]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/power/swsusp.c
[PATCH] swsusp: limit image size
[mv-sheeva.git] / kernel / power / swsusp.c
1 /*
2  * linux/kernel/power/swsusp.c
3  *
4  * This file provides code to write suspend image to swap and read it back.
5  *
6  * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
8  *
9  * This file is released under the GPLv2.
10  *
11  * I'd like to thank the following people for their work:
12  *
13  * Pavel Machek <pavel@ucw.cz>:
14  * Modifications, defectiveness pointing, being with me at the very beginning,
15  * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
16  *
17  * Steve Doddi <dirk@loth.demon.co.uk>:
18  * Support the possibility of hardware state restoring.
19  *
20  * Raph <grey.havens@earthling.net>:
21  * Support for preserving states of network devices and virtual console
22  * (including X and svgatextmode)
23  *
24  * Kurt Garloff <garloff@suse.de>:
25  * Straightened the critical function in order to prevent compilers from
26  * playing tricks with local variables.
27  *
28  * Andreas Mohr <a.mohr@mailto.de>
29  *
30  * Alex Badea <vampire@go.ro>:
31  * Fixed runaway init
32  *
33  * Rafael J. Wysocki <rjw@sisk.pl>
34  * Added the swap map data structure and reworked the handling of swap
35  *
36  * More state savers are welcome. Especially for the scsi layer...
37  *
38  * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39  */
40
41 #include <linux/module.h>
42 #include <linux/mm.h>
43 #include <linux/suspend.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/utsname.h>
47 #include <linux/version.h>
48 #include <linux/delay.h>
49 #include <linux/bitops.h>
50 #include <linux/spinlock.h>
51 #include <linux/genhd.h>
52 #include <linux/kernel.h>
53 #include <linux/major.h>
54 #include <linux/swap.h>
55 #include <linux/pm.h>
56 #include <linux/device.h>
57 #include <linux/buffer_head.h>
58 #include <linux/swapops.h>
59 #include <linux/bootmem.h>
60 #include <linux/syscalls.h>
61 #include <linux/highmem.h>
62 #include <linux/bio.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/io.h>
69
70 #include "power.h"
71
72 #ifdef CONFIG_HIGHMEM
73 unsigned int count_highmem_pages(void);
74 int save_highmem(void);
75 int restore_highmem(void);
76 #else
77 static int save_highmem(void) { return 0; }
78 static int restore_highmem(void) { return 0; }
79 static unsigned int count_highmem_pages(void) { return 0; }
80 #endif
81
82 extern char resume_file[];
83
84 #define SWSUSP_SIG      "S1SUSPEND"
85
86 static struct swsusp_header {
87         char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
88         swp_entry_t swsusp_info;
89         char    orig_sig[10];
90         char    sig[10];
91 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
92
93 static struct swsusp_info swsusp_info;
94
95 /*
96  * Saving part...
97  */
98
99 /* We memorize in swapfile_used what swap devices are used for suspension */
100 #define SWAPFILE_UNUSED    0
101 #define SWAPFILE_SUSPEND   1    /* This is the suspending device */
102 #define SWAPFILE_IGNORED   2    /* Those are other swap devices ignored for suspension */
103
104 static unsigned short swapfile_used[MAX_SWAPFILES];
105 static unsigned short root_swap;
106
107 static int mark_swapfiles(swp_entry_t prev)
108 {
109         int error;
110
111         rw_swap_page_sync(READ,
112                           swp_entry(root_swap, 0),
113                           virt_to_page((unsigned long)&swsusp_header));
114         if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
115             !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
116                 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
117                 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
118                 swsusp_header.swsusp_info = prev;
119                 error = rw_swap_page_sync(WRITE,
120                                           swp_entry(root_swap, 0),
121                                           virt_to_page((unsigned long)
122                                                        &swsusp_header));
123         } else {
124                 pr_debug("swsusp: Partition is not swap space.\n");
125                 error = -ENODEV;
126         }
127         return error;
128 }
129
130 /*
131  * Check whether the swap device is the specified resume
132  * device, irrespective of whether they are specified by
133  * identical names.
134  *
135  * (Thus, device inode aliasing is allowed.  You can say /dev/hda4
136  * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
137  * and they'll be considered the same device.  This is *necessary* for
138  * devfs, since the resume code can only recognize the form /dev/hda4,
139  * but the suspend code would see the long name.)
