]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/power/main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mv-sheeva.git] / kernel / power / main.c
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  * 
7  * This file is released under the GPLv2
8  *
9  */
10
11 #include <linux/kobject.h>
12 #include <linux/string.h>
13 #include <linux/resume-trace.h>
14 #include <linux/workqueue.h>
15 #include <linux/debugfs.h>
16 #include <linux/seq_file.h>
17
18 #include "power.h"
19
20 DEFINE_MUTEX(pm_mutex);
21
22 #ifdef CONFIG_PM_SLEEP
23
24 /* Routines for PM-transition notifications */
25
26 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
27
28 int register_pm_notifier(struct notifier_block *nb)
29 {
30         return blocking_notifier_chain_register(&pm_chain_head, nb);
31 }
32 EXPORT_SYMBOL_GPL(register_pm_notifier);
33
34 int unregister_pm_notifier(struct notifier_block *nb)
35 {
36         return blocking_notifier_chain_unregister(&pm_chain_head, nb);
37 }
38 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
39
40 int pm_notifier_call_chain(unsigned long val)
41 {
42         int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
43
44         return notifier_to_errno(ret);
45 }
46
47 /* If set, devices may be suspended and resumed asynchronously. */
48 int pm_async_enabled = 1;
49
50 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
51                              char *buf)
52 {
53         return sprintf(buf, "%d\n", pm_async_enabled);
54 }
55
56 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
57                               const char *buf, size_t n)
58 {
59         unsigned long val;
60
61         if (strict_strtoul(buf, 10, &val))
62                 return -EINVAL;
63
64         if (val > 1)
65                 return -EINVAL;
66
67         pm_async_enabled = val;
68         return n;
69 }
70
71 power_attr(pm_async);
72
73 #ifdef CONFIG_PM_DEBUG
74 int pm_test_level = TEST_NONE;
75
76 static const char * const pm_tests[__TEST_AFTER_LAST] = {
77         [TEST_NONE] = "none",
78         [TEST_CORE] = "core",
79         [TEST_CPUS] = "processors",
80         [TEST_PLATFORM] = "platform",
81         [TEST_DEVICES] = "devices",
82         [TEST_FREEZER] = "freezer",
83 };
84
85 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
86                                 char *buf)
87 {
88         char *s = buf;
89         int level;
90
91         for (level = TEST_FIRST; level <= TEST_MAX; level++)
92                 if (pm_tests[level]) {
93                         if (level == pm_test_level)
94                                 s += sprintf(s, "[%s] ", pm_tests[level]);
95                         else
96                                 s += sprintf(s, "%s ", pm_tests[level]);
97                 }
98
99         if (s != buf)
100                 /* convert the last space to a newline */
101                 *(s-1) = '\n';
102
103         return (s - buf);
104 }
105
106 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
107                                 const char *buf, size_t n)
108 {
109         const char * const *s;
110         int level;
111         char *p;
112         int len;
113         int error = -EINVAL;
114
115         p = memchr(buf, '\n', n);
116         len = p ? p - buf : n;
117
118         mutex_lock(&pm_mutex);
119
120         level = TEST_FIRST;
121         for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
122                 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
123                         pm_test_level = level;
124                         error = 0;
125                         break;
126                 }
127
128         mutex_unlock(&pm_mutex);
129
130         return error ? error : n;
131 }
132
133 power_attr(pm_test);
134 #endif /* CONFIG_PM_DEBUG */
135
136 #ifdef CONFIG_DEBUG_FS
137 static char *suspend_step_name(enum suspend_stat_step step)
138 {
139         switch (step) {
140         case SUSPEND_FREEZE:
141                 return "freeze";
142         case SUSPEND_PREPARE:
143                 return "prepare";
144         case SUSPEND_SUSPEND:
145                 return "suspend";
146         case SUSPEND_SUSPEND_NOIRQ:
147                 return "suspend_noirq";
148         case SUSPEND_RESUME_NOIRQ:
149                 return "resume_noirq";
150         case SUSPEND_RESUME:
151                 return "resume";
152         default:
153                 return "";
154         }
155 }
156
157 static int suspend_stats_show(struct seq_file *s, void *unused)
158 {
159         int i, index, last_dev, last_errno, last_step;
160
161         last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
162         last_dev %= REC_FAILED_NUM;
163         last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
164         last_errno %= REC_FAILED_NUM;
165         last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
166         last_step %= REC_FAILED_NUM;
167         seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
168                         "%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
169                         "success", suspend_stats.success,
170                         "fail", suspend_stats.fail,
