxp[ctxn] = child_ctx;
6204         }
6205
6206         ret = inherit_group(event, parent, parent_ctx,
6207                             child, child_ctx);
6208
6209         if (ret)
6210                 *inherited_all = 0;
6211
6212         return ret;
6213 }
6214
6215 /*
6216  * Initialize the perf_event context in task_struct
6217  */
6218 int perf_event_init_context(struct task_struct *child, int ctxn)
6219 {
6220         struct perf_event_context *child_ctx, *parent_ctx;
6221         struct perf_event_context *cloned_ctx;
6222         struct perf_event *event;
6223         struct task_struct *parent = current;
6224         int inherited_all = 1;
6225         unsigned long flags;
6226         int ret = 0;
6227
6228         child->perf_event_ctxp[ctxn] = NULL;
6229
6230         mutex_init(&child->perf_event_mutex);
6231         INIT_LIST_HEAD(&child->perf_event_list);
6232
6233         if (likely(!parent->perf_event_ctxp[ctxn]))
6234                 return 0;
6235
6236         /*
6237          * If the parent's context is a clone, pin it so it won't get
6238          * swapped under us.
6239          */
6240         parent_ctx = perf_pin_task_context(parent, ctxn);
6241
6242         /*
6243          * No need to check if parent_ctx != NULL here; since we saw
6244          * it non-NULL earlier, the only reason for it to become NULL
6245          * is if we exit, and since we're currently in the middle of
6246          * a fork we can't be exiting at the same time.
6247          */
6248
6249         /*
6250          * Lock the parent list. No need to lock the child - not PID
6251          * hashed yet and not running, so nobody can access it.
6252          */
6253         mutex_lock(&parent_ctx->mutex);
6254
6255         /*
6256          * We dont have to disable NMIs - we are only looking at
6257          * the list, not manipulating it:
6258          */
6259         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6260                 ret = inherit_task_group(event, parent, parent_ctx,
6261                                          child, ctxn, &inherited_all);
6262                 if (ret)
6263                         break;
6264         }
6265
6266         /*
6267          * We can't hold ctx->lock when iterating the ->flexible_group list due
6268          * to allocations, but we need to prevent rotation because
6269          * rotate_ctx() will change the list from interrupt context.
6270          */
6271         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6272         parent_ctx->rotate_disable = 1;
6273         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6274
6275         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6276                 ret = inherit_task_group(event, parent, parent_ctx,
6277                                          child, ctxn, &inherited_all);
6278                 if (ret)
6279                         break;
6280         }
6281
6282         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6283         parent_ctx->rotate_disable = 0;
6284         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6285
6286         child_ctx = child->perf_event_ctxp[ctxn];
6287
6288         if (child_ctx && inherited_all) {
6289                 /*
6290                  * Mark the child context as a clone of the parent
6291                  * context, or of whatever the parent is a clone of.
6292                  * Note that if the parent is a clone, it could get
6293                  * uncloned at any point, but that doesn't matter
6294                  * because the list of events and the generation
6295                  * count can't have changed since we took the mutex.
6296                  */
6297                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6298                 if (cloned_ctx) {
6299                         child_ctx->parent_ctx = cloned_ctx;
6300                         child_ctx->parent_gen = parent_ctx->parent_gen;
6301                 } else {
6302                         child_ctx->parent_ctx = parent_ctx;
6303                         child_ctx->parent_gen = parent_ctx->generation;
6304                 }
6305                 get_ctx(child_ctx->parent_ctx);
6306         }
6307
6308         mutex_unlock(&parent_ctx->mutex);
6309
6310         perf_unpin_context(parent_ctx);
6311
6312         return ret;
6313 }
6314
6315 /*
6316  * Initialize the perf_event context in task_struct
6317  */
6318 int perf_event_init_task(struct task_struct *child)
6319 {
6320         int ctxn, ret;
6321
6322         for_each_task_context_nr(ctxn) {
6323                 ret = perf_event_init_context(child, ctxn);
6324                 if (ret)
6325                         return ret;
6326         }
6327
6328         return 0;
6329 }
6330
6331 static void __init perf_event_init_all_cpus(void)
6332 {
6333         struct swevent_htable *swhash;
6334         int cpu;
6335
6336         for_each_possible_cpu(cpu) {
6337                 swhash = &per_cpu(swevent_htable, cpu);
6338                 mutex_init(&swhash->hlist_mutex);
6339                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6340         }
6341 }
6342
6343 static void __cpuinit perf_event_init_cpu(int cpu)
6344 {
6345         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6346
6347         mutex_lock(&swhash->hlist_mutex);
6348         if (swhash->hlist_refcount > 0) {
6349                 struct swevent_hlist *hlist;
6350
6351                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6352                 WARN_ON(!hlist);
6353                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6354         }
6355         mutex_unlock(&swhash->hlist_mutex);
6356 }
6357
6358 #ifdef CONFIG_HOTPLUG_CPU
6359 static void perf_pmu_rotate_stop(struct pmu *pmu)
6360 {
6361         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6362
6363         WARN_ON(!irqs_disabled());
6364
6365         list_del_init(&cpuctx->rotation_list);
6366 }
6367
6368 static void __perf_event_exit_context(void *__info)
6369 {
6370         struct perf_event_context *ctx = __info;
6371         struct perf_event *event, *tmp;
6372
6373         perf_pmu_rotate_stop(ctx->pmu);
6374
6375         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6376                 __perf_event_remove_from_context(event);
6377         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6378                 __perf_event_remove_from_context(event);
6379 }
6380
6381 static void perf_event_exit_cpu_context(int cpu)
6382 {
6383         struct perf_event_context *ctx;
6384         struct pmu *pmu;
6385         int idx;
6386
6387         idx = srcu_read_lock(&pmus_srcu);
6388         list_for_each_entry_rcu(pmu, &pmus, entry) {
6389                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6390
6391                 mutex_lock(&ctx->mutex);
6392                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6393                 mutex_unlock(&ctx->mutex);
6394         }
6395         srcu_read_unlock(&pmus_srcu, idx);
6396 }
6397
6398 static void perf_event_exit_cpu(int cpu)
6399 {
6400         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6401
6402         mutex_lock(&swhash->hlist_mutex);
6403         swevent_hlist_release(swhash);
6404         mutex_unlock(&swhash->hlist_mutex);
6405
6406         perf_event_exit_cpu_context(cpu);
6407 }
6408 #else
6409 static inline void perf_event_exit_cpu(int cpu) { }
6410 #endif
6411
6412 static int __cpuinit
6413 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6414 {
6415         unsigned int cpu = (long)hcpu;
6416
6417         switch (action & ~CPU_TASKS_FROZEN) {
6418
6419         case CPU_UP_PREPARE:
6420         case CPU_DOWN_FAILED:
6421                 perf_event_init_cpu(cpu);
6422                 break;
6423
6424         case CPU_UP_CANCELED:
6425         case CPU_DOWN_PREPARE:
6426                 perf_event_exit_cpu(cpu);
6427                 break;
6428
6429         default:
6430                 break;
6431         }
6432
6433         return NOTIFY_OK;
6434 }
6435
6436 void __init perf_event_init(void)
6437 {
6438         int ret;
6439
6440         perf_event_init_all_cpus();
6441         init_srcu_struct(&pmus_srcu);
6442         perf_pmu_register(&perf_swevent);
6443         perf_pmu_register(&perf_cpu_clock);
6444         perf_pmu_register(&perf_task_clock);
6445         perf_tp_register();
6446         perf_cpu_notifier(perf_cpu_notify);
6447
6448         ret = init_hw_breakpoint();
6449         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6450 }