140  */
141 static int is_resume_device(const struct swap_info_struct *swap_info)
142 {
143         struct file *file = swap_info->swap_file;
144         struct inode *inode = file->f_dentry->d_inode;
145
146         return S_ISBLK(inode->i_mode) &&
147                 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
148 }
149
150 static int swsusp_swap_check(void) /* This is called before saving image */
151 {
152         int i, len;
153
154         len=strlen(resume_file);
155         root_swap = 0xFFFF;
156
157         spin_lock(&swap_lock);
158         for (i=0; i<MAX_SWAPFILES; i++) {
159                 if (!(swap_info[i].flags & SWP_WRITEOK)) {
160                         swapfile_used[i]=SWAPFILE_UNUSED;
161                 } else {
162                         if (!len) {
163                                 printk(KERN_WARNING "resume= option should be used to set suspend device" );
164                                 if (root_swap == 0xFFFF) {
165                                         swapfile_used[i] = SWAPFILE_SUSPEND;
166                                         root_swap = i;
167                                 } else
168                                         swapfile_used[i] = SWAPFILE_IGNORED;
169                         } else {
170                                 /* we ignore all swap devices that are not the resume_file */
171                                 if (is_resume_device(&swap_info[i])) {
172                                         swapfile_used[i] = SWAPFILE_SUSPEND;
173                                         root_swap = i;
174                                 } else {
175                                         swapfile_used[i] = SWAPFILE_IGNORED;
176                                 }
177                         }
178                 }
179         }
180         spin_unlock(&swap_lock);
181         return (root_swap != 0xffff) ? 0 : -ENODEV;
182 }
183
184 /**
185  * This is called after saving image so modification
186  * will be lost after resume... and that's what we want.
187  * we make the device unusable. A new call to
188  * lock_swapdevices can unlock the devices.
189  */
190 static void lock_swapdevices(void)
191 {
192         int i;
193
194         spin_lock(&swap_lock);
195         for (i = 0; i< MAX_SWAPFILES; i++)
196                 if (swapfile_used[i] == SWAPFILE_IGNORED) {
197                         swap_info[i].flags ^= SWP_WRITEOK;
198                 }
199         spin_unlock(&swap_lock);
200 }
201
202 /**
203  *      write_page - Write one page to a fresh swap location.
204  *      @addr:  Address we're writing.
205  *      @loc:   Place to store the entry we used.
206  *
207  *      Allocate a new swap entry and 'sync' it. Note we discard -EIO
208  *      errors. That is an artifact left over from swsusp. It did not
209  *      check the return of rw_swap_page_sync() at all, since most pages
210  *      written back to swap would return -EIO.
211  *      This is a partial improvement, since we will at least return other
212  *      errors, though we need to eventually fix the damn code.
213  */
214 static int write_page(unsigned long addr, swp_entry_t *loc)
215 {
216         swp_entry_t entry;
217         int error = 0;
218
219         entry = get_swap_page();
220         if (swp_offset(entry) &&
221             swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
222                 error = rw_swap_page_sync(WRITE, entry,
223                                           virt_to_page(addr));
224                 if (error == -EIO)
225                         error = 0;
226                 if (!error)
227                         *loc = entry;
228         } else
229                 error = -ENOSPC;
230         return error;
231 }
232
233 /**
234  *      Swap map-handling functions
235  *
236  *      The swap map is a data structure used for keeping track of each page
237  *      written to the swap.  It consists of many swap_map_page structures
238  *      that contain each an array of MAP_PAGE_SIZE swap entries.
239  *      These structures are linked together with the help of either the
240  *      .next (in memory) or the .next_swap (in swap) member.
241  *
242  *      The swap map is created during suspend.  At that time we need to keep
243  *      it in memory, because we have to free all of the allocated swap
244  *      entries if an error occurs.  The memory needed is preallocated
245  *      so that we know in advance if there's enough of it.
246  *
247  *      The first swap_map_page structure is filled with the swap entries that
248  *      correspond to the first MAP_PAGE_SIZE data pages written to swap and
249  *      so on.  After the all of the data pages have been written, the order
250  *      of the swap_map_page structures in the map is reversed so that they
251  *      can be read from swap in the original order.  This causes the data
252  *      pages to be loaded in exactly the same order in which they have been
253  *      saved.
