]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/power/snapshot.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[karo-tx-linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665         if (free_pages_map)
666                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671         return free_pages_map ?
672                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677         if (free_pages_map)
678                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683         if (forbidden_pages_map)
684                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689         return forbidden_pages_map ?
690                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695         if (forbidden_pages_map)
696                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700  *      mark_nosave_pages - set bits corresponding to the page frames the
701  *      contents of which should not be saved in a given bitmap.
702  */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706         struct nosave_region *region;
707
708         if (list_empty(&nosave_regions))
709                 return;
710
711         list_for_each_entry(region, &nosave_regions, list) {
712                 unsigned long pfn;
713
714                 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715                                 region->start_pfn << PAGE_SHIFT,
716                                 region->end_pfn << PAGE_SHIFT);
717
718                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719                         if (pfn_valid(pfn)) {
720                                 /*
721                                  * It is safe to ignore the result of
722                                  * mem_bm_set_bit_check() here, since we won't
723                                  * touch the PFNs for which the error is
724                                  * returned anyway.
725                                  */
726                                 mem_bm_set_bit_check(bm, pfn);
727                         }
728         }
729 }
730
731 /**
732  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
733  *      frames that should not be saved and free page frames.  The pointers
734  *      forbidden_pages_map and free_pages_map are only modified if everything
735  *      goes well, because we don't want the bits to be used before both bitmaps
736  *      are set up.
737  */
738
739 int create_basic_memory_bitmaps(void)
740 {
741         struct memory_bitmap *bm1, *bm2;
742         int error = 0;
743
744         BUG_ON(forbidden_pages_map || free_pages_map);
745
746         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747         if (!bm1)
748                 return -ENOMEM;
749
750         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751         if (error)
752                 goto Free_first_object;
753
754         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755         if (!bm2)
756                 goto Free_first_bitmap;
757
758         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759         if (error)
760                 goto Free_second_object;
761
762         forbidden_pages_map = bm1;
763         free_pages_map = bm2;
764         mark_nosave_pages(forbidden_pages_map);
765
766         pr_debug("PM: Basic memory bitmaps created\n");
767
768         return 0;
769
770  Free_second_object:
771         kfree(bm2);
772  Free_first_bitmap:
773         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774  Free_first_object:
775         kfree(bm1);
776         return -ENOMEM;
777 }
778
779 /**
780  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
781  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
782  *      so that the bitmaps themselves are not referred to while they are being
783  *      freed.
784  */
785
786 void free_basic_memory_bitmaps(void)
787 {
788         struct memory_bitmap *bm1, *bm2;
789
790         BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792         bm1 = forbidden_pages_map;
793         bm2 = free_pages_map;
794         forbidden_pages_map = NULL;
795         free_pages_map = NULL;
796         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797         kfree(bm1);
798         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799         kfree(bm2);
800
801         pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805  *      snapshot_additional_pages - estimate the number of additional pages
806  *      be needed for setting up the suspend image data structures for given
807  *      zone (usually the returned value is greater than the exact number)
808  */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812         unsigned int res;
813
814         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816         return 2 * res;
817 }
818
819 #ifdef CONFIG_HIGHMEM
820 /**
821  *      count_free_highmem_pages - compute the total number of free highmem
822  *      pages, system-wide.
823  */
824
825 static unsigned int count_free_highmem_pages(void)
826 {
827         struct zone *zone;
828         unsigned int cnt = 0;
829
830         for_each_populated_zone(zone)
831                 if (is_highmem(zone))
832                         cnt += zone_page_state(zone, NR_FREE_PAGES);
833
834         return cnt;
835 }
836
837 /**
838  *      saveable_highmem_page - Determine whether a highmem page should be
839  *      included in the suspend image.
840  *
841  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842  *      and it isn't a part of a free chunk of pages.
843  */
844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 {
846         struct page *page;
847
848         if (!pfn_valid(pfn))
849                 return NULL;
850
851         page = pfn_to_page(pfn);
852         if (page_zone(page) != zone)
853                 return NULL;
854
855         BUG_ON(!PageHighMem(page));
856
857         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
858             PageReserved(page))
859                 return NULL;
860
861         if (page_is_guard(page))
862                 return NULL;
863
864         return page;
865 }
866
867 /**
868  *      count_highmem_pages - compute the total number of saveable highmem
869  *      pages.
870  */
871
872 static unsigned int count_highmem_pages(void)
873 {
874         struct zone *zone;
875         unsigned int n = 0;
876
877         for_each_populated_zone(zone) {
878                 unsigned long pfn, max_zone_pfn;
879
880                 if (!is_highmem(zone))
881                         continue;
882
883                 mark_free_pages(zone);
884                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
885                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
886                         if (saveable_highmem_page(zone, pfn))
887                                 n++;
888         }
889         return n;
890 }
891 #else
892 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
893 {
894         return NULL;
895 }
896 #endif /* CONFIG_HIGHMEM */
897
898 /**
899  *      saveable_page - Determine whether a non-highmem page should be included
900  *      in the suspend image.
901  *
902  *      We should save the page if it isn't Nosave, and is not in the range
903  *      of pages statically defined as 'unsaveable', and it isn't a part of
904  *      a free chunk of pages.
905  */
906 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
907 {
908         struct page *page;
909
910         if (!pfn_valid(pfn))
911                 return NULL;
912
913         page = pfn_to_page(pfn);
914         if (page_zone(page) != zone)
915                 return NULL;
916
917         BUG_ON(PageHighMem(page));
918
919         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
920                 return NULL;
921
922         if (PageReserved(page)
923             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
924                 return NULL;
925
926         if (page_is_guard(page))
927                 return NULL;
928
929         return page;
930 }
931
932 /**
933  *      count_data_pages - compute the total number of saveable non-highmem
934  *      pages.
935  */
936
937 static unsigned int count_data_pages(void)
938 {
939         struct zone *zone;
940         unsigned long pfn, max_zone_pfn;
941         unsigned int n = 0;
942
943         for_each_populated_zone(zone) {
944                 if (is_highmem(zone))
945                         continue;
946
947                 mark_free_pages(zone);
948                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
949                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
950                         if (saveable_page(zone, pfn))
951                                 n++;
952         }
953         return n;
954 }
955
956 /* This is needed, because copy_page and memcpy are not usable for copying
957  * task structs.
