2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
35 #include <asm/irq_regs.h>
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
53 int sysctl_perf_event_paranoid __read_mostly = 1;
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
58 * max perf event sample rate
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62 static atomic64_t perf_event_id;
64 void __weak perf_event_print_debug(void) { }
66 extern __weak const char *perf_pmu_name(void)
71 void perf_pmu_disable(struct pmu *pmu)
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 pmu->pmu_disable(pmu);
78 void perf_pmu_enable(struct pmu *pmu)
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
92 static void perf_pmu_rotate_start(struct pmu *pmu)
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
97 WARN_ON(!irqs_disabled());
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
103 static void get_ctx(struct perf_event_context *ctx)
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
108 static void free_ctx(struct rcu_head *head)
110 struct perf_event_context *ctx;
112 ctx = container_of(head, struct perf_event_context, rcu_head);
116 static void put_ctx(struct perf_event_context *ctx)
118 if (atomic_dec_and_test(&ctx->refcount)) {
120 put_ctx(ctx->parent_ctx);
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
127 static void unclone_ctx(struct perf_event_context *ctx)
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
136 * If we inherit events we want to return the parent event id
139 static u64 primary_event_id(struct perf_event *event)
144 id = event->parent->id;
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 struct perf_event_context *ctx;
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
196 struct perf_event_context *ctx;
199 ctx = perf_lock_task_context(task, ctxn, &flags);
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 static void perf_unpin_context(struct perf_event_context *ctx)
211 raw_spin_lock_irqsave(&ctx->lock, flags);
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
217 static inline u64 perf_clock(void)
219 return local_clock();
223 * Update the record of the current time in a context.
225 static void update_context_time(struct perf_event_context *ctx)
227 u64 now = perf_clock();
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
234 * Update the total_time_enabled and total_time_running fields for a event.
236 static void update_event_times(struct perf_event *event)
238 struct perf_event_context *ctx = event->ctx;
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 run_end = event->tstamp_stopped;
250 event->total_time_enabled = run_end - event->tstamp_enabled;
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
257 event->total_time_running = run_end - event->tstamp_running;
261 * Update total_time_enabled and total_time_running for all events in a group.
263 static void update_group_times(struct perf_event *leader)
265 struct perf_event *event;
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
278 return &ctx->flexible_groups;
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
296 if (event->group_leader == event) {
297 struct list_head *list;
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
306 list_add_rcu(&event->event_entry, &ctx->event_list);
308 perf_pmu_rotate_start(ctx->pmu);
310 if (event->attr.inherit_stat)
314 static void perf_group_attach(struct perf_event *event)
316 struct perf_event *group_leader = event->group_leader;
319 * We can have double attach due to group movement in perf_event_open.
321 if (event->attach_state & PERF_ATTACH_GROUP)
324 event->attach_state |= PERF_ATTACH_GROUP;
326 if (group_leader == event)
329 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330 !is_software_event(event))
331 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333 list_add_tail(&event->group_entry, &group_leader->sibling_list);
334 group_leader->nr_siblings++;
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
345 * We can have double detach due to exit/hot-unplug + close.
347 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
350 event->attach_state &= ~PERF_ATTACH_CONTEXT;
353 if (event->attr.inherit_stat)
356 list_del_rcu(&event->event_entry);
358 if (event->group_leader == event)
359 list_del_init(&event->group_entry);
361 update_group_times(event);
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
370 if (event->state > PERF_EVENT_STATE_OFF)
371 event->state = PERF_EVENT_STATE_OFF;
374 static void perf_group_detach(struct perf_event *event)
376 struct perf_event *sibling, *tmp;
377 struct list_head *list = NULL;
380 * We can have double detach due to exit/hot-unplug + close.
382 if (!(event->attach_state & PERF_ATTACH_GROUP))
385 event->attach_state &= ~PERF_ATTACH_GROUP;
388 * If this is a sibling, remove it from its group.
390 if (event->group_leader != event) {
391 list_del_init(&event->group_entry);
392 event->group_leader->nr_siblings--;
396 if (!list_empty(&event->group_entry))
397 list = &event->group_entry;
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
404 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 list_move_tail(&sibling->group_entry, list);
407 sibling->group_leader = sibling;
409 /* Inherit group flags from the previous leader */
410 sibling->group_flags = event->group_flags;
415 event_filter_match(struct perf_event *event)
417 return event->cpu == -1 || event->cpu == smp_processor_id();
421 event_sched_out(struct perf_event *event,
422 struct perf_cpu_context *cpuctx,
423 struct perf_event_context *ctx)
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
432 if (event->state == PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event)) {
434 delta = ctx->time - event->tstamp_stopped;
435 event->tstamp_running += delta;
436 event->tstamp_stopped = ctx->time;
439 if (event->state != PERF_EVENT_STATE_ACTIVE)
442 event->state = PERF_EVENT_STATE_INACTIVE;
443 if (event->pending_disable) {
444 event->pending_disable = 0;
445 event->state = PERF_EVENT_STATE_OFF;
447 event->tstamp_stopped = ctx->time;
448 event->pmu->del(event, 0);
451 if (!is_software_event(event))
452 cpuctx->active_oncpu--;
454 if (event->attr.exclusive || !cpuctx->active_oncpu)
455 cpuctx->exclusive = 0;
459 group_sched_out(struct perf_event *group_event,
460 struct perf_cpu_context *cpuctx,
461 struct perf_event_context *ctx)
463 struct perf_event *event;
464 int state = group_event->state;
466 event_sched_out(group_event, cpuctx, ctx);
469 * Schedule out siblings (if any):
471 list_for_each_entry(event, &group_event->sibling_list, group_entry)
472 event_sched_out(event, cpuctx, ctx);
474 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475 cpuctx->exclusive = 0;
478 static inline struct perf_cpu_context *
479 __get_cpu_context(struct perf_event_context *ctx)
481 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
485 * Cross CPU call to remove a performance event
487 * We disable the event on the hardware level first. After that we
488 * remove it from the context list.
490 static void __perf_event_remove_from_context(void *info)
492 struct perf_event *event = info;
493 struct perf_event_context *ctx = event->ctx;
494 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
501 if (ctx->task && cpuctx->task_ctx != ctx)
504 raw_spin_lock(&ctx->lock);
506 event_sched_out(event, cpuctx, ctx);
508 list_del_event(event, ctx);
510 raw_spin_unlock(&ctx->lock);
515 * Remove the event from a task's (or a CPU's) list of events.
517 * Must be called with ctx->mutex held.
519 * CPU events are removed with a smp call. For task events we only
520 * call when the task is on a CPU.
522 * If event->ctx is a cloned context, callers must make sure that
523 * every task struct that event->ctx->task could possibly point to
524 * remains valid. This is OK when called from perf_release since
525 * that only calls us on the top-level context, which can't be a clone.
526 * When called from perf_event_exit_task, it's OK because the
527 * context has been detached from its task.
529 static void perf_event_remove_from_context(struct perf_event *event)
531 struct perf_event_context *ctx = event->ctx;
532 struct task_struct *task = ctx->task;
536 * Per cpu events are removed via an smp call and
537 * the removal is always successful.
539 smp_call_function_single(event->cpu,
540 __perf_event_remove_from_context,
546 task_oncpu_function_call(task, __perf_event_remove_from_context,
549 raw_spin_lock_irq(&ctx->lock);
551 * If the context is active we need to retry the smp call.
553 if (ctx->nr_active && !list_empty(&event->group_entry)) {
554 raw_spin_unlock_irq(&ctx->lock);
559 * The lock prevents that this context is scheduled in so we
560 * can remove the event safely, if the call above did not
563 if (!list_empty(&event->group_entry))
564 list_del_event(event, ctx);
565 raw_spin_unlock_irq(&ctx->lock);
569 * Cross CPU call to disable a performance event
571 static void __perf_event_disable(void *info)
573 struct perf_event *event = info;
574 struct perf_event_context *ctx = event->ctx;
575 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
578 * If this is a per-task event, need to check whether this
579 * event's task is the current task on this cpu.
581 if (ctx->task && cpuctx->task_ctx != ctx)
584 raw_spin_lock(&ctx->lock);
587 * If the event is on, turn it off.
588 * If it is in error state, leave it in error state.
590 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591 update_context_time(ctx);
592 update_group_times(event);
593 if (event == event->group_leader)
594 group_sched_out(event, cpuctx, ctx);
596 event_sched_out(event, cpuctx, ctx);
597 event->state = PERF_EVENT_STATE_OFF;
600 raw_spin_unlock(&ctx->lock);
606 * If event->ctx is a cloned context, callers must make sure that
607 * every task struct that event->ctx->task could possibly point to
608 * remains valid. This condition is satisifed when called through
609 * perf_event_for_each_child or perf_event_for_each because they
610 * hold the top-level event's child_mutex, so any descendant that
611 * goes to exit will block in sync_child_event.
612 * When called from perf_pending_event it's OK because event->ctx
613 * is the current context on this CPU and preemption is disabled,
614 * hence we can't get into perf_event_task_sched_out for this context.
616 void perf_event_disable(struct perf_event *event)
618 struct perf_event_context *ctx = event->ctx;
619 struct task_struct *task = ctx->task;
623 * Disable the event on the cpu that it's on
625 smp_call_function_single(event->cpu, __perf_event_disable,
631 task_oncpu_function_call(task, __perf_event_disable, event);
633 raw_spin_lock_irq(&ctx->lock);
635 * If the event is still active, we need to retry the cross-call.
637 if (event->state == PERF_EVENT_STATE_ACTIVE) {
638 raw_spin_unlock_irq(&ctx->lock);
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
646 if (event->state == PERF_EVENT_STATE_INACTIVE) {
647 update_group_times(event);
648 event->state = PERF_EVENT_STATE_OFF;
651 raw_spin_unlock_irq(&ctx->lock);
655 event_sched_in(struct perf_event *event,
656 struct perf_cpu_context *cpuctx,
657 struct perf_event_context *ctx)
659 if (event->state <= PERF_EVENT_STATE_OFF)
662 event->state = PERF_EVENT_STATE_ACTIVE;
663 event->oncpu = smp_processor_id();
665 * The new state must be visible before we turn it on in the hardware:
669 if (event->pmu->add(event, PERF_EF_START)) {
670 event->state = PERF_EVENT_STATE_INACTIVE;
675 event->tstamp_running += ctx->time - event->tstamp_stopped;
677 event->shadow_ctx_time = ctx->time - ctx->timestamp;
679 if (!is_software_event(event))
680 cpuctx->active_oncpu++;
683 if (event->attr.exclusive)
684 cpuctx->exclusive = 1;
690 group_sched_in(struct perf_event *group_event,
691 struct perf_cpu_context *cpuctx,
692 struct perf_event_context *ctx)
694 struct perf_event *event, *partial_group = NULL;
695 struct pmu *pmu = group_event->pmu;
697 bool simulate = false;
699 if (group_event->state == PERF_EVENT_STATE_OFF)
704 if (event_sched_in(group_event, cpuctx, ctx)) {
705 pmu->cancel_txn(pmu);
710 * Schedule in siblings as one group (if any):
712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
713 if (event_sched_in(event, cpuctx, ctx)) {
714 partial_group = event;
719 if (!pmu->commit_txn(pmu))
724 * Groups can be scheduled in as one unit only, so undo any
725 * partial group before returning:
726 * The events up to the failed event are scheduled out normally,
727 * tstamp_stopped will be updated.
729 * The failed events and the remaining siblings need to have
730 * their timings updated as if they had gone thru event_sched_in()
731 * and event_sched_out(). This is required to get consistent timings
732 * across the group. This also takes care of the case where the group
733 * could never be scheduled by ensuring tstamp_stopped is set to mark
734 * the time the event was actually stopped, such that time delta
735 * calculation in update_event_times() is correct.
737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
738 if (event == partial_group)
742 event->tstamp_running += now - event->tstamp_stopped;
743 event->tstamp_stopped = now;
745 event_sched_out(event, cpuctx, ctx);
748 event_sched_out(group_event, cpuctx, ctx);
750 pmu->cancel_txn(pmu);
756 * Work out whether we can put this event group on the CPU now.
758 static int group_can_go_on(struct perf_event *event,
759 struct perf_cpu_context *cpuctx,
763 * Groups consisting entirely of software events can always go on.
765 if (event->group_flags & PERF_GROUP_SOFTWARE)
768 * If an exclusive group is already on, no other hardware
771 if (cpuctx->exclusive)
774 * If this group is exclusive and there are already
775 * events on the CPU, it can't go on.
777 if (event->attr.exclusive && cpuctx->active_oncpu)
780 * Otherwise, try to add it if all previous groups were able
786 static void add_event_to_ctx(struct perf_event *event,
787 struct perf_event_context *ctx)
789 list_add_event(event, ctx);
790 perf_group_attach(event);
791 event->tstamp_enabled = ctx->time;
792 event->tstamp_running = ctx->time;
793 event->tstamp_stopped = ctx->time;
797 * Cross CPU call to install and enable a performance event
799 * Must be called with ctx->mutex held
801 static void __perf_install_in_context(void *info)
803 struct perf_event *event = info;
804 struct perf_event_context *ctx = event->ctx;
805 struct perf_event *leader = event->group_leader;
806 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
810 * If this is a task context, we need to check whether it is
811 * the current task context of this cpu. If not it has been
812 * scheduled out before the smp call arrived.
813 * Or possibly this is the right context but it isn't
814 * on this cpu because it had no events.
816 if (ctx->task && cpuctx->task_ctx != ctx) {
817 if (cpuctx->task_ctx || ctx->task != current)
819 cpuctx->task_ctx = ctx;
822 raw_spin_lock(&ctx->lock);
824 update_context_time(ctx);
826 add_event_to_ctx(event, ctx);
828 if (event->cpu != -1 && event->cpu != smp_processor_id())
832 * Don't put the event on if it is disabled or if
833 * it is in a group and the group isn't on.
835 if (event->state != PERF_EVENT_STATE_INACTIVE ||
836 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
840 * An exclusive event can't go on if there are already active
841 * hardware events, and no hardware event can go on if there
842 * is already an exclusive event on.
844 if (!group_can_go_on(event, cpuctx, 1))
847 err = event_sched_in(event, cpuctx, ctx);
851 * This event couldn't go on. If it is in a group
852 * then we have to pull the whole group off.
853 * If the event group is pinned then put it in error state.
856 group_sched_out(leader, cpuctx, ctx);
857 if (leader->attr.pinned) {
858 update_group_times(leader);
859 leader->state = PERF_EVENT_STATE_ERROR;
864 raw_spin_unlock(&ctx->lock);
868 * Attach a performance event to a context
870 * First we add the event to the list with the hardware enable bit
871 * in event->hw_config cleared.
873 * If the event is attached to a task which is on a CPU we use a smp
874 * call to enable it in the task context. The task might have been
875 * scheduled away, but we check this in the smp call again.
877 * Must be called with ctx->mutex held.
880 perf_install_in_context(struct perf_event_context *ctx,
881 struct perf_event *event,
884 struct task_struct *task = ctx->task;
890 * Per cpu events are installed via an smp call and
891 * the install is always successful.
893 smp_call_function_single(cpu, __perf_install_in_context,
899 task_oncpu_function_call(task, __perf_install_in_context,
902 raw_spin_lock_irq(&ctx->lock);
904 * we need to retry the smp call.
906 if (ctx->is_active && list_empty(&event->group_entry)) {
907 raw_spin_unlock_irq(&ctx->lock);
912 * The lock prevents that this context is scheduled in so we
913 * can add the event safely, if it the call above did not
916 if (list_empty(&event->group_entry))
917 add_event_to_ctx(event, ctx);
918 raw_spin_unlock_irq(&ctx->lock);
922 * Put a event into inactive state and update time fields.
923 * Enabling the leader of a group effectively enables all
924 * the group members that aren't explicitly disabled, so we
925 * have to update their ->tstamp_enabled also.
926 * Note: this works for group members as well as group leaders
927 * since the non-leader members' sibling_lists will be empty.