254  *
255  *      During resume we only need to use one swap_map_page structure
256  *      at a time, which means that we only need to use two memory pages for
257  *      reading the image - one for reading the swap_map_page structures
258  *      and the second for reading the data pages from swap.
259  */
260
261 #define MAP_PAGE_SIZE   ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \
262                         / sizeof(swp_entry_t))
263
264 struct swap_map_page {
265         swp_entry_t             entries[MAP_PAGE_SIZE];
266         swp_entry_t             next_swap;
267         struct swap_map_page    *next;
268 };
269
270 static inline void free_swap_map(struct swap_map_page *swap_map)
271 {
272         struct swap_map_page *swp;
273
274         while (swap_map) {
275                 swp = swap_map->next;
276                 free_page((unsigned long)swap_map);
277                 swap_map = swp;
278         }
279 }
280
281 static struct swap_map_page *alloc_swap_map(unsigned int nr_pages)
282 {
283         struct swap_map_page *swap_map, *swp;
284         unsigned n = 0;
285
286         if (!nr_pages)
287                 return NULL;
288
289         pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages);
290         swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
291         swp = swap_map;
292         for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) {
293                 swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
294                 swp = swp->next;
295                 if (!swp) {
296                         free_swap_map(swap_map);
297                         return NULL;
298                 }
299         }
300         return swap_map;
301 }
302
303 /**
304  *      reverse_swap_map - reverse the order of pages in the swap map
305  *      @swap_map
306  */
307
308 static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map)
309 {
310         struct swap_map_page *prev, *next;
311
312         prev = NULL;
313         while (swap_map) {
314                 next = swap_map->next;
315                 swap_map->next = prev;
316                 prev = swap_map;
317                 swap_map = next;
318         }
319         return prev;
320 }
321
322 /**
323  *      free_swap_map_entries - free the swap entries allocated to store
324  *      the swap map @swap_map (this is only called in case of an error)
325  */
326 static inline void free_swap_map_entries(struct swap_map_page *swap_map)
327 {
328         while (swap_map) {
329                 if (swap_map->next_swap.val)
330                         swap_free(swap_map->next_swap);
331                 swap_map = swap_map->next;
332         }
333 }
334
335 /**
336  *      save_swap_map - save the swap map used for tracing the data pages
337  *      stored in the swap
338  */
339
340 static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start)
341 {
342         swp_entry_t entry = (swp_entry_t){0};
343         int error;
344
345         while (swap_map) {
346                 swap_map->next_swap = entry;
347                 if ((error = write_page((unsigned long)swap_map, &entry)))
348                         return error;
349                 swap_map = swap_map->next;
350         }
351         *start = entry;
352         return 0;
353 }
354
355 /**
356  *      free_image_entries - free the swap entries allocated to store
357  *      the image data pages (this is only called in case of an error)
358  */
359
360 static inline void free_image_entries(struct swap_map_page *swp)
361 {
362         unsigned k;
363
364         while (swp) {
365                 for (k = 0; k < MAP_PAGE_SIZE; k++)
366                         if (swp->entries[k].val)
367                                 swap_free(swp->entries[k]);
368                 swp = swp->next;
369         }
370 }
371
372 /**
373  *      The swap_map_handle structure is used for handling the swap map in
374  *      a file-alike way
375  */
376
377 struct swap_map_handle {
378         struct swap_map_page *cur;
379         unsigned int k;
380 };
381
382 static inline void init_swap_map_handle(struct swap_map_handle *handle,
383                                         struct swap_map_page *map)
384 {
385         handle->cur = map;
386         handle->k = 0;
387 }
388
389 static inline int swap_map_write_page(struct swap_map_handle *handle,
390                                       unsigned long addr)
391 {
392         int error;
393
394         error = write_page(addr, handle->cur->entries + handle->k);
395         if (error)
396                 return error;
397         if (++handle->k >= MAP_PAGE_SIZE) {
398                 handle->cur = handle->cur->next;
399                 handle->k = 0;
400         }
401         return 0;
402 }
403
404 /**
405  *      save_image_data - save the data pages pointed to by the PBEs
406  *      from the list @pblist using the swap map handle @handle
407  *      (assume there are @nr_pages data pages to save)
408  */
409