958  */
959 static inline void do_copy_page(long *dst, long *src)
960 {
961         int n;
962
963         for (n = PAGE_SIZE / sizeof(long); n; n--)
964                 *dst++ = *src++;
965 }
966
967
968 /**
969  *      safe_copy_page - check if the page we are going to copy is marked as
970  *              present in the kernel page tables (this always is the case if
971  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
972  *              kernel_page_present() always returns 'true').
973  */
974 static void safe_copy_page(void *dst, struct page *s_page)
975 {
976         if (kernel_page_present(s_page)) {
977                 do_copy_page(dst, page_address(s_page));
978         } else {
979                 kernel_map_pages(s_page, 1, 1);
980                 do_copy_page(dst, page_address(s_page));
981                 kernel_map_pages(s_page, 1, 0);
982         }
983 }
984
985
986 #ifdef CONFIG_HIGHMEM
987 static inline struct page *
988 page_is_saveable(struct zone *zone, unsigned long pfn)
989 {
990         return is_highmem(zone) ?
991                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
992 }
993
994 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
995 {
996         struct page *s_page, *d_page;
997         void *src, *dst;
998
999         s_page = pfn_to_page(src_pfn);
1000         d_page = pfn_to_page(dst_pfn);
1001         if (PageHighMem(s_page)) {
1002                 src = kmap_atomic(s_page, KM_USER0);
1003                 dst = kmap_atomic(d_page, KM_USER1);
1004                 do_copy_page(dst, src);
1005                 kunmap_atomic(dst, KM_USER1);
1006                 kunmap_atomic(src, KM_USER0);
1007         } else {
1008                 if (PageHighMem(d_page)) {
1009                         /* Page pointed to by src may contain some kernel
1010                          * data modified by kmap_atomic()
1011                          */
1012                         safe_copy_page(buffer, s_page);
1013                         dst = kmap_atomic(d_page, KM_USER0);
1014                         copy_page(dst, buffer);
1015                         kunmap_atomic(dst, KM_USER0);
1016                 } else {
1017                         safe_copy_page(page_address(d_page), s_page);
1018                 }
1019         }
1020 }
1021 #else
1022 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1023
1024 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1025 {
1026         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1027                                 pfn_to_page(src_pfn));
1028 }
1029 #endif /* CONFIG_HIGHMEM */
1030
1031 static void
1032 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1033 {
1034         struct zone *zone;
1035         unsigned long pfn;
1036
1037         for_each_populated_zone(zone) {
1038                 unsigned long max_zone_pfn;
1039
1040                 mark_free_pages(zone);
1041                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1042                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1043                         if (page_is_saveable(zone, pfn))
1044                                 memory_bm_set_bit(orig_bm, pfn);
1045         }
1046         memory_bm_position_reset(orig_bm);
1047         memory_bm_position_reset(copy_bm);
1048         for(;;) {
1049                 pfn = memory_bm_next_pfn(orig_bm);
1050                 if (unlikely(pfn == BM_END_OF_MAP))
1051                         break;
1052                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1053         }
1054 }
1055
1056 /* Total number of image pages */
1057 static unsigned int nr_copy_pages;
1058 /* Number of pages needed for saving the original pfns of the image pages */
1059 static unsigned int nr_meta_pages;
1060 /*
1061  * Numbers of normal and highmem page frames allocated for hibernation image
1062  * before suspending devices.
1063  */
1064 unsigned int alloc_normal, alloc_highmem;
1065 /*
1066  * Memory bitmap used for marking saveable pages (during hibernation) or
1067  * hibernation image pages (during restore)
1068  */
1069 static struct memory_bitmap orig_bm;
1070 /*
1071  * Memory bitmap used during hibernation for marking allocated page frames that
1072  * will contain copies of saveable pages.  During restore it is initially used
1073  * for marking hibernation image pages, but then the set bits from it are
1074  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1075  * used for marking "safe" highmem pages, but it has to be reinitialized for
1076  * this purpose.
1077  */
1078 static struct memory_bitmap copy_bm;
1079
1080 /**
1081  *      swsusp_free - free pages allocated for the suspend.
1082  *
1083  *      Suspend pages are alocated before the atomic copy is made, so we
1084  *      need to release them after the resume.
1085  */
1086
1087 void swsusp_free(void)
1088 {
1089         struct zone *zone;
1090         unsigned long pfn, max_zone_pfn;
1091
1092         for_each_populated_zone(zone) {
1093                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1094                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1095                         if (pfn_valid(pfn)) {
1096                                 struct page *page = pfn_to_page(pfn);
1097
1098                                 if (swsusp_page_is_forbidden(page) &&
1099                                     swsusp_page_is_free(page)) {
1100                                         swsusp_unset_page_forbidden(page);
1101                                         swsusp_unset_page_free(page);
1102                                         __free_page(page);
1103                                 }
1104                         }
1105         }
1106         nr_copy_pages = 0;
1107         nr_meta_pages = 0;
1108         restore_pblist = NULL;
1109         buffer = NULL;
1110         alloc_normal = 0;
1111         alloc_highmem = 0;
1112 }
1113
1114 /* Helper functions used for the shrinking of memory. */
1115
1116 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1117
1118 /**
1119  * preallocate_image_pages - Allocate a number of pages for hibernation image
1120  * @nr_pages: Number of page frames to allocate.
1121  * @mask: GFP flags to use for the allocation.