929 static void __perf_event_mark_enabled(struct perf_event *event,
930 struct perf_event_context *ctx)
932 struct perf_event *sub;
934 event->state = PERF_EVENT_STATE_INACTIVE;
935 event->tstamp_enabled = ctx->time - event->total_time_enabled;
936 list_for_each_entry(sub, &event->sibling_list, group_entry) {
937 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
938 sub->tstamp_enabled =
939 ctx->time - sub->total_time_enabled;
945 * Cross CPU call to enable a performance event
947 static void __perf_event_enable(void *info)
949 struct perf_event *event = info;
950 struct perf_event_context *ctx = event->ctx;
951 struct perf_event *leader = event->group_leader;
952 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
956 * If this is a per-task event, need to check whether this
957 * event's task is the current task on this cpu.
959 if (ctx->task && cpuctx->task_ctx != ctx) {
960 if (cpuctx->task_ctx || ctx->task != current)
962 cpuctx->task_ctx = ctx;
965 raw_spin_lock(&ctx->lock);
967 update_context_time(ctx);
969 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 __perf_event_mark_enabled(event, ctx);
973 if (event->cpu != -1 && event->cpu != smp_processor_id())
977 * If the event is in a group and isn't the group leader,
978 * then don't put it on unless the group is on.
980 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
983 if (!group_can_go_on(event, cpuctx, 1)) {
987 err = group_sched_in(event, cpuctx, ctx);
989 err = event_sched_in(event, cpuctx, ctx);
994 * If this event can't go on and it's part of a
995 * group, then the whole group has to come off.
998 group_sched_out(leader, cpuctx, ctx);
999 if (leader->attr.pinned) {
1000 update_group_times(leader);
1001 leader->state = PERF_EVENT_STATE_ERROR;
1006 raw_spin_unlock(&ctx->lock);
1012 * If event->ctx is a cloned context, callers must make sure that
1013 * every task struct that event->ctx->task could possibly point to
1014 * remains valid. This condition is satisfied when called through
1015 * perf_event_for_each_child or perf_event_for_each as described
1016 * for perf_event_disable.
1018 void perf_event_enable(struct perf_event *event)
1020 struct perf_event_context *ctx = event->ctx;
1021 struct task_struct *task = ctx->task;
1025 * Enable the event on the cpu that it's on
1027 smp_call_function_single(event->cpu, __perf_event_enable,
1032 raw_spin_lock_irq(&ctx->lock);
1033 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1037 * If the event is in error state, clear that first.
1038 * That way, if we see the event in error state below, we
1039 * know that it has gone back into error state, as distinct
1040 * from the task having been scheduled away before the
1041 * cross-call arrived.
1043 if (event->state == PERF_EVENT_STATE_ERROR)
1044 event->state = PERF_EVENT_STATE_OFF;
1047 raw_spin_unlock_irq(&ctx->lock);
1048 task_oncpu_function_call(task, __perf_event_enable, event);
1050 raw_spin_lock_irq(&ctx->lock);
1053 * If the context is active and the event is still off,
1054 * we need to retry the cross-call.
1056 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1060 * Since we have the lock this context can't be scheduled
1061 * in, so we can change the state safely.
1063 if (event->state == PERF_EVENT_STATE_OFF)
1064 __perf_event_mark_enabled(event, ctx);
1067 raw_spin_unlock_irq(&ctx->lock);
1070 static int perf_event_refresh(struct perf_event *event, int refresh)
1073 * not supported on inherited events
1075 if (event->attr.inherit)
1078 atomic_add(refresh, &event->event_limit);
1079 perf_event_enable(event);
1085 EVENT_FLEXIBLE = 0x1,
1087 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1090 static void ctx_sched_out(struct perf_event_context *ctx,
1091 struct perf_cpu_context *cpuctx,
1092 enum event_type_t event_type)
1094 struct perf_event *event;
1096 raw_spin_lock(&ctx->lock);
1097 perf_pmu_disable(ctx->pmu);
1099 if (likely(!ctx->nr_events))
1101 update_context_time(ctx);
1103 if (!ctx->nr_active)
1106 if (event_type & EVENT_PINNED) {
1107 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1108 group_sched_out(event, cpuctx, ctx);
1111 if (event_type & EVENT_FLEXIBLE) {
1112 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1113 group_sched_out(event, cpuctx, ctx);
1116 perf_pmu_enable(ctx->pmu);
1117 raw_spin_unlock(&ctx->lock);
1121 * Test whether two contexts are equivalent, i.e. whether they
1122 * have both been cloned from the same version of the same context
1123 * and they both have the same number of enabled events.
1124 * If the number of enabled events is the same, then the set
1125 * of enabled events should be the same, because these are both
1126 * inherited contexts, therefore we can't access individual events
1127 * in them directly with an fd; we can only enable/disable all
1128 * events via prctl, or enable/disable all events in a family
1129 * via ioctl, which will have the same effect on both contexts.
1131 static int context_equiv(struct perf_event_context *ctx1,
1132 struct perf_event_context *ctx2)
1134 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1135 && ctx1->parent_gen == ctx2->parent_gen
1136 && !ctx1->pin_count && !ctx2->pin_count;
1139 static void __perf_event_sync_stat(struct perf_event *event,
1140 struct perf_event *next_event)
1144 if (!event->attr.inherit_stat)
1148 * Update the event value, we cannot use perf_event_read()
1149 * because we're in the middle of a context switch and have IRQs
1150 * disabled, which upsets smp_call_function_single(), however
1151 * we know the event must be on the current CPU, therefore we
1152 * don't need to use it.
1154 switch (event->state) {
1155 case PERF_EVENT_STATE_ACTIVE:
1156 event->pmu->read(event);
1159 case PERF_EVENT_STATE_INACTIVE:
1160 update_event_times(event);
1168 * In order to keep per-task stats reliable we need to flip the event
1169 * values when we flip the contexts.
1171 value = local64_read(&next_event->count);
1172 value = local64_xchg(&event->count, value);
1173 local64_set(&next_event->count, value);
1175 swap(event->total_time_enabled, next_event->total_time_enabled);
1176 swap(event->total_time_running, next_event->total_time_running);
1179 * Since we swizzled the values, update the user visible data too.
1181 perf_event_update_userpage(event);
1182 perf_event_update_userpage(next_event);
1185 #define list_next_entry(pos, member) \
1186 list_entry(pos->member.next, typeof(*pos), member)
1188 static void perf_event_sync_stat(struct perf_event_context *ctx,
1189 struct perf_event_context *next_ctx)
1191 struct perf_event *event, *next_event;
1196 update_context_time(ctx);
1198 event = list_first_entry(&ctx->event_list,
1199 struct perf_event, event_entry);
1201 next_event = list_first_entry(&next_ctx->event_list,
1202 struct perf_event, event_entry);
1204 while (&event->event_entry != &ctx->event_list &&
1205 &next_event->event_entry != &next_ctx->event_list) {
1207 __perf_event_sync_stat(event, next_event);
1209 event = list_next_entry(event, event_entry);
1210 next_event = list_next_entry(next_event, event_entry);
1214 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1215 struct task_struct *next)
1217 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1218 struct perf_event_context *next_ctx;
1219 struct perf_event_context *parent;
1220 struct perf_cpu_context *cpuctx;
1226 cpuctx = __get_cpu_context(ctx);
1227 if (!cpuctx->task_ctx)
1231 parent = rcu_dereference(ctx->parent_ctx);
1232 next_ctx = next->perf_event_ctxp[ctxn];
1233 if (parent && next_ctx &&
1234 rcu_dereference(next_ctx->parent_ctx) == parent) {
1236 * Looks like the two contexts are clones, so we might be
1237 * able to optimize the context switch. We lock both
1238 * contexts and check that they are clones under the
1239 * lock (including re-checking that neither has been
1240 * uncloned in the meantime). It doesn't matter which
1241 * order we take the locks because no other cpu could
1242 * be trying to lock both of these tasks.
1244 raw_spin_lock(&ctx->lock);
1245 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1246 if (context_equiv(ctx, next_ctx)) {
1248 * XXX do we need a memory barrier of sorts
1249 * wrt to rcu_dereference() of perf_event_ctxp
1251 task->perf_event_ctxp[ctxn] = next_ctx;
1252 next->perf_event_ctxp[ctxn] = ctx;
1254 next_ctx->task = task;
1257 perf_event_sync_stat(ctx, next_ctx);
1259 raw_spin_unlock(&next_ctx->lock);
1260 raw_spin_unlock(&ctx->lock);
1265 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1266 cpuctx->task_ctx = NULL;
1270 #define for_each_task_context_nr(ctxn) \
1271 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1274 * Called from scheduler to remove the events of the current task,
1275 * with interrupts disabled.
1277 * We stop each event and update the event value in event->count.
1279 * This does not protect us against NMI, but disable()
1280 * sets the disabled bit in the control field of event _before_
1281 * accessing the event control register. If a NMI hits, then it will
1282 * not restart the event.
1284 void __perf_event_task_sched_out(struct task_struct *task,
1285 struct task_struct *next)
1289 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1291 for_each_task_context_nr(ctxn)
1292 perf_event_context_sched_out(task, ctxn, next);
1295 static void task_ctx_sched_out(struct perf_event_context *ctx,
1296 enum event_type_t event_type)
1298 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1300 if (!cpuctx->task_ctx)
1303 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1306 ctx_sched_out(ctx, cpuctx, event_type);
1307 cpuctx->task_ctx = NULL;
1311 * Called with IRQs disabled
1313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1314 enum event_type_t event_type)
1316 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1320 ctx_pinned_sched_in(struct perf_event_context *ctx,
1321 struct perf_cpu_context *cpuctx)
1323 struct perf_event *event;
1325 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1326 if (event->state <= PERF_EVENT_STATE_OFF)
1328 if (event->cpu != -1 && event->cpu != smp_processor_id())
1331 if (group_can_go_on(event, cpuctx, 1))
1332 group_sched_in(event, cpuctx, ctx);
1335 * If this pinned group hasn't been scheduled,
1336 * put it in error state.
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_ERROR;
1346 ctx_flexible_sched_in(struct perf_event_context *ctx,
1347 struct perf_cpu_context *cpuctx)
1349 struct perf_event *event;
1352 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1353 /* Ignore events in OFF or ERROR state */
1354 if (event->state <= PERF_EVENT_STATE_OFF)
1357 * Listen to the 'cpu' scheduling filter constraint
1360 if (event->cpu != -1 && event->cpu != smp_processor_id())
1363 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1364 if (group_sched_in(event, cpuctx, ctx))
1371 ctx_sched_in(struct perf_event_context *ctx,
1372 struct perf_cpu_context *cpuctx,
1373 enum event_type_t event_type)
1375 raw_spin_lock(&ctx->lock);
1377 if (likely(!ctx->nr_events))
1380 ctx->timestamp = perf_clock();
1383 * First go through the list and put on any pinned groups
1384 * in order to give them the best chance of going on.
1386 if (event_type & EVENT_PINNED)
1387 ctx_pinned_sched_in(ctx, cpuctx);
1389 /* Then walk through the lower prio flexible groups */
1390 if (event_type & EVENT_FLEXIBLE)
1391 ctx_flexible_sched_in(ctx, cpuctx);
1394 raw_spin_unlock(&ctx->lock);
1397 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1398 enum event_type_t event_type)
1400 struct perf_event_context *ctx = &cpuctx->ctx;
1402 ctx_sched_in(ctx, cpuctx, event_type);
1405 static void task_ctx_sched_in(struct perf_event_context *ctx,
1406 enum event_type_t event_type)
1408 struct perf_cpu_context *cpuctx;
1410 cpuctx = __get_cpu_context(ctx);
1411 if (cpuctx->task_ctx == ctx)
1414 ctx_sched_in(ctx, cpuctx, event_type);
1415 cpuctx->task_ctx = ctx;
1418 void perf_event_context_sched_in(struct perf_event_context *ctx)
1420 struct perf_cpu_context *cpuctx;
1422 cpuctx = __get_cpu_context(ctx);
1423 if (cpuctx->task_ctx == ctx)
1426 perf_pmu_disable(ctx->pmu);
1428 * We want to keep the following priority order:
1429 * cpu pinned (that don't need to move), task pinned,
1430 * cpu flexible, task flexible.
1432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1434 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1435 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1436 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1438 cpuctx->task_ctx = ctx;
1441 * Since these rotations are per-cpu, we need to ensure the
1442 * cpu-context we got scheduled on is actually rotating.
1444 perf_pmu_rotate_start(ctx->pmu);
1445 perf_pmu_enable(ctx->pmu);
1449 * Called from scheduler to add the events of the current task
1450 * with interrupts disabled.
1452 * We restore the event value and then enable it.
1454 * This does not protect us against NMI, but enable()
1455 * sets the enabled bit in the control field of event _before_
1456 * accessing the event control register. If a NMI hits, then it will
1457 * keep the event running.
1459 void __perf_event_task_sched_in(struct task_struct *task)
1461 struct perf_event_context *ctx;
1464 for_each_task_context_nr(ctxn) {
1465 ctx = task->perf_event_ctxp[ctxn];
1469 perf_event_context_sched_in(ctx);
1473 #define MAX_INTERRUPTS (~0ULL)
1475 static void perf_log_throttle(struct perf_event *event, int enable);
1477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1479 u64 frequency = event->attr.sample_freq;
1480 u64 sec = NSEC_PER_SEC;
1481 u64 divisor, dividend;
1483 int count_fls, nsec_fls, frequency_fls, sec_fls;
1485 count_fls = fls64(count);
1486 nsec_fls = fls64(nsec);
1487 frequency_fls = fls64(frequency);
1491 * We got @count in @nsec, with a target of sample_freq HZ
1492 * the target period becomes:
1495 * period = -------------------
1496 * @nsec * sample_freq
1501 * Reduce accuracy by one bit such that @a and @b converge
1502 * to a similar magnitude.
1504 #define REDUCE_FLS(a, b) \
1506 if (a##_fls > b##_fls) { \
1516 * Reduce accuracy until either term fits in a u64, then proceed with
1517 * the other, so that finally we can do a u64/u64 division.
1519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1520 REDUCE_FLS(nsec, frequency);
1521 REDUCE_FLS(sec, count);
1524 if (count_fls + sec_fls > 64) {
1525 divisor = nsec * frequency;
1527 while (count_fls + sec_fls > 64) {
1528 REDUCE_FLS(count, sec);
1532 dividend = count * sec;
1534 dividend = count * sec;
1536 while (nsec_fls + frequency_fls > 64) {
1537 REDUCE_FLS(nsec, frequency);
1541 divisor = nsec * frequency;
1547 return div64_u64(dividend, divisor);
1550 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1552 struct hw_perf_event *hwc = &event->hw;
1553 s64 period, sample_period;
1556 period = perf_calculate_period(event, nsec, count);
1558 delta = (s64)(period - hwc->sample_period);
1559 delta = (delta + 7) / 8; /* low pass filter */
1561 sample_period = hwc->sample_period + delta;
1566 hwc->sample_period = sample_period;
1568 if (local64_read(&hwc->period_left) > 8*sample_period) {
1569 event->pmu->stop(event, PERF_EF_UPDATE);
1570 local64_set(&hwc->period_left, 0);
1571 event->pmu->start(event, PERF_EF_RELOAD);
1575 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1577 struct perf_event *event;
1578 struct hw_perf_event *hwc;
1579 u64 interrupts, now;
1582 raw_spin_lock(&ctx->lock);
1583 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1584 if (event->state != PERF_EVENT_STATE_ACTIVE)
1587 if (event->cpu != -1 && event->cpu != smp_processor_id())
1592 interrupts = hwc->interrupts;
1593 hwc->interrupts = 0;
1596 * unthrottle events on the tick
1598 if (interrupts == MAX_INTERRUPTS) {
1599 perf_log_throttle(event, 1);
1600 event->pmu->start(event, 0);
1603 if (!event->attr.freq || !event->attr.sample_freq)
1606 event->pmu->read(event);
1607 now = local64_read(&event->count);
1608 delta = now - hwc->freq_count_stamp;
1609 hwc->freq_count_stamp = now;
1612 perf_adjust_period(event, period, delta);
1614 raw_spin_unlock(&ctx->lock);
1618 * Round-robin a context's events:
1620 static void rotate_ctx(struct perf_event_context *ctx)
1622 raw_spin_lock(&ctx->lock);
1624 /* Rotate the first entry last of non-pinned groups */
1625 list_rotate_left(&ctx->flexible_groups);
1627 raw_spin_unlock(&ctx->lock);
1631 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1632 * because they're strictly cpu affine and rotate_start is called with IRQs
1633 * disabled, while rotate_context is called from IRQ context.
