]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34
35 #ifdef CONFIG_RCU_BOOST
36
37 #include "../locking/rtmutex_common.h"
38
39 /*
40  * Control variables for per-CPU and per-rcu_node kthreads.  These
41  * handle all flavors of RCU.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47
48 #else /* #ifdef CONFIG_RCU_BOOST */
49
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72         if (IS_ENABLED(CONFIG_RCU_TRACE))
73                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
74         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77                        RCU_FANOUT);
78         if (rcu_fanout_exact)
79                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82         if (IS_ENABLED(CONFIG_PROVE_RCU))
83                 pr_info("\tRCU lockdep checking is enabled.\n");
84         if (RCU_NUM_LVLS >= 4)
85                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86         if (RCU_FANOUT_LEAF != 16)
87                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88                         RCU_FANOUT_LEAF);
89         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91         if (nr_cpu_ids != NR_CPUS)
92                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93         if (IS_ENABLED(CONFIG_RCU_BOOST))
94                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96
97 #ifdef CONFIG_PREEMPT_RCU
98
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104                                bool wake);
105
106 /*
107  * Tell them what RCU they are running.
108  */
109 static void __init rcu_bootup_announce(void)
110 {
111         pr_info("Preemptible hierarchical RCU implementation.\n");
112         rcu_bootup_announce_oddness();
113 }
114
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS    0x8
117 #define RCU_EXP_TASKS   0x4
118 #define RCU_GP_BLKD     0x2
119 #define RCU_EXP_BLKD    0x1
120
121 /*
122  * Queues a task preempted within an RCU-preempt read-side critical
123  * section into the appropriate location within the ->blkd_tasks list,
124  * depending on the states of any ongoing normal and expedited grace
125  * periods.  The ->gp_tasks pointer indicates which element the normal
126  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127  * indicates which element the expedited grace period is waiting on (again,
128  * NULL if none).  If a grace period is waiting on a given element in the
129  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
130  * adding a task to the tail of the list blocks any grace period that is
131  * already waiting on one of the elements.  In contrast, adding a task
132  * to the head of the list won't block any grace period that is already
133  * waiting on one of the elements.
134  *
135  * This queuing is imprecise, and can sometimes make an ongoing grace
136  * period wait for a task that is not strictly speaking blocking it.
137  * Given the choice, we needlessly block a normal grace period rather than
138  * blocking an expedited grace period.
139  *
140  * Note that an endless sequence of expedited grace periods still cannot
141  * indefinitely postpone a normal grace period.  Eventually, all of the
142  * fixed number of preempted tasks blocking the normal grace period that are
143  * not also blocking the expedited grace period will resume and complete
144  * their RCU read-side critical sections.  At that point, the ->gp_tasks
145  * pointer will equal the ->exp_tasks pointer, at which point the end of
146  * the corresponding expedited grace period will also be the end of the
147  * normal grace period.
148  */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150         __releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156         struct task_struct *t = current;
157
158         /*
159          * Decide where to queue the newly blocked task.  In theory,
160          * this could be an if-statement.  In practice, when I tried
161          * that, it was quite messy.
162          */
163         switch (blkd_state) {
164         case 0:
165         case                RCU_EXP_TASKS:
166         case                RCU_EXP_TASKS + RCU_GP_BLKD:
167         case RCU_GP_TASKS:
168         case RCU_GP_TASKS + RCU_EXP_TASKS:
169
170                 /*
171                  * Blocking neither GP, or first task blocking the normal
172                  * GP but not blocking the already-waiting expedited GP.
173                  * Queue at the head of the list to avoid unnecessarily
174                  * blocking the already-waiting GPs.
175                  */
176                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177                 break;
178
179         case                                              RCU_EXP_BLKD:
180         case                                RCU_GP_BLKD:
181         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
182         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
183         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
184         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185
186                 /*
187                  * First task arriving that blocks either GP, or first task
188                  * arriving that blocks the expedited GP (with the normal
189                  * GP already waiting), or a task arriving that blocks
190                  * both GPs with both GPs already waiting.  Queue at the
191                  * tail of the list to avoid any GP waiting on any of the
192                  * already queued tasks that are not blocking it.
193                  */
194                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195                 break;
196
197         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
198         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
200
201                 /*
202                  * Second or subsequent task blocking the expedited GP.
203                  * The task either does not block the normal GP, or is the
204                  * first task blocking the normal GP.  Queue just after
205                  * the first task blocking the expedited GP.
206                  */
207                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
208                 break;
209
210         case RCU_GP_TASKS +                 RCU_GP_BLKD:
211         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212
213                 /*
214                  * Second or subsequent task blocking the normal GP.
215                  * The task does not block the expedited GP. Queue just
216                  * after the first task blocking the normal GP.
217                  */
218                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
219                 break;
220
221         default:
222
223                 /* Yet another exercise in excessive paranoia. */
224                 WARN_ON_ONCE(1);
225                 break;
226         }
227
228         /*
229          * We have now queued the task.  If it was the first one to
230          * block either grace period, update the ->gp_tasks and/or
231          * ->exp_tasks pointers, respectively, to reference the newly
232          * blocked tasks.
233          */
234         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235                 rnp->gp_tasks = &t->rcu_node_entry;
236         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237                 rnp->exp_tasks = &t->rcu_node_entry;
238         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239
240         /*
241          * Report the quiescent state for the expedited GP.  This expedited
242          * GP should not be able to end until we report, so there should be
243          * no need to check for a subsequent expedited GP.  (Though we are
244          * still in a quiescent state in any case.)
245          */
246         if (blkd_state & RCU_EXP_BLKD &&
247             t->rcu_read_unlock_special.b.exp_need_qs) {
248                 t->rcu_read_unlock_special.b.exp_need_qs = false;
249                 rcu_report_exp_rdp(rdp->rsp, rdp, true);
250         } else {
251                 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252         }
253 }
254
255 /*
256  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
257  * that this just means that the task currently running on the CPU is
258  * not in a quiescent state.  There might be any number of tasks blocked
259  * while in an RCU read-side critical section.
260  *
261  * As with the other rcu_*_qs() functions, callers to this function
262  * must disable preemption.
263  */
264 static void rcu_preempt_qs(void)
265 {
266         if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267                 trace_rcu_grace_period(TPS("rcu_preempt"),
268                                        __this_cpu_read(rcu_data_p->gpnum),
269                                        TPS("cpuqs"));
270                 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272                 current->rcu_read_unlock_special.b.need_qs = false;
273         }
274 }
275
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 static void rcu_preempt_note_context_switch(void)
290 {
291         struct task_struct *t = current;
292         struct rcu_data *rdp;
293         struct rcu_node *rnp;
294
295         if (t->rcu_read_lock_nesting > 0 &&
296             !t->rcu_read_unlock_special.b.blocked) {
297
298                 /* Possibly blocking in an RCU read-side critical section. */
299                 rdp = this_cpu_ptr(rcu_state_p->rda);
300                 rnp = rdp->mynode;
301                 raw_spin_lock_rcu_node(rnp);
302                 t->rcu_read_unlock_special.b.blocked = true;
303                 t->rcu_blocked_node = rnp;
304
305                 /*
306                  * Verify the CPU's sanity, trace the preemption, and
307                  * then queue the task as required based on the states
308                  * of any ongoing and expedited grace periods.
309                  */
310                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312                 trace_rcu_preempt_task(rdp->rsp->name,
313                                        t->pid,
314                                        (rnp->qsmask & rdp->grpmask)
315                                        ? rnp->gpnum
316                                        : rnp->gpnum + 1);
317                 rcu_preempt_ctxt_queue(rnp, rdp);
318         } else if (t->rcu_read_lock_nesting < 0 &&
319                    t->rcu_read_unlock_special.s) {
320
321                 /*
322                  * Complete exit from RCU read-side critical section on
323                  * behalf of preempted instance of __rcu_read_unlock().
324                  */
325                 rcu_read_unlock_special(t);
326         }
327
328         /*
329          * Either we were not in an RCU read-side critical section to
330          * begin with, or we have now recorded that critical section
331          * globally.  Either way, we can now note a quiescent state
332          * for this CPU.  Again, if we were in an RCU read-side critical
333          * section, and if that critical section was blocking the current
334          * grace period, then the fact that the task has been enqueued
335          * means that we continue to block the current grace period.
336          */
337         rcu_preempt_qs();
338 }
339
340 /*
341  * Check for preempted RCU readers blocking the current grace period
342  * for the specified rcu_node structure.  If the caller needs a reliable
343  * answer, it must hold the rcu_node's ->lock.
344  */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347         return rnp->gp_tasks != NULL;
348 }
349
350 /*
351  * Advance a ->blkd_tasks-list pointer to the next entry, instead
352  * returning NULL if at the end of the list.
353  */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355                                              struct rcu_node *rnp)
356 {
357         struct list_head *np;
358
359         np = t->rcu_node_entry.next;
360         if (np == &rnp->blkd_tasks)
361                 np = NULL;
362         return np;
363 }
364
365 /*
366  * Return true if the specified rcu_node structure has tasks that were
367  * preempted within an RCU read-side critical section.
368  */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371         return !list_empty(&rnp->blkd_tasks);
372 }
373
374 /*
375  * Handle special cases during rcu_read_unlock(), such as needing to
376  * notify RCU core processing or task having blocked during the RCU
377  * read-side critical section.
378  */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381         bool empty_exp;
382         bool empty_norm;
383         bool empty_exp_now;
384         unsigned long flags;
385         struct list_head *np;
386         bool drop_boost_mutex = false;
387         struct rcu_data *rdp;
388         struct rcu_node *rnp;
389         union rcu_special special;
390
391         /* NMI handlers cannot block and cannot safely manipulate state. */
392         if (in_nmi())
393                 return;
394
395         local_irq_save(flags);
396
397         /*
398          * If RCU core is waiting for this CPU to exit its critical section,
399          * report the fact that it has exited.  Because irqs are disabled,
400          * t->rcu_read_unlock_special cannot change.
401          */
402         special = t->rcu_read_unlock_special;
403         if (special.b.need_qs) {
404                 rcu_preempt_qs();
405                 t->rcu_read_unlock_special.b.need_qs = false;
406                 if (!t->rcu_read_unlock_special.s) {
407                         local_irq_restore(flags);
408                         return;
409                 }
410         }
411
412         /*
413          * Respond to a request for an expedited grace period, but only if
414          * we were not preempted, meaning that we were running on the same
415          * CPU throughout.  If we were preempted, the exp_need_qs flag
416          * would have been cleared at the time of the first preemption,
417          * and the quiescent state would be reported when we were dequeued.