1122  *
1123  * Return value: Number of page frames actually allocated
1124  */
1125 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1126 {
1127         unsigned long nr_alloc = 0;
1128
1129         while (nr_pages > 0) {
1130                 struct page *page;
1131
1132                 page = alloc_image_page(mask);
1133                 if (!page)
1134                         break;
1135                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1136                 if (PageHighMem(page))
1137                         alloc_highmem++;
1138                 else
1139                         alloc_normal++;
1140                 nr_pages--;
1141                 nr_alloc++;
1142         }
1143
1144         return nr_alloc;
1145 }
1146
1147 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1148                                               unsigned long avail_normal)
1149 {
1150         unsigned long alloc;
1151
1152         if (avail_normal <= alloc_normal)
1153                 return 0;
1154
1155         alloc = avail_normal - alloc_normal;
1156         if (nr_pages < alloc)
1157                 alloc = nr_pages;
1158
1159         return preallocate_image_pages(alloc, GFP_IMAGE);
1160 }
1161
1162 #ifdef CONFIG_HIGHMEM
1163 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1164 {
1165         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1166 }
1167
1168 /**
1169  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1170  */
1171 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1172 {
1173         x *= multiplier;
1174         do_div(x, base);
1175         return (unsigned long)x;
1176 }
1177
1178 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1179                                                 unsigned long highmem,
1180                                                 unsigned long total)
1181 {
1182         unsigned long alloc = __fraction(nr_pages, highmem, total);
1183
1184         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1185 }
1186 #else /* CONFIG_HIGHMEM */
1187 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1188 {
1189         return 0;
1190 }
1191
1192 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1193                                                 unsigned long highmem,
1194                                                 unsigned long total)
1195 {
1196         return 0;
1197 }
1198 #endif /* CONFIG_HIGHMEM */
1199
1200 /**
1201  * free_unnecessary_pages - Release preallocated pages not needed for the image
1202  */
1203 static void free_unnecessary_pages(void)
1204 {
1205         unsigned long save, to_free_normal, to_free_highmem;
1206
1207         save = count_data_pages();
1208         if (alloc_normal >= save) {
1209                 to_free_normal = alloc_normal - save;
1210                 save = 0;
1211         } else {
1212                 to_free_normal = 0;
1213                 save -= alloc_normal;
1214         }
1215         save += count_highmem_pages();
1216         if (alloc_highmem >= save) {
1217                 to_free_highmem = alloc_highmem - save;
1218         } else {
1219                 to_free_highmem = 0;
1220                 save -= alloc_highmem;
1221                 if (to_free_normal > save)
1222                         to_free_normal -= save;
1223                 else
1224                         to_free_normal = 0;
1225         }
1226
1227         memory_bm_position_reset(&copy_bm);
1228
1229         while (to_free_normal > 0 || to_free_highmem > 0) {
1230                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1231                 struct page *page = pfn_to_page(pfn);
1232
1233                 if (PageHighMem(page)) {
1234                         if (!to_free_highmem)
1235                                 continue;
1236                         to_free_highmem--;
1237                         alloc_highmem--;
1238                 } else {
1239                         if (!to_free_normal)
1240                                 continue;
1241                         to_free_normal--;
1242                         alloc_normal--;
1243                 }
1244                 memory_bm_clear_bit(&copy_bm, pfn);
1245                 swsusp_unset_page_forbidden(page);
1246                 swsusp_unset_page_free(page);
1247                 __free_page(page);
1248         }
1249 }
1250
1251 /**
1252  * minimum_image_size - Estimate the minimum acceptable size of an image
1253  * @saveable: Number of saveable pages in the system.
1254  *
1255  * We want to avoid attempting to free too much memory too hard, so estimate the
1256  * minimum acceptable size of a hibernation image to use as the lower limit for
1257  * preallocating memory.
1258  *
1259  * We assume that the minimum image size should be proportional to
1260  *
1261  * [number of saveable pages] - [number of pages that can be freed in theory]
1262  *
1263  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1264  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1265  * minus mapped file pages.
1266  */
1267 static unsigned long minimum_image_size(unsigned long saveable)
1268 {
1269         unsigned long size;
1270
1271         size = global_page_state(NR_SLAB_RECLAIMABLE)
1272                 + global_page_state(NR_ACTIVE_ANON)
1273                 + global_page_state(NR_INACTIVE_ANON)
1274                 + global_page_state(NR_ACTIVE_FILE)
1275                 + global_page_state(NR_INACTIVE_FILE)
1276                 - global_page_state(NR_FILE_MAPPED);
1277
1278         return saveable <= size ? 0 : saveable - size;
1279 }
1280
1281 /**
1282  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1283  *
1284  * To create a hibernation image it is necessary to make a copy of every page
1285  * frame in use.  We also need a number of page frames to be free during
1286  * hibernation for allocations made while saving the image and for device
1287  * drivers, in case they need to allocate memory from their hibernation
1288  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1289  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1290  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1291  * total number of available page frames and allocate at least
1292  *
1293  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1294  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1295  *
1296  * of them, which corresponds to the maximum size of a hibernation image.
1297  *
1298  * If image_size is set below the number following from the above formula,
1299  * the preallocation of memory is continued until the total number of saveable
1300  * pages in the system is below the requested image size or the minimum
1301  * acceptable image size returned by minimum_image_size(), whichever is greater.
1302  */
1303 int hibernate_preallocate_memory(void)
1304 {
1305         struct zone *zone;
1306         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1307         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1308         struct timeval start, stop;
1309         int error;
1310
1311         printk(KERN_INFO "PM: Preallocating image memory... ");
1312         do_gettimeofday(&start);
1313
1314         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1315         if (error)
1316                 goto err_out;
1317
1318         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1319         if (error)
1320                 goto err_out;
1321
1322         alloc_normal = 0;
1323         alloc_highmem = 0;
1324
1325         /* Count the number of saveable data pages. */
1326         save_highmem = count_highmem_pages();
1327         saveable = count_data_pages();
1328
1329         /*
1330          * Compute the total number of page frames we can use (count) and the
1331          * number of pages needed for image metadata (size).
1332          */
1333         count = saveable;
1334         saveable += save_highmem;
1335         highmem = save_highmem;
1336         size = 0;
1337         for_each_populated_zone(zone) {
1338                 size += snapshot_additional_pages(zone);
1339                 if (is_highmem(zone))
1340                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1341                 else
1342                         count += zone_page_state(zone, NR_FREE_PAGES);
1343         }
1344         avail_normal = count;
1345         count += highmem;
1346         count -= totalreserve_pages;
1347
1348         /* Add number of pages required for page keys (s390 only). */
1349         size += page_key_additional_pages(saveable);
1350
1351         /* Compute the maximum number of saveable pages to leave in memory. */
1352         max_size = (count - (size + PAGES_FOR_IO)) / 2
1353                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1354         /* Compute the desired number of image pages specified by image_size. */
1355         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1356         if (size > max_size)
1357                 size = max_size;
1358         /*
1359          * If the desired number of image pages is at least as large as the
1360          * current number of saveable pages in memory, allocate page frames for
1361          * the image and we're done.