410 static int save_image_data(struct pbe *pblist,
411                            struct swap_map_handle *handle,
412                            unsigned int nr_pages)
413 {
414         unsigned int m;
415         struct pbe *p;
416         int error = 0;
417
418         printk("Saving image data pages (%u pages) ...     ", nr_pages);
419         m = nr_pages / 100;
420         if (!m)
421                 m = 1;
422         nr_pages = 0;
423         for_each_pbe (p, pblist) {
424                 error = swap_map_write_page(handle, p->address);
425                 if (error)
426                         break;
427                 if (!(nr_pages % m))
428                         printk("\b\b\b\b%3d%%", nr_pages / m);
429                 nr_pages++;
430         }
431         if (!error)
432                 printk("\b\b\b\bdone\n");
433         return error;
434 }
435
436 static void dump_info(void)
437 {
438         pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
439         pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
440         pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
441         pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
442         pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
443         pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
444         pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
445         pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
446         pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
447         pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
448         pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages);
449 }
450
451 static void init_header(unsigned int nr_pages)
452 {
453         memset(&swsusp_info, 0, sizeof(swsusp_info));
454         swsusp_info.version_code = LINUX_VERSION_CODE;
455         swsusp_info.num_physpages = num_physpages;
456         memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
457
458         swsusp_info.cpus = num_online_cpus();
459         swsusp_info.image_pages = nr_pages;
460         swsusp_info.pages = nr_pages +
461                 ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT);
462 }
463
464 static int close_swap(void)
465 {
466         swp_entry_t entry;
467         int error;
468
469         dump_info();
470         error = write_page((unsigned long)&swsusp_info, &entry);
471         if (!error) {
472                 printk( "S" );
473                 error = mark_swapfiles(entry);
474                 printk( "|\n" );
475         }
476         return error;
477 }
478
479 /**
480  *      pack_orig_addresses - the .orig_address fields of the PBEs from the
481  *      list starting at @pbe are stored in the array @buf[] (1 page)
482  */
483
484 static inline struct pbe *pack_orig_addresses(unsigned long *buf,
485                                               struct pbe *pbe)
486 {
487         int j;
488
489         for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
490                 buf[j] = pbe->orig_address;
491                 pbe = pbe->next;
492         }
493         if (!pbe)
494                 for (; j < PAGE_SIZE / sizeof(long); j++)
495                         buf[j] = 0;
496         return pbe;
497 }
498
499 /**
500  *      save_image_metadata - save the .orig_address fields of the PBEs
501  *      from the list @pblist using the swap map handle @handle
502  */
503
504 static int save_image_metadata(struct pbe *pblist,
505                                struct swap_map_handle *handle)
506 {
507         unsigned long *buf;
508         unsigned int n = 0;
509         struct pbe *p;
510         int error = 0;
511
512         printk("Saving image metadata ... ");
513         buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
514         if (!buf)
515                 return -ENOMEM;
516         p = pblist;
517         while (p) {
518                 p = pack_orig_addresses(buf, p);
519                 error = swap_map_write_page(handle, (unsigned long)buf);
520                 if (error)
521                         break;
522                 n++;
523         }
524         free_page((unsigned long)buf);
525         if (!error)
526                 printk("done (%u pages saved)\n", n);
527         return error;
528 }
529
530 /**
531  *      enough_swap - Make sure we have enough swap to save the image.
532  *
533  *      Returns TRUE or FALSE after checking the total amount of swap
534  *      space avaiable.
535  *
536  *      FIXME: si_swapinfo(&i) returns all swap devices information.
537  *      We should only consider resume_device.
538  */
539
540 static int enough_swap(unsigned int nr_pages)
541 {
542         struct sysinfo i;
543
544         si_swapinfo(&i);
545         pr_debug("swsusp: available swap: %lu pages\n", i.freeswap);
546         return i.freeswap > (nr_pages + PAGES_FOR_IO +
547                 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
548 }
549
550 /**
551  *      write_suspend_image - Write entire image and metadata.