418          */
419         if (special.b.exp_need_qs) {
420                 WARN_ON_ONCE(special.b.blocked);
421                 t->rcu_read_unlock_special.b.exp_need_qs = false;
422                 rdp = this_cpu_ptr(rcu_state_p->rda);
423                 rcu_report_exp_rdp(rcu_state_p, rdp, true);
424                 if (!t->rcu_read_unlock_special.s) {
425                         local_irq_restore(flags);
426                         return;
427                 }
428         }
429
430         /* Hardware IRQ handlers cannot block, complain if they get here. */
431         if (in_irq() || in_serving_softirq()) {
432                 lockdep_rcu_suspicious(__FILE__, __LINE__,
433                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435                          t->rcu_read_unlock_special.s,
436                          t->rcu_read_unlock_special.b.blocked,
437                          t->rcu_read_unlock_special.b.exp_need_qs,
438                          t->rcu_read_unlock_special.b.need_qs);
439                 local_irq_restore(flags);
440                 return;
441         }
442
443         /* Clean up if blocked during RCU read-side critical section. */
444         if (special.b.blocked) {
445                 t->rcu_read_unlock_special.b.blocked = false;
446
447                 /*
448                  * Remove this task from the list it blocked on.  The task
449                  * now remains queued on the rcu_node corresponding to the
450                  * CPU it first blocked on, so there is no longer any need
451                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
452                  */
453                 rnp = t->rcu_blocked_node;
454                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457                 empty_exp = sync_rcu_preempt_exp_done(rnp);
458                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459                 np = rcu_next_node_entry(t, rnp);
460                 list_del_init(&t->rcu_node_entry);
461                 t->rcu_blocked_node = NULL;
462                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463                                                 rnp->gpnum, t->pid);
464                 if (&t->rcu_node_entry == rnp->gp_tasks)
465                         rnp->gp_tasks = np;
466                 if (&t->rcu_node_entry == rnp->exp_tasks)
467                         rnp->exp_tasks = np;
468                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469                         if (&t->rcu_node_entry == rnp->boost_tasks)
470                                 rnp->boost_tasks = np;
471                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473                 }
474
475                 /*
476                  * If this was the last task on the current list, and if
477                  * we aren't waiting on any CPUs, report the quiescent state.
478                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479                  * so we must take a snapshot of the expedited state.
480                  */
481                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484                                                          rnp->gpnum,
485                                                          0, rnp->qsmask,
486                                                          rnp->level,
487                                                          rnp->grplo,
488                                                          rnp->grphi,
489                                                          !!rnp->gp_tasks);
490                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491                 } else {
492                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493                 }
494
495                 /* Unboost if we were boosted. */
496                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497                         rt_mutex_unlock(&rnp->boost_mtx);
498
499                 /*
500                  * If this was the last task on the expedited lists,
501                  * then we need to report up the rcu_node hierarchy.
502                  */
503                 if (!empty_exp && empty_exp_now)
504                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
505         } else {
506                 local_irq_restore(flags);
507         }
508 }
509
510 /*
511  * Dump detailed information for all tasks blocking the current RCU
512  * grace period on the specified rcu_node structure.
513  */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516         unsigned long flags;
517         struct task_struct *t;
518
519         raw_spin_lock_irqsave_rcu_node(rnp, flags);
520         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522                 return;
523         }
524         t = list_entry(rnp->gp_tasks->prev,
525                        struct task_struct, rcu_node_entry);
526         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527                 sched_show_task(t);
528         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530
531 /*
532  * Dump detailed information for all tasks blocking the current RCU
533  * grace period.
534  */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537         struct rcu_node *rnp = rcu_get_root(rsp);
538
539         rcu_print_detail_task_stall_rnp(rnp);
540         rcu_for_each_leaf_node(rsp, rnp)
541                 rcu_print_detail_task_stall_rnp(rnp);
542 }
543
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547                rnp->level, rnp->grplo, rnp->grphi);
548 }
549
550 static void rcu_print_task_stall_end(void)
551 {
552         pr_cont("\n");
553 }
554
555 /*
556  * Scan the current list of tasks blocked within RCU read-side critical
557  * sections, printing out the tid of each.
558  */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561         struct task_struct *t;
562         int ndetected = 0;
563
564         if (!rcu_preempt_blocked_readers_cgp(rnp))
565                 return 0;
566         rcu_print_task_stall_begin(rnp);
567         t = list_entry(rnp->gp_tasks->prev,
568                        struct task_struct, rcu_node_entry);
569         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570                 pr_cont(" P%d", t->pid);
571                 ndetected++;
572         }
573         rcu_print_task_stall_end();
574         return ndetected;
575 }
576
577 /*
578  * Scan the current list of tasks blocked within RCU read-side critical
579  * sections, printing out the tid of each that is blocking the current
580  * expedited grace period.
581  */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584         struct task_struct *t;
585         int ndetected = 0;
586
587         if (!rnp->exp_tasks)
588                 return 0;
589         t = list_entry(rnp->exp_tasks->prev,
590                        struct task_struct, rcu_node_entry);
591         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592                 pr_cont(" P%d", t->pid);
593                 ndetected++;
594         }
595         return ndetected;
596 }
597
598 /*
599  * Check that the list of blocked tasks for the newly completed grace
600  * period is in fact empty.  It is a serious bug to complete a grace
601  * period that still has RCU readers blocked!  This function must be
602  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603  * must be held by the caller.
604  *
605  * Also, if there are blocked tasks on the list, they automatically
606  * block the newly created grace period, so set up ->gp_tasks accordingly.
607  */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611         if (rcu_preempt_has_tasks(rnp))
612                 rnp->gp_tasks = rnp->blkd_tasks.next;
613         WARN_ON_ONCE(rnp->qsmask);
614 }
615
616 /*
617  * Check for a quiescent state from the current CPU.  When a task blocks,
618  * the task is recorded in the corresponding CPU's rcu_node structure,
619  * which is checked elsewhere.
620  *
621  * Caller must disable hard irqs.
622  */
623 static void rcu_preempt_check_callbacks(void)
624 {
625         struct task_struct *t = current;
626
627         if (t->rcu_read_lock_nesting == 0) {
628                 rcu_preempt_qs();
629                 return;
630         }
631         if (t->rcu_read_lock_nesting > 0 &&
632             __this_cpu_read(rcu_data_p->core_needs_qs) &&
633             __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634                 t->rcu_read_unlock_special.b.need_qs = true;
635 }
636
637 #ifdef CONFIG_RCU_BOOST
638
639 static void rcu_preempt_do_callbacks(void)
640 {
641         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651         __call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672                          lock_is_held(&rcu_lock_map) ||
673                          lock_is_held(&rcu_sched_lock_map),
674                          "Illegal synchronize_rcu() in RCU read-side critical section");
675         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
676                 return;
677         if (rcu_gp_is_expedited())
678                 synchronize_rcu_expedited();
679         else
680                 wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684 /**
685  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
686  *
687  * Note that this primitive does not necessarily wait for an RCU grace period
688  * to complete.  For example, if there are no RCU callbacks queued anywhere
689  * in the system, then rcu_barrier() is within its rights to return
690  * immediately, without waiting for anything, much less an RCU grace period.
691  */
692 void rcu_barrier(void)
693 {
694         _rcu_barrier(rcu_state_p);
695 }
696 EXPORT_SYMBOL_GPL(rcu_barrier);
697
698 /*
699  * Initialize preemptible RCU's state structures.
700  */
701 static void __init __rcu_init_preempt(void)
702 {
703         rcu_init_one(rcu_state_p);
704 }
705
706 /*
707  * Check for a task exiting while in a preemptible-RCU read-side
708  * critical section, clean up if so.  No need to issue warnings,
709  * as debug_check_no_locks_held() already does this if lockdep
710  * is enabled.
711  */
712 void exit_rcu(void)
713 {
714         struct task_struct *t = current;
715
716         if (likely(list_empty(&current->rcu_node_entry)))
717                 return;
718         t->rcu_read_lock_nesting = 1;
719         barrier();
720         t->rcu_read_unlock_special.b.blocked = true;
721         __rcu_read_unlock();
722 }
723
724 #else /* #ifdef CONFIG_PREEMPT_RCU */
725
726 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
727
728 /*
729  * Tell them what RCU they are running.
730  */
731 static void __init rcu_bootup_announce(void)
732 {
733         pr_info("Hierarchical RCU implementation.\n");
734         rcu_bootup_announce_oddness();
735 }
736
737 /*
738  * Because preemptible RCU does not exist, we never have to check for
739  * CPUs being in quiescent states.
740  */
741 static void rcu_preempt_note_context_switch(void)
742 {
743 }
744
745 /*
746  * Because preemptible RCU does not exist, there are never any preempted
747  * RCU readers.
748  */
749 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
750 {
751         return 0;
752 }
753
754 /*
755  * Because there is no preemptible RCU, there can be no readers blocked.
756  */
757 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
758 {
759         return false;
760 }
761
762 /*
763  * Because preemptible RCU does not exist, we never have to check for
764  * tasks blocked within RCU read-side critical sections.
765  */
766 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
767 {
768 }
769
770 /*
771  * Because preemptible RCU does not exist, we never have to check for
772  * tasks blocked within RCU read-side critical sections.
773  */
774 static int rcu_print_task_stall(struct rcu_node *rnp)
775 {
776         return 0;
777 }
778
779 /*
780  * Because preemptible RCU does not exist, we never have to check for
781  * tasks blocked within RCU read-side critical sections that are
782  * blocking the current expedited grace period.
783  */
784 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
785 {
786         return 0;
787 }
788
789 /*
790  * Because there is no preemptible RCU, there can be no readers blocked,
791  * so there is no need to check for blocked tasks.  So check only for
792  * bogus qsmask values.
793  */
794 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
795 {
796         WARN_ON_ONCE(rnp->qsmask);
797 }
798
799 /*
800  * Because preemptible RCU does not exist, it never has any callbacks
801  * to check.
802  */
803 static void rcu_preempt_check_callbacks(void)
804 {
805 }
806
807 /*
808  * Because preemptible RCU does not exist, rcu_barrier() is just
809  * another name for rcu_barrier_sched().
810  */
811 void rcu_barrier(void)
812 {
813         rcu_barrier_sched();
814 }
815 EXPORT_SYMBOL_GPL(rcu_barrier);
816
817 /*
818  * Because preemptible RCU does not exist, it need not be initialized.