1362          */
1363         if (size >= saveable) {
1364                 pages = preallocate_image_highmem(save_highmem);
1365                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1366                 goto out;
1367         }
1368
1369         /* Estimate the minimum size of the image. */
1370         pages = minimum_image_size(saveable);
1371         /*
1372          * To avoid excessive pressure on the normal zone, leave room in it to
1373          * accommodate an image of the minimum size (unless it's already too
1374          * small, in which case don't preallocate pages from it at all).
1375          */
1376         if (avail_normal > pages)
1377                 avail_normal -= pages;
1378         else
1379                 avail_normal = 0;
1380         if (size < pages)
1381                 size = min_t(unsigned long, pages, max_size);
1382
1383         /*
1384          * Let the memory management subsystem know that we're going to need a
1385          * large number of page frames to allocate and make it free some memory.
1386          * NOTE: If this is not done, performance will be hurt badly in some
1387          * test cases.
1388          */
1389         shrink_all_memory(saveable - size);
1390
1391         /*
1392          * The number of saveable pages in memory was too high, so apply some
1393          * pressure to decrease it.  First, make room for the largest possible
1394          * image and fail if that doesn't work.  Next, try to decrease the size
1395          * of the image as much as indicated by 'size' using allocations from
1396          * highmem and non-highmem zones separately.
1397          */
1398         pages_highmem = preallocate_image_highmem(highmem / 2);
1399         alloc = (count - max_size) - pages_highmem;
1400         pages = preallocate_image_memory(alloc, avail_normal);
1401         if (pages < alloc) {
1402                 /* We have exhausted non-highmem pages, try highmem. */
1403                 alloc -= pages;
1404                 pages += pages_highmem;
1405                 pages_highmem = preallocate_image_highmem(alloc);
1406                 if (pages_highmem < alloc)
1407                         goto err_out;
1408                 pages += pages_highmem;
1409                 /*
1410                  * size is the desired number of saveable pages to leave in
1411                  * memory, so try to preallocate (all memory - size) pages.
1412                  */
1413                 alloc = (count - pages) - size;
1414                 pages += preallocate_image_highmem(alloc);
1415         } else {
1416                 /*
1417                  * There are approximately max_size saveable pages at this point
1418                  * and we want to reduce this number down to size.
1419                  */
1420                 alloc = max_size - size;
1421                 size = preallocate_highmem_fraction(alloc, highmem, count);
1422                 pages_highmem += size;
1423                 alloc -= size;
1424                 size = preallocate_image_memory(alloc, avail_normal);
1425                 pages_highmem += preallocate_image_highmem(alloc - size);
1426                 pages += pages_highmem + size;
1427         }
1428
1429         /*
1430          * We only need as many page frames for the image as there are saveable
1431          * pages in memory, but we have allocated more.  Release the excessive
1432          * ones now.
1433          */
1434         free_unnecessary_pages();
1435
1436  out:
1437         do_gettimeofday(&stop);
1438         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1439         swsusp_show_speed(&start, &stop, pages, "Allocated");
1440
1441         return 0;
1442
1443  err_out:
1444         printk(KERN_CONT "\n");
1445         swsusp_free();
1446         return -ENOMEM;
1447 }
1448
1449 #ifdef CONFIG_HIGHMEM
1450 /**
1451   *     count_pages_for_highmem - compute the number of non-highmem pages
1452   *     that will be necessary for creating copies of highmem pages.
1453   */
1454
1455 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1456 {
1457         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1458
1459         if (free_highmem >= nr_highmem)
1460                 nr_highmem = 0;
1461         else
1462                 nr_highmem -= free_highmem;
1463
1464         return nr_highmem;
1465 }
1466 #else
1467 static unsigned int
1468 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1469 #endif /* CONFIG_HIGHMEM */
1470
1471 /**
1472  *      enough_free_mem - Make sure we have enough free memory for the
1473  *      snapshot image.
1474  */
1475
1476 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1477 {
1478         struct zone *zone;
1479         unsigned int free = alloc_normal;
1480
1481         for_each_populated_zone(zone)
1482                 if (!is_highmem(zone))
1483                         free += zone_page_state(zone, NR_FREE_PAGES);
1484
1485         nr_pages += count_pages_for_highmem(nr_highmem);
1486         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1487                 nr_pages, PAGES_FOR_IO, free);
1488
1489         return free > nr_pages + PAGES_FOR_IO;
1490 }
1491
1492 #ifdef CONFIG_HIGHMEM
1493 /**
1494  *      get_highmem_buffer - if there are some highmem pages in the suspend
1495  *      image, we may need the buffer to copy them and/or load their data.
1496  */
1497
1498 static inline int get_highmem_buffer(int safe_needed)
1499 {
1500         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1501         return buffer ? 0 : -ENOMEM;
1502 }
1503
1504 /**
1505  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1506  *      Try to allocate as many pages as needed, but if the number of free
1507  *      highmem pages is lesser than that, allocate them all.
1508  */
1509
1510 static inline unsigned int
1511 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1512 {
1513         unsigned int to_alloc = count_free_highmem_pages();
1514
1515         if (to_alloc > nr_highmem)
1516                 to_alloc = nr_highmem;
1517
1518         nr_highmem -= to_alloc;
1519         while (to_alloc-- > 0) {
1520                 struct page *page;
1521
1522                 page = alloc_image_page(__GFP_HIGHMEM);
1523                 memory_bm_set_bit(bm, page_to_pfn(page));
1524         }
1525         return nr_highmem;
1526 }
1527 #else
1528 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1529
1530 static inline unsigned int
1531 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1532 #endif /* CONFIG_HIGHMEM */
1533
1534 /**
1535  *      swsusp_alloc - allocate memory for the suspend image
1536  *
1537  *      We first try to allocate as many highmem pages as there are
1538  *      saveable highmem pages in the system.  If that fails, we allocate
1539  *      non-highmem pages for the copies of the remaining highmem ones.
1540  *
1541  *      In this approach it is likely that the copies of highmem pages will
1542  *      also be located in the high memory, because of the way in which
1543  *      copy_data_pages() works.