1635 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1637 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1638 struct perf_event_context *ctx = NULL;
1639 int rotate = 0, remove = 1;
1641 if (cpuctx->ctx.nr_events) {
1643 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1647 ctx = cpuctx->task_ctx;
1648 if (ctx && ctx->nr_events) {
1650 if (ctx->nr_events != ctx->nr_active)
1654 perf_pmu_disable(cpuctx->ctx.pmu);
1655 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1657 perf_ctx_adjust_freq(ctx, interval);
1662 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1664 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1666 rotate_ctx(&cpuctx->ctx);
1670 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1672 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1676 list_del_init(&cpuctx->rotation_list);
1678 perf_pmu_enable(cpuctx->ctx.pmu);
1681 void perf_event_task_tick(void)
1683 struct list_head *head = &__get_cpu_var(rotation_list);
1684 struct perf_cpu_context *cpuctx, *tmp;
1686 WARN_ON(!irqs_disabled());
1688 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1689 if (cpuctx->jiffies_interval == 1 ||
1690 !(jiffies % cpuctx->jiffies_interval))
1691 perf_rotate_context(cpuctx);
1695 static int event_enable_on_exec(struct perf_event *event,
1696 struct perf_event_context *ctx)
1698 if (!event->attr.enable_on_exec)
1701 event->attr.enable_on_exec = 0;
1702 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1705 __perf_event_mark_enabled(event, ctx);
1711 * Enable all of a task's events that have been marked enable-on-exec.
1712 * This expects task == current.
1714 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1716 struct perf_event *event;
1717 unsigned long flags;
1721 local_irq_save(flags);
1722 if (!ctx || !ctx->nr_events)
1725 task_ctx_sched_out(ctx, EVENT_ALL);
1727 raw_spin_lock(&ctx->lock);
1729 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1730 ret = event_enable_on_exec(event, ctx);
1735 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1736 ret = event_enable_on_exec(event, ctx);
1742 * Unclone this context if we enabled any event.
1747 raw_spin_unlock(&ctx->lock);
1749 perf_event_context_sched_in(ctx);
1751 local_irq_restore(flags);
1755 * Cross CPU call to read the hardware event
1757 static void __perf_event_read(void *info)
1759 struct perf_event *event = info;
1760 struct perf_event_context *ctx = event->ctx;
1761 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1764 * If this is a task context, we need to check whether it is
1765 * the current task context of this cpu. If not it has been
1766 * scheduled out before the smp call arrived. In that case
1767 * event->count would have been updated to a recent sample
1768 * when the event was scheduled out.
1770 if (ctx->task && cpuctx->task_ctx != ctx)
1773 raw_spin_lock(&ctx->lock);
1774 update_context_time(ctx);
1775 update_event_times(event);
1776 raw_spin_unlock(&ctx->lock);
1778 event->pmu->read(event);
1781 static inline u64 perf_event_count(struct perf_event *event)
1783 return local64_read(&event->count) + atomic64_read(&event->child_count);
1786 static u64 perf_event_read(struct perf_event *event)
1789 * If event is enabled and currently active on a CPU, update the
1790 * value in the event structure:
1792 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1793 smp_call_function_single(event->oncpu,
1794 __perf_event_read, event, 1);
1795 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 struct perf_event_context *ctx = event->ctx;
1797 unsigned long flags;
1799 raw_spin_lock_irqsave(&ctx->lock, flags);
1801 * may read while context is not active
1802 * (e.g., thread is blocked), in that case
1803 * we cannot update context time
1806 update_context_time(ctx);
1807 update_event_times(event);
1808 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1811 return perf_event_count(event);
1818 struct callchain_cpus_entries {
1819 struct rcu_head rcu_head;
1820 struct perf_callchain_entry *cpu_entries[0];
1823 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1824 static atomic_t nr_callchain_events;
1825 static DEFINE_MUTEX(callchain_mutex);
1826 struct callchain_cpus_entries *callchain_cpus_entries;
1829 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1830 struct pt_regs *regs)
1834 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1835 struct pt_regs *regs)
1839 static void release_callchain_buffers_rcu(struct rcu_head *head)
1841 struct callchain_cpus_entries *entries;
1844 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1846 for_each_possible_cpu(cpu)
1847 kfree(entries->cpu_entries[cpu]);
1852 static void release_callchain_buffers(void)
1854 struct callchain_cpus_entries *entries;
1856 entries = callchain_cpus_entries;
1857 rcu_assign_pointer(callchain_cpus_entries, NULL);
1858 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1861 static int alloc_callchain_buffers(void)
1865 struct callchain_cpus_entries *entries;
1868 * We can't use the percpu allocation API for data that can be
1869 * accessed from NMI. Use a temporary manual per cpu allocation
1870 * until that gets sorted out.
1872 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1873 num_possible_cpus();
1875 entries = kzalloc(size, GFP_KERNEL);
1879 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1881 for_each_possible_cpu(cpu) {
1882 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1884 if (!entries->cpu_entries[cpu])
1888 rcu_assign_pointer(callchain_cpus_entries, entries);
1893 for_each_possible_cpu(cpu)
1894 kfree(entries->cpu_entries[cpu]);
1900 static int get_callchain_buffers(void)
1905 mutex_lock(&callchain_mutex);
1907 count = atomic_inc_return(&nr_callchain_events);
1908 if (WARN_ON_ONCE(count < 1)) {
1914 /* If the allocation failed, give up */
1915 if (!callchain_cpus_entries)
1920 err = alloc_callchain_buffers();
1922 release_callchain_buffers();
1924 mutex_unlock(&callchain_mutex);
1929 static void put_callchain_buffers(void)
1931 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1932 release_callchain_buffers();
1933 mutex_unlock(&callchain_mutex);
1937 static int get_recursion_context(int *recursion)
1945 else if (in_softirq())
1950 if (recursion[rctx])
1959 static inline void put_recursion_context(int *recursion, int rctx)
1965 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1968 struct callchain_cpus_entries *entries;
1970 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1974 entries = rcu_dereference(callchain_cpus_entries);
1978 cpu = smp_processor_id();
1980 return &entries->cpu_entries[cpu][*rctx];
1984 put_callchain_entry(int rctx)
1986 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1989 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1992 struct perf_callchain_entry *entry;
1995 entry = get_callchain_entry(&rctx);
2004 if (!user_mode(regs)) {
2005 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2006 perf_callchain_kernel(entry, regs);
2008 regs = task_pt_regs(current);
2014 perf_callchain_store(entry, PERF_CONTEXT_USER);
2015 perf_callchain_user(entry, regs);
2019 put_callchain_entry(rctx);
2025 * Initialize the perf_event context in a task_struct:
2027 static void __perf_event_init_context(struct perf_event_context *ctx)
2029 raw_spin_lock_init(&ctx->lock);
2030 mutex_init(&ctx->mutex);
2031 INIT_LIST_HEAD(&ctx->pinned_groups);
2032 INIT_LIST_HEAD(&ctx->flexible_groups);
2033 INIT_LIST_HEAD(&ctx->event_list);
2034 atomic_set(&ctx->refcount, 1);
2037 static struct perf_event_context *
2038 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2040 struct perf_event_context *ctx;
2042 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2046 __perf_event_init_context(ctx);
2049 get_task_struct(task);
2056 static struct task_struct *
2057 find_lively_task_by_vpid(pid_t vpid)
2059 struct task_struct *task;
2066 task = find_task_by_vpid(vpid);
2068 get_task_struct(task);
2072 return ERR_PTR(-ESRCH);
2075 * Can't attach events to a dying task.
2078 if (task->flags & PF_EXITING)
2081 /* Reuse ptrace permission checks for now. */
2083 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2088 put_task_struct(task);
2089 return ERR_PTR(err);
2093 static struct perf_event_context *
2094 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2096 struct perf_event_context *ctx;
2097 struct perf_cpu_context *cpuctx;
2098 unsigned long flags;
2101 if (!task && cpu != -1) {
2102 /* Must be root to operate on a CPU event: */
2103 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2104 return ERR_PTR(-EACCES);
2106 if (cpu < 0 || cpu >= nr_cpumask_bits)
2107 return ERR_PTR(-EINVAL);
2110 * We could be clever and allow to attach a event to an
2111 * offline CPU and activate it when the CPU comes up, but
2114 if (!cpu_online(cpu))
2115 return ERR_PTR(-ENODEV);
2117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2125 ctxn = pmu->task_ctx_nr;
2130 ctx = perf_lock_task_context(task, ctxn, &flags);
2133 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2137 ctx = alloc_perf_context(pmu, task);
2144 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2146 * We raced with some other task; use
2147 * the context they set.
2149 put_task_struct(task);
2158 return ERR_PTR(err);
2161 static void perf_event_free_filter(struct perf_event *event);
2163 static void free_event_rcu(struct rcu_head *head)
2165 struct perf_event *event;
2167 event = container_of(head, struct perf_event, rcu_head);
2169 put_pid_ns(event->ns);
2170 perf_event_free_filter(event);
2174 static void perf_buffer_put(struct perf_buffer *buffer);
2176 static void free_event(struct perf_event *event)
2178 irq_work_sync(&event->pending);
2180 if (!event->parent) {
2181 if (event->attach_state & PERF_ATTACH_TASK)
2182 jump_label_dec(&perf_task_events);
2183 if (event->attr.mmap || event->attr.mmap_data)
2184 atomic_dec(&nr_mmap_events);
2185 if (event->attr.comm)
2186 atomic_dec(&nr_comm_events);
2187 if (event->attr.task)
2188 atomic_dec(&nr_task_events);
2189 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2190 put_callchain_buffers();
2193 if (event->buffer) {
2194 perf_buffer_put(event->buffer);
2195 event->buffer = NULL;
2199 event->destroy(event);
2202 put_ctx(event->ctx);
2204 call_rcu(&event->rcu_head, free_event_rcu);
2207 int perf_event_release_kernel(struct perf_event *event)
2209 struct perf_event_context *ctx = event->ctx;
2212 * Remove from the PMU, can't get re-enabled since we got
2213 * here because the last ref went.
2215 perf_event_disable(event);
2217 WARN_ON_ONCE(ctx->parent_ctx);
2219 * There are two ways this annotation is useful:
2221 * 1) there is a lock recursion from perf_event_exit_task
2222 * see the comment there.
2224 * 2) there is a lock-inversion with mmap_sem through
2225 * perf_event_read_group(), which takes faults while
2226 * holding ctx->mutex, however this is called after
2227 * the last filedesc died, so there is no possibility
2228 * to trigger the AB-BA case.
2230 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2231 raw_spin_lock_irq(&ctx->lock);
2232 perf_group_detach(event);
2233 list_del_event(event, ctx);
2234 raw_spin_unlock_irq(&ctx->lock);
2235 mutex_unlock(&ctx->mutex);
2237 mutex_lock(&event->owner->perf_event_mutex);
2238 list_del_init(&event->owner_entry);
2239 mutex_unlock(&event->owner->perf_event_mutex);
2240 put_task_struct(event->owner);
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2249 * Called when the last reference to the file is gone.
2251 static int perf_release(struct inode *inode, struct file *file)
2253 struct perf_event *event = file->private_data;
2255 file->private_data = NULL;
2257 return perf_event_release_kernel(event);
2260 static int perf_event_read_size(struct perf_event *event)
2262 int entry = sizeof(u64); /* value */
2266 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2267 size += sizeof(u64);
2269 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2270 size += sizeof(u64);
2272 if (event->attr.read_format & PERF_FORMAT_ID)
2273 entry += sizeof(u64);
2275 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2276 nr += event->group_leader->nr_siblings;
2277 size += sizeof(u64);
2285 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2287 struct perf_event *child;
2293 mutex_lock(&event->child_mutex);
2294 total += perf_event_read(event);
2295 *enabled += event->total_time_enabled +
2296 atomic64_read(&event->child_total_time_enabled);
2297 *running += event->total_time_running +
2298 atomic64_read(&event->child_total_time_running);
2300 list_for_each_entry(child, &event->child_list, child_list) {
2301 total += perf_event_read(child);
2302 *enabled += child->total_time_enabled;
2303 *running += child->total_time_running;
2305 mutex_unlock(&event->child_mutex);
2309 EXPORT_SYMBOL_GPL(perf_event_read_value);
2311 static int perf_event_read_group(struct perf_event *event,
2312 u64 read_format, char __user *buf)
2314 struct perf_event *leader = event->group_leader, *sub;
2315 int n = 0, size = 0, ret = -EFAULT;
2316 struct perf_event_context *ctx = leader->ctx;
2318 u64 count, enabled, running;
2320 mutex_lock(&ctx->mutex);
2321 count = perf_event_read_value(leader, &enabled, &running);
2323 values[n++] = 1 + leader->nr_siblings;
2324 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2325 values[n++] = enabled;
2326 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2327 values[n++] = running;
2328 values[n++] = count;
2329 if (read_format & PERF_FORMAT_ID)
2330 values[n++] = primary_event_id(leader);
2332 size = n * sizeof(u64);
2334 if (copy_to_user(buf, values, size))
2339 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2342 values[n++] = perf_event_read_value(sub, &enabled, &running);
2343 if (read_format & PERF_FORMAT_ID)
2344 values[n++] = primary_event_id(sub);
2346 size = n * sizeof(u64);
2348 if (copy_to_user(buf + ret, values, size)) {
2356 mutex_unlock(&ctx->mutex);
2361 static int perf_event_read_one(struct perf_event *event,
2362 u64 read_format, char __user *buf)
2364 u64 enabled, running;
2368 values[n++] = perf_event_read_value(event, &enabled, &running);
2369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2370 values[n++] = enabled;
2371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2372 values[n++] = running;
2373 if (read_format & PERF_FORMAT_ID)
2374 values[n++] = primary_event_id(event);
2376 if (copy_to_user(buf, values, n * sizeof(u64)))
2379 return n * sizeof(u64);
2383 * Read the performance event - simple non blocking version for now
2386 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2388 u64 read_format = event->attr.read_format;
2392 * Return end-of-file for a read on a event that is in
2393 * error state (i.e. because it was pinned but it couldn't be
2394 * scheduled on to the CPU at some point).
2396 if (event->state == PERF_EVENT_STATE_ERROR)
2399 if (count < perf_event_read_size(event))
2402 WARN_ON_ONCE(event->ctx->parent_ctx);
2403 if (read_format & PERF_FORMAT_GROUP)
2404 ret = perf_event_read_group(event, read_format, buf);
2406 ret = perf_event_read_one(event, read_format, buf);
2412 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2414 struct perf_event *event = file->private_data;
2416 return perf_read_hw(event, buf, count);
2419 static unsigned int perf_poll(struct file *file, poll_table *wait)
2421 struct perf_event *event = file->private_data;
2422 struct perf_buffer *buffer;
2423 unsigned int events = POLL_HUP;
2426 buffer = rcu_dereference(event->buffer);
2428 events = atomic_xchg(&buffer->poll, 0);
2431 poll_wait(file, &event->waitq, wait);
2436 static void perf_event_reset(struct perf_event *event)
2438 (void)perf_event_read(event);
2439 local64_set(&event->count, 0);
2440 perf_event_update_userpage(event);
2444 * Holding the top-level event's child_mutex means that any
2445 * descendant process that has inherited this event will block
2446 * in sync_child_event if it goes to exit, thus satisfying the
2447 * task existence requirements of perf_event_enable/disable.