819  */
820 static void __init __rcu_init_preempt(void)
821 {
822 }
823
824 /*
825  * Because preemptible RCU does not exist, tasks cannot possibly exit
826  * while in preemptible RCU read-side critical sections.
827  */
828 void exit_rcu(void)
829 {
830 }
831
832 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
833
834 #ifdef CONFIG_RCU_BOOST
835
836 #include "../locking/rtmutex_common.h"
837
838 #ifdef CONFIG_RCU_TRACE
839
840 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
841 {
842         if (!rcu_preempt_has_tasks(rnp))
843                 rnp->n_balk_blkd_tasks++;
844         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
845                 rnp->n_balk_exp_gp_tasks++;
846         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
847                 rnp->n_balk_boost_tasks++;
848         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
849                 rnp->n_balk_notblocked++;
850         else if (rnp->gp_tasks != NULL &&
851                  ULONG_CMP_LT(jiffies, rnp->boost_time))
852                 rnp->n_balk_notyet++;
853         else
854                 rnp->n_balk_nos++;
855 }
856
857 #else /* #ifdef CONFIG_RCU_TRACE */
858
859 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
860 {
861 }
862
863 #endif /* #else #ifdef CONFIG_RCU_TRACE */
864
865 static void rcu_wake_cond(struct task_struct *t, int status)
866 {
867         /*
868          * If the thread is yielding, only wake it when this
869          * is invoked from idle
870          */
871         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
872                 wake_up_process(t);
873 }
874
875 /*
876  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
877  * or ->boost_tasks, advancing the pointer to the next task in the
878  * ->blkd_tasks list.
879  *
880  * Note that irqs must be enabled: boosting the task can block.
881  * Returns 1 if there are more tasks needing to be boosted.
882  */
883 static int rcu_boost(struct rcu_node *rnp)
884 {
885         unsigned long flags;
886         struct task_struct *t;
887         struct list_head *tb;
888
889         if (READ_ONCE(rnp->exp_tasks) == NULL &&
890             READ_ONCE(rnp->boost_tasks) == NULL)
891                 return 0;  /* Nothing left to boost. */
892
893         raw_spin_lock_irqsave_rcu_node(rnp, flags);
894
895         /*
896          * Recheck under the lock: all tasks in need of boosting
897          * might exit their RCU read-side critical sections on their own.
898          */
899         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
900                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
901                 return 0;
902         }
903
904         /*
905          * Preferentially boost tasks blocking expedited grace periods.
906          * This cannot starve the normal grace periods because a second
907          * expedited grace period must boost all blocked tasks, including
908          * those blocking the pre-existing normal grace period.
909          */
910         if (rnp->exp_tasks != NULL) {
911                 tb = rnp->exp_tasks;
912                 rnp->n_exp_boosts++;
913         } else {
914                 tb = rnp->boost_tasks;
915                 rnp->n_normal_boosts++;
916         }
917         rnp->n_tasks_boosted++;
918
919         /*
920          * We boost task t by manufacturing an rt_mutex that appears to
921          * be held by task t.  We leave a pointer to that rt_mutex where
922          * task t can find it, and task t will release the mutex when it
923          * exits its outermost RCU read-side critical section.  Then
924          * simply acquiring this artificial rt_mutex will boost task
925          * t's priority.  (Thanks to tglx for suggesting this approach!)
926          *
927          * Note that task t must acquire rnp->lock to remove itself from
928          * the ->blkd_tasks list, which it will do from exit() if from
929          * nowhere else.  We therefore are guaranteed that task t will
930          * stay around at least until we drop rnp->lock.  Note that
931          * rnp->lock also resolves races between our priority boosting
932          * and task t's exiting its outermost RCU read-side critical
933          * section.
934          */
935         t = container_of(tb, struct task_struct, rcu_node_entry);
936         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
937         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938         /* Lock only for side effect: boosts task t's priority. */
939         rt_mutex_lock(&rnp->boost_mtx);
940         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
941
942         return READ_ONCE(rnp->exp_tasks) != NULL ||
943                READ_ONCE(rnp->boost_tasks) != NULL;
944 }
945
946 /*
947  * Priority-boosting kthread, one per leaf rcu_node.
948  */
949 static int rcu_boost_kthread(void *arg)
950 {
951         struct rcu_node *rnp = (struct rcu_node *)arg;
952         int spincnt = 0;
953         int more2boost;
954
955         trace_rcu_utilization(TPS("Start boost kthread@init"));
956         for (;;) {
957                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
958                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
959                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
960                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
961                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
962                 more2boost = rcu_boost(rnp);
963                 if (more2boost)
964                         spincnt++;
965                 else
966                         spincnt = 0;
967                 if (spincnt > 10) {
968                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
969                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
970                         schedule_timeout_interruptible(2);
971                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
972                         spincnt = 0;
973                 }
974         }
975         /* NOTREACHED */
976         trace_rcu_utilization(TPS("End boost kthread@notreached"));
977         return 0;
978 }
979
980 /*
981  * Check to see if it is time to start boosting RCU readers that are
982  * blocking the current grace period, and, if so, tell the per-rcu_node
983  * kthread to start boosting them.  If there is an expedited grace
984  * period in progress, it is always time to boost.
985  *
986  * The caller must hold rnp->lock, which this function releases.
987  * The ->boost_kthread_task is immortal, so we don't need to worry
988  * about it going away.
989  */
990 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
991         __releases(rnp->lock)
992 {
993         struct task_struct *t;
994
995         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
996                 rnp->n_balk_exp_gp_tasks++;
997                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998                 return;
999         }
1000         if (rnp->exp_tasks != NULL ||
1001             (rnp->gp_tasks != NULL &&
1002              rnp->boost_tasks == NULL &&
1003              rnp->qsmask == 0 &&
1004              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1005                 if (rnp->exp_tasks == NULL)
1006                         rnp->boost_tasks = rnp->gp_tasks;
1007                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1008                 t = rnp->boost_kthread_task;
1009                 if (t)
1010                         rcu_wake_cond(t, rnp->boost_kthread_status);
1011         } else {
1012                 rcu_initiate_boost_trace(rnp);
1013                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014         }
1015 }
1016
1017 /*
1018  * Wake up the per-CPU kthread to invoke RCU callbacks.
1019  */
1020 static void invoke_rcu_callbacks_kthread(void)
1021 {
1022         unsigned long flags;
1023
1024         local_irq_save(flags);
1025         __this_cpu_write(rcu_cpu_has_work, 1);
1026         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1027             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1028                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1029                               __this_cpu_read(rcu_cpu_kthread_status));
1030         }
1031         local_irq_restore(flags);
1032 }
1033
1034 /*
1035  * Is the current CPU running the RCU-callbacks kthread?
1036  * Caller must have preemption disabled.
1037  */
1038 static bool rcu_is_callbacks_kthread(void)
1039 {
1040         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1041 }
1042
1043 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1044
1045 /*
1046  * Do priority-boost accounting for the start of a new grace period.
1047  */
1048 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1049 {
1050         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1051 }
1052
1053 /*
1054  * Create an RCU-boost kthread for the specified node if one does not
1055  * already exist.  We only create this kthread for preemptible RCU.
1056  * Returns zero if all is well, a negated errno otherwise.
1057  */
1058 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1059                                        struct rcu_node *rnp)
1060 {
1061         int rnp_index = rnp - &rsp->node[0];
1062         unsigned long flags;
1063         struct sched_param sp;
1064         struct task_struct *t;
1065
1066         if (rcu_state_p != rsp)
1067                 return 0;
1068
1069         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1070                 return 0;
1071
1072         rsp->boost = 1;
1073         if (rnp->boost_kthread_task != NULL)
1074                 return 0;
1075         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1076                            "rcub/%d", rnp_index);
1077         if (IS_ERR(t))
1078                 return PTR_ERR(t);
1079         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1080         rnp->boost_kthread_task = t;
1081         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082         sp.sched_priority = kthread_prio;
1083         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1084         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1085         return 0;
1086 }
1087
1088 static void rcu_kthread_do_work(void)
1089 {
1090         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1091         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1092         rcu_preempt_do_callbacks();
1093 }
1094
1095 static void rcu_cpu_kthread_setup(unsigned int cpu)
1096 {
1097         struct sched_param sp;
1098
1099         sp.sched_priority = kthread_prio;
1100         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1101 }
1102
1103 static void rcu_cpu_kthread_park(unsigned int cpu)
1104 {
1105         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1106 }
1107
1108 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1109 {
1110         return __this_cpu_read(rcu_cpu_has_work);
1111 }
1112
1113 /*
1114  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1115  * RCU softirq used in flavors and configurations of RCU that do not
1116  * support RCU priority boosting.
1117  */
1118 static void rcu_cpu_kthread(unsigned int cpu)
1119 {
1120         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1121         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1122         int spincnt;
1123
1124         for (spincnt = 0; spincnt < 10; spincnt++) {
1125                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1126                 local_bh_disable();
1127                 *statusp = RCU_KTHREAD_RUNNING;
1128                 this_cpu_inc(rcu_cpu_kthread_loops);
1129                 local_irq_disable();
1130                 work = *workp;
1131                 *workp = 0;
1132                 local_irq_enable();
1133                 if (work)
1134                         rcu_kthread_do_work();
1135                 local_bh_enable();
1136                 if (*workp == 0) {
1137                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1138                         *statusp = RCU_KTHREAD_WAITING;
1139                         return;
1140                 }
1141         }
1142         *statusp = RCU_KTHREAD_YIELDING;
1143         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1144         schedule_timeout_interruptible(2);
1145         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1146         *statusp = RCU_KTHREAD_WAITING;
1147 }
1148
1149 /*
1150  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1151  * served by the rcu_node in question.  The CPU hotplug lock is still
1152  * held, so the value of rnp->qsmaskinit will be stable.
1153  *
1154  * We don't include outgoingcpu in the affinity set, use -1 if there is
1155  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1156  * this function allows the kthread to execute on any CPU.
1157  */
1158 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1159 {
1160         struct task_struct *t = rnp->boost_kthread_task;
1161         unsigned long mask = rcu_rnp_online_cpus(rnp);
1162         cpumask_var_t cm;
1163         int cpu;
1164
1165         if (!t)
1166                 return;
1167         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1168                 return;
1169         for_each_leaf_node_possible_cpu(rnp, cpu)
1170                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1171                     cpu != outgoingcpu)
1172                         cpumask_set_cpu(cpu, cm);
1173         if (cpumask_weight(cm) == 0)
1174                 cpumask_setall(cm);
1175         set_cpus_allowed_ptr(t, cm);
1176         free_cpumask_var(cm);
1177 }
1178
1179 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1180         .store                  = &rcu_cpu_kthread_task,
1181         .thread_should_run      = rcu_cpu_kthread_should_run,
1182         .thread_fn              = rcu_cpu_kthread,
1183         .thread_comm            = "rcuc/%u",
1184         .setup                  = rcu_cpu_kthread_setup,
1185         .park                   = rcu_cpu_kthread_park,
1186 };
1187
1188 /*
1189  * Spawn boost kthreads -- called as soon as the scheduler is running.