1544  */
1545
1546 static int
1547 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1548                 unsigned int nr_pages, unsigned int nr_highmem)
1549 {
1550         if (nr_highmem > 0) {
1551                 if (get_highmem_buffer(PG_ANY))
1552                         goto err_out;
1553                 if (nr_highmem > alloc_highmem) {
1554                         nr_highmem -= alloc_highmem;
1555                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1556                 }
1557         }
1558         if (nr_pages > alloc_normal) {
1559                 nr_pages -= alloc_normal;
1560                 while (nr_pages-- > 0) {
1561                         struct page *page;
1562
1563                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1564                         if (!page)
1565                                 goto err_out;
1566                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1567                 }
1568         }
1569
1570         return 0;
1571
1572  err_out:
1573         swsusp_free();
1574         return -ENOMEM;
1575 }
1576
1577 asmlinkage int swsusp_save(void)
1578 {
1579         unsigned int nr_pages, nr_highmem;
1580
1581         printk(KERN_INFO "PM: Creating hibernation image:\n");
1582
1583         drain_local_pages(NULL);
1584         nr_pages = count_data_pages();
1585         nr_highmem = count_highmem_pages();
1586         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1587
1588         if (!enough_free_mem(nr_pages, nr_highmem)) {
1589                 printk(KERN_ERR "PM: Not enough free memory\n");
1590                 return -ENOMEM;
1591         }
1592
1593         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1594                 printk(KERN_ERR "PM: Memory allocation failed\n");
1595                 return -ENOMEM;
1596         }
1597
1598         /* During allocating of suspend pagedir, new cold pages may appear.
1599          * Kill them.
1600          */
1601         drain_local_pages(NULL);
1602         copy_data_pages(&copy_bm, &orig_bm);
1603
1604         /*
1605          * End of critical section. From now on, we can write to memory,
1606          * but we should not touch disk. This specially means we must _not_
1607          * touch swap space! Except we must write out our image of course.
1608          */
1609
1610         nr_pages += nr_highmem;
1611         nr_copy_pages = nr_pages;
1612         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1613
1614         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1615                 nr_pages);
1616
1617         return 0;
1618 }
1619
1620 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1621 static int init_header_complete(struct swsusp_info *info)
1622 {
1623         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1624         info->version_code = LINUX_VERSION_CODE;
1625         return 0;
1626 }
1627
1628 static char *check_image_kernel(struct swsusp_info *info)
1629 {
1630         if (info->version_code != LINUX_VERSION_CODE)
1631                 return "kernel version";
1632         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1633                 return "system type";
1634         if (strcmp(info->uts.release,init_utsname()->release))
1635                 return "kernel release";
1636         if (strcmp(info->uts.version,init_utsname()->version))
1637                 return "version";
1638         if (strcmp(info->uts.machine,init_utsname()->machine))
1639                 return "machine";
1640         return NULL;
1641 }
1642 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1643
1644 unsigned long snapshot_get_image_size(void)
1645 {
1646         return nr_copy_pages + nr_meta_pages + 1;
1647 }
1648
1649 static int init_header(struct swsusp_info *info)
1650 {
1651         memset(info, 0, sizeof(struct swsusp_info));
1652         info->num_physpages = num_physpages;
1653         info->image_pages = nr_copy_pages;
1654         info->pages = snapshot_get_image_size();
1655         info->size = info->pages;
1656         info->size <<= PAGE_SHIFT;
1657         return init_header_complete(info);
1658 }
1659
1660 /**
1661  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1662  *      are stored in the array @buf[] (1 page at a time)
1663  */
1664
1665 static inline void
1666 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1667 {
1668         int j;
1669
1670         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1671                 buf[j] = memory_bm_next_pfn(bm);
1672                 if (unlikely(buf[j] == BM_END_OF_MAP))
1673                         break;
1674                 /* Save page key for data page (s390 only). */
1675                 page_key_read(buf + j);
1676         }
1677 }
1678
1679 /**
1680  *      snapshot_read_next - used for reading the system memory snapshot.
1681  *
1682  *      On the first call to it @handle should point to a zeroed
1683  *      snapshot_handle structure.  The structure gets updated and a pointer
1684  *      to it should be passed to this function every next time.
1685  *
1686  *      On success the function returns a positive number.  Then, the caller
1687  *      is allowed to read up to the returned number of bytes from the memory
1688  *      location computed by the data_of() macro.
1689  *
1690  *      The function returns 0 to indicate the end of data stream condition,
1691  *      and a negative number is returned on error.  In such cases the
1692  *      structure pointed to by @handle is not updated and should not be used
1693  *      any more.
1694  */
1695
1696 int snapshot_read_next(struct snapshot_handle *handle)
1697 {
1698         if (handle->cur > nr_meta_pages + nr_copy_pages)
1699                 return 0;
1700
1701         if (!buffer) {
1702                 /* This makes the buffer be freed by swsusp_free() */
1703                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1704                 if (!buffer)
1705                         return -ENOMEM;
1706         }
1707         if (!handle->cur) {
1708                 int error;
1709
1710                 error = init_header((struct swsusp_info *)buffer);
1711                 if (error)
1712                         return error;
1713                 handle->buffer = buffer;
1714                 memory_bm_position_reset(&orig_bm);
1715                 memory_bm_position_reset(&copy_bm);
1716         } else if (handle->cur <= nr_meta_pages) {
1717                 clear_page(buffer);
1718                 pack_pfns(buffer, &orig_bm);
1719         } else {
1720                 struct page *page;
1721
1722                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1723                 if (PageHighMem(page)) {
1724                         /* Highmem pages are copied to the buffer,
1725                          * because we can't return with a kmapped
1726                          * highmem page (we may not be called again).