171                         "failed_freeze", suspend_stats.failed_freeze,
172                         "failed_prepare", suspend_stats.failed_prepare,
173                         "failed_suspend", suspend_stats.failed_suspend,
174                         "failed_suspend_noirq",
175                                 suspend_stats.failed_suspend_noirq,
176                         "failed_resume", suspend_stats.failed_resume,
177                         "failed_resume_noirq",
178                                 suspend_stats.failed_resume_noirq);
179         seq_printf(s,   "failures:\n  last_failed_dev:\t%-s\n",
180                         suspend_stats.failed_devs[last_dev]);
181         for (i = 1; i < REC_FAILED_NUM; i++) {
182                 index = last_dev + REC_FAILED_NUM - i;
183                 index %= REC_FAILED_NUM;
184                 seq_printf(s, "\t\t\t%-s\n",
185                         suspend_stats.failed_devs[index]);
186         }
187         seq_printf(s,   "  last_failed_errno:\t%-d\n",
188                         suspend_stats.errno[last_errno]);
189         for (i = 1; i < REC_FAILED_NUM; i++) {
190                 index = last_errno + REC_FAILED_NUM - i;
191                 index %= REC_FAILED_NUM;
192                 seq_printf(s, "\t\t\t%-d\n",
193                         suspend_stats.errno[index]);
194         }
195         seq_printf(s,   "  last_failed_step:\t%-s\n",
196                         suspend_step_name(
197                                 suspend_stats.failed_steps[last_step]));
198         for (i = 1; i < REC_FAILED_NUM; i++) {
199                 index = last_step + REC_FAILED_NUM - i;
200                 index %= REC_FAILED_NUM;
201                 seq_printf(s, "\t\t\t%-s\n",
202                         suspend_step_name(
203                                 suspend_stats.failed_steps[index]));
204         }
205
206         return 0;
207 }
208
209 static int suspend_stats_open(struct inode *inode, struct file *file)
210 {
211         return single_open(file, suspend_stats_show, NULL);
212 }
213
214 static const struct file_operations suspend_stats_operations = {
215         .open           = suspend_stats_open,
216         .read           = seq_read,
217         .llseek         = seq_lseek,
218         .release        = single_release,
219 };
220
221 static int __init pm_debugfs_init(void)
222 {
223         debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
224                         NULL, NULL, &suspend_stats_operations);
225         return 0;
226 }
227
228 late_initcall(pm_debugfs_init);
229 #endif /* CONFIG_DEBUG_FS */
230
231 #endif /* CONFIG_PM_SLEEP */
232
233 struct kobject *power_kobj;
234
235 /**
236  *      state - control system power state.
237  *
238  *      show() returns what states are supported, which is hard-coded to
239  *      'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
240  *      'disk' (Suspend-to-Disk).
241  *
242  *      store() accepts one of those strings, translates it into the 
243  *      proper enumerated value, and initiates a suspend transition.
244  */
245 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
246                           char *buf)
247 {
248         char *s = buf;
249 #ifdef CONFIG_SUSPEND
250         int i;
251
252         for (i = 0; i < PM_SUSPEND_MAX; i++) {
253                 if (pm_states[i] && valid_state(i))
254                         s += sprintf(s,"%s ", pm_states[i]);
255         }
256 #endif
257 #ifdef CONFIG_HIBERNATION
258         s += sprintf(s, "%s\n", "disk");
259 #else
260         if (s != buf)
261                 /* convert the last space to a newline */
262                 *(s-1) = '\n';
263 #endif
264         return (s - buf);
265 }
266
267 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
268                            const char *buf, size_t n)
269 {
270 #ifdef CONFIG_SUSPEND
271         suspend_state_t state = PM_SUSPEND_STANDBY;
272         const char * const *s;
273 #endif
274         char *p;
275         int len;
276         int error = -EINVAL;
277
278         p = memchr(buf, '\n', n);
279         len = p ? p - buf : n;
280
281         /* First, check if we are requested to hibernate */
282         if (len == 4 && !strncmp(buf, "disk", len)) {
283                 error = hibernate();
284   goto Exit;
285         }
286
287 #ifdef CONFIG_SUSPEND
288         for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
289                 if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
290                         break;
291         }
292         if (state < PM_SUSPEND_MAX && *s)
293                 error = enter_state(state);
294                 if (error) {
295                         suspend_stats.fail++;
296                         dpm_save_failed_errno(error);
297                 } else
298                         suspend_stats.success++;
299 #endif
300
301  Exit:
302         return error ? error : n;
303 }
304
305 power_attr(state);
306
307 #ifdef CONFIG_PM_SLEEP
308 /*
309  * The 'wakeup_count' attribute, along with the functions defined in
310  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
311  * handled in a non-racy way.