1190  */
1191 static void __init rcu_spawn_boost_kthreads(void)
1192 {
1193         struct rcu_node *rnp;
1194         int cpu;
1195
1196         for_each_possible_cpu(cpu)
1197                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1198         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1199         rcu_for_each_leaf_node(rcu_state_p, rnp)
1200                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1201 }
1202
1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1206         struct rcu_node *rnp = rdp->mynode;
1207
1208         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209         if (rcu_scheduler_fully_active)
1210                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1211 }
1212
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214
1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216         __releases(rnp->lock)
1217 {
1218         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220
1221 static void invoke_rcu_callbacks_kthread(void)
1222 {
1223         WARN_ON_ONCE(1);
1224 }
1225
1226 static bool rcu_is_callbacks_kthread(void)
1227 {
1228         return false;
1229 }
1230
1231 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1232 {
1233 }
1234
1235 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1236 {
1237 }
1238
1239 static void __init rcu_spawn_boost_kthreads(void)
1240 {
1241 }
1242
1243 static void rcu_prepare_kthreads(int cpu)
1244 {
1245 }
1246
1247 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1248
1249 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1250
1251 /*
1252  * Check to see if any future RCU-related work will need to be done
1253  * by the current CPU, even if none need be done immediately, returning
1254  * 1 if so.  This function is part of the RCU implementation; it is -not-
1255  * an exported member of the RCU API.
1256  *
1257  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1258  * any flavor of RCU.
1259  */
1260 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1261 {
1262         *nextevt = KTIME_MAX;
1263         return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1264                ? 0 : rcu_cpu_has_callbacks(NULL);
1265 }
1266
1267 /*
1268  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1269  * after it.
1270  */
1271 static void rcu_cleanup_after_idle(void)
1272 {
1273 }
1274
1275 /*
1276  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1277  * is nothing.
1278  */
1279 static void rcu_prepare_for_idle(void)
1280 {
1281 }
1282
1283 /*
1284  * Don't bother keeping a running count of the number of RCU callbacks
1285  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1286  */
1287 static void rcu_idle_count_callbacks_posted(void)
1288 {
1289 }
1290
1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292
1293 /*
1294  * This code is invoked when a CPU goes idle, at which point we want
1295  * to have the CPU do everything required for RCU so that it can enter
1296  * the energy-efficient dyntick-idle mode.  This is handled by a
1297  * state machine implemented by rcu_prepare_for_idle() below.
1298  *
1299  * The following three proprocessor symbols control this state machine:
1300  *
1301  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1302  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1303  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1304  *      benchmarkers who might otherwise be tempted to set this to a large
1305  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1306  *      system.  And if you are -that- concerned about energy efficiency,
1307  *      just power the system down and be done with it!
1308  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1309  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1310  *      callbacks pending.  Setting this too high can OOM your system.
1311  *
1312  * The values below work well in practice.  If future workloads require
1313  * adjustment, they can be converted into kernel config parameters, though
1314  * making the state machine smarter might be a better option.
1315  */
1316 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1317 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1318
1319 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1320 module_param(rcu_idle_gp_delay, int, 0644);
1321 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1322 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1323
1324 /*
1325  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1326  * only if it has been awhile since the last time we did so.  Afterwards,
1327  * if there are any callbacks ready for immediate invocation, return true.
1328  */
1329 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1330 {
1331         bool cbs_ready = false;
1332         struct rcu_data *rdp;
1333         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1334         struct rcu_node *rnp;
1335         struct rcu_state *rsp;
1336
1337         /* Exit early if we advanced recently. */
1338         if (jiffies == rdtp->last_advance_all)
1339                 return false;
1340         rdtp->last_advance_all = jiffies;
1341
1342         for_each_rcu_flavor(rsp) {
1343                 rdp = this_cpu_ptr(rsp->rda);
1344                 rnp = rdp->mynode;
1345
1346                 /*
1347                  * Don't bother checking unless a grace period has
1348                  * completed since we last checked and there are
1349                  * callbacks not yet ready to invoke.
1350                  */
1351                 if ((rdp->completed != rnp->completed ||
1352                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1353                     rcu_segcblist_pend_cbs(&rdp->cblist))
1354                         note_gp_changes(rsp, rdp);
1355
1356                 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1357                         cbs_ready = true;
1358         }
1359         return cbs_ready;
1360 }
1361
1362 /*
1363  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1364  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1365  * caller to set the timeout based on whether or not there are non-lazy
1366  * callbacks.
1367  *
1368  * The caller must have disabled interrupts.
1369  */
1370 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1371 {
1372         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1373         unsigned long dj;
1374
1375         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1376                 *nextevt = KTIME_MAX;
1377                 return 0;
1378         }
1379
1380         /* Snapshot to detect later posting of non-lazy callback. */
1381         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1382
1383         /* If no callbacks, RCU doesn't need the CPU. */
1384         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1385                 *nextevt = KTIME_MAX;
1386                 return 0;
1387         }
1388
1389         /* Attempt to advance callbacks. */
1390         if (rcu_try_advance_all_cbs()) {
1391                 /* Some ready to invoke, so initiate later invocation. */
1392                 invoke_rcu_core();
1393                 return 1;
1394         }
1395         rdtp->last_accelerate = jiffies;
1396
1397         /* Request timer delay depending on laziness, and round. */
1398         if (!rdtp->all_lazy) {
1399                 dj = round_up(rcu_idle_gp_delay + jiffies,
1400                                rcu_idle_gp_delay) - jiffies;
1401         } else {
1402                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1403         }
1404         *nextevt = basemono + dj * TICK_NSEC;
1405         return 0;
1406 }
1407
1408 /*
1409  * Prepare a CPU for idle from an RCU perspective.  The first major task
1410  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1411  * The second major task is to check to see if a non-lazy callback has
1412  * arrived at a CPU that previously had only lazy callbacks.  The third
1413  * major task is to accelerate (that is, assign grace-period numbers to)
1414  * any recently arrived callbacks.
1415  *
1416  * The caller must have disabled interrupts.
1417  */
1418 static void rcu_prepare_for_idle(void)
1419 {
1420         bool needwake;
1421         struct rcu_data *rdp;
1422         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423         struct rcu_node *rnp;
1424         struct rcu_state *rsp;
1425         int tne;
1426
1427         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1428             rcu_is_nocb_cpu(smp_processor_id()))
1429                 return;
1430
1431         /* Handle nohz enablement switches conservatively. */
1432         tne = READ_ONCE(tick_nohz_active);
1433         if (tne != rdtp->tick_nohz_enabled_snap) {
1434                 if (rcu_cpu_has_callbacks(NULL))
1435                         invoke_rcu_core(); /* force nohz to see update. */
1436                 rdtp->tick_nohz_enabled_snap = tne;
1437                 return;
1438         }
1439         if (!tne)
1440                 return;
1441
1442         /*
1443          * If a non-lazy callback arrived at a CPU having only lazy
1444          * callbacks, invoke RCU core for the side-effect of recalculating
1445          * idle duration on re-entry to idle.
1446          */
1447         if (rdtp->all_lazy &&
1448             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1449                 rdtp->all_lazy = false;
1450                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1451                 invoke_rcu_core();
1452                 return;
1453         }
1454
1455         /*
1456          * If we have not yet accelerated this jiffy, accelerate all
1457          * callbacks on this CPU.
1458          */
1459         if (rdtp->last_accelerate == jiffies)
1460                 return;
1461         rdtp->last_accelerate = jiffies;
1462         for_each_rcu_flavor(rsp) {
1463                 rdp = this_cpu_ptr(rsp->rda);
1464                 if (rcu_segcblist_pend_cbs(&rdp->cblist))
1465                         continue;
1466                 rnp = rdp->mynode;
1467                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1468                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1469                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1470                 if (needwake)
1471                         rcu_gp_kthread_wake(rsp);
1472         }
1473 }
1474
1475 /*
1476  * Clean up for exit from idle.  Attempt to advance callbacks based on
1477  * any grace periods that elapsed while the CPU was idle, and if any
1478  * callbacks are now ready to invoke, initiate invocation.
1479  */
1480 static void rcu_cleanup_after_idle(void)
1481 {
1482         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1483             rcu_is_nocb_cpu(smp_processor_id()))
1484                 return;
1485         if (rcu_try_advance_all_cbs())
1486                 invoke_rcu_core();
1487 }
1488
1489 /*
1490  * Keep a running count of the number of non-lazy callbacks posted
1491  * on this CPU.  This running counter (which is never decremented) allows
1492  * rcu_prepare_for_idle() to detect when something out of the idle loop
1493  * posts a callback, even if an equal number of callbacks are invoked.
1494  * Of course, callbacks should only be posted from within a trace event
1495  * designed to be called from idle or from within RCU_NONIDLE().
1496  */
1497 static void rcu_idle_count_callbacks_posted(void)
1498 {
1499         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1500 }
1501
1502 /*
1503  * Data for flushing lazy RCU callbacks at OOM time.
1504  */
1505 static atomic_t oom_callback_count;
1506 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1507
1508 /*
1509  * RCU OOM callback -- decrement the outstanding count and deliver the
1510  * wake-up if we are the last one.
1511  */
1512 static void rcu_oom_callback(struct rcu_head *rhp)
1513 {
1514         if (atomic_dec_and_test(&oom_callback_count))
1515                 wake_up(&oom_callback_wq);
1516 }
1517
1518 /*
1519  * Post an rcu_oom_notify callback on the current CPU if it has at
1520  * least one lazy callback.  This will unnecessarily post callbacks
1521  * to CPUs that already have a non-lazy callback at the end of their
1522  * callback list, but this is an infrequent operation, so accept some
1523  * extra overhead to keep things simple.
1524  */
1525 static void rcu_oom_notify_cpu(void *unused)
1526 {
1527         struct rcu_state *rsp;
1528         struct rcu_data *rdp;
1529
1530         for_each_rcu_flavor(rsp) {
1531                 rdp = raw_cpu_ptr(rsp->rda);
1532                 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1533                         atomic_inc(&oom_callback_count);
1534                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1535                 }
1536         }
1537 }
1538
1539 /*
1540  * If low on memory, ensure that each CPU has a non-lazy callback.