1727                          */
1728                         void *kaddr;
1729
1730                         kaddr = kmap_atomic(page, KM_USER0);
1731                         copy_page(buffer, kaddr);
1732                         kunmap_atomic(kaddr, KM_USER0);
1733                         handle->buffer = buffer;
1734                 } else {
1735                         handle->buffer = page_address(page);
1736                 }
1737         }
1738         handle->cur++;
1739         return PAGE_SIZE;
1740 }
1741
1742 /**
1743  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1744  *      the image during resume, because they conflict with the pages that
1745  *      had been used before suspend
1746  */
1747
1748 static int mark_unsafe_pages(struct memory_bitmap *bm)
1749 {
1750         struct zone *zone;
1751         unsigned long pfn, max_zone_pfn;
1752
1753         /* Clear page flags */
1754         for_each_populated_zone(zone) {
1755                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1756                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1757                         if (pfn_valid(pfn))
1758                                 swsusp_unset_page_free(pfn_to_page(pfn));
1759         }
1760
1761         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1762         memory_bm_position_reset(bm);
1763         do {
1764                 pfn = memory_bm_next_pfn(bm);
1765                 if (likely(pfn != BM_END_OF_MAP)) {
1766                         if (likely(pfn_valid(pfn)))
1767                                 swsusp_set_page_free(pfn_to_page(pfn));
1768                         else
1769                                 return -EFAULT;
1770                 }
1771         } while (pfn != BM_END_OF_MAP);
1772
1773         allocated_unsafe_pages = 0;
1774
1775         return 0;
1776 }
1777
1778 static void
1779 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1780 {
1781         unsigned long pfn;
1782
1783         memory_bm_position_reset(src);
1784         pfn = memory_bm_next_pfn(src);
1785         while (pfn != BM_END_OF_MAP) {
1786                 memory_bm_set_bit(dst, pfn);
1787                 pfn = memory_bm_next_pfn(src);
1788         }
1789 }
1790
1791 static int check_header(struct swsusp_info *info)
1792 {
1793         char *reason;
1794
1795         reason = check_image_kernel(info);
1796         if (!reason && info->num_physpages != num_physpages)
1797                 reason = "memory size";
1798         if (reason) {
1799                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1800                 return -EPERM;
1801         }
1802         return 0;
1803 }
1804
1805 /**
1806  *      load header - check the image header and copy data from it
1807  */
1808
1809 static int
1810 load_header(struct swsusp_info *info)
1811 {
1812         int error;
1813
1814         restore_pblist = NULL;
1815         error = check_header(info);
1816         if (!error) {
1817                 nr_copy_pages = info->image_pages;
1818                 nr_meta_pages = info->pages - info->image_pages - 1;
1819         }
1820         return error;
1821 }
1822
1823 /**
1824  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1825  *      the corresponding bit in the memory bitmap @bm
1826  */
1827 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1828 {
1829         int j;
1830
1831         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1832                 if (unlikely(buf[j] == BM_END_OF_MAP))
1833                         break;
1834
1835                 /* Extract and buffer page key for data page (s390 only). */
1836                 page_key_memorize(buf + j);
1837
1838                 if (memory_bm_pfn_present(bm, buf[j]))
1839                         memory_bm_set_bit(bm, buf[j]);
1840                 else
1841                         return -EFAULT;
1842         }
1843
1844         return 0;
1845 }
1846
1847 /* List of "safe" pages that may be used to store data loaded from the suspend
1848  * image
1849  */
1850 static struct linked_page *safe_pages_list;
1851
1852 #ifdef CONFIG_HIGHMEM
1853 /* struct highmem_pbe is used for creating the list of highmem pages that
1854  * should be restored atomically during the resume from disk, because the page
1855  * frames they have occupied before the suspend are in use.
1856  */
1857 struct highmem_pbe {
1858         struct page *copy_page; /* data is here now */
1859         struct page *orig_page; /* data was here before the suspend */
1860         struct highmem_pbe *next;
1861 };
1862
1863 /* List of highmem PBEs needed for restoring the highmem pages that were
1864  * allocated before the suspend and included in the suspend image, but have
1865  * also been allocated by the "resume" kernel, so their contents cannot be
1866  * written directly to their "original" page frames.
1867  */
1868 static struct highmem_pbe *highmem_pblist;
1869
1870 /**
1871  *      count_highmem_image_pages - compute the number of highmem pages in the
1872  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1873  *      image pages are assumed to be set.
1874  */
1875
1876 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1877 {
1878         unsigned long pfn;
1879         unsigned int cnt = 0;
1880
1881         memory_bm_position_reset(bm);
1882         pfn = memory_bm_next_pfn(bm);
1883         while (pfn != BM_END_OF_MAP) {
1884                 if (PageHighMem(pfn_to_page(pfn)))
1885                         cnt++;
1886
1887                 pfn = memory_bm_next_pfn(bm);
1888         }
1889         return cnt;
1890 }
1891
1892 /**
1893  *      prepare_highmem_image - try to allocate as many highmem pages as
1894  *      there are highmem image pages (@nr_highmem_p points to the variable
1895  *      containing the number of highmem image pages).  The pages that are
1896  *      "safe" (ie. will not be overwritten when the suspend image is
1897  *      restored) have the corresponding bits set in @bm (it must be
1898  *      unitialized).
1899  *
1900  *      NOTE: This function should not be called if there are no highmem
1901  *      image pages.
1902  */
1903
1904 static unsigned int safe_highmem_pages;
1905
1906 static struct memory_bitmap *safe_highmem_bm;
1907
1908 static int
1909 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1910 {
1911         unsigned int to_alloc;
1912
1913         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1914                 return -ENOMEM;
1915
1916         if (get_highmem_buffer(PG_SAFE))
1917                 return -ENOMEM;
1918
1919         to_alloc = count_free_highmem_pages();
1920         if (to_alloc > *nr_highmem_p)
1921                 to_alloc = *nr_highmem_p;
1922         else
1923                 *nr_highmem_p = to_alloc;
1924
1925         safe_highmem_pages = 0;
1926         while (to_alloc-- > 0) {
1927                 struct page *page;
1928
1929                 page = alloc_page(__GFP_HIGHMEM);
1930                 if (!swsusp_page_is_free(page)) {
1931                         /* The page is "safe", set its bit the bitmap */
1932                         memory_bm_set_bit(bm, page_to_pfn(page));
1933                         safe_highmem_pages++;
1934                 }
1935                 /* Mark the page as allocated */
1936                 swsusp_set_page_forbidden(page);
1937                 swsusp_set_page_free(page);
1938         }
1939         memory_bm_position_reset(bm);
1940         safe_highmem_bm = bm;
1941         return 0;
1942 }
1943
1944 /**
1945  *      get_highmem_page_buffer - for given highmem image page find the buffer
1946  *      that suspend_write_next() should set for its caller to write to.
1947  *
1948  *      If the page is to be saved to its "original" page frame or a copy of
1949  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1950  *      the copy of the page is to be made in normal memory, so the address of
1951  *      the copy is returned.