2449 static void perf_event_for_each_child(struct perf_event *event,
2450 void (*func)(struct perf_event *))
2452 struct perf_event *child;
2454 WARN_ON_ONCE(event->ctx->parent_ctx);
2455 mutex_lock(&event->child_mutex);
2457 list_for_each_entry(child, &event->child_list, child_list)
2459 mutex_unlock(&event->child_mutex);
2462 static void perf_event_for_each(struct perf_event *event,
2463 void (*func)(struct perf_event *))
2465 struct perf_event_context *ctx = event->ctx;
2466 struct perf_event *sibling;
2468 WARN_ON_ONCE(ctx->parent_ctx);
2469 mutex_lock(&ctx->mutex);
2470 event = event->group_leader;
2472 perf_event_for_each_child(event, func);
2474 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2475 perf_event_for_each_child(event, func);
2476 mutex_unlock(&ctx->mutex);
2479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2481 struct perf_event_context *ctx = event->ctx;
2485 if (!event->attr.sample_period)
2488 if (copy_from_user(&value, arg, sizeof(value)))
2494 raw_spin_lock_irq(&ctx->lock);
2495 if (event->attr.freq) {
2496 if (value > sysctl_perf_event_sample_rate) {
2501 event->attr.sample_freq = value;
2503 event->attr.sample_period = value;
2504 event->hw.sample_period = value;
2507 raw_spin_unlock_irq(&ctx->lock);
2512 static const struct file_operations perf_fops;
2514 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2518 file = fget_light(fd, fput_needed);
2520 return ERR_PTR(-EBADF);
2522 if (file->f_op != &perf_fops) {
2523 fput_light(file, *fput_needed);
2525 return ERR_PTR(-EBADF);
2528 return file->private_data;
2531 static int perf_event_set_output(struct perf_event *event,
2532 struct perf_event *output_event);
2533 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2535 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2537 struct perf_event *event = file->private_data;
2538 void (*func)(struct perf_event *);
2542 case PERF_EVENT_IOC_ENABLE:
2543 func = perf_event_enable;
2545 case PERF_EVENT_IOC_DISABLE:
2546 func = perf_event_disable;
2548 case PERF_EVENT_IOC_RESET:
2549 func = perf_event_reset;
2552 case PERF_EVENT_IOC_REFRESH:
2553 return perf_event_refresh(event, arg);
2555 case PERF_EVENT_IOC_PERIOD:
2556 return perf_event_period(event, (u64 __user *)arg);
2558 case PERF_EVENT_IOC_SET_OUTPUT:
2560 struct perf_event *output_event = NULL;
2561 int fput_needed = 0;
2565 output_event = perf_fget_light(arg, &fput_needed);
2566 if (IS_ERR(output_event))
2567 return PTR_ERR(output_event);
2570 ret = perf_event_set_output(event, output_event);
2572 fput_light(output_event->filp, fput_needed);
2577 case PERF_EVENT_IOC_SET_FILTER:
2578 return perf_event_set_filter(event, (void __user *)arg);
2584 if (flags & PERF_IOC_FLAG_GROUP)
2585 perf_event_for_each(event, func);
2587 perf_event_for_each_child(event, func);
2592 int perf_event_task_enable(void)
2594 struct perf_event *event;
2596 mutex_lock(¤t->perf_event_mutex);
2597 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2598 perf_event_for_each_child(event, perf_event_enable);
2599 mutex_unlock(¤t->perf_event_mutex);
2604 int perf_event_task_disable(void)
2606 struct perf_event *event;
2608 mutex_lock(¤t->perf_event_mutex);
2609 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2610 perf_event_for_each_child(event, perf_event_disable);
2611 mutex_unlock(¤t->perf_event_mutex);
2616 #ifndef PERF_EVENT_INDEX_OFFSET
2617 # define PERF_EVENT_INDEX_OFFSET 0
2620 static int perf_event_index(struct perf_event *event)
2622 if (event->hw.state & PERF_HES_STOPPED)
2625 if (event->state != PERF_EVENT_STATE_ACTIVE)
2628 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2632 * Callers need to ensure there can be no nesting of this function, otherwise
2633 * the seqlock logic goes bad. We can not serialize this because the arch
2634 * code calls this from NMI context.
2636 void perf_event_update_userpage(struct perf_event *event)
2638 struct perf_event_mmap_page *userpg;
2639 struct perf_buffer *buffer;
2642 buffer = rcu_dereference(event->buffer);
2646 userpg = buffer->user_page;
2649 * Disable preemption so as to not let the corresponding user-space
2650 * spin too long if we get preempted.
2655 userpg->index = perf_event_index(event);
2656 userpg->offset = perf_event_count(event);
2657 if (event->state == PERF_EVENT_STATE_ACTIVE)
2658 userpg->offset -= local64_read(&event->hw.prev_count);
2660 userpg->time_enabled = event->total_time_enabled +
2661 atomic64_read(&event->child_total_time_enabled);
2663 userpg->time_running = event->total_time_running +
2664 atomic64_read(&event->child_total_time_running);
2673 static unsigned long perf_data_size(struct perf_buffer *buffer);
2676 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2678 long max_size = perf_data_size(buffer);
2681 buffer->watermark = min(max_size, watermark);
2683 if (!buffer->watermark)
2684 buffer->watermark = max_size / 2;
2686 if (flags & PERF_BUFFER_WRITABLE)
2687 buffer->writable = 1;
2689 atomic_set(&buffer->refcount, 1);
2692 #ifndef CONFIG_PERF_USE_VMALLOC
2695 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2698 static struct page *
2699 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2701 if (pgoff > buffer->nr_pages)
2705 return virt_to_page(buffer->user_page);
2707 return virt_to_page(buffer->data_pages[pgoff - 1]);
2710 static void *perf_mmap_alloc_page(int cpu)
2715 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2716 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2720 return page_address(page);
2723 static struct perf_buffer *
2724 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2726 struct perf_buffer *buffer;
2730 size = sizeof(struct perf_buffer);
2731 size += nr_pages * sizeof(void *);
2733 buffer = kzalloc(size, GFP_KERNEL);
2737 buffer->user_page = perf_mmap_alloc_page(cpu);
2738 if (!buffer->user_page)
2739 goto fail_user_page;
2741 for (i = 0; i < nr_pages; i++) {
2742 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2743 if (!buffer->data_pages[i])
2744 goto fail_data_pages;
2747 buffer->nr_pages = nr_pages;
2749 perf_buffer_init(buffer, watermark, flags);
2754 for (i--; i >= 0; i--)
2755 free_page((unsigned long)buffer->data_pages[i]);
2757 free_page((unsigned long)buffer->user_page);
2766 static void perf_mmap_free_page(unsigned long addr)
2768 struct page *page = virt_to_page((void *)addr);
2770 page->mapping = NULL;
2774 static void perf_buffer_free(struct perf_buffer *buffer)
2778 perf_mmap_free_page((unsigned long)buffer->user_page);
2779 for (i = 0; i < buffer->nr_pages; i++)
2780 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2784 static inline int page_order(struct perf_buffer *buffer)
2792 * Back perf_mmap() with vmalloc memory.
2794 * Required for architectures that have d-cache aliasing issues.
2797 static inline int page_order(struct perf_buffer *buffer)
2799 return buffer->page_order;
2802 static struct page *
2803 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2805 if (pgoff > (1UL << page_order(buffer)))
2808 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2811 static void perf_mmap_unmark_page(void *addr)
2813 struct page *page = vmalloc_to_page(addr);
2815 page->mapping = NULL;
2818 static void perf_buffer_free_work(struct work_struct *work)
2820 struct perf_buffer *buffer;
2824 buffer = container_of(work, struct perf_buffer, work);
2825 nr = 1 << page_order(buffer);
2827 base = buffer->user_page;
2828 for (i = 0; i < nr + 1; i++)
2829 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2835 static void perf_buffer_free(struct perf_buffer *buffer)
2837 schedule_work(&buffer->work);
2840 static struct perf_buffer *
2841 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2843 struct perf_buffer *buffer;
2847 size = sizeof(struct perf_buffer);
2848 size += sizeof(void *);
2850 buffer = kzalloc(size, GFP_KERNEL);
2854 INIT_WORK(&buffer->work, perf_buffer_free_work);
2856 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2860 buffer->user_page = all_buf;
2861 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2862 buffer->page_order = ilog2(nr_pages);
2863 buffer->nr_pages = 1;
2865 perf_buffer_init(buffer, watermark, flags);
2878 static unsigned long perf_data_size(struct perf_buffer *buffer)
2880 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2883 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2885 struct perf_event *event = vma->vm_file->private_data;
2886 struct perf_buffer *buffer;
2887 int ret = VM_FAULT_SIGBUS;
2889 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2890 if (vmf->pgoff == 0)
2896 buffer = rcu_dereference(event->buffer);
2900 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2903 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2907 get_page(vmf->page);
2908 vmf->page->mapping = vma->vm_file->f_mapping;
2909 vmf->page->index = vmf->pgoff;
2918 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2920 struct perf_buffer *buffer;
2922 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2923 perf_buffer_free(buffer);
2926 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2928 struct perf_buffer *buffer;
2931 buffer = rcu_dereference(event->buffer);
2933 if (!atomic_inc_not_zero(&buffer->refcount))
2941 static void perf_buffer_put(struct perf_buffer *buffer)
2943 if (!atomic_dec_and_test(&buffer->refcount))
2946 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2949 static void perf_mmap_open(struct vm_area_struct *vma)
2951 struct perf_event *event = vma->vm_file->private_data;
2953 atomic_inc(&event->mmap_count);
2956 static void perf_mmap_close(struct vm_area_struct *vma)
2958 struct perf_event *event = vma->vm_file->private_data;
2960 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2961 unsigned long size = perf_data_size(event->buffer);
2962 struct user_struct *user = event->mmap_user;
2963 struct perf_buffer *buffer = event->buffer;
2965 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2966 vma->vm_mm->locked_vm -= event->mmap_locked;
2967 rcu_assign_pointer(event->buffer, NULL);
2968 mutex_unlock(&event->mmap_mutex);
2970 perf_buffer_put(buffer);
2975 static const struct vm_operations_struct perf_mmap_vmops = {
2976 .open = perf_mmap_open,
2977 .close = perf_mmap_close,
2978 .fault = perf_mmap_fault,
2979 .page_mkwrite = perf_mmap_fault,
2982 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2984 struct perf_event *event = file->private_data;
2985 unsigned long user_locked, user_lock_limit;
2986 struct user_struct *user = current_user();
2987 unsigned long locked, lock_limit;
2988 struct perf_buffer *buffer;
2989 unsigned long vma_size;
2990 unsigned long nr_pages;
2991 long user_extra, extra;
2992 int ret = 0, flags = 0;
2995 * Don't allow mmap() of inherited per-task counters. This would
2996 * create a performance issue due to all children writing to the
2999 if (event->cpu == -1 && event->attr.inherit)
3002 if (!(vma->vm_flags & VM_SHARED))
3005 vma_size = vma->vm_end - vma->vm_start;
3006 nr_pages = (vma_size / PAGE_SIZE) - 1;
3009 * If we have buffer pages ensure they're a power-of-two number, so we
3010 * can do bitmasks instead of modulo.
3012 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3015 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3018 if (vma->vm_pgoff != 0)
3021 WARN_ON_ONCE(event->ctx->parent_ctx);
3022 mutex_lock(&event->mmap_mutex);
3023 if (event->buffer) {
3024 if (event->buffer->nr_pages == nr_pages)
3025 atomic_inc(&event->buffer->refcount);
3031 user_extra = nr_pages + 1;
3032 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3035 * Increase the limit linearly with more CPUs:
3037 user_lock_limit *= num_online_cpus();
3039 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3042 if (user_locked > user_lock_limit)
3043 extra = user_locked - user_lock_limit;
3045 lock_limit = rlimit(RLIMIT_MEMLOCK);
3046 lock_limit >>= PAGE_SHIFT;
3047 locked = vma->vm_mm->locked_vm + extra;
3049 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3050 !capable(CAP_IPC_LOCK)) {
3055 WARN_ON(event->buffer);
3057 if (vma->vm_flags & VM_WRITE)
3058 flags |= PERF_BUFFER_WRITABLE;
3060 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3066 rcu_assign_pointer(event->buffer, buffer);
3068 atomic_long_add(user_extra, &user->locked_vm);
3069 event->mmap_locked = extra;
3070 event->mmap_user = get_current_user();
3071 vma->vm_mm->locked_vm += event->mmap_locked;
3075 atomic_inc(&event->mmap_count);
3076 mutex_unlock(&event->mmap_mutex);
3078 vma->vm_flags |= VM_RESERVED;
3079 vma->vm_ops = &perf_mmap_vmops;
3084 static int perf_fasync(int fd, struct file *filp, int on)
3086 struct inode *inode = filp->f_path.dentry->d_inode;
3087 struct perf_event *event = filp->private_data;
3090 mutex_lock(&inode->i_mutex);
3091 retval = fasync_helper(fd, filp, on, &event->fasync);
3092 mutex_unlock(&inode->i_mutex);
3100 static const struct file_operations perf_fops = {
3101 .llseek = no_llseek,
3102 .release = perf_release,
3105 .unlocked_ioctl = perf_ioctl,
3106 .compat_ioctl = perf_ioctl,
3108 .fasync = perf_fasync,
3114 * If there's data, ensure we set the poll() state and publish everything
3115 * to user-space before waking everybody up.
3118 void perf_event_wakeup(struct perf_event *event)
3120 wake_up_all(&event->waitq);
3122 if (event->pending_kill) {
3123 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3124 event->pending_kill = 0;
3128 static void perf_pending_event(struct irq_work *entry)
3130 struct perf_event *event = container_of(entry,
3131 struct perf_event, pending);
3133 if (event->pending_disable) {
3134 event->pending_disable = 0;
3135 __perf_event_disable(event);
3138 if (event->pending_wakeup) {
3139 event->pending_wakeup = 0;
3140 perf_event_wakeup(event);
3145 * We assume there is only KVM supporting the callbacks.
3146 * Later on, we might change it to a list if there is
3147 * another virtualization implementation supporting the callbacks.
3149 struct perf_guest_info_callbacks *perf_guest_cbs;
3151 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3153 perf_guest_cbs = cbs;
3156 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3158 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3160 perf_guest_cbs = NULL;
3163 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3168 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3169 unsigned long offset, unsigned long head)
3173 if (!buffer->writable)
3176 mask = perf_data_size(buffer) - 1;
3178 offset = (offset - tail) & mask;
3179 head = (head - tail) & mask;
3181 if ((int)(head - offset) < 0)
3187 static void perf_output_wakeup(struct perf_output_handle *handle)
3189 atomic_set(&handle->buffer->poll, POLL_IN);
3192 handle->event->pending_wakeup = 1;
3193 irq_work_queue(&handle->event->pending);
3195 perf_event_wakeup(handle->event);
3199 * We need to ensure a later event_id doesn't publish a head when a former
3200 * event isn't done writing. However since we need to deal with NMIs we
3201 * cannot fully serialize things.
3203 * We only publish the head (and generate a wakeup) when the outer-most
3206 static void perf_output_get_handle(struct perf_output_handle *handle)
3208 struct perf_buffer *buffer = handle->buffer;
3211 local_inc(&buffer->nest);
3212 handle->wakeup = local_read(&buffer->wakeup);
3215 static void perf_output_put_handle(struct perf_output_handle *handle)
3217 struct perf_buffer *buffer = handle->buffer;
3221 head = local_read(&buffer->head);
3224 * IRQ/NMI can happen here, which means we can miss a head update.
3227 if (!local_dec_and_test(&buffer->nest))
3231 * Publish the known good head. Rely on the full barrier implied
3232 * by atomic_dec_and_test() order the buffer->head read and this
3235 buffer->user_page->data_head = head;
3238 * Now check if we missed an update, rely on the (compiler)
3239 * barrier in atomic_dec_and_test() to re-read buffer->head.