552  */
553 static int write_suspend_image(struct pbe *pblist, unsigned int nr_pages)
554 {
555         struct swap_map_page *swap_map;
556         struct swap_map_handle handle;
557         int error;
558
559         if (!enough_swap(nr_pages)) {
560                 printk(KERN_ERR "swsusp: Not enough free swap\n");
561                 return -ENOSPC;
562         }
563
564         init_header(nr_pages);
565         swap_map = alloc_swap_map(swsusp_info.pages);
566         if (!swap_map)
567                 return -ENOMEM;
568         init_swap_map_handle(&handle, swap_map);
569
570         error = save_image_metadata(pblist, &handle);
571         if (!error)
572                 error = save_image_data(pblist, &handle, nr_pages);
573         if (error)
574                 goto Free_image_entries;
575
576         swap_map = reverse_swap_map(swap_map);
577         error = save_swap_map(swap_map, &swsusp_info.start);
578         if (error)
579                 goto Free_map_entries;
580
581         error = close_swap();
582         if (error)
583                 goto Free_map_entries;
584
585 Free_swap_map:
586         free_swap_map(swap_map);
587         return error;
588
589 Free_map_entries:
590         free_swap_map_entries(swap_map);
591 Free_image_entries:
592         free_image_entries(swap_map);
593         goto Free_swap_map;
594 }
595
596 /* It is important _NOT_ to umount filesystems at this point. We want
597  * them synced (in case something goes wrong) but we DO not want to mark
598  * filesystem clean: it is not. (And it does not matter, if we resume
599  * correctly, we'll mark system clean, anyway.)
600  */
601 int swsusp_write(struct pbe *pblist, unsigned int nr_pages)
602 {
603         int error;
604
605         if ((error = swsusp_swap_check())) {
606                 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
607                 return error;
608         }
609         lock_swapdevices();
610         error = write_suspend_image(pblist, nr_pages);
611         /* This will unlock ignored swap devices since writing is finished */
612         lock_swapdevices();
613         return error;
614 }
615
616 /**
617  *      swsusp_shrink_memory -  Try to free as much memory as needed
618  *
619  *      ... but do not OOM-kill anyone
620  *
621  *      Notice: all userland should be stopped before it is called, or
622  *      livelock is possible.
623  */
624
625 #define SHRINK_BITE     10000
626
627 int swsusp_shrink_memory(void)
628 {
629         long size, tmp;
630         struct zone *zone;
631         unsigned long pages = 0;
632         unsigned int i = 0;
633         char *p = "-\\|/";
634
635         printk("Shrinking memory...  ");
636         do {
637                 size = 2 * count_highmem_pages();
638                 size += size / 50 + count_data_pages();
639                 size += (size + PBES_PER_PAGE - 1) / PBES_PER_PAGE +
640                         PAGES_FOR_IO;
641                 tmp = size;
642                 for_each_zone (zone)
643                         if (!is_highmem(zone))
644                                 tmp -= zone->free_pages;
645                 if (tmp > 0) {
646                         tmp = shrink_all_memory(SHRINK_BITE);
647                         if (!tmp)
648                                 return -ENOMEM;
649                         pages += tmp;
650                 } else if (size > (IMAGE_SIZE * 1024 * 1024) / PAGE_SIZE) {
651                         tmp = shrink_all_memory(SHRINK_BITE);
652                         pages += tmp;
653                 }
654                 printk("\b%c", p[i++%4]);
655         } while (tmp > 0);
656         printk("\bdone (%lu pages freed)\n", pages);
657
658         return 0;
659 }
660
661 int swsusp_suspend(void)
662 {
663         int error;
664
665         if ((error = arch_prepare_suspend()))
666                 return error;
667         local_irq_disable();
668         /* At this point, device_suspend() has been called, but *not*
669          * device_power_down(). We *must* device_power_down() now.
670          * Otherwise, drivers for some devices (e.g. interrupt controllers)
671          * become desynchronized with the actual state of the hardware
672          * at resume time, and evil weirdness ensues.