1952  *
1953  *      If @buffer is returned, the caller of suspend_write_next() will write
1954  *      the page's contents to @buffer, so they will have to be copied to the
1955  *      right location on the next call to suspend_write_next() and it is done
1956  *      with the help of copy_last_highmem_page().  For this purpose, if
1957  *      @buffer is returned, @last_highmem page is set to the page to which
1958  *      the data will have to be copied from @buffer.
1959  */
1960
1961 static struct page *last_highmem_page;
1962
1963 static void *
1964 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1965 {
1966         struct highmem_pbe *pbe;
1967         void *kaddr;
1968
1969         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1970                 /* We have allocated the "original" page frame and we can
1971                  * use it directly to store the loaded page.
1972                  */
1973                 last_highmem_page = page;
1974                 return buffer;
1975         }
1976         /* The "original" page frame has not been allocated and we have to
1977          * use a "safe" page frame to store the loaded page.
1978          */
1979         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1980         if (!pbe) {
1981                 swsusp_free();
1982                 return ERR_PTR(-ENOMEM);
1983         }
1984         pbe->orig_page = page;
1985         if (safe_highmem_pages > 0) {
1986                 struct page *tmp;
1987
1988                 /* Copy of the page will be stored in high memory */
1989                 kaddr = buffer;
1990                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1991                 safe_highmem_pages--;
1992                 last_highmem_page = tmp;
1993                 pbe->copy_page = tmp;
1994         } else {
1995                 /* Copy of the page will be stored in normal memory */
1996                 kaddr = safe_pages_list;
1997                 safe_pages_list = safe_pages_list->next;
1998                 pbe->copy_page = virt_to_page(kaddr);
1999         }
2000         pbe->next = highmem_pblist;
2001         highmem_pblist = pbe;
2002         return kaddr;
2003 }
2004
2005 /**
2006  *      copy_last_highmem_page - copy the contents of a highmem image from
2007  *      @buffer, where the caller of snapshot_write_next() has place them,
2008  *      to the right location represented by @last_highmem_page .
2009  */
2010
2011 static void copy_last_highmem_page(void)
2012 {
2013         if (last_highmem_page) {
2014                 void *dst;
2015
2016                 dst = kmap_atomic(last_highmem_page, KM_USER0);
2017                 copy_page(dst, buffer);
2018                 kunmap_atomic(dst, KM_USER0);
2019                 last_highmem_page = NULL;
2020         }
2021 }
2022
2023 static inline int last_highmem_page_copied(void)
2024 {
2025         return !last_highmem_page;
2026 }
2027
2028 static inline void free_highmem_data(void)
2029 {
2030         if (safe_highmem_bm)
2031                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2032
2033         if (buffer)
2034                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2035 }
2036 #else
2037 static inline int get_safe_write_buffer(void) { return 0; }
2038
2039 static unsigned int
2040 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2041
2042 static inline int
2043 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2044 {
2045         return 0;
2046 }
2047
2048 static inline void *
2049 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2050 {
2051         return ERR_PTR(-EINVAL);
2052 }
2053
2054 static inline void copy_last_highmem_page(void) {}
2055 static inline int last_highmem_page_copied(void) { return 1; }
2056 static inline void free_highmem_data(void) {}
2057 #endif /* CONFIG_HIGHMEM */
2058
2059 /**
2060  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2061  *      be overwritten in the process of restoring the system memory state
2062  *      from the suspend image ("unsafe" pages) and allocate memory for the
2063  *      image.
2064  *
2065  *      The idea is to allocate a new memory bitmap first and then allocate
2066  *      as many pages as needed for the image data, but not to assign these
2067  *      pages to specific tasks initially.  Instead, we just mark them as
2068  *      allocated and create a lists of "safe" pages that will be used
2069  *      later.  On systems with high memory a list of "safe" highmem pages is
2070  *      also created.
2071  */
2072
2073 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2074
2075 static int
2076 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2077 {
2078         unsigned int nr_pages, nr_highmem;
2079         struct linked_page *sp_list, *lp;
2080         int error;
2081
2082         /* If there is no highmem, the buffer will not be necessary */
2083         free_image_page(buffer, PG_UNSAFE_CLEAR);
2084         buffer = NULL;
2085
2086         nr_highmem = count_highmem_image_pages(bm);
2087         error = mark_unsafe_pages(bm);
2088         if (error)
2089                 goto Free;
2090
2091         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2092         if (error)
2093                 goto Free;
2094
2095         duplicate_memory_bitmap(new_bm, bm);
2096         memory_bm_free(bm, PG_UNSAFE_KEEP);
2097         if (nr_highmem > 0) {
2098                 error = prepare_highmem_image(bm, &nr_highmem);
2099                 if (error)
2100                         goto Free;
2101         }
2102         /* Reserve some safe pages for potential later use.
2103          *
2104          * NOTE: This way we make sure there will be enough safe pages for the
2105          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2106          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2107          */
2108         sp_list = NULL;
2109         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2110         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2111         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2112         while (nr_pages > 0) {
2113                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2114                 if (!lp) {
2115                         error = -ENOMEM;
2116                         goto Free;
2117                 }
2118                 lp->next = sp_list;
2119                 sp_list = lp;
2120                 nr_pages--;
2121         }
2122         /* Preallocate memory for the image */
2123         safe_pages_list = NULL;
2124         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2125         while (nr_pages > 0) {
2126                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2127                 if (!lp) {
2128                         error = -ENOMEM;
2129                         goto Free;
2130                 }
2131                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2132                         /* The page is "safe", add it to the list */
2133                         lp->next = safe_pages_list;
2134                         safe_pages_list = lp;
2135                 }
2136                 /* Mark the page as allocated */
2137                 swsusp_set_page_forbidden(virt_to_page(lp));
2138                 swsusp_set_page_free(virt_to_page(lp));
2139                 nr_pages--;
2140         }
2141         /* Free the reserved safe pages so that chain_alloc() can use them */
2142         while (sp_list) {
2143                 lp = sp_list->next;
2144                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2145                 sp_list = lp;
2146         }
2147         return 0;
2148
2149  Free:
2150         swsusp_free();
2151         return error;
2152 }
2153
2154 /**
2155  *      get_buffer - compute the address that snapshot_write_next() should
2156  *      set for its caller to write to.