3241 if (unlikely(head != local_read(&buffer->head))) {
3242 local_inc(&buffer->nest);
3246 if (handle->wakeup != local_read(&buffer->wakeup))
3247 perf_output_wakeup(handle);
3253 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3254 const void *buf, unsigned int len)
3257 unsigned long size = min_t(unsigned long, handle->size, len);
3259 memcpy(handle->addr, buf, size);
3262 handle->addr += size;
3264 handle->size -= size;
3265 if (!handle->size) {
3266 struct perf_buffer *buffer = handle->buffer;
3269 handle->page &= buffer->nr_pages - 1;
3270 handle->addr = buffer->data_pages[handle->page];
3271 handle->size = PAGE_SIZE << page_order(buffer);
3276 int perf_output_begin(struct perf_output_handle *handle,
3277 struct perf_event *event, unsigned int size,
3278 int nmi, int sample)
3280 struct perf_buffer *buffer;
3281 unsigned long tail, offset, head;
3284 struct perf_event_header header;
3291 * For inherited events we send all the output towards the parent.
3294 event = event->parent;
3296 buffer = rcu_dereference(event->buffer);
3300 handle->buffer = buffer;
3301 handle->event = event;
3303 handle->sample = sample;
3305 if (!buffer->nr_pages)
3308 have_lost = local_read(&buffer->lost);
3310 size += sizeof(lost_event);
3312 perf_output_get_handle(handle);
3316 * Userspace could choose to issue a mb() before updating the
3317 * tail pointer. So that all reads will be completed before the
3320 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3322 offset = head = local_read(&buffer->head);
3324 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3326 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3328 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3329 local_add(buffer->watermark, &buffer->wakeup);
3331 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3332 handle->page &= buffer->nr_pages - 1;
3333 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3334 handle->addr = buffer->data_pages[handle->page];
3335 handle->addr += handle->size;
3336 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3339 lost_event.header.type = PERF_RECORD_LOST;
3340 lost_event.header.misc = 0;
3341 lost_event.header.size = sizeof(lost_event);
3342 lost_event.id = event->id;
3343 lost_event.lost = local_xchg(&buffer->lost, 0);
3345 perf_output_put(handle, lost_event);
3351 local_inc(&buffer->lost);
3352 perf_output_put_handle(handle);
3359 void perf_output_end(struct perf_output_handle *handle)
3361 struct perf_event *event = handle->event;
3362 struct perf_buffer *buffer = handle->buffer;
3364 int wakeup_events = event->attr.wakeup_events;
3366 if (handle->sample && wakeup_events) {
3367 int events = local_inc_return(&buffer->events);
3368 if (events >= wakeup_events) {
3369 local_sub(wakeup_events, &buffer->events);
3370 local_inc(&buffer->wakeup);
3374 perf_output_put_handle(handle);
3378 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3381 * only top level events have the pid namespace they were created in
3384 event = event->parent;
3386 return task_tgid_nr_ns(p, event->ns);
3389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3392 * only top level events have the pid namespace they were created in
3395 event = event->parent;
3397 return task_pid_nr_ns(p, event->ns);
3400 static void perf_output_read_one(struct perf_output_handle *handle,
3401 struct perf_event *event,
3402 u64 enabled, u64 running)
3404 u64 read_format = event->attr.read_format;
3408 values[n++] = perf_event_count(event);
3409 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3410 values[n++] = enabled +
3411 atomic64_read(&event->child_total_time_enabled);
3413 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3414 values[n++] = running +
3415 atomic64_read(&event->child_total_time_running);
3417 if (read_format & PERF_FORMAT_ID)
3418 values[n++] = primary_event_id(event);
3420 perf_output_copy(handle, values, n * sizeof(u64));
3424 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3426 static void perf_output_read_group(struct perf_output_handle *handle,
3427 struct perf_event *event,
3428 u64 enabled, u64 running)
3430 struct perf_event *leader = event->group_leader, *sub;
3431 u64 read_format = event->attr.read_format;
3435 values[n++] = 1 + leader->nr_siblings;
3437 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3438 values[n++] = enabled;
3440 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3441 values[n++] = running;
3443 if (leader != event)
3444 leader->pmu->read(leader);
3446 values[n++] = perf_event_count(leader);
3447 if (read_format & PERF_FORMAT_ID)
3448 values[n++] = primary_event_id(leader);
3450 perf_output_copy(handle, values, n * sizeof(u64));
3452 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3456 sub->pmu->read(sub);
3458 values[n++] = perf_event_count(sub);
3459 if (read_format & PERF_FORMAT_ID)
3460 values[n++] = primary_event_id(sub);
3462 perf_output_copy(handle, values, n * sizeof(u64));
3466 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3467 PERF_FORMAT_TOTAL_TIME_RUNNING)
3469 static void perf_output_read(struct perf_output_handle *handle,
3470 struct perf_event *event)
3472 u64 enabled = 0, running = 0, now, ctx_time;
3473 u64 read_format = event->attr.read_format;
3476 * compute total_time_enabled, total_time_running
3477 * based on snapshot values taken when the event
3478 * was last scheduled in.
3480 * we cannot simply called update_context_time()
3481 * because of locking issue as we are called in
3484 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3486 ctx_time = event->shadow_ctx_time + now;
3487 enabled = ctx_time - event->tstamp_enabled;
3488 running = ctx_time - event->tstamp_running;
3491 if (event->attr.read_format & PERF_FORMAT_GROUP)
3492 perf_output_read_group(handle, event, enabled, running);
3494 perf_output_read_one(handle, event, enabled, running);
3497 void perf_output_sample(struct perf_output_handle *handle,
3498 struct perf_event_header *header,
3499 struct perf_sample_data *data,
3500 struct perf_event *event)
3502 u64 sample_type = data->type;
3504 perf_output_put(handle, *header);
3506 if (sample_type & PERF_SAMPLE_IP)
3507 perf_output_put(handle, data->ip);
3509 if (sample_type & PERF_SAMPLE_TID)
3510 perf_output_put(handle, data->tid_entry);
3512 if (sample_type & PERF_SAMPLE_TIME)
3513 perf_output_put(handle, data->time);
3515 if (sample_type & PERF_SAMPLE_ADDR)
3516 perf_output_put(handle, data->addr);
3518 if (sample_type & PERF_SAMPLE_ID)
3519 perf_output_put(handle, data->id);
3521 if (sample_type & PERF_SAMPLE_STREAM_ID)
3522 perf_output_put(handle, data->stream_id);
3524 if (sample_type & PERF_SAMPLE_CPU)
3525 perf_output_put(handle, data->cpu_entry);
3527 if (sample_type & PERF_SAMPLE_PERIOD)
3528 perf_output_put(handle, data->period);
3530 if (sample_type & PERF_SAMPLE_READ)
3531 perf_output_read(handle, event);
3533 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3534 if (data->callchain) {
3537 if (data->callchain)
3538 size += data->callchain->nr;
3540 size *= sizeof(u64);
3542 perf_output_copy(handle, data->callchain, size);
3545 perf_output_put(handle, nr);
3549 if (sample_type & PERF_SAMPLE_RAW) {
3551 perf_output_put(handle, data->raw->size);
3552 perf_output_copy(handle, data->raw->data,
3559 .size = sizeof(u32),
3562 perf_output_put(handle, raw);
3567 void perf_prepare_sample(struct perf_event_header *header,
3568 struct perf_sample_data *data,
3569 struct perf_event *event,
3570 struct pt_regs *regs)
3572 u64 sample_type = event->attr.sample_type;
3574 data->type = sample_type;
3576 header->type = PERF_RECORD_SAMPLE;
3577 header->size = sizeof(*header);
3580 header->misc |= perf_misc_flags(regs);
3582 if (sample_type & PERF_SAMPLE_IP) {
3583 data->ip = perf_instruction_pointer(regs);
3585 header->size += sizeof(data->ip);
3588 if (sample_type & PERF_SAMPLE_TID) {
3589 /* namespace issues */
3590 data->tid_entry.pid = perf_event_pid(event, current);
3591 data->tid_entry.tid = perf_event_tid(event, current);
3593 header->size += sizeof(data->tid_entry);
3596 if (sample_type & PERF_SAMPLE_TIME) {
3597 data->time = perf_clock();
3599 header->size += sizeof(data->time);
3602 if (sample_type & PERF_SAMPLE_ADDR)
3603 header->size += sizeof(data->addr);
3605 if (sample_type & PERF_SAMPLE_ID) {
3606 data->id = primary_event_id(event);
3608 header->size += sizeof(data->id);
3611 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3612 data->stream_id = event->id;
3614 header->size += sizeof(data->stream_id);
3617 if (sample_type & PERF_SAMPLE_CPU) {
3618 data->cpu_entry.cpu = raw_smp_processor_id();
3619 data->cpu_entry.reserved = 0;
3621 header->size += sizeof(data->cpu_entry);
3624 if (sample_type & PERF_SAMPLE_PERIOD)
3625 header->size += sizeof(data->period);
3627 if (sample_type & PERF_SAMPLE_READ)
3628 header->size += perf_event_read_size(event);
3630 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3633 data->callchain = perf_callchain(regs);
3635 if (data->callchain)
3636 size += data->callchain->nr;
3638 header->size += size * sizeof(u64);
3641 if (sample_type & PERF_SAMPLE_RAW) {
3642 int size = sizeof(u32);
3645 size += data->raw->size;
3647 size += sizeof(u32);
3649 WARN_ON_ONCE(size & (sizeof(u64)-1));
3650 header->size += size;
3654 static void perf_event_output(struct perf_event *event, int nmi,
3655 struct perf_sample_data *data,
3656 struct pt_regs *regs)
3658 struct perf_output_handle handle;
3659 struct perf_event_header header;
3661 /* protect the callchain buffers */
3664 perf_prepare_sample(&header, data, event, regs);
3666 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3669 perf_output_sample(&handle, &header, data, event);
3671 perf_output_end(&handle);
3681 struct perf_read_event {
3682 struct perf_event_header header;
3689 perf_event_read_event(struct perf_event *event,
3690 struct task_struct *task)
3692 struct perf_output_handle handle;
3693 struct perf_read_event read_event = {
3695 .type = PERF_RECORD_READ,
3697 .size = sizeof(read_event) + perf_event_read_size(event),
3699 .pid = perf_event_pid(event, task),
3700 .tid = perf_event_tid(event, task),
3704 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3708 perf_output_put(&handle, read_event);
3709 perf_output_read(&handle, event);
3711 perf_output_end(&handle);
3715 * task tracking -- fork/exit
3717 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3720 struct perf_task_event {
3721 struct task_struct *task;
3722 struct perf_event_context *task_ctx;
3725 struct perf_event_header header;
3735 static void perf_event_task_output(struct perf_event *event,
3736 struct perf_task_event *task_event)
3738 struct perf_output_handle handle;
3739 struct task_struct *task = task_event->task;
3742 size = task_event->event_id.header.size;
3743 ret = perf_output_begin(&handle, event, size, 0, 0);
3748 task_event->event_id.pid = perf_event_pid(event, task);
3749 task_event->event_id.ppid = perf_event_pid(event, current);
3751 task_event->event_id.tid = perf_event_tid(event, task);
3752 task_event->event_id.ptid = perf_event_tid(event, current);
3754 perf_output_put(&handle, task_event->event_id);
3756 perf_output_end(&handle);
3759 static int perf_event_task_match(struct perf_event *event)
3761 if (event->state < PERF_EVENT_STATE_INACTIVE)
3764 if (event->cpu != -1 && event->cpu != smp_processor_id())
3767 if (event->attr.comm || event->attr.mmap ||
3768 event->attr.mmap_data || event->attr.task)
3774 static void perf_event_task_ctx(struct perf_event_context *ctx,
3775 struct perf_task_event *task_event)
3777 struct perf_event *event;
3779 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3780 if (perf_event_task_match(event))
3781 perf_event_task_output(event, task_event);
3785 static void perf_event_task_event(struct perf_task_event *task_event)
3787 struct perf_cpu_context *cpuctx;
3788 struct perf_event_context *ctx;
3793 list_for_each_entry_rcu(pmu, &pmus, entry) {
3794 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3795 perf_event_task_ctx(&cpuctx->ctx, task_event);
3797 ctx = task_event->task_ctx;
3799 ctxn = pmu->task_ctx_nr;
3802 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3805 perf_event_task_ctx(ctx, task_event);
3807 put_cpu_ptr(pmu->pmu_cpu_context);
3812 static void perf_event_task(struct task_struct *task,
3813 struct perf_event_context *task_ctx,
3816 struct perf_task_event task_event;
3818 if (!atomic_read(&nr_comm_events) &&
3819 !atomic_read(&nr_mmap_events) &&
3820 !atomic_read(&nr_task_events))
3823 task_event = (struct perf_task_event){
3825 .task_ctx = task_ctx,
3828 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3830 .size = sizeof(task_event.event_id),
3836 .time = perf_clock(),
3840 perf_event_task_event(&task_event);
3843 void perf_event_fork(struct task_struct *task)
3845 perf_event_task(task, NULL, 1);
3852 struct perf_comm_event {
3853 struct task_struct *task;
3858 struct perf_event_header header;
3865 static void perf_event_comm_output(struct perf_event *event,
3866 struct perf_comm_event *comm_event)
3868 struct perf_output_handle handle;
3869 int size = comm_event->event_id.header.size;
3870 int ret = perf_output_begin(&handle, event, size, 0, 0);
3875 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3876 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3878 perf_output_put(&handle, comm_event->event_id);
3879 perf_output_copy(&handle, comm_event->comm,
3880 comm_event->comm_size);
3881 perf_output_end(&handle);
3884 static int perf_event_comm_match(struct perf_event *event)
3886 if (event->state < PERF_EVENT_STATE_INACTIVE)
3889 if (event->cpu != -1 && event->cpu != smp_processor_id())
3892 if (event->attr.comm)
3898 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3899 struct perf_comm_event *comm_event)
3901 struct perf_event *event;
3903 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3904 if (perf_event_comm_match(event))
3905 perf_event_comm_output(event, comm_event);
3909 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3911 struct perf_cpu_context *cpuctx;
3912 struct perf_event_context *ctx;
3913 char comm[TASK_COMM_LEN];
3918 memset(comm, 0, sizeof(comm));
3919 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3920 size = ALIGN(strlen(comm)+1, sizeof(u64));
3922 comm_event->comm = comm;
3923 comm_event->comm_size = size;
3925 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3928 list_for_each_entry_rcu(pmu, &pmus, entry) {
3929 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3930 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3932 ctxn = pmu->task_ctx_nr;
3936 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3938 perf_event_comm_ctx(ctx, comm_event);
3940 put_cpu_ptr(pmu->pmu_cpu_context);
3945 void perf_event_comm(struct task_struct *task)
3947 struct perf_comm_event comm_event;
3948 struct perf_event_context *ctx;
3951 for_each_task_context_nr(ctxn) {
3952 ctx = task->perf_event_ctxp[ctxn];
3956 perf_event_enable_on_exec(ctx);
3959 if (!atomic_read(&nr_comm_events))
3962 comm_event = (struct perf_comm_event){
3968 .type = PERF_RECORD_COMM,
3977 perf_event_comm_event(&comm_event);
3984 struct perf_mmap_event {
3985 struct vm_area_struct *vma;
3987 const char *file_name;
3991 struct perf_event_header header;
4001 static void perf_event_mmap_output(struct perf_event *event,
4002 struct perf_mmap_event *mmap_event)
4004 struct perf_output_handle handle;
4005 int size = mmap_event->event_id.header.size;
4006 int ret = perf_output_begin(&handle, event, size, 0, 0);
4011 mmap_event->event_id.pid = perf_event_pid(event, current);
4012 mmap_event->event_id.tid = perf_event_tid(event, current);
4014 perf_output_put(&handle, mmap_event->event_id);
4015 perf_output_copy(&handle, mmap_event->file_name,
4016 mmap_event->file_size);
4017 perf_output_end(&handle);
4020 static int perf_event_mmap_match(struct perf_event *event,
4021 struct perf_mmap_event *mmap_event,
4024 if (event->state < PERF_EVENT_STATE_INACTIVE)
4027 if (event->cpu != -1 && event->cpu != smp_processor_id())
4030 if ((!executable && event->attr.mmap_data) ||
4031 (executable && event->attr.mmap))
4037 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4038 struct perf_mmap_event *mmap_event,
4041 struct perf_event *event;
4043 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4044 if (perf_event_mmap_match(event, mmap_event, executable))
4045 perf_event_mmap_output(event, mmap_event);
4049 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4051 struct perf_cpu_context *cpuctx;
4052 struct perf_event_context *ctx;
4053 struct vm_area_struct *vma = mmap_event->vma;
4054 struct file *file = vma->vm_file;
4062 memset(tmp, 0, sizeof(tmp));
4066 * d_path works from the end of the buffer backwards, so we
4067 * need to add enough zero bytes after the string to handle
4068 * the 64bit alignment we do later.