673          */
674         if ((error = device_power_down(PMSG_FREEZE))) {
675                 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
676                 goto Enable_irqs;
677         }
678
679         if ((error = save_highmem())) {
680                 printk(KERN_ERR "swsusp: Not enough free pages for highmem\n");
681                 goto Restore_highmem;
682         }
683
684         save_processor_state();
685         if ((error = swsusp_arch_suspend()))
686                 printk(KERN_ERR "Error %d suspending\n", error);
687         /* Restore control flow magically appears here */
688         restore_processor_state();
689 Restore_highmem:
690         restore_highmem();
691         device_power_up();
692 Enable_irqs:
693         local_irq_enable();
694         return error;
695 }
696
697 int swsusp_resume(void)
698 {
699         int error;
700         local_irq_disable();
701         if (device_power_down(PMSG_FREEZE))
702                 printk(KERN_ERR "Some devices failed to power down, very bad\n");
703         /* We'll ignore saved state, but this gets preempt count (etc) right */
704         save_processor_state();
705         error = swsusp_arch_resume();
706         /* Code below is only ever reached in case of failure. Otherwise
707          * execution continues at place where swsusp_arch_suspend was called
708          */
709         BUG_ON(!error);
710         /* The only reason why swsusp_arch_resume() can fail is memory being
711          * very tight, so we have to free it as soon as we can to avoid
712          * subsequent failures
713          */
714         swsusp_free();
715         restore_processor_state();
716         restore_highmem();
717         touch_softlockup_watchdog();
718         device_power_up();
719         local_irq_enable();
720         return error;
721 }
722
723 /**
724  *      mark_unsafe_pages - mark the pages that cannot be used for storing
725  *      the image during resume, because they conflict with the pages that
726  *      had been used before suspend
727  */
728
729 static void mark_unsafe_pages(struct pbe *pblist)
730 {
731         struct zone *zone;
732         unsigned long zone_pfn;
733         struct pbe *p;
734
735         if (!pblist) /* a sanity check */
736                 return;
737
738         /* Clear page flags */
739         for_each_zone (zone) {
740                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
741                         if (pfn_valid(zone_pfn + zone->zone_start_pfn))
742                                 ClearPageNosaveFree(pfn_to_page(zone_pfn +
743                                         zone->zone_start_pfn));
744         }
745
746         /* Mark orig addresses */
747         for_each_pbe (p, pblist)
748                 SetPageNosaveFree(virt_to_page(p->orig_address));
749
750 }
751
752 static void copy_page_backup_list(struct pbe *dst, struct pbe *src)
753 {
754         /* We assume both lists contain the same number of elements */
755         while (src) {
756                 dst->orig_address = src->orig_address;
757                 dst = dst->next;
758                 src = src->next;
759         }
760 }
761
762 /*
763  *      Using bio to read from swap.
764  *      This code requires a bit more work than just using buffer heads
765  *      but, it is the recommended way for 2.5/2.6.
766  *      The following are to signal the beginning and end of I/O. Bios
767  *      finish asynchronously, while we want them to happen synchronously.
768  *      A simple atomic_t, and a wait loop take care of this problem.
769  */
770
771 static atomic_t io_done = ATOMIC_INIT(0);
772
773 static int end_io(struct bio *bio, unsigned int num, int err)
774 {
775         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
776                 panic("I/O error reading memory image");
777         atomic_set(&io_done, 0);
778         return 0;
779 }
780
781 static struct block_device *resume_bdev;
782
783 /**
784  *      submit - submit BIO request.
785  *      @rw:    READ or WRITE.
786  *      @off    physical offset of page.
787  *      @page:  page we're reading or writing.
788  *
789  *      Straight from the textbook - allocate and initialize the bio.
790  *      If we're writing, make sure the page is marked as dirty.
791  *      Then submit it and wait.
792  */
793
794 static int submit(int rw, pgoff_t page_off, void *page)
795 {
796         int error = 0;
797         struct bio *bio;
798
799         bio = bio_alloc(GFP_ATOMIC, 1);
800         if (!bio)
801                 return -ENOMEM;
802         bio->bi_sector = page_off * (PAGE_SIZE >> 9);
803         bio_get(bio);
804         bio->bi_bdev = resume_bdev;
805         bio->bi_end_io = end_io;
806
807         if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
808                 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
809                 error = -EFAULT;
810                 goto Done;
811         }
812
813         if (rw == WRITE)
814                 bio_set_pages_dirty(bio);
815
816         atomic_set(&io_done, 1);
817         submit_bio(rw | (1 << BIO_RW_SYNC), bio);
818         while (atomic_read(&io_done))
819                 yield();
820
821  Done:
822         bio_put(bio);
823         return error;
824 }
825