2157  */
2158
2159 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2160 {
2161         struct pbe *pbe;
2162         struct page *page;
2163         unsigned long pfn = memory_bm_next_pfn(bm);
2164
2165         if (pfn == BM_END_OF_MAP)
2166                 return ERR_PTR(-EFAULT);
2167
2168         page = pfn_to_page(pfn);
2169         if (PageHighMem(page))
2170                 return get_highmem_page_buffer(page, ca);
2171
2172         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2173                 /* We have allocated the "original" page frame and we can
2174                  * use it directly to store the loaded page.
2175                  */
2176                 return page_address(page);
2177
2178         /* The "original" page frame has not been allocated and we have to
2179          * use a "safe" page frame to store the loaded page.
2180          */
2181         pbe = chain_alloc(ca, sizeof(struct pbe));
2182         if (!pbe) {
2183                 swsusp_free();
2184                 return ERR_PTR(-ENOMEM);
2185         }
2186         pbe->orig_address = page_address(page);
2187         pbe->address = safe_pages_list;
2188         safe_pages_list = safe_pages_list->next;
2189         pbe->next = restore_pblist;
2190         restore_pblist = pbe;
2191         return pbe->address;
2192 }
2193
2194 /**
2195  *      snapshot_write_next - used for writing the system memory snapshot.
2196  *
2197  *      On the first call to it @handle should point to a zeroed
2198  *      snapshot_handle structure.  The structure gets updated and a pointer
2199  *      to it should be passed to this function every next time.
2200  *
2201  *      On success the function returns a positive number.  Then, the caller
2202  *      is allowed to write up to the returned number of bytes to the memory
2203  *      location computed by the data_of() macro.
2204  *
2205  *      The function returns 0 to indicate the "end of file" condition,
2206  *      and a negative number is returned on error.  In such cases the
2207  *      structure pointed to by @handle is not updated and should not be used
2208  *      any more.
2209  */
2210
2211 int snapshot_write_next(struct snapshot_handle *handle)
2212 {
2213         static struct chain_allocator ca;
2214         int error = 0;
2215
2216         /* Check if we have already loaded the entire image */
2217         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2218                 return 0;
2219
2220         handle->sync_read = 1;
2221
2222         if (!handle->cur) {
2223                 if (!buffer)
2224                         /* This makes the buffer be freed by swsusp_free() */
2225                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2226
2227                 if (!buffer)
2228                         return -ENOMEM;
2229
2230                 handle->buffer = buffer;
2231         } else if (handle->cur == 1) {
2232                 error = load_header(buffer);
2233                 if (error)
2234                         return error;
2235
2236                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2237                 if (error)
2238                         return error;
2239
2240                 /* Allocate buffer for page keys. */
2241                 error = page_key_alloc(nr_copy_pages);
2242                 if (error)
2243                         return error;
2244
2245         } else if (handle->cur <= nr_meta_pages + 1) {
2246                 error = unpack_orig_pfns(buffer, &copy_bm);
2247                 if (error)
2248                         return error;
2249
2250                 if (handle->cur == nr_meta_pages + 1) {
2251                         error = prepare_image(&orig_bm, &copy_bm);
2252                         if (error)
2253                                 return error;
2254
2255                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2256                         memory_bm_position_reset(&orig_bm);
2257                         restore_pblist = NULL;
2258                         handle->buffer = get_buffer(&orig_bm, &ca);
2259                         handle->sync_read = 0;
2260                         if (IS_ERR(handle->buffer))
2261                                 return PTR_ERR(handle->buffer);
2262                 }
2263         } else {
2264                 copy_last_highmem_page();
2265                 /* Restore page key for data page (s390 only). */
2266                 page_key_write(handle->buffer);
2267                 handle->buffer = get_buffer(&orig_bm, &ca);
2268                 if (IS_ERR(handle->buffer))
2269                         return PTR_ERR(handle->buffer);
2270                 if (handle->buffer != buffer)
2271                         handle->sync_read = 0;
2272         }
2273         handle->cur++;
2274         return PAGE_SIZE;
2275 }
2276
2277 /**
2278  *      snapshot_write_finalize - must be called after the last call to
2279  *      snapshot_write_next() in case the last page in the image happens
2280  *      to be a highmem page and its contents should be stored in the
2281  *      highmem.  Additionally, it releases the memory that will not be
2282  *      used any more.
2283  */
2284
2285 void snapshot_write_finalize(struct snapshot_handle *handle)
2286 {
2287         copy_last_highmem_page();
2288         /* Restore page key for data page (s390 only). */
2289         page_key_write(handle->buffer);
2290         page_key_free();
2291         /* Free only if we have loaded the image entirely */
2292         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2293                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2294                 free_highmem_data();
2295         }
2296 }
2297
2298 int snapshot_image_loaded(struct snapshot_handle *handle)
2299 {
2300         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2301                         handle->cur <= nr_meta_pages + nr_copy_pages);
2302 }
2303
2304 #ifdef CONFIG_HIGHMEM
2305 /* Assumes that @buf is ready and points to a "safe" page */
2306 static inline void
2307 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2308 {
2309         void *kaddr1, *kaddr2;
2310
2311         kaddr1 = kmap_atomic(p1, KM_USER0);
2312         kaddr2 = kmap_atomic(p2, KM_USER1);
2313         copy_page(buf, kaddr1);
2314         copy_page(kaddr1, kaddr2);
2315         copy_page(kaddr2, buf);
2316         kunmap_atomic(kaddr2, KM_USER1);
2317         kunmap_atomic(kaddr1, KM_USER0);
2318 }
2319
2320 /**
2321  *      restore_highmem - for each highmem page that was allocated before
2322  *      the suspend and included in the suspend image, and also has been
2323  *      allocated by the "resume" kernel swap its current (ie. "before
2324  *      resume") contents with the previous (ie. "before suspend") one.
2325  *
2326  *      If the resume eventually fails, we can call this function once
2327  *      again and restore the "before resume" highmem state.
2328  */
2329
2330 int restore_highmem(void)
2331 {
2332         struct highmem_pbe *pbe = highmem_pblist;
2333         void *buf;
2334
2335         if (!pbe)
2336                 return 0;
2337
2338         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2339         if (!buf)
2340                 return -ENOMEM;
2341
2342         while (pbe) {
2343                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2344                 pbe = pbe->next;
2345         }
2346         free_image_page(buf, PG_UNSAFE_CLEAR);
2347         return 0;
2348 }
2349 #endif /* CONFIG_HIGHMEM */