4070 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4072 name = strncpy(tmp, "//enomem", sizeof(tmp));
4075 name = d_path(&file->f_path, buf, PATH_MAX);
4077 name = strncpy(tmp, "//toolong", sizeof(tmp));
4081 if (arch_vma_name(mmap_event->vma)) {
4082 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4088 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4090 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4091 vma->vm_end >= vma->vm_mm->brk) {
4092 name = strncpy(tmp, "[heap]", sizeof(tmp));
4094 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4095 vma->vm_end >= vma->vm_mm->start_stack) {
4096 name = strncpy(tmp, "[stack]", sizeof(tmp));
4100 name = strncpy(tmp, "//anon", sizeof(tmp));
4105 size = ALIGN(strlen(name)+1, sizeof(u64));
4107 mmap_event->file_name = name;
4108 mmap_event->file_size = size;
4110 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4113 list_for_each_entry_rcu(pmu, &pmus, entry) {
4114 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4115 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4116 vma->vm_flags & VM_EXEC);
4118 ctxn = pmu->task_ctx_nr;
4122 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4124 perf_event_mmap_ctx(ctx, mmap_event,
4125 vma->vm_flags & VM_EXEC);
4128 put_cpu_ptr(pmu->pmu_cpu_context);
4135 void perf_event_mmap(struct vm_area_struct *vma)
4137 struct perf_mmap_event mmap_event;
4139 if (!atomic_read(&nr_mmap_events))
4142 mmap_event = (struct perf_mmap_event){
4148 .type = PERF_RECORD_MMAP,
4149 .misc = PERF_RECORD_MISC_USER,
4154 .start = vma->vm_start,
4155 .len = vma->vm_end - vma->vm_start,
4156 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4160 perf_event_mmap_event(&mmap_event);
4164 * IRQ throttle logging
4167 static void perf_log_throttle(struct perf_event *event, int enable)
4169 struct perf_output_handle handle;
4173 struct perf_event_header header;
4177 } throttle_event = {
4179 .type = PERF_RECORD_THROTTLE,
4181 .size = sizeof(throttle_event),
4183 .time = perf_clock(),
4184 .id = primary_event_id(event),
4185 .stream_id = event->id,
4189 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4191 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4195 perf_output_put(&handle, throttle_event);
4196 perf_output_end(&handle);
4200 * Generic event overflow handling, sampling.
4203 static int __perf_event_overflow(struct perf_event *event, int nmi,
4204 int throttle, struct perf_sample_data *data,
4205 struct pt_regs *regs)
4207 int events = atomic_read(&event->event_limit);
4208 struct hw_perf_event *hwc = &event->hw;
4214 if (hwc->interrupts != MAX_INTERRUPTS) {
4216 if (HZ * hwc->interrupts >
4217 (u64)sysctl_perf_event_sample_rate) {
4218 hwc->interrupts = MAX_INTERRUPTS;
4219 perf_log_throttle(event, 0);
4224 * Keep re-disabling events even though on the previous
4225 * pass we disabled it - just in case we raced with a
4226 * sched-in and the event got enabled again:
4232 if (event->attr.freq) {
4233 u64 now = perf_clock();
4234 s64 delta = now - hwc->freq_time_stamp;
4236 hwc->freq_time_stamp = now;
4238 if (delta > 0 && delta < 2*TICK_NSEC)
4239 perf_adjust_period(event, delta, hwc->last_period);
4243 * XXX event_limit might not quite work as expected on inherited
4247 event->pending_kill = POLL_IN;
4248 if (events && atomic_dec_and_test(&event->event_limit)) {
4250 event->pending_kill = POLL_HUP;
4252 event->pending_disable = 1;
4253 irq_work_queue(&event->pending);
4255 perf_event_disable(event);
4258 if (event->overflow_handler)
4259 event->overflow_handler(event, nmi, data, regs);
4261 perf_event_output(event, nmi, data, regs);
4266 int perf_event_overflow(struct perf_event *event, int nmi,
4267 struct perf_sample_data *data,
4268 struct pt_regs *regs)
4270 return __perf_event_overflow(event, nmi, 1, data, regs);
4274 * Generic software event infrastructure
4277 struct swevent_htable {
4278 struct swevent_hlist *swevent_hlist;
4279 struct mutex hlist_mutex;
4282 /* Recursion avoidance in each contexts */
4283 int recursion[PERF_NR_CONTEXTS];
4286 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4289 * We directly increment event->count and keep a second value in
4290 * event->hw.period_left to count intervals. This period event
4291 * is kept in the range [-sample_period, 0] so that we can use the
4295 static u64 perf_swevent_set_period(struct perf_event *event)
4297 struct hw_perf_event *hwc = &event->hw;
4298 u64 period = hwc->last_period;
4302 hwc->last_period = hwc->sample_period;
4305 old = val = local64_read(&hwc->period_left);
4309 nr = div64_u64(period + val, period);
4310 offset = nr * period;
4312 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4318 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4319 int nmi, struct perf_sample_data *data,
4320 struct pt_regs *regs)
4322 struct hw_perf_event *hwc = &event->hw;
4325 data->period = event->hw.last_period;
4327 overflow = perf_swevent_set_period(event);
4329 if (hwc->interrupts == MAX_INTERRUPTS)
4332 for (; overflow; overflow--) {
4333 if (__perf_event_overflow(event, nmi, throttle,
4336 * We inhibit the overflow from happening when
4337 * hwc->interrupts == MAX_INTERRUPTS.
4345 static void perf_swevent_event(struct perf_event *event, u64 nr,
4346 int nmi, struct perf_sample_data *data,
4347 struct pt_regs *regs)
4349 struct hw_perf_event *hwc = &event->hw;
4351 local64_add(nr, &event->count);
4356 if (!hwc->sample_period)
4359 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4360 return perf_swevent_overflow(event, 1, nmi, data, regs);
4362 if (local64_add_negative(nr, &hwc->period_left))
4365 perf_swevent_overflow(event, 0, nmi, data, regs);
4368 static int perf_exclude_event(struct perf_event *event,
4369 struct pt_regs *regs)
4371 if (event->hw.state & PERF_HES_STOPPED)
4375 if (event->attr.exclude_user && user_mode(regs))
4378 if (event->attr.exclude_kernel && !user_mode(regs))
4385 static int perf_swevent_match(struct perf_event *event,
4386 enum perf_type_id type,
4388 struct perf_sample_data *data,
4389 struct pt_regs *regs)
4391 if (event->attr.type != type)
4394 if (event->attr.config != event_id)
4397 if (perf_exclude_event(event, regs))
4403 static inline u64 swevent_hash(u64 type, u32 event_id)
4405 u64 val = event_id | (type << 32);
4407 return hash_64(val, SWEVENT_HLIST_BITS);
4410 static inline struct hlist_head *
4411 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4413 u64 hash = swevent_hash(type, event_id);
4415 return &hlist->heads[hash];
4418 /* For the read side: events when they trigger */
4419 static inline struct hlist_head *
4420 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4422 struct swevent_hlist *hlist;
4424 hlist = rcu_dereference(swhash->swevent_hlist);
4428 return __find_swevent_head(hlist, type, event_id);
4431 /* For the event head insertion and removal in the hlist */
4432 static inline struct hlist_head *
4433 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4435 struct swevent_hlist *hlist;
4436 u32 event_id = event->attr.config;
4437 u64 type = event->attr.type;
4440 * Event scheduling is always serialized against hlist allocation
4441 * and release. Which makes the protected version suitable here.
4442 * The context lock guarantees that.
4444 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4445 lockdep_is_held(&event->ctx->lock));
4449 return __find_swevent_head(hlist, type, event_id);
4452 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4454 struct perf_sample_data *data,
4455 struct pt_regs *regs)
4457 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4458 struct perf_event *event;
4459 struct hlist_node *node;
4460 struct hlist_head *head;
4463 head = find_swevent_head_rcu(swhash, type, event_id);
4467 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4468 if (perf_swevent_match(event, type, event_id, data, regs))
4469 perf_swevent_event(event, nr, nmi, data, regs);
4475 int perf_swevent_get_recursion_context(void)
4477 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4479 return get_recursion_context(swhash->recursion);
4481 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4483 void inline perf_swevent_put_recursion_context(int rctx)
4485 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4487 put_recursion_context(swhash->recursion, rctx);
4490 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4491 struct pt_regs *regs, u64 addr)
4493 struct perf_sample_data data;
4496 preempt_disable_notrace();
4497 rctx = perf_swevent_get_recursion_context();
4501 perf_sample_data_init(&data, addr);
4503 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4505 perf_swevent_put_recursion_context(rctx);
4506 preempt_enable_notrace();
4509 static void perf_swevent_read(struct perf_event *event)
4513 static int perf_swevent_add(struct perf_event *event, int flags)
4515 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516 struct hw_perf_event *hwc = &event->hw;
4517 struct hlist_head *head;
4519 if (hwc->sample_period) {
4520 hwc->last_period = hwc->sample_period;
4521 perf_swevent_set_period(event);
4524 hwc->state = !(flags & PERF_EF_START);
4526 head = find_swevent_head(swhash, event);
4527 if (WARN_ON_ONCE(!head))
4530 hlist_add_head_rcu(&event->hlist_entry, head);
4535 static void perf_swevent_del(struct perf_event *event, int flags)
4537 hlist_del_rcu(&event->hlist_entry);
4540 static void perf_swevent_start(struct perf_event *event, int flags)
4542 event->hw.state = 0;
4545 static void perf_swevent_stop(struct perf_event *event, int flags)
4547 event->hw.state = PERF_HES_STOPPED;
4550 /* Deref the hlist from the update side */
4551 static inline struct swevent_hlist *
4552 swevent_hlist_deref(struct swevent_htable *swhash)
4554 return rcu_dereference_protected(swhash->swevent_hlist,
4555 lockdep_is_held(&swhash->hlist_mutex));
4558 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4560 struct swevent_hlist *hlist;
4562 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4566 static void swevent_hlist_release(struct swevent_htable *swhash)
4568 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4573 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4574 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4577 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4579 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4581 mutex_lock(&swhash->hlist_mutex);
4583 if (!--swhash->hlist_refcount)
4584 swevent_hlist_release(swhash);
4586 mutex_unlock(&swhash->hlist_mutex);
4589 static void swevent_hlist_put(struct perf_event *event)
4593 if (event->cpu != -1) {
4594 swevent_hlist_put_cpu(event, event->cpu);
4598 for_each_possible_cpu(cpu)
4599 swevent_hlist_put_cpu(event, cpu);
4602 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4607 mutex_lock(&swhash->hlist_mutex);
4609 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4610 struct swevent_hlist *hlist;
4612 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4617 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4619 swhash->hlist_refcount++;
4621 mutex_unlock(&swhash->hlist_mutex);
4626 static int swevent_hlist_get(struct perf_event *event)
4629 int cpu, failed_cpu;
4631 if (event->cpu != -1)
4632 return swevent_hlist_get_cpu(event, event->cpu);
4635 for_each_possible_cpu(cpu) {
4636 err = swevent_hlist_get_cpu(event, cpu);
4646 for_each_possible_cpu(cpu) {
4647 if (cpu == failed_cpu)
4649 swevent_hlist_put_cpu(event, cpu);
4656 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4658 static void sw_perf_event_destroy(struct perf_event *event)
4660 u64 event_id = event->attr.config;
4662 WARN_ON(event->parent);
4664 jump_label_dec(&perf_swevent_enabled[event_id]);
4665 swevent_hlist_put(event);
4668 static int perf_swevent_init(struct perf_event *event)
4670 int event_id = event->attr.config;
4672 if (event->attr.type != PERF_TYPE_SOFTWARE)
4676 case PERF_COUNT_SW_CPU_CLOCK:
4677 case PERF_COUNT_SW_TASK_CLOCK:
4684 if (event_id > PERF_COUNT_SW_MAX)
4687 if (!event->parent) {
4690 err = swevent_hlist_get(event);
4694 jump_label_inc(&perf_swevent_enabled[event_id]);
4695 event->destroy = sw_perf_event_destroy;
4701 static struct pmu perf_swevent = {
4702 .task_ctx_nr = perf_sw_context,
4704 .event_init = perf_swevent_init,
4705 .add = perf_swevent_add,
4706 .del = perf_swevent_del,
4707 .start = perf_swevent_start,
4708 .stop = perf_swevent_stop,
4709 .read = perf_swevent_read,
4712 #ifdef CONFIG_EVENT_TRACING
4714 static int perf_tp_filter_match(struct perf_event *event,
4715 struct perf_sample_data *data)
4717 void *record = data->raw->data;
4719 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4724 static int perf_tp_event_match(struct perf_event *event,
4725 struct perf_sample_data *data,
4726 struct pt_regs *regs)
4729 * All tracepoints are from kernel-space.