1541  * This will wake up CPUs that have only lazy callbacks, in turn
1542  * ensuring that they free up the corresponding memory in a timely manner.
1543  * Because an uncertain amount of memory will be freed in some uncertain
1544  * timeframe, we do not claim to have freed anything.
1545  */
1546 static int rcu_oom_notify(struct notifier_block *self,
1547                           unsigned long notused, void *nfreed)
1548 {
1549         int cpu;
1550
1551         /* Wait for callbacks from earlier instance to complete. */
1552         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1553         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1554
1555         /*
1556          * Prevent premature wakeup: ensure that all increments happen
1557          * before there is a chance of the counter reaching zero.
1558          */
1559         atomic_set(&oom_callback_count, 1);
1560
1561         for_each_online_cpu(cpu) {
1562                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1563                 cond_resched_rcu_qs();
1564         }
1565
1566         /* Unconditionally decrement: no need to wake ourselves up. */
1567         atomic_dec(&oom_callback_count);
1568
1569         return NOTIFY_OK;
1570 }
1571
1572 static struct notifier_block rcu_oom_nb = {
1573         .notifier_call = rcu_oom_notify
1574 };
1575
1576 static int __init rcu_register_oom_notifier(void)
1577 {
1578         register_oom_notifier(&rcu_oom_nb);
1579         return 0;
1580 }
1581 early_initcall(rcu_register_oom_notifier);
1582
1583 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1584
1585 #ifdef CONFIG_RCU_FAST_NO_HZ
1586
1587 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1588 {
1589         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1590         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1591
1592         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1593                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1594                 ulong2long(nlpd),
1595                 rdtp->all_lazy ? 'L' : '.',
1596                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1597 }
1598
1599 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1600
1601 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1602 {
1603         *cp = '\0';
1604 }
1605
1606 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1607
1608 /* Initiate the stall-info list. */
1609 static void print_cpu_stall_info_begin(void)
1610 {
1611         pr_cont("\n");
1612 }
1613
1614 /*
1615  * Print out diagnostic information for the specified stalled CPU.
1616  *
1617  * If the specified CPU is aware of the current RCU grace period
1618  * (flavor specified by rsp), then print the number of scheduling
1619  * clock interrupts the CPU has taken during the time that it has
1620  * been aware.  Otherwise, print the number of RCU grace periods
1621  * that this CPU is ignorant of, for example, "1" if the CPU was
1622  * aware of the previous grace period.
1623  *
1624  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1625  */
1626 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1627 {
1628         char fast_no_hz[72];
1629         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1630         struct rcu_dynticks *rdtp = rdp->dynticks;
1631         char *ticks_title;
1632         unsigned long ticks_value;
1633
1634         if (rsp->gpnum == rdp->gpnum) {
1635                 ticks_title = "ticks this GP";
1636                 ticks_value = rdp->ticks_this_gp;
1637         } else {
1638                 ticks_title = "GPs behind";
1639                 ticks_value = rsp->gpnum - rdp->gpnum;
1640         }
1641         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1642         pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1643                cpu,
1644                "O."[!!cpu_online(cpu)],
1645                "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1646                "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1647                ticks_value, ticks_title,
1648                rcu_dynticks_snap(rdtp) & 0xfff,
1649                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1650                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1651                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1652                fast_no_hz);
1653 }
1654
1655 /* Terminate the stall-info list. */
1656 static void print_cpu_stall_info_end(void)
1657 {
1658         pr_err("\t");
1659 }
1660
1661 /* Zero ->ticks_this_gp for all flavors of RCU. */
1662 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1663 {
1664         rdp->ticks_this_gp = 0;
1665         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1666 }
1667
1668 /* Increment ->ticks_this_gp for all flavors of RCU. */
1669 static void increment_cpu_stall_ticks(void)
1670 {
1671         struct rcu_state *rsp;
1672
1673         for_each_rcu_flavor(rsp)
1674                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1675 }
1676
1677 #ifdef CONFIG_RCU_NOCB_CPU
1678
1679 /*
1680  * Offload callback processing from the boot-time-specified set of CPUs
1681  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1682  * kthread created that pulls the callbacks from the corresponding CPU,
1683  * waits for a grace period to elapse, and invokes the callbacks.
1684  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1685  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1686  * has been specified, in which case each kthread actively polls its
1687  * CPU.  (Which isn't so great for energy efficiency, but which does
1688  * reduce RCU's overhead on that CPU.)
1689  *
1690  * This is intended to be used in conjunction with Frederic Weisbecker's
1691  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1692  * running CPU-bound user-mode computations.
1693  *
1694  * Offloading of callback processing could also in theory be used as
1695  * an energy-efficiency measure because CPUs with no RCU callbacks
1696  * queued are more aggressive about entering dyntick-idle mode.
1697  */
1698
1699
1700 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1701 static int __init rcu_nocb_setup(char *str)
1702 {
1703         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1704         have_rcu_nocb_mask = true;
1705         cpulist_parse(str, rcu_nocb_mask);
1706         return 1;
1707 }
1708 __setup("rcu_nocbs=", rcu_nocb_setup);
1709
1710 static int __init parse_rcu_nocb_poll(char *arg)
1711 {
1712         rcu_nocb_poll = true;
1713         return 0;
1714 }
1715 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1716
1717 /*
1718  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1719  * grace period.
1720  */
1721 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1722 {
1723         swake_up_all(sq);
1724 }
1725
1726 /*
1727  * Set the root rcu_node structure's ->need_future_gp field
1728  * based on the sum of those of all rcu_node structures.  This does
1729  * double-count the root rcu_node structure's requests, but this
1730  * is necessary to handle the possibility of a rcu_nocb_kthread()
1731  * having awakened during the time that the rcu_node structures
1732  * were being updated for the end of the previous grace period.
1733  */
1734 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1735 {
1736         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1737 }
1738
1739 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1740 {
1741         return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1742 }
1743
1744 static void rcu_init_one_nocb(struct rcu_node *rnp)
1745 {
1746         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1747         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1748 }
1749
1750 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1751 /* Is the specified CPU a no-CBs CPU? */
1752 bool rcu_is_nocb_cpu(int cpu)
1753 {
1754         if (have_rcu_nocb_mask)
1755                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1756         return false;
1757 }
1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759
1760 /*
1761  * Kick the leader kthread for this NOCB group.
1762  */
1763 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1764 {
1765         struct rcu_data *rdp_leader = rdp->nocb_leader;
1766
1767         if (!READ_ONCE(rdp_leader->nocb_kthread))
1768                 return;
1769         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1770                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1771                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1772                 swake_up(&rdp_leader->nocb_wq);
1773         }
1774 }
1775
1776 /*
1777  * Does the specified CPU need an RCU callback for the specified flavor
1778  * of rcu_barrier()?
1779  */
1780 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1781 {
1782         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1783         unsigned long ret;
1784 #ifdef CONFIG_PROVE_RCU
1785         struct rcu_head *rhp;
1786 #endif /* #ifdef CONFIG_PROVE_RCU */
1787
1788         /*
1789          * Check count of all no-CBs callbacks awaiting invocation.
1790          * There needs to be a barrier before this function is called,
1791          * but associated with a prior determination that no more
1792          * callbacks would be posted.  In the worst case, the first
1793          * barrier in _rcu_barrier() suffices (but the caller cannot
1794          * necessarily rely on this, not a substitute for the caller
1795          * getting the concurrency design right!).  There must also be
1796          * a barrier between the following load an posting of a callback
1797          * (if a callback is in fact needed).  This is associated with an
1798          * atomic_inc() in the caller.
1799          */
1800         ret = atomic_long_read(&rdp->nocb_q_count);
1801
1802 #ifdef CONFIG_PROVE_RCU
1803         rhp = READ_ONCE(rdp->nocb_head);
1804         if (!rhp)
1805                 rhp = READ_ONCE(rdp->nocb_gp_head);
1806         if (!rhp)
1807                 rhp = READ_ONCE(rdp->nocb_follower_head);
1808
1809         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1810         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1811             rcu_scheduler_fully_active) {
1812                 /* RCU callback enqueued before CPU first came online??? */
1813                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1814                        cpu, rhp->func);
1815                 WARN_ON_ONCE(1);
1816         }
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1818
1819         return !!ret;
1820 }
1821
1822 /*
1823  * Enqueue the specified string of rcu_head structures onto the specified
1824  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1825  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1826  * counts are supplied by rhcount and rhcount_lazy.
1827  *
1828  * If warranted, also wake up the kthread servicing this CPUs queues.
1829  */
1830 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1831                                     struct rcu_head *rhp,
1832                                     struct rcu_head **rhtp,
1833                                     int rhcount, int rhcount_lazy,
1834                                     unsigned long flags)
1835 {
1836         int len;
1837         struct rcu_head **old_rhpp;
1838         struct task_struct *t;
1839
1840         /* Enqueue the callback on the nocb list and update counts. */
1841         atomic_long_add(rhcount, &rdp->nocb_q_count);
1842         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1843         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1844         WRITE_ONCE(*old_rhpp, rhp);
1845         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1846         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1847
1848         /* If we are not being polled and there is a kthread, awaken it ... */
1849         t = READ_ONCE(rdp->nocb_kthread);
1850         if (rcu_nocb_poll || !t) {
1851                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1852                                     TPS("WakeNotPoll"));
1853                 return;
1854         }
1855         len = atomic_long_read(&rdp->nocb_q_count);
1856         if (old_rhpp == &rdp->nocb_head) {
1857                 if (!irqs_disabled_flags(flags)) {
1858                         /* ... if queue was empty ... */
1859                         wake_nocb_leader(rdp, false);
1860                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1861                                             TPS("WakeEmpty"));
1862                 } else {
1863                         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE);
1864                         /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1865                         smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1866                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1867                                             TPS("WakeEmptyIsDeferred"));
1868                 }
1869                 rdp->qlen_last_fqs_check = 0;
1870         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1871                 /* ... or if many callbacks queued. */
1872                 if (!irqs_disabled_flags(flags)) {
1873                         wake_nocb_leader(rdp, true);
1874                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1875                                             TPS("WakeOvf"));
1876                 } else {
1877                         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_FORCE);
1878                         /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1879                         smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1880                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1881                                             TPS("WakeOvfIsDeferred"));
1882                 }
1883                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1884         } else {
1885                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1886         }
1887         return;
1888 }
1889
1890 /*
1891  * This is a helper for __call_rcu(), which invokes this when the normal
1892  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1893  * function returns failure back to __call_rcu(), which can complain
1894  * appropriately.