826 static int bio_read_page(pgoff_t page_off, void *page)
827 {
828         return submit(READ, page_off, page);
829 }
830
831 static int bio_write_page(pgoff_t page_off, void *page)
832 {
833         return submit(WRITE, page_off, page);
834 }
835
836 /**
837  *      The following functions allow us to read data using a swap map
838  *      in a file-alike way
839  */
840
841 static inline void release_swap_map_reader(struct swap_map_handle *handle)
842 {
843         if (handle->cur)
844                 free_page((unsigned long)handle->cur);
845         handle->cur = NULL;
846 }
847
848 static inline int get_swap_map_reader(struct swap_map_handle *handle,
849                                       swp_entry_t start)
850 {
851         int error;
852
853         if (!swp_offset(start))
854                 return -EINVAL;
855         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
856         if (!handle->cur)
857                 return -ENOMEM;
858         error = bio_read_page(swp_offset(start), handle->cur);
859         if (error) {
860                 release_swap_map_reader(handle);
861                 return error;
862         }
863         handle->k = 0;
864         return 0;
865 }
866
867 static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf)
868 {
869         unsigned long offset;
870         int error;
871
872         if (!handle->cur)
873                 return -EINVAL;
874         offset = swp_offset(handle->cur->entries[handle->k]);
875         if (!offset)
876                 return -EINVAL;
877         error = bio_read_page(offset, buf);
878         if (error)
879                 return error;
880         if (++handle->k >= MAP_PAGE_SIZE) {
881                 handle->k = 0;
882                 offset = swp_offset(handle->cur->next_swap);
883                 if (!offset)
884                         release_swap_map_reader(handle);
885                 else
886                         error = bio_read_page(offset, handle->cur);
887         }
888         return error;
889 }
890
891 /*
892  * Sanity check if this image makes sense with this kernel/swap context
893  * I really don't think that it's foolproof but more than nothing..
894  */
895
896 static const char *sanity_check(void)
897 {
898         dump_info();
899         if (swsusp_info.version_code != LINUX_VERSION_CODE)
900                 return "kernel version";
901         if (swsusp_info.num_physpages != num_physpages)
902                 return "memory size";
903         if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
904                 return "system type";
905         if (strcmp(swsusp_info.uts.release,system_utsname.release))
906                 return "kernel release";
907         if (strcmp(swsusp_info.uts.version,system_utsname.version))
908                 return "version";
909         if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
910                 return "machine";
911 #if 0
912         /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
913         if (swsusp_info.cpus != num_possible_cpus())
914                 return "number of cpus";
915 #endif
916         return NULL;
917 }
918
919 static int check_header(void)
920 {
921         const char *reason = NULL;
922         int error;
923
924         if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
925                 return error;
926
927         /* Is this same machine? */
928         if ((reason = sanity_check())) {
929                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
930                 return -EPERM;
931         }
932         return error;
933 }
934
935 static int check_sig(void)
936 {
937         int error;
938
939         memset(&swsusp_header, 0, sizeof(swsusp_header));
940         if ((error = bio_read_page(0, &swsusp_header)))
941                 return error;
942         if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
943                 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
944
945                 /*
946                  * Reset swap signature now.
947                  */
948                 error = bio_write_page(0, &swsusp_header);
949         } else {
950                 return -EINVAL;
951         }
952         if (!error)
953                 pr_debug("swsusp: Signature found, resuming\n");
954         return error;
955 }
956
957 /**
958  *      load_image_data - load the image data using the swap map handle
959  *      @handle and store them using the page backup list @pblist
960  *      (assume there are @nr_pages pages to load)
961  */
962
963 static int load_image_data(struct pbe *pblist,
964                            struct swap_map_handle *handle,
965                            unsigned int nr_pages)
966 {
967         int error;
968         unsigned int m;
969         struct pbe *p;
970
971         if (!pblist)
972                 return -EINVAL;
973         printk("Loading image data pages (%u pages) ...     ", nr_pages);
974         m = nr_pages / 100;
975         if (!m)
976                 m = 1;
977         nr_pages = 0;
978         p = pblist;
979         while (p) {
980                 error = swap_map_read_page(handle, (void *)p->address);
981                 if (error)
982                         break;
983                 p = p->next;
984                 if (!(nr_pages % m))