4731 if (event->attr.exclude_kernel)
4734 if (!perf_tp_filter_match(event, data))
4740 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4741 struct pt_regs *regs, struct hlist_head *head, int rctx)
4743 struct perf_sample_data data;
4744 struct perf_event *event;
4745 struct hlist_node *node;
4747 struct perf_raw_record raw = {
4752 perf_sample_data_init(&data, addr);
4755 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4756 if (perf_tp_event_match(event, &data, regs))
4757 perf_swevent_event(event, count, 1, &data, regs);
4760 perf_swevent_put_recursion_context(rctx);
4762 EXPORT_SYMBOL_GPL(perf_tp_event);
4764 static void tp_perf_event_destroy(struct perf_event *event)
4766 perf_trace_destroy(event);
4769 static int perf_tp_event_init(struct perf_event *event)
4773 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4777 * Raw tracepoint data is a severe data leak, only allow root to
4780 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4781 perf_paranoid_tracepoint_raw() &&
4782 !capable(CAP_SYS_ADMIN))
4785 err = perf_trace_init(event);
4789 event->destroy = tp_perf_event_destroy;
4794 static struct pmu perf_tracepoint = {
4795 .task_ctx_nr = perf_sw_context,
4797 .event_init = perf_tp_event_init,
4798 .add = perf_trace_add,
4799 .del = perf_trace_del,
4800 .start = perf_swevent_start,
4801 .stop = perf_swevent_stop,
4802 .read = perf_swevent_read,
4805 static inline void perf_tp_register(void)
4807 perf_pmu_register(&perf_tracepoint);
4810 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4815 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4818 filter_str = strndup_user(arg, PAGE_SIZE);
4819 if (IS_ERR(filter_str))
4820 return PTR_ERR(filter_str);
4822 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4828 static void perf_event_free_filter(struct perf_event *event)
4830 ftrace_profile_free_filter(event);
4835 static inline void perf_tp_register(void)
4839 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4844 static void perf_event_free_filter(struct perf_event *event)
4848 #endif /* CONFIG_EVENT_TRACING */
4850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4851 void perf_bp_event(struct perf_event *bp, void *data)
4853 struct perf_sample_data sample;
4854 struct pt_regs *regs = data;
4856 perf_sample_data_init(&sample, bp->attr.bp_addr);
4858 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4859 perf_swevent_event(bp, 1, 1, &sample, regs);
4864 * hrtimer based swevent callback
4867 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4869 enum hrtimer_restart ret = HRTIMER_RESTART;
4870 struct perf_sample_data data;
4871 struct pt_regs *regs;
4872 struct perf_event *event;
4875 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4876 event->pmu->read(event);
4878 perf_sample_data_init(&data, 0);
4879 data.period = event->hw.last_period;
4880 regs = get_irq_regs();
4882 if (regs && !perf_exclude_event(event, regs)) {
4883 if (!(event->attr.exclude_idle && current->pid == 0))
4884 if (perf_event_overflow(event, 0, &data, regs))
4885 ret = HRTIMER_NORESTART;
4888 period = max_t(u64, 10000, event->hw.sample_period);
4889 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4894 static void perf_swevent_start_hrtimer(struct perf_event *event)
4896 struct hw_perf_event *hwc = &event->hw;
4898 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4899 hwc->hrtimer.function = perf_swevent_hrtimer;
4900 if (hwc->sample_period) {
4901 s64 period = local64_read(&hwc->period_left);
4907 local64_set(&hwc->period_left, 0);
4909 period = max_t(u64, 10000, hwc->sample_period);
4911 __hrtimer_start_range_ns(&hwc->hrtimer,
4912 ns_to_ktime(period), 0,
4913 HRTIMER_MODE_REL_PINNED, 0);
4917 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4919 struct hw_perf_event *hwc = &event->hw;
4921 if (hwc->sample_period) {
4922 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4923 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4925 hrtimer_cancel(&hwc->hrtimer);
4930 * Software event: cpu wall time clock
4933 static void cpu_clock_event_update(struct perf_event *event)
4938 now = local_clock();
4939 prev = local64_xchg(&event->hw.prev_count, now);
4940 local64_add(now - prev, &event->count);
4943 static void cpu_clock_event_start(struct perf_event *event, int flags)
4945 local64_set(&event->hw.prev_count, local_clock());
4946 perf_swevent_start_hrtimer(event);
4949 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4951 perf_swevent_cancel_hrtimer(event);
4952 cpu_clock_event_update(event);
4955 static int cpu_clock_event_add(struct perf_event *event, int flags)
4957 if (flags & PERF_EF_START)
4958 cpu_clock_event_start(event, flags);
4963 static void cpu_clock_event_del(struct perf_event *event, int flags)
4965 cpu_clock_event_stop(event, flags);
4968 static void cpu_clock_event_read(struct perf_event *event)
4970 cpu_clock_event_update(event);
4973 static int cpu_clock_event_init(struct perf_event *event)
4975 if (event->attr.type != PERF_TYPE_SOFTWARE)
4978 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4984 static struct pmu perf_cpu_clock = {
4985 .task_ctx_nr = perf_sw_context,
4987 .event_init = cpu_clock_event_init,
4988 .add = cpu_clock_event_add,
4989 .del = cpu_clock_event_del,
4990 .start = cpu_clock_event_start,
4991 .stop = cpu_clock_event_stop,
4992 .read = cpu_clock_event_read,
4996 * Software event: task time clock
4999 static void task_clock_event_update(struct perf_event *event, u64 now)
5004 prev = local64_xchg(&event->hw.prev_count, now);
5006 local64_add(delta, &event->count);
5009 static void task_clock_event_start(struct perf_event *event, int flags)
5011 local64_set(&event->hw.prev_count, event->ctx->time);
5012 perf_swevent_start_hrtimer(event);
5015 static void task_clock_event_stop(struct perf_event *event, int flags)
5017 perf_swevent_cancel_hrtimer(event);
5018 task_clock_event_update(event, event->ctx->time);
5021 static int task_clock_event_add(struct perf_event *event, int flags)
5023 if (flags & PERF_EF_START)
5024 task_clock_event_start(event, flags);
5029 static void task_clock_event_del(struct perf_event *event, int flags)
5031 task_clock_event_stop(event, PERF_EF_UPDATE);
5034 static void task_clock_event_read(struct perf_event *event)
5039 update_context_time(event->ctx);
5040 time = event->ctx->time;
5042 u64 now = perf_clock();
5043 u64 delta = now - event->ctx->timestamp;
5044 time = event->ctx->time + delta;
5047 task_clock_event_update(event, time);
5050 static int task_clock_event_init(struct perf_event *event)
5052 if (event->attr.type != PERF_TYPE_SOFTWARE)
5055 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5061 static struct pmu perf_task_clock = {
5062 .task_ctx_nr = perf_sw_context,
5064 .event_init = task_clock_event_init,
5065 .add = task_clock_event_add,
5066 .del = task_clock_event_del,
5067 .start = task_clock_event_start,
5068 .stop = task_clock_event_stop,
5069 .read = task_clock_event_read,
5072 static void perf_pmu_nop_void(struct pmu *pmu)
5076 static int perf_pmu_nop_int(struct pmu *pmu)
5081 static void perf_pmu_start_txn(struct pmu *pmu)
5083 perf_pmu_disable(pmu);
5086 static int perf_pmu_commit_txn(struct pmu *pmu)
5088 perf_pmu_enable(pmu);
5092 static void perf_pmu_cancel_txn(struct pmu *pmu)
5094 perf_pmu_enable(pmu);
5098 * Ensures all contexts with the same task_ctx_nr have the same
5099 * pmu_cpu_context too.
5101 static void *find_pmu_context(int ctxn)
5108 list_for_each_entry(pmu, &pmus, entry) {
5109 if (pmu->task_ctx_nr == ctxn)
5110 return pmu->pmu_cpu_context;
5116 static void free_pmu_context(void * __percpu cpu_context)
5120 mutex_lock(&pmus_lock);
5122 * Like a real lame refcount.
5124 list_for_each_entry(pmu, &pmus, entry) {
5125 if (pmu->pmu_cpu_context == cpu_context)
5129 free_percpu(cpu_context);
5131 mutex_unlock(&pmus_lock);
5134 int perf_pmu_register(struct pmu *pmu)
5138 mutex_lock(&pmus_lock);
5140 pmu->pmu_disable_count = alloc_percpu(int);
5141 if (!pmu->pmu_disable_count)
5144 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5145 if (pmu->pmu_cpu_context)
5146 goto got_cpu_context;
5148 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5149 if (!pmu->pmu_cpu_context)
5152 for_each_possible_cpu(cpu) {
5153 struct perf_cpu_context *cpuctx;
5155 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5156 __perf_event_init_context(&cpuctx->ctx);
5157 cpuctx->ctx.type = cpu_context;
5158 cpuctx->ctx.pmu = pmu;
5159 cpuctx->jiffies_interval = 1;
5160 INIT_LIST_HEAD(&cpuctx->rotation_list);
5164 if (!pmu->start_txn) {
5165 if (pmu->pmu_enable) {
5167 * If we have pmu_enable/pmu_disable calls, install
5168 * transaction stubs that use that to try and batch
5169 * hardware accesses.
5171 pmu->start_txn = perf_pmu_start_txn;
5172 pmu->commit_txn = perf_pmu_commit_txn;
5173 pmu->cancel_txn = perf_pmu_cancel_txn;
5175 pmu->start_txn = perf_pmu_nop_void;
5176 pmu->commit_txn = perf_pmu_nop_int;
5177 pmu->cancel_txn = perf_pmu_nop_void;
5181 if (!pmu->pmu_enable) {
5182 pmu->pmu_enable = perf_pmu_nop_void;
5183 pmu->pmu_disable = perf_pmu_nop_void;
5186 list_add_rcu(&pmu->entry, &pmus);
5189 mutex_unlock(&pmus_lock);
5194 free_percpu(pmu->pmu_disable_count);
5198 void perf_pmu_unregister(struct pmu *pmu)
5200 mutex_lock(&pmus_lock);
5201 list_del_rcu(&pmu->entry);
5202 mutex_unlock(&pmus_lock);
5205 * We dereference the pmu list under both SRCU and regular RCU, so
5206 * synchronize against both of those.
5208 synchronize_srcu(&pmus_srcu);
5211 free_percpu(pmu->pmu_disable_count);
5212 free_pmu_context(pmu->pmu_cpu_context);
5215 struct pmu *perf_init_event(struct perf_event *event)
5217 struct pmu *pmu = NULL;
5220 idx = srcu_read_lock(&pmus_srcu);
5221 list_for_each_entry_rcu(pmu, &pmus, entry) {
5222 int ret = pmu->event_init(event);
5226 if (ret != -ENOENT) {
5231 pmu = ERR_PTR(-ENOENT);
5233 srcu_read_unlock(&pmus_srcu, idx);
5239 * Allocate and initialize a event structure
5241 static struct perf_event *
5242 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5243 struct task_struct *task,
5244 struct perf_event *group_leader,
5245 struct perf_event *parent_event,
5246 perf_overflow_handler_t overflow_handler)
5249 struct perf_event *event;
5250 struct hw_perf_event *hwc;
5253 event = kzalloc(sizeof(*event), GFP_KERNEL);
5255 return ERR_PTR(-ENOMEM);
5258 * Single events are their own group leaders, with an
5259 * empty sibling list:
5262 group_leader = event;
5264 mutex_init(&event->child_mutex);
5265 INIT_LIST_HEAD(&event->child_list);
5267 INIT_LIST_HEAD(&event->group_entry);
5268 INIT_LIST_HEAD(&event->event_entry);
5269 INIT_LIST_HEAD(&event->sibling_list);
5270 init_waitqueue_head(&event->waitq);
5271 init_irq_work(&event->pending, perf_pending_event);
5273 mutex_init(&event->mmap_mutex);
5276 event->attr = *attr;
5277 event->group_leader = group_leader;
5281 event->parent = parent_event;
5283 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5284 event->id = atomic64_inc_return(&perf_event_id);
5286 event->state = PERF_EVENT_STATE_INACTIVE;
5289 event->attach_state = PERF_ATTACH_TASK;
5290 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5292 * hw_breakpoint is a bit difficult here..
5294 if (attr->type == PERF_TYPE_BREAKPOINT)
5295 event->hw.bp_target = task;
5299 if (!overflow_handler && parent_event)
5300 overflow_handler = parent_event->overflow_handler;
5302 event->overflow_handler = overflow_handler;
5305 event->state = PERF_EVENT_STATE_OFF;
5310 hwc->sample_period = attr->sample_period;
5311 if (attr->freq && attr->sample_freq)
5312 hwc->sample_period = 1;
5313 hwc->last_period = hwc->sample_period;
5315 local64_set(&hwc->period_left, hwc->sample_period);
5318 * we currently do not support PERF_FORMAT_GROUP on inherited events
5320 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5323 pmu = perf_init_event(event);
5329 else if (IS_ERR(pmu))
5334 put_pid_ns(event->ns);
5336 return ERR_PTR(err);
5341 if (!event->parent) {
5342 if (event->attach_state & PERF_ATTACH_TASK)
5343 jump_label_inc(&perf_task_events);
5344 if (event->attr.mmap || event->attr.mmap_data)
5345 atomic_inc(&nr_mmap_events);
5346 if (event->attr.comm)
5347 atomic_inc(&nr_comm_events);
5348 if (event->attr.task)
5349 atomic_inc(&nr_task_events);
5350 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5351 err = get_callchain_buffers();
5354 return ERR_PTR(err);
5362 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5363 struct perf_event_attr *attr)
5368 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5372 * zero the full structure, so that a short copy will be nice.
5374 memset(attr, 0, sizeof(*attr));
5376 ret = get_user(size, &uattr->size);
5380 if (size > PAGE_SIZE) /* silly large */
5383 if (!size) /* abi compat */
5384 size = PERF_ATTR_SIZE_VER0;
5386 if (size < PERF_ATTR_SIZE_VER0)
5390 * If we're handed a bigger struct than we know of,
5391 * ensure all the unknown bits are 0 - i.e. new
5392 * user-space does not rely on any kernel feature
5393 * extensions we dont know about yet.
5395 if (size > sizeof(*attr)) {
5396 unsigned char __user *addr;
5397 unsigned char __user *end;
5400 addr = (void __user *)uattr + sizeof(*attr);
5401 end = (void __user *)uattr + size;
5403 for (; addr < end; addr++) {
5404 ret = get_user(val, addr);
5410 size = sizeof(*attr);
5413 ret = copy_from_user(attr, uattr, size);
5418 * If the type exists, the corresponding creation will verify
5421 if (attr->type >= PERF_TYPE_MAX)
5424 if (attr->__reserved_1)
5427 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5430 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5437 put_user(sizeof(*attr), &uattr->size);
5443 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5445 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5451 /* don't allow circular references */
5452 if (event == output_event)
5456 * Don't allow cross-cpu buffers
5458 if (output_event->cpu != event->cpu)
5462 * If its not a per-cpu buffer, it must be the same task.
5464 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5468 mutex_lock(&event->mmap_mutex);
5469 /* Can't redirect output if we've got an active mmap() */
5470 if (atomic_read(&event->mmap_count))
5474 /* get the buffer we want to redirect to */
5475 buffer = perf_buffer_get(output_event);
5480 old_buffer = event->buffer;
5481 rcu_assign_pointer(event->buffer, buffer);
5484 mutex_unlock(&event->mmap_mutex);
5487 perf_buffer_put(old_buffer);
5493 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5495 * @attr_uptr: event_id type attributes for monitoring/sampling
5498 * @group_fd: group leader event fd
5500 SYSCALL_DEFINE5(perf_event_open,
5501 struct perf_event_attr __user *, attr_uptr,
5502 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5504 struct perf_event *group_leader = NULL, *output_event = NULL;
5505 struct perf_event *event, *sibling;
5506 struct perf_event_attr attr;
5507 struct perf_event_context *ctx;
5508 struct file *event_file = NULL;
5509 struct file *group_file = NULL;
5510 struct task_struct *task = NULL;
5514 int fput_needed = 0;
5517 /* for future expandability... */
5518 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5521 err = perf_copy_attr(attr_uptr, &attr);
5525 if (!attr.exclude_kernel) {
5526 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5531 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5535 event_fd = get_unused_fd_flags(O_RDWR);
5539 if (group_fd != -1) {
5540 group_leader = perf_fget_light(group_fd, &fput_needed);
5541 if (IS_ERR(group_leader)) {
5542 err = PTR_ERR(group_leader);
5545 group_file = group_leader->filp;
5546 if (flags & PERF_FLAG_FD_OUTPUT)
5547 output_event = group_leader;
5548 if (flags & PERF_FLAG_FD_NO_GROUP)
5549 group_leader = NULL;
5553 task = find_lively_task_by_vpid(pid);
5555 err = PTR_ERR(task);
5560 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5561 if (IS_ERR(event)) {
5562 err = PTR_ERR(event);
5567 * Special case software events and allow them to be part of
5568 * any hardware group.
5573 (is_software_event(event) != is_software_event(group_leader))) {
5574 if (is_software_event(event)) {
5576 * If event and group_leader are not both a software
5577 * event, and event is, then group leader is not.
5579 * Allow the addition of software events to !software
5580 * groups, this is safe because software events never
5583 pmu = group_leader->pmu;
5584 } else if (is_software_event(group_leader) &&
5585 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5587 * In case the group is a pure software group, and we
5588 * try to add a hardware event, move the whole group to
5589 * the hardware context.