1895  *
1896  * Otherwise, this function queues the callback where the corresponding
1897  * "rcuo" kthread can find it.
1898  */
1899 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1900                             bool lazy, unsigned long flags)
1901 {
1902
1903         if (!rcu_is_nocb_cpu(rdp->cpu))
1904                 return false;
1905         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1906         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1907                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1908                                          (unsigned long)rhp->func,
1909                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
1910                                          -atomic_long_read(&rdp->nocb_q_count));
1911         else
1912                 trace_rcu_callback(rdp->rsp->name, rhp,
1913                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
1914                                    -atomic_long_read(&rdp->nocb_q_count));
1915
1916         /*
1917          * If called from an extended quiescent state with interrupts
1918          * disabled, invoke the RCU core in order to allow the idle-entry
1919          * deferred-wakeup check to function.
1920          */
1921         if (irqs_disabled_flags(flags) &&
1922             !rcu_is_watching() &&
1923             cpu_online(smp_processor_id()))
1924                 invoke_rcu_core();
1925
1926         return true;
1927 }
1928
1929 /*
1930  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1931  * not a no-CBs CPU.
1932  */
1933 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1934                                                      struct rcu_data *rdp,
1935                                                      unsigned long flags)
1936 {
1937         long ql = rsp->orphan_done.len;
1938         long qll = rsp->orphan_done.len_lazy;
1939
1940         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1941         if (!rcu_is_nocb_cpu(smp_processor_id()))
1942                 return false;
1943
1944         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
1945         if (rsp->orphan_done.head) {
1946                 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
1947                                         rcu_cblist_tail(&rsp->orphan_done),
1948                                         ql, qll, flags);
1949         }
1950         if (rsp->orphan_pend.head) {
1951                 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
1952                                         rcu_cblist_tail(&rsp->orphan_pend),
1953                                         ql, qll, flags);
1954         }
1955         rcu_cblist_init(&rsp->orphan_done);
1956         rcu_cblist_init(&rsp->orphan_pend);
1957         return true;
1958 }
1959
1960 /*
1961  * If necessary, kick off a new grace period, and either way wait
1962  * for a subsequent grace period to complete.
1963  */
1964 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1965 {
1966         unsigned long c;
1967         bool d;
1968         unsigned long flags;
1969         bool needwake;
1970         struct rcu_node *rnp = rdp->mynode;
1971
1972         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1973         needwake = rcu_start_future_gp(rnp, rdp, &c);
1974         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975         if (needwake)
1976                 rcu_gp_kthread_wake(rdp->rsp);
1977
1978         /*
1979          * Wait for the grace period.  Do so interruptibly to avoid messing
1980          * up the load average.
1981          */
1982         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1983         for (;;) {
1984                 swait_event_interruptible(
1985                         rnp->nocb_gp_wq[c & 0x1],
1986                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1987                 if (likely(d))
1988                         break;
1989                 WARN_ON(signal_pending(current));
1990                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1991         }
1992         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1993         smp_mb(); /* Ensure that CB invocation happens after GP end. */
1994 }
1995
1996 /*
1997  * Leaders come here to wait for additional callbacks to show up.
1998  * This function does not return until callbacks appear.
1999  */
2000 static void nocb_leader_wait(struct rcu_data *my_rdp)
2001 {
2002         bool firsttime = true;
2003         bool gotcbs;
2004         struct rcu_data *rdp;
2005         struct rcu_head **tail;
2006
2007 wait_again:
2008
2009         /* Wait for callbacks to appear. */
2010         if (!rcu_nocb_poll) {
2011                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2012                 swait_event_interruptible(my_rdp->nocb_wq,
2013                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2014                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2015         } else if (firsttime) {
2016                 firsttime = false; /* Don't drown trace log with "Poll"! */
2017                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2018         }
2019
2020         /*
2021          * Each pass through the following loop checks a follower for CBs.
2022          * We are our own first follower.  Any CBs found are moved to
2023          * nocb_gp_head, where they await a grace period.
2024          */
2025         gotcbs = false;
2026         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2027                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2028                 if (!rdp->nocb_gp_head)
2029                         continue;  /* No CBs here, try next follower. */
2030
2031                 /* Move callbacks to wait-for-GP list, which is empty. */
2032                 WRITE_ONCE(rdp->nocb_head, NULL);
2033                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2034                 gotcbs = true;
2035         }
2036
2037         /*
2038          * If there were no callbacks, sleep a bit, rescan after a
2039          * memory barrier, and go retry.
2040          */
2041         if (unlikely(!gotcbs)) {
2042                 if (!rcu_nocb_poll)
2043                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2044                                             "WokeEmpty");
2045                 WARN_ON(signal_pending(current));
2046                 schedule_timeout_interruptible(1);
2047
2048                 /* Rescan in case we were a victim of memory ordering. */
2049                 my_rdp->nocb_leader_sleep = true;
2050                 smp_mb();  /* Ensure _sleep true before scan. */
2051                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2052                         if (READ_ONCE(rdp->nocb_head)) {
2053                                 /* Found CB, so short-circuit next wait. */
2054                                 my_rdp->nocb_leader_sleep = false;
2055                                 break;
2056                         }
2057                 goto wait_again;
2058         }
2059
2060         /* Wait for one grace period. */
2061         rcu_nocb_wait_gp(my_rdp);
2062
2063         /*
2064          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2065          * We set it now, but recheck for new callbacks while
2066          * traversing our follower list.
2067          */
2068         my_rdp->nocb_leader_sleep = true;
2069         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2070
2071         /* Each pass through the following loop wakes a follower, if needed. */
2072         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2073                 if (READ_ONCE(rdp->nocb_head))
2074                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2075                 if (!rdp->nocb_gp_head)
2076                         continue; /* No CBs, so no need to wake follower. */
2077
2078                 /* Append callbacks to follower's "done" list. */
2079                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2080                 *tail = rdp->nocb_gp_head;
2081                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2082                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2083                         /*
2084                          * List was empty, wake up the follower.
2085                          * Memory barriers supplied by atomic_long_add().
2086                          */
2087                         swake_up(&rdp->nocb_wq);
2088                 }
2089         }
2090
2091         /* If we (the leader) don't have CBs, go wait some more. */
2092         if (!my_rdp->nocb_follower_head)
2093                 goto wait_again;
2094 }
2095
2096 /*
2097  * Followers come here to wait for additional callbacks to show up.
2098  * This function does not return until callbacks appear.
2099  */
2100 static void nocb_follower_wait(struct rcu_data *rdp)
2101 {
2102         bool firsttime = true;
2103
2104         for (;;) {
2105                 if (!rcu_nocb_poll) {
2106                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107                                             "FollowerSleep");
2108                         swait_event_interruptible(rdp->nocb_wq,
2109                                                  READ_ONCE(rdp->nocb_follower_head));
2110                 } else if (firsttime) {
2111                         /* Don't drown trace log with "Poll"! */
2112                         firsttime = false;
2113                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2114                 }
2115                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2116                         /* ^^^ Ensure CB invocation follows _head test. */
2117                         return;
2118                 }
2119                 if (!rcu_nocb_poll)
2120                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121                                             "WokeEmpty");
2122                 WARN_ON(signal_pending(current));
2123                 schedule_timeout_interruptible(1);
2124         }
2125 }
2126
2127 /*
2128  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2129  * callbacks queued by the corresponding no-CBs CPU, however, there is
2130  * an optional leader-follower relationship so that the grace-period
2131  * kthreads don't have to do quite so many wakeups.
2132  */
2133 static int rcu_nocb_kthread(void *arg)
2134 {
2135         int c, cl;
2136         struct rcu_head *list;
2137         struct rcu_head *next;
2138         struct rcu_head **tail;
2139         struct rcu_data *rdp = arg;
2140
2141         /* Each pass through this loop invokes one batch of callbacks */
2142         for (;;) {
2143                 /* Wait for callbacks. */
2144                 if (rdp->nocb_leader == rdp)
2145                         nocb_leader_wait(rdp);
2146                 else
2147                         nocb_follower_wait(rdp);
2148
2149                 /* Pull the ready-to-invoke callbacks onto local list. */
2150                 list = READ_ONCE(rdp->nocb_follower_head);
2151                 BUG_ON(!list);
2152                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2153                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2154                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2155
2156                 /* Each pass through the following loop invokes a callback. */
2157                 trace_rcu_batch_start(rdp->rsp->name,
2158                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2159                                       atomic_long_read(&rdp->nocb_q_count), -1);
2160                 c = cl = 0;
2161                 while (list) {
2162                         next = list->next;
2163                         /* Wait for enqueuing to complete, if needed. */
2164                         while (next == NULL && &list->next != tail) {
2165                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2166                                                     TPS("WaitQueue"));
2167                                 schedule_timeout_interruptible(1);
2168                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2169                                                     TPS("WokeQueue"));
2170                                 next = list->next;
2171                         }
2172                         debug_rcu_head_unqueue(list);
2173                         local_bh_disable();
2174                         if (__rcu_reclaim(rdp->rsp->name, list))
2175                                 cl++;
2176                         c++;
2177                         local_bh_enable();
2178                         cond_resched_rcu_qs();
2179                         list = next;
2180                 }
2181                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2182                 smp_mb__before_atomic();  /* _add after CB invocation. */
2183                 atomic_long_add(-c, &rdp->nocb_q_count);
2184                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2185                 rdp->n_nocbs_invoked += c;
2186         }
2187         return 0;
2188 }
2189
2190 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2191 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2192 {
2193         return READ_ONCE(rdp->nocb_defer_wakeup);
2194 }
2195
2196 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2197 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2198 {
2199         int ndw;
2200
2201         if (!rcu_nocb_need_deferred_wakeup(rdp))
2202                 return;
2203         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2204         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2205         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2206         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2207 }
2208
2209 void __init rcu_init_nohz(void)
2210 {
2211         int cpu;
2212         bool need_rcu_nocb_mask = true;
2213         struct rcu_state *rsp;
2214
2215 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2216         need_rcu_nocb_mask = false;
2217 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2218
2219 #if defined(CONFIG_NO_HZ_FULL)
2220         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2221                 need_rcu_nocb_mask = true;
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223
2224         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2225                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2226                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2227                         return;
2228                 }
2229                 have_rcu_nocb_mask = true;
2230         }
2231         if (!have_rcu_nocb_mask)
2232                 return;
2233
2234 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2235         pr_info("\tOffload RCU callbacks from CPU 0\n");
2236         cpumask_set_cpu(0, rcu_nocb_mask);
2237 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2238 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2239         pr_info("\tOffload RCU callbacks from all CPUs\n");
2240         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2241 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2242 #if defined(CONFIG_NO_HZ_FULL)
2243         if (tick_nohz_full_running)
2244                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2245 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2246
2247         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2248                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2249                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2250                             rcu_nocb_mask);
2251         }
2252         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2253                 cpumask_pr_args(rcu_nocb_mask));
2254         if (rcu_nocb_poll)
2255                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2256
2257         for_each_rcu_flavor(rsp) {
2258                 for_each_cpu(cpu, rcu_nocb_mask)
2259                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2260                 rcu_organize_nocb_kthreads(rsp);
2261         }
2262 }
2263
2264 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2265 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2266 {
2267         rdp->nocb_tail = &rdp->nocb_head;
2268         init_swait_queue_head(&rdp->nocb_wq);
2269         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2270 }
2271
2272 /*
2273  * If the specified CPU is a no-CBs CPU that does not already have its
2274  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2275  * brought online out of order, this can require re-organizing the
2276  * leader-follower relationships.