312  *
313  * If a wakeup event occurs when the system is in a sleep state, it simply is
314  * woken up.  In turn, if an event that would wake the system up from a sleep
315  * state occurs when it is undergoing a transition to that sleep state, the
316  * transition should be aborted.  Moreover, if such an event occurs when the
317  * system is in the working state, an attempt to start a transition to the
318  * given sleep state should fail during certain period after the detection of
319  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
320  * these requirements, because a wakeup event may occur exactly when 'state'
321  * is being written to and may be delivered to user space right before it is
322  * frozen, so the event will remain only partially processed until the system is
323  * woken up by another event.  In particular, it won't cause the transition to
324  * a sleep state to be aborted.
325  *
326  * This difficulty may be overcome if user space uses 'wakeup_count' before
327  * writing to 'state'.  It first should read from 'wakeup_count' and store
328  * the read value.  Then, after carrying out its own preparations for the system
329  * transition to a sleep state, it should write the stored value to
330  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
331  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
332  * is allowed to write to 'state', but the transition will be aborted if there
333  * are any wakeup events detected after 'wakeup_count' was written to.
334  */
335
336 static ssize_t wakeup_count_show(struct kobject *kobj,
337                                 struct kobj_attribute *attr,
338                                 char *buf)
339 {
340         unsigned int val;
341
342         return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR;
343 }
344
345 static ssize_t wakeup_count_store(struct kobject *kobj,
346                                 struct kobj_attribute *attr,
347                                 const char *buf, size_t n)
348 {
349         unsigned int val;
350
351         if (sscanf(buf, "%u", &val) == 1) {
352                 if (pm_save_wakeup_count(val))
353                         return n;
354         }
355         return -EINVAL;
356 }
357
358 power_attr(wakeup_count);
359 #endif /* CONFIG_PM_SLEEP */
360
361 #ifdef CONFIG_PM_TRACE
362 int pm_trace_enabled;
363
364 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
365                              char *buf)
366 {
367         return sprintf(buf, "%d\n", pm_trace_enabled);
368 }
369
370 static ssize_t
371 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
372                const char *buf, size_t n)
373 {
374         int val;
375
376         if (sscanf(buf, "%d", &val) == 1) {
377                 pm_trace_enabled = !!val;
378                 return n;
379         }
380         return -EINVAL;
381 }
382
383 power_attr(pm_trace);
384
385 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
386                                        struct kobj_attribute *attr,
387                                        char *buf)
388 {
389         return show_trace_dev_match(buf, PAGE_SIZE);
390 }
391
392 static ssize_t
393 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
394                          const char *buf, size_t n)
395 {
396         return -EINVAL;
397 }
398
399 power_attr(pm_trace_dev_match);
400
401 #endif /* CONFIG_PM_TRACE */
402
403 static struct attribute * g[] = {
404         &state_attr.attr,
405 #ifdef CONFIG_PM_TRACE
406         &pm_trace_attr.attr,
407         &pm_trace_dev_match_attr.attr,
408 #endif
409 #ifdef CONFIG_PM_SLEEP
410         &pm_async_attr.attr,
411         &wakeup_count_attr.attr,
412 #ifdef CONFIG_PM_DEBUG
413         &pm_test_attr.attr,
414 #endif
415 #endif
416         NULL,
417 };
418
419 static struct attribute_group attr_group = {
420         .attrs = g,
421 };
422
423 #ifdef CONFIG_PM_RUNTIME
424 struct workqueue_struct *pm_wq;
425 EXPORT_SYMBOL_GPL(pm_wq);
426
427 static int __init pm_start_workqueue(void)
428 {
429         pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
430
431         return pm_wq ? 0 : -ENOMEM;
432 }
433 #else
434 static inline int pm_start_workqueue(void) { return 0; }
435 #endif
436
437 static int __init pm_init(void)
438 {
439         int error = pm_start_workqueue();
440         if (error)
441                 return error;
442         hibernate_image_size_init();
443         hibernate_reserved_size_init();
444         power_kobj = kobject_create_and_add("power", NULL);
445         if (!power_kobj)
446                 return -ENOMEM;
447         return sysfs_create_group(power_kobj, &attr_group);
448 }
449
450 core_initcall(pm_init);