5596 * Get the target context (task or percpu):
5598 ctx = find_get_context(pmu, task, cpu);
5605 * Look up the group leader (we will attach this event to it):
5611 * Do not allow a recursive hierarchy (this new sibling
5612 * becoming part of another group-sibling):
5614 if (group_leader->group_leader != group_leader)
5617 * Do not allow to attach to a group in a different
5618 * task or CPU context:
5621 if (group_leader->ctx->type != ctx->type)
5624 if (group_leader->ctx != ctx)
5629 * Only a group leader can be exclusive or pinned
5631 if (attr.exclusive || attr.pinned)
5636 err = perf_event_set_output(event, output_event);
5641 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5642 if (IS_ERR(event_file)) {
5643 err = PTR_ERR(event_file);
5648 struct perf_event_context *gctx = group_leader->ctx;
5650 mutex_lock(&gctx->mutex);
5651 perf_event_remove_from_context(group_leader);
5652 list_for_each_entry(sibling, &group_leader->sibling_list,
5654 perf_event_remove_from_context(sibling);
5657 mutex_unlock(&gctx->mutex);
5661 event->filp = event_file;
5662 WARN_ON_ONCE(ctx->parent_ctx);
5663 mutex_lock(&ctx->mutex);
5666 perf_install_in_context(ctx, group_leader, cpu);
5668 list_for_each_entry(sibling, &group_leader->sibling_list,
5670 perf_install_in_context(ctx, sibling, cpu);
5675 perf_install_in_context(ctx, event, cpu);
5677 mutex_unlock(&ctx->mutex);
5679 event->owner = current;
5680 get_task_struct(current);
5681 mutex_lock(¤t->perf_event_mutex);
5682 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5683 mutex_unlock(¤t->perf_event_mutex);
5686 * Drop the reference on the group_event after placing the
5687 * new event on the sibling_list. This ensures destruction
5688 * of the group leader will find the pointer to itself in
5689 * perf_group_detach().
5691 fput_light(group_file, fput_needed);
5692 fd_install(event_fd, event_file);
5701 put_task_struct(task);
5703 fput_light(group_file, fput_needed);
5705 put_unused_fd(event_fd);
5710 * perf_event_create_kernel_counter
5712 * @attr: attributes of the counter to create
5713 * @cpu: cpu in which the counter is bound
5714 * @task: task to profile (NULL for percpu)
5717 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5718 struct task_struct *task,
5719 perf_overflow_handler_t overflow_handler)
5721 struct perf_event_context *ctx;
5722 struct perf_event *event;
5726 * Get the target context (task or percpu):
5729 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5730 if (IS_ERR(event)) {
5731 err = PTR_ERR(event);
5735 ctx = find_get_context(event->pmu, task, cpu);
5742 WARN_ON_ONCE(ctx->parent_ctx);
5743 mutex_lock(&ctx->mutex);
5744 perf_install_in_context(ctx, event, cpu);
5746 mutex_unlock(&ctx->mutex);
5748 event->owner = current;
5749 get_task_struct(current);
5750 mutex_lock(¤t->perf_event_mutex);
5751 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5752 mutex_unlock(¤t->perf_event_mutex);
5759 return ERR_PTR(err);
5761 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5763 static void sync_child_event(struct perf_event *child_event,
5764 struct task_struct *child)
5766 struct perf_event *parent_event = child_event->parent;
5769 if (child_event->attr.inherit_stat)
5770 perf_event_read_event(child_event, child);
5772 child_val = perf_event_count(child_event);
5775 * Add back the child's count to the parent's count:
5777 atomic64_add(child_val, &parent_event->child_count);
5778 atomic64_add(child_event->total_time_enabled,
5779 &parent_event->child_total_time_enabled);
5780 atomic64_add(child_event->total_time_running,
5781 &parent_event->child_total_time_running);
5784 * Remove this event from the parent's list
5786 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5787 mutex_lock(&parent_event->child_mutex);
5788 list_del_init(&child_event->child_list);
5789 mutex_unlock(&parent_event->child_mutex);
5792 * Release the parent event, if this was the last
5795 fput(parent_event->filp);
5799 __perf_event_exit_task(struct perf_event *child_event,
5800 struct perf_event_context *child_ctx,
5801 struct task_struct *child)
5803 struct perf_event *parent_event;
5805 perf_event_remove_from_context(child_event);
5807 parent_event = child_event->parent;
5809 * It can happen that parent exits first, and has events
5810 * that are still around due to the child reference. These
5811 * events need to be zapped - but otherwise linger.
5814 sync_child_event(child_event, child);
5815 free_event(child_event);
5819 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5821 struct perf_event *child_event, *tmp;
5822 struct perf_event_context *child_ctx;
5823 unsigned long flags;
5825 if (likely(!child->perf_event_ctxp[ctxn])) {
5826 perf_event_task(child, NULL, 0);
5830 local_irq_save(flags);
5832 * We can't reschedule here because interrupts are disabled,
5833 * and either child is current or it is a task that can't be
5834 * scheduled, so we are now safe from rescheduling changing
5837 child_ctx = child->perf_event_ctxp[ctxn];
5838 task_ctx_sched_out(child_ctx, EVENT_ALL);
5841 * Take the context lock here so that if find_get_context is
5842 * reading child->perf_event_ctxp, we wait until it has
5843 * incremented the context's refcount before we do put_ctx below.
5845 raw_spin_lock(&child_ctx->lock);
5846 child->perf_event_ctxp[ctxn] = NULL;
5848 * If this context is a clone; unclone it so it can't get
5849 * swapped to another process while we're removing all
5850 * the events from it.
5852 unclone_ctx(child_ctx);
5853 update_context_time(child_ctx);
5854 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5857 * Report the task dead after unscheduling the events so that we
5858 * won't get any samples after PERF_RECORD_EXIT. We can however still
5859 * get a few PERF_RECORD_READ events.
5861 perf_event_task(child, child_ctx, 0);
5864 * We can recurse on the same lock type through:
5866 * __perf_event_exit_task()
5867 * sync_child_event()
5868 * fput(parent_event->filp)
5870 * mutex_lock(&ctx->mutex)
5872 * But since its the parent context it won't be the same instance.
5874 mutex_lock(&child_ctx->mutex);
5877 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5879 __perf_event_exit_task(child_event, child_ctx, child);
5881 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5883 __perf_event_exit_task(child_event, child_ctx, child);
5886 * If the last event was a group event, it will have appended all
5887 * its siblings to the list, but we obtained 'tmp' before that which
5888 * will still point to the list head terminating the iteration.
5890 if (!list_empty(&child_ctx->pinned_groups) ||
5891 !list_empty(&child_ctx->flexible_groups))
5894 mutex_unlock(&child_ctx->mutex);
5900 * When a child task exits, feed back event values to parent events.
5902 void perf_event_exit_task(struct task_struct *child)
5906 for_each_task_context_nr(ctxn)
5907 perf_event_exit_task_context(child, ctxn);
5910 static void perf_free_event(struct perf_event *event,
5911 struct perf_event_context *ctx)
5913 struct perf_event *parent = event->parent;
5915 if (WARN_ON_ONCE(!parent))
5918 mutex_lock(&parent->child_mutex);
5919 list_del_init(&event->child_list);
5920 mutex_unlock(&parent->child_mutex);
5924 perf_group_detach(event);
5925 list_del_event(event, ctx);
5930 * free an unexposed, unused context as created by inheritance by
5931 * perf_event_init_task below, used by fork() in case of fail.
5933 void perf_event_free_task(struct task_struct *task)
5935 struct perf_event_context *ctx;
5936 struct perf_event *event, *tmp;
5939 for_each_task_context_nr(ctxn) {
5940 ctx = task->perf_event_ctxp[ctxn];
5944 mutex_lock(&ctx->mutex);
5946 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5948 perf_free_event(event, ctx);
5950 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5952 perf_free_event(event, ctx);
5954 if (!list_empty(&ctx->pinned_groups) ||
5955 !list_empty(&ctx->flexible_groups))
5958 mutex_unlock(&ctx->mutex);
5964 void perf_event_delayed_put(struct task_struct *task)
5968 for_each_task_context_nr(ctxn)
5969 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5973 * inherit a event from parent task to child task:
5975 static struct perf_event *
5976 inherit_event(struct perf_event *parent_event,
5977 struct task_struct *parent,
5978 struct perf_event_context *parent_ctx,
5979 struct task_struct *child,
5980 struct perf_event *group_leader,
5981 struct perf_event_context *child_ctx)
5983 struct perf_event *child_event;
5984 unsigned long flags;
5987 * Instead of creating recursive hierarchies of events,
5988 * we link inherited events back to the original parent,
5989 * which has a filp for sure, which we use as the reference
5992 if (parent_event->parent)
5993 parent_event = parent_event->parent;
5995 child_event = perf_event_alloc(&parent_event->attr,
5998 group_leader, parent_event,
6000 if (IS_ERR(child_event))
6005 * Make the child state follow the state of the parent event,
6006 * not its attr.disabled bit. We hold the parent's mutex,
6007 * so we won't race with perf_event_{en, dis}able_family.
6009 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6010 child_event->state = PERF_EVENT_STATE_INACTIVE;
6012 child_event->state = PERF_EVENT_STATE_OFF;
6014 if (parent_event->attr.freq) {
6015 u64 sample_period = parent_event->hw.sample_period;
6016 struct hw_perf_event *hwc = &child_event->hw;
6018 hwc->sample_period = sample_period;
6019 hwc->last_period = sample_period;
6021 local64_set(&hwc->period_left, sample_period);
6024 child_event->ctx = child_ctx;
6025 child_event->overflow_handler = parent_event->overflow_handler;
6028 * Link it up in the child's context:
6030 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6031 add_event_to_ctx(child_event, child_ctx);
6032 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6035 * Get a reference to the parent filp - we will fput it
6036 * when the child event exits. This is safe to do because
6037 * we are in the parent and we know that the filp still
6038 * exists and has a nonzero count:
6040 atomic_long_inc(&parent_event->filp->f_count);
6043 * Link this into the parent event's child list
6045 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6046 mutex_lock(&parent_event->child_mutex);
6047 list_add_tail(&child_event->child_list, &parent_event->child_list);
6048 mutex_unlock(&parent_event->child_mutex);
6053 static int inherit_group(struct perf_event *parent_event,
6054 struct task_struct *parent,
6055 struct perf_event_context *parent_ctx,
6056 struct task_struct *child,
6057 struct perf_event_context *child_ctx)
6059 struct perf_event *leader;
6060 struct perf_event *sub;
6061 struct perf_event *child_ctr;
6063 leader = inherit_event(parent_event, parent, parent_ctx,
6064 child, NULL, child_ctx);
6066 return PTR_ERR(leader);
6067 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6068 child_ctr = inherit_event(sub, parent, parent_ctx,
6069 child, leader, child_ctx);
6070 if (IS_ERR(child_ctr))
6071 return PTR_ERR(child_ctr);
6077 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6078 struct perf_event_context *parent_ctx,
6079 struct task_struct *child, int ctxn,
6083 struct perf_event_context *child_ctx;
6085 if (!event->attr.inherit) {
6090 child_ctx = child->perf_event_ctxp[ctxn];
6093 * This is executed from the parent task context, so
6094 * inherit events that have been marked for cloning.
6095 * First allocate and initialize a context for the
6099 child_ctx = alloc_perf_context(event->pmu, child);
6103 child->perf_event_ctxp[ctxn] = child_ctx;
6106 ret = inherit_group(event, parent, parent_ctx,
6116 * Initialize the perf_event context in task_struct
6118 int perf_event_init_context(struct task_struct *child, int ctxn)
6120 struct perf_event_context *child_ctx, *parent_ctx;
6121 struct perf_event_context *cloned_ctx;
6122 struct perf_event *event;
6123 struct task_struct *parent = current;
6124 int inherited_all = 1;
6127 child->perf_event_ctxp[ctxn] = NULL;
6129 mutex_init(&child->perf_event_mutex);
6130 INIT_LIST_HEAD(&child->perf_event_list);
6132 if (likely(!parent->perf_event_ctxp[ctxn]))
6136 * If the parent's context is a clone, pin it so it won't get
6139 parent_ctx = perf_pin_task_context(parent, ctxn);
6142 * No need to check if parent_ctx != NULL here; since we saw
6143 * it non-NULL earlier, the only reason for it to become NULL
6144 * is if we exit, and since we're currently in the middle of
6145 * a fork we can't be exiting at the same time.
6149 * Lock the parent list. No need to lock the child - not PID
6150 * hashed yet and not running, so nobody can access it.
6152 mutex_lock(&parent_ctx->mutex);
6155 * We dont have to disable NMIs - we are only looking at
6156 * the list, not manipulating it:
6158 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6159 ret = inherit_task_group(event, parent, parent_ctx,
6160 child, ctxn, &inherited_all);
6165 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6166 ret = inherit_task_group(event, parent, parent_ctx,
6167 child, ctxn, &inherited_all);
6172 child_ctx = child->perf_event_ctxp[ctxn];
6174 if (child_ctx && inherited_all) {
6176 * Mark the child context as a clone of the parent
6177 * context, or of whatever the parent is a clone of.
6178 * Note that if the parent is a clone, it could get
6179 * uncloned at any point, but that doesn't matter
6180 * because the list of events and the generation
6181 * count can't have changed since we took the mutex.
6183 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6185 child_ctx->parent_ctx = cloned_ctx;
6186 child_ctx->parent_gen = parent_ctx->parent_gen;
6188 child_ctx->parent_ctx = parent_ctx;
6189 child_ctx->parent_gen = parent_ctx->generation;
6191 get_ctx(child_ctx->parent_ctx);
6194 mutex_unlock(&parent_ctx->mutex);
6196 perf_unpin_context(parent_ctx);
6202 * Initialize the perf_event context in task_struct
6204 int perf_event_init_task(struct task_struct *child)
6208 for_each_task_context_nr(ctxn) {
6209 ret = perf_event_init_context(child, ctxn);
6217 static void __init perf_event_init_all_cpus(void)
6219 struct swevent_htable *swhash;
6222 for_each_possible_cpu(cpu) {
6223 swhash = &per_cpu(swevent_htable, cpu);
6224 mutex_init(&swhash->hlist_mutex);
6225 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6229 static void __cpuinit perf_event_init_cpu(int cpu)
6231 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6233 mutex_lock(&swhash->hlist_mutex);
6234 if (swhash->hlist_refcount > 0) {
6235 struct swevent_hlist *hlist;
6237 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6239 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6241 mutex_unlock(&swhash->hlist_mutex);
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 static void perf_pmu_rotate_stop(struct pmu *pmu)
6247 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6249 WARN_ON(!irqs_disabled());
6251 list_del_init(&cpuctx->rotation_list);
6254 static void __perf_event_exit_context(void *__info)
6256 struct perf_event_context *ctx = __info;
6257 struct perf_event *event, *tmp;
6259 perf_pmu_rotate_stop(ctx->pmu);
6261 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6262 __perf_event_remove_from_context(event);
6263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6264 __perf_event_remove_from_context(event);
6267 static void perf_event_exit_cpu_context(int cpu)
6269 struct perf_event_context *ctx;
6273 idx = srcu_read_lock(&pmus_srcu);
6274 list_for_each_entry_rcu(pmu, &pmus, entry) {
6275 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6277 mutex_lock(&ctx->mutex);
6278 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6279 mutex_unlock(&ctx->mutex);
6281 srcu_read_unlock(&pmus_srcu, idx);
6284 static void perf_event_exit_cpu(int cpu)
6286 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6288 mutex_lock(&swhash->hlist_mutex);
6289 swevent_hlist_release(swhash);
6290 mutex_unlock(&swhash->hlist_mutex);
6292 perf_event_exit_cpu_context(cpu);
6295 static inline void perf_event_exit_cpu(int cpu) { }
6298 static int __cpuinit
6299 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6301 unsigned int cpu = (long)hcpu;
6303 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_UP_PREPARE:
6306 case CPU_DOWN_FAILED:
6307 perf_event_init_cpu(cpu);
6310 case CPU_UP_CANCELED:
6311 case CPU_DOWN_PREPARE:
6312 perf_event_exit_cpu(cpu);
6322 void __init perf_event_init(void)
6324 perf_event_init_all_cpus();
6325 init_srcu_struct(&pmus_srcu);
6326 perf_pmu_register(&perf_swevent);
6327 perf_pmu_register(&perf_cpu_clock);
6328 perf_pmu_register(&perf_task_clock);
6330 perf_cpu_notifier(perf_cpu_notify);