2277  */
2278 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2279 {
2280         struct rcu_data *rdp;
2281         struct rcu_data *rdp_last;
2282         struct rcu_data *rdp_old_leader;
2283         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2284         struct task_struct *t;
2285
2286         /*
2287          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2288          * then nothing to do.
2289          */
2290         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2291                 return;
2292
2293         /* If we didn't spawn the leader first, reorganize! */
2294         rdp_old_leader = rdp_spawn->nocb_leader;
2295         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2296                 rdp_last = NULL;
2297                 rdp = rdp_old_leader;
2298                 do {
2299                         rdp->nocb_leader = rdp_spawn;
2300                         if (rdp_last && rdp != rdp_spawn)
2301                                 rdp_last->nocb_next_follower = rdp;
2302                         if (rdp == rdp_spawn) {
2303                                 rdp = rdp->nocb_next_follower;
2304                         } else {
2305                                 rdp_last = rdp;
2306                                 rdp = rdp->nocb_next_follower;
2307                                 rdp_last->nocb_next_follower = NULL;
2308                         }
2309                 } while (rdp);
2310                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2311         }
2312
2313         /* Spawn the kthread for this CPU and RCU flavor. */
2314         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2315                         "rcuo%c/%d", rsp->abbr, cpu);
2316         BUG_ON(IS_ERR(t));
2317         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2318 }
2319
2320 /*
2321  * If the specified CPU is a no-CBs CPU that does not already have its
2322  * rcuo kthreads, spawn them.
2323  */
2324 static void rcu_spawn_all_nocb_kthreads(int cpu)
2325 {
2326         struct rcu_state *rsp;
2327
2328         if (rcu_scheduler_fully_active)
2329                 for_each_rcu_flavor(rsp)
2330                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2331 }
2332
2333 /*
2334  * Once the scheduler is running, spawn rcuo kthreads for all online
2335  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2336  * non-boot CPUs come online -- if this changes, we will need to add
2337  * some mutual exclusion.
2338  */
2339 static void __init rcu_spawn_nocb_kthreads(void)
2340 {
2341         int cpu;
2342
2343         for_each_online_cpu(cpu)
2344                 rcu_spawn_all_nocb_kthreads(cpu);
2345 }
2346
2347 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2348 static int rcu_nocb_leader_stride = -1;
2349 module_param(rcu_nocb_leader_stride, int, 0444);
2350
2351 /*
2352  * Initialize leader-follower relationships for all no-CBs CPU.
2353  */
2354 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2355 {
2356         int cpu;
2357         int ls = rcu_nocb_leader_stride;
2358         int nl = 0;  /* Next leader. */
2359         struct rcu_data *rdp;
2360         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2361         struct rcu_data *rdp_prev = NULL;
2362
2363         if (!have_rcu_nocb_mask)
2364                 return;
2365         if (ls == -1) {
2366                 ls = int_sqrt(nr_cpu_ids);
2367                 rcu_nocb_leader_stride = ls;
2368         }
2369
2370         /*
2371          * Each pass through this loop sets up one rcu_data structure.
2372          * Should the corresponding CPU come online in the future, then
2373          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2374          */
2375         for_each_cpu(cpu, rcu_nocb_mask) {
2376                 rdp = per_cpu_ptr(rsp->rda, cpu);
2377                 if (rdp->cpu >= nl) {
2378                         /* New leader, set up for followers & next leader. */
2379                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2380                         rdp->nocb_leader = rdp;
2381                         rdp_leader = rdp;
2382                 } else {
2383                         /* Another follower, link to previous leader. */
2384                         rdp->nocb_leader = rdp_leader;
2385                         rdp_prev->nocb_next_follower = rdp;
2386                 }
2387                 rdp_prev = rdp;
2388         }
2389 }
2390
2391 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2392 static bool init_nocb_callback_list(struct rcu_data *rdp)
2393 {
2394         if (!rcu_is_nocb_cpu(rdp->cpu))
2395                 return false;
2396
2397         /* If there are early-boot callbacks, move them to nocb lists. */
2398         if (!rcu_segcblist_empty(&rdp->cblist)) {
2399                 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2400                 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2401                 atomic_long_set(&rdp->nocb_q_count,
2402                                 rcu_segcblist_n_cbs(&rdp->cblist));
2403                 atomic_long_set(&rdp->nocb_q_count_lazy,
2404                                 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2405                 rcu_segcblist_init(&rdp->cblist);
2406         }
2407         rcu_segcblist_disable(&rdp->cblist);
2408         return true;
2409 }
2410
2411 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2412
2413 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2414 {
2415         WARN_ON_ONCE(1); /* Should be dead code. */
2416         return false;
2417 }
2418
2419 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2420 {
2421 }
2422
2423 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2424 {
2425 }
2426
2427 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2428 {
2429         return NULL;
2430 }
2431
2432 static void rcu_init_one_nocb(struct rcu_node *rnp)
2433 {
2434 }
2435
2436 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2437                             bool lazy, unsigned long flags)
2438 {
2439         return false;
2440 }
2441
2442 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2443                                                      struct rcu_data *rdp,
2444                                                      unsigned long flags)
2445 {
2446         return false;
2447 }
2448
2449 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2450 {
2451 }
2452
2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2454 {
2455         return false;
2456 }
2457
2458 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2459 {
2460 }
2461
2462 static void rcu_spawn_all_nocb_kthreads(int cpu)
2463 {
2464 }
2465
2466 static void __init rcu_spawn_nocb_kthreads(void)
2467 {
2468 }
2469
2470 static bool init_nocb_callback_list(struct rcu_data *rdp)
2471 {
2472         return false;
2473 }
2474
2475 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2476
2477 /*
2478  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2479  * arbitrarily long period of time with the scheduling-clock tick turned
2480  * off.  RCU will be paying attention to this CPU because it is in the
2481  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2482  * machine because the scheduling-clock tick has been disabled.  Therefore,
2483  * if an adaptive-ticks CPU is failing to respond to the current grace
2484  * period and has not be idle from an RCU perspective, kick it.
2485  */
2486 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2487 {
2488 #ifdef CONFIG_NO_HZ_FULL
2489         if (tick_nohz_full_cpu(cpu))
2490                 smp_send_reschedule(cpu);
2491 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2492 }
2493
2494
2495 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2496
2497 static int full_sysidle_state;          /* Current system-idle state. */
2498 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2499 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2500 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2501 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2502 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2503
2504 /*
2505  * Invoked to note exit from irq or task transition to idle.  Note that
2506  * usermode execution does -not- count as idle here!  After all, we want
2507  * to detect full-system idle states, not RCU quiescent states and grace
2508  * periods.  The caller must have disabled interrupts.
2509  */
2510 static void rcu_sysidle_enter(int irq)
2511 {
2512         unsigned long j;
2513         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2514
2515         /* If there are no nohz_full= CPUs, no need to track this. */
2516         if (!tick_nohz_full_enabled())
2517                 return;
2518
2519         /* Adjust nesting, check for fully idle. */
2520         if (irq) {
2521                 rdtp->dynticks_idle_nesting--;
2522                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2523                 if (rdtp->dynticks_idle_nesting != 0)
2524                         return;  /* Still not fully idle. */
2525         } else {
2526                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2527                     DYNTICK_TASK_NEST_VALUE) {
2528                         rdtp->dynticks_idle_nesting = 0;
2529                 } else {
2530                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2531                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2532                         return;  /* Still not fully idle. */
2533                 }
2534         }
2535
2536         /* Record start of fully idle period. */
2537         j = jiffies;
2538         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2539         smp_mb__before_atomic();
2540         atomic_inc(&rdtp->dynticks_idle);
2541         smp_mb__after_atomic();
2542         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2543 }
2544
2545 /*
2546  * Unconditionally force exit from full system-idle state.  This is
2547  * invoked when a normal CPU exits idle, but must be called separately
2548  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2549  * is that the timekeeping CPU is permitted to take scheduling-clock
2550  * interrupts while the system is in system-idle state, and of course
2551  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2552  * interrupt from any other type of interrupt.
2553  */
2554 void rcu_sysidle_force_exit(void)
2555 {
2556         int oldstate = READ_ONCE(full_sysidle_state);
2557         int newoldstate;
2558
2559         /*
2560          * Each pass through the following loop attempts to exit full
2561          * system-idle state.  If contention proves to be a problem,
2562          * a trylock-based contention tree could be used here.
2563          */
2564         while (oldstate > RCU_SYSIDLE_SHORT) {
2565                 newoldstate = cmpxchg(&full_sysidle_state,
2566                                       oldstate, RCU_SYSIDLE_NOT);
2567                 if (oldstate == newoldstate &&
2568                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2569                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2570                         return; /* We cleared it, done! */
2571                 }
2572                 oldstate = newoldstate;
2573         }
2574         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2575 }
2576
2577 /*
2578  * Invoked to note entry to irq or task transition from idle.  Note that
2579  * usermode execution does -not- count as idle here!  The caller must
2580  * have disabled interrupts.
2581  */
2582 static void rcu_sysidle_exit(int irq)
2583 {
2584         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2585
2586         /* If there are no nohz_full= CPUs, no need to track this. */
2587         if (!tick_nohz_full_enabled())
2588                 return;
2589
2590         /* Adjust nesting, check for already non-idle. */
2591         if (irq) {
2592                 rdtp->dynticks_idle_nesting++;
2593                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2594                 if (rdtp->dynticks_idle_nesting != 1)
2595                         return; /* Already non-idle. */
2596         } else {
2597                 /*
2598                  * Allow for irq misnesting.  Yes, it really is possible
2599                  * to enter an irq handler then never leave it, and maybe
2600                  * also vice versa.  Handle both possibilities.