985                         printk("\b\b\b\b%3d%%", nr_pages / m);
986                 nr_pages++;
987         }
988         if (!error)
989                 printk("\b\b\b\bdone\n");
990         return error;
991 }
992
993 /**
994  *      unpack_orig_addresses - copy the elements of @buf[] (1 page) to
995  *      the PBEs in the list starting at @pbe
996  */
997
998 static inline struct pbe *unpack_orig_addresses(unsigned long *buf,
999                                                 struct pbe *pbe)
1000 {
1001         int j;
1002
1003         for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
1004                 pbe->orig_address = buf[j];
1005                 pbe = pbe->next;
1006         }
1007         return pbe;
1008 }
1009
1010 /**
1011  *      load_image_metadata - load the image metadata using the swap map
1012  *      handle @handle and put them into the PBEs in the list @pblist
1013  */
1014
1015 static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle)
1016 {
1017         struct pbe *p;
1018         unsigned long *buf;
1019         unsigned int n = 0;
1020         int error = 0;
1021
1022         printk("Loading image metadata ... ");
1023         buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
1024         if (!buf)
1025                 return -ENOMEM;
1026         p = pblist;
1027         while (p) {
1028                 error = swap_map_read_page(handle, buf);
1029                 if (error)
1030                         break;
1031                 p = unpack_orig_addresses(buf, p);
1032                 n++;
1033         }
1034         free_page((unsigned long)buf);
1035         if (!error)
1036                 printk("done (%u pages loaded)\n", n);
1037         return error;
1038 }
1039
1040 static int check_suspend_image(void)
1041 {
1042         int error = 0;
1043
1044         if ((error = check_sig()))
1045                 return error;
1046
1047         if ((error = check_header()))
1048                 return error;
1049
1050         return 0;
1051 }
1052
1053 static int read_suspend_image(struct pbe **pblist_ptr)
1054 {
1055         int error = 0;
1056         struct pbe *p, *pblist;
1057         struct swap_map_handle handle;
1058         unsigned int nr_pages = swsusp_info.image_pages;
1059
1060         p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0);
1061         if (!p)
1062                 return -ENOMEM;
1063         error = get_swap_map_reader(&handle, swsusp_info.start);
1064         if (error)
1065                 /* The PBE list at p will be released by swsusp_free() */
1066                 return error;
1067         error = load_image_metadata(p, &handle);
1068         if (!error) {
1069                 mark_unsafe_pages(p);
1070                 pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1);
1071                 if (pblist)
1072                         copy_page_backup_list(pblist, p);
1073                 free_pagedir(p);
1074                 if (!pblist)
1075                         error = -ENOMEM;
1076
1077                 /* Allocate memory for the image and read the data from swap */
1078                 if (!error)
1079                         error = alloc_data_pages(pblist, GFP_ATOMIC, 1);
1080                 if (!error) {
1081                         release_eaten_pages();
1082                         error = load_image_data(pblist, &handle, nr_pages);
1083                 }
1084                 if (!error)
1085                         *pblist_ptr = pblist;
1086         }
1087         release_swap_map_reader(&handle);
1088         return error;
1089 }
1090
1091 /**
1092  *      swsusp_check - Check for saved image in swap
1093  */
1094
1095 int swsusp_check(void)
1096 {
1097         int error;
1098
1099         resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1100         if (!IS_ERR(resume_bdev)) {
1101                 set_blocksize(resume_bdev, PAGE_SIZE);
1102                 error = check_suspend_image();
1103                 if (error)
1104                     blkdev_put(resume_bdev);
1105         } else
1106                 error = PTR_ERR(resume_bdev);
1107
1108         if (!error)
1109                 pr_debug("swsusp: resume file found\n");
1110         else
1111                 pr_debug("swsusp: Error %d check for resume file\n", error);
1112         return error;
1113 }
1114
1115 /**
1116  *      swsusp_read - Read saved image from swap.
1117  */
1118
1119 int swsusp_read(struct pbe **pblist_ptr)
1120 {
1121         int error;
1122
1123         if (IS_ERR(resume_bdev)) {
1124                 pr_debug("swsusp: block device not initialised\n");
1125                 return PTR_ERR(resume_bdev);
1126         }
1127
1128         error = read_suspend_image(pblist_ptr);
1129         blkdev_put(resume_bdev);
1130
1131         if (!error)
1132                 pr_debug("swsusp: Reading resume file was successful\n");
1133         else
1134                 pr_debug("swsusp: Error %d resuming\n", error);
1135         return error;
1136 }
1137
1138 /**
1139  *      swsusp_close - close swap device.
1140  */
1141
1142 void swsusp_close(void)
1143 {
1144         if (IS_ERR(resume_bdev)) {
1145                 pr_debug("swsusp: block device not initialised\n");
1146                 return;
1147         }
1148
1149         blkdev_put(resume_bdev);
1150 }