2601                  */
2602                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2603                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2604                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2605                         return; /* Already non-idle. */
2606                 } else {
2607                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2608                 }
2609         }
2610
2611         /* Record end of idle period. */
2612         smp_mb__before_atomic();
2613         atomic_inc(&rdtp->dynticks_idle);
2614         smp_mb__after_atomic();
2615         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2616
2617         /*
2618          * If we are the timekeeping CPU, we are permitted to be non-idle
2619          * during a system-idle state.  This must be the case, because
2620          * the timekeeping CPU has to take scheduling-clock interrupts
2621          * during the time that the system is transitioning to full
2622          * system-idle state.  This means that the timekeeping CPU must
2623          * invoke rcu_sysidle_force_exit() directly if it does anything
2624          * more than take a scheduling-clock interrupt.
2625          */
2626         if (smp_processor_id() == tick_do_timer_cpu)
2627                 return;
2628
2629         /* Update system-idle state: We are clearly no longer fully idle! */
2630         rcu_sysidle_force_exit();
2631 }
2632
2633 /*
2634  * Check to see if the current CPU is idle.  Note that usermode execution
2635  * does not count as idle.  The caller must have disabled interrupts,
2636  * and must be running on tick_do_timer_cpu.
2637  */
2638 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2639                                   unsigned long *maxj)
2640 {
2641         int cur;
2642         unsigned long j;
2643         struct rcu_dynticks *rdtp = rdp->dynticks;
2644
2645         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2646         if (!tick_nohz_full_enabled())
2647                 return;
2648
2649         /*
2650          * If some other CPU has already reported non-idle, if this is
2651          * not the flavor of RCU that tracks sysidle state, or if this
2652          * is an offline or the timekeeping CPU, nothing to do.
2653          */
2654         if (!*isidle || rdp->rsp != rcu_state_p ||
2655             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2656                 return;
2657         /* Verify affinity of current kthread. */
2658         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2659
2660         /* Pick up current idle and NMI-nesting counter and check. */
2661         cur = atomic_read(&rdtp->dynticks_idle);
2662         if (cur & 0x1) {
2663                 *isidle = false; /* We are not idle! */
2664                 return;
2665         }
2666         smp_mb(); /* Read counters before timestamps. */
2667
2668         /* Pick up timestamps. */
2669         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2670         /* If this CPU entered idle more recently, update maxj timestamp. */
2671         if (ULONG_CMP_LT(*maxj, j))
2672                 *maxj = j;
2673 }
2674
2675 /*
2676  * Is this the flavor of RCU that is handling full-system idle?
2677  */
2678 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2679 {
2680         return rsp == rcu_state_p;
2681 }
2682
2683 /*
2684  * Return a delay in jiffies based on the number of CPUs, rcu_node
2685  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2686  * systems more time to transition to full-idle state in order to
2687  * avoid the cache thrashing that otherwise occur on the state variable.
2688  * Really small systems (less than a couple of tens of CPUs) should
2689  * instead use a single global atomically incremented counter, and later
2690  * versions of this will automatically reconfigure themselves accordingly.
2691  */
2692 static unsigned long rcu_sysidle_delay(void)
2693 {
2694         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2695                 return 0;
2696         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2697 }
2698
2699 /*
2700  * Advance the full-system-idle state.  This is invoked when all of
2701  * the non-timekeeping CPUs are idle.
2702  */
2703 static void rcu_sysidle(unsigned long j)
2704 {
2705         /* Check the current state. */
2706         switch (READ_ONCE(full_sysidle_state)) {
2707         case RCU_SYSIDLE_NOT:
2708
2709                 /* First time all are idle, so note a short idle period. */
2710                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2711                 break;
2712
2713         case RCU_SYSIDLE_SHORT:
2714
2715                 /*
2716                  * Idle for a bit, time to advance to next state?
2717                  * cmpxchg failure means race with non-idle, let them win.
2718                  */
2719                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2720                         (void)cmpxchg(&full_sysidle_state,
2721                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2722                 break;
2723
2724         case RCU_SYSIDLE_LONG:
2725
2726                 /*
2727                  * Do an additional check pass before advancing to full.
2728                  * cmpxchg failure means race with non-idle, let them win.
2729                  */
2730                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2731                         (void)cmpxchg(&full_sysidle_state,
2732                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2733                 break;
2734
2735         default:
2736                 break;
2737         }
2738 }
2739
2740 /*
2741  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2742  * back to the beginning.
2743  */
2744 static void rcu_sysidle_cancel(void)
2745 {
2746         smp_mb();
2747         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2748                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2749 }
2750
2751 /*
2752  * Update the sysidle state based on the results of a force-quiescent-state
2753  * scan of the CPUs' dyntick-idle state.
2754  */
2755 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2756                                unsigned long maxj, bool gpkt)
2757 {
2758         if (rsp != rcu_state_p)
2759                 return;  /* Wrong flavor, ignore. */
2760         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2761                 return;  /* Running state machine from timekeeping CPU. */
2762         if (isidle)
2763                 rcu_sysidle(maxj);    /* More idle! */
2764         else
2765                 rcu_sysidle_cancel(); /* Idle is over. */
2766 }
2767
2768 /*
2769  * Wrapper for rcu_sysidle_report() when called from the grace-period
2770  * kthread's context.
2771  */
2772 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2773                                   unsigned long maxj)
2774 {
2775         /* If there are no nohz_full= CPUs, no need to track this. */
2776         if (!tick_nohz_full_enabled())
2777                 return;
2778
2779         rcu_sysidle_report(rsp, isidle, maxj, true);
2780 }
2781
2782 /* Callback and function for forcing an RCU grace period. */
2783 struct rcu_sysidle_head {
2784         struct rcu_head rh;
2785         int inuse;
2786 };
2787
2788 static void rcu_sysidle_cb(struct rcu_head *rhp)
2789 {
2790         struct rcu_sysidle_head *rshp;
2791
2792         /*
2793          * The following memory barrier is needed to replace the
2794          * memory barriers that would normally be in the memory
2795          * allocator.
2796          */
2797         smp_mb();  /* grace period precedes setting inuse. */
2798
2799         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2800         WRITE_ONCE(rshp->inuse, 0);
2801 }
2802
2803 /*
2804  * Check to see if the system is fully idle, other than the timekeeping CPU.
2805  * The caller must have disabled interrupts.  This is not intended to be
2806  * called unless tick_nohz_full_enabled().
2807  */
2808 bool rcu_sys_is_idle(void)
2809 {
2810         static struct rcu_sysidle_head rsh;
2811         int rss = READ_ONCE(full_sysidle_state);
2812
2813         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2814                 return false;
2815
2816         /* Handle small-system case by doing a full scan of CPUs. */
2817         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2818                 int oldrss = rss - 1;
2819
2820                 /*
2821                  * One pass to advance to each state up to _FULL.
2822                  * Give up if any pass fails to advance the state.
2823                  */
2824                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2825                         int cpu;
2826                         bool isidle = true;
2827                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2828                         struct rcu_data *rdp;
2829
2830                         /* Scan all the CPUs looking for nonidle CPUs. */
2831                         for_each_possible_cpu(cpu) {
2832                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2833                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2834                                 if (!isidle)
2835                                         break;
2836                         }
2837                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2838                         oldrss = rss;
2839                         rss = READ_ONCE(full_sysidle_state);
2840                 }
2841         }
2842
2843         /* If this is the first observation of an idle period, record it. */
2844         if (rss == RCU_SYSIDLE_FULL) {
2845                 rss = cmpxchg(&full_sysidle_state,
2846                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2847                 return rss == RCU_SYSIDLE_FULL;
2848         }
2849
2850         smp_mb(); /* ensure rss load happens before later caller actions. */
2851
2852         /* If already fully idle, tell the caller (in case of races). */
2853         if (rss == RCU_SYSIDLE_FULL_NOTED)
2854                 return true;
2855
2856         /*
2857          * If we aren't there yet, and a grace period is not in flight,
2858          * initiate a grace period.  Either way, tell the caller that
2859          * we are not there yet.  We use an xchg() rather than an assignment
2860          * to make up for the memory barriers that would otherwise be
2861          * provided by the memory allocator.
2862          */
2863         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2864             !rcu_gp_in_progress(rcu_state_p) &&
2865             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2866                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2867         return false;
2868 }
2869
2870 /*
2871  * Initialize dynticks sysidle state for CPUs coming online.
2872  */
2873 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2874 {
2875         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2876 }
2877
2878 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2879
2880 static void rcu_sysidle_enter(int irq)
2881 {
2882 }
2883
2884 static void rcu_sysidle_exit(int irq)
2885 {
2886 }
2887
2888 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2889                                   unsigned long *maxj)
2890 {
2891 }
2892
2893 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2894 {
2895         return false;
2896 }
2897
2898 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2899                                   unsigned long maxj)
2900 {
2901 }
2902
2903 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2904 {
2905 }
2906
2907 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2908
2909 /*
2910  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2911  * grace-period kthread will do force_quiescent_state() processing?
2912  * The idea is to avoid waking up RCU core processing on such a
2913  * CPU unless the grace period has extended for too long.
2914  *
2915  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2916  * CONFIG_RCU_NOCB_CPU CPUs.
2917  */
2918 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2919 {
2920 #ifdef CONFIG_NO_HZ_FULL
2921         if (tick_nohz_full_cpu(smp_processor_id()) &&
2922             (!rcu_gp_in_progress(rsp) ||
2923              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2924                 return true;
2925 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2926         return false;
2927 }
2928
2929 /*
2930  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2931  * timekeeping CPU.
2932  */
2933 static void rcu_bind_gp_kthread(void)
2934 {
2935         int __maybe_unused cpu;
2936
2937         if (!tick_nohz_full_enabled())
2938                 return;
2939 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2940         cpu = tick_do_timer_cpu;
2941         if (cpu >= 0 && cpu < nr_cpu_ids)
2942                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2943 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2944         housekeeping_affine(current);
2945 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2946 }
2947
2948 /* Record the current task on dyntick-idle entry. */
2949 static void rcu_dynticks_task_enter(void)
2950 {
2951 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2952         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2953 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2954 }
2955
2956 /* Record no current task on dyntick-idle exit. */
2957 static void rcu_dynticks_task_exit(void)
2958 {
2959 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2960         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2961 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2962 }