4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
95 ktime_t soft, hard, now;
98 if (hrtimer_active(period_timer))
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 void update_rq_clock(struct rq *rq)
121 if (rq->skip_clock_update > 0)
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 update_rq_clock_task(rq, delta);
130 * Debugging: various feature bits
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
152 static int sched_feat_show(struct seq_file *m, void *v)
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
159 seq_printf(m, "%s ", sched_feat_names[i]);
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
180 static void sched_feat_disable(int i)
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
186 static void sched_feat_enable(int i)
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp)
201 if (strncmp(cmp, "NO_", 3) == 0) {
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
233 if (copy_from_user(&buf, ubuf, cnt))
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
248 static int sched_feat_open(struct inode *inode, struct file *filp)
250 return single_open(filp, sched_feat_show, NULL);
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
258 .release = single_release,
261 static __init int sched_init_debug(void)
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
278 * period over which we average the RT time consumption, measured
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
286 * period over which we measure -rt task cpu usage in us.
289 unsigned int sysctl_sched_rt_period = 1000000;
291 __read_mostly int scheduler_running;
294 * part of the period that we allow rt tasks to run in us.
297 int sysctl_sched_rt_runtime = 950000;
302 * __task_rq_lock - lock the rq @p resides on.
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
309 lockdep_assert_held(&p->pi_lock);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
316 raw_spin_unlock(&rq->lock);
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
340 static void __task_rq_unlock(struct rq *rq)
343 raw_spin_unlock(&rq->lock);
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
349 __releases(p->pi_lock)
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
356 * this_rq_lock - lock this runqueue and disable interrupts.
358 static struct rq *this_rq_lock(void)
365 raw_spin_lock(&rq->lock);
370 #ifdef CONFIG_SCHED_HRTICK
372 * Use HR-timers to deliver accurate preemption points.
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
382 static void hrtick_clear(struct rq *rq)
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
398 raw_spin_lock(&rq->lock);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
403 return HRTIMER_NORESTART;
408 * called from hardirq (IPI) context
410 static void __hrtick_start(void *arg)
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
421 * Called to set the hrtick timer state.
423 * called with rq->lock held and irqs disabled
425 void hrtick_start(struct rq *rq, u64 delay)
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 hrtimer_set_expires(timer, time);
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 int cpu = (int)(long)hcpu;
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
459 static __init void init_hrtick(void)
461 hotcpu_notifier(hotplug_hrtick, 0);
465 * Called to set the hrtick timer state.
467 * called with rq->lock held and irqs disabled
469 void hrtick_start(struct rq *rq, u64 delay)
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
475 static inline void init_hrtick(void)
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq *rq)
483 rq->hrtick_csd_pending = 0;
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
498 static inline void init_rq_hrtick(struct rq *rq)
502 static inline void init_hrtick(void)
505 #endif /* CONFIG_SCHED_HRTICK */
508 * resched_task - mark a task 'to be rescheduled now'.
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
515 void resched_task(struct task_struct *p)
519 assert_raw_spin_locked(&task_rq(p)->lock);
521 if (test_tsk_need_resched(p))
524 set_tsk_need_resched(p);
527 if (cpu == smp_processor_id())
530 /* NEED_RESCHED must be visible before we test polling */
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
536 void resched_cpu(int cpu)
538 struct rq *rq = cpu_rq(cpu);
541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 resched_task(cpu_curr(cpu));
544 raw_spin_unlock_irqrestore(&rq->lock, flags);
547 #ifdef CONFIG_NO_HZ_COMMON
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
556 int get_nohz_timer_target(void)
558 int cpu = smp_processor_id();
560 struct sched_domain *sd;
563 for_each_domain(cpu, sd) {
564 for_each_cpu(i, sched_domain_span(sd)) {
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
585 static void wake_up_idle_cpu(int cpu)
587 struct rq *rq = cpu_rq(cpu);
589 if (cpu == smp_processor_id())
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
599 if (rq->curr != rq->idle)
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
607 set_tsk_need_resched(rq->idle);
609 /* NEED_RESCHED must be visible before we test polling */
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
615 static bool wake_up_full_nohz_cpu(int cpu)
617 if (tick_nohz_full_cpu(cpu)) {
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
627 void wake_up_nohz_cpu(int cpu)
629 if (!wake_up_full_nohz_cpu(cpu))
630 wake_up_idle_cpu(cpu);
633 static inline bool got_nohz_idle_kick(void)
635 int cpu = smp_processor_id();
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 if (idle_cpu(cpu) && !need_resched())
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
651 #else /* CONFIG_NO_HZ_COMMON */
653 static inline bool got_nohz_idle_kick(void)
658 #endif /* CONFIG_NO_HZ_COMMON */
660 #ifdef CONFIG_NO_HZ_FULL
661 bool sched_can_stop_tick(void)
667 /* Make sure rq->nr_running update is visible after the IPI */
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
676 #endif /* CONFIG_NO_HZ_FULL */
678 void sched_avg_update(struct rq *rq)
680 s64 period = sched_avg_period();
682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
688 asm("" : "+rm" (rq->age_stamp));
689 rq->age_stamp += period;
694 #else /* !CONFIG_SMP */
695 void resched_task(struct task_struct *p)
697 assert_raw_spin_locked(&task_rq(p)->lock);
698 set_tsk_need_resched(p);
700 #endif /* CONFIG_SMP */
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
708 * Caller must hold rcu_lock or sufficient equivalent.
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
713 struct task_group *parent, *child;
719 ret = (*down)(parent, data);
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
734 parent = parent->parent;
741 int tg_nop(struct task_group *tg, void *data)
747 static void set_load_weight(struct task_struct *p)
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
753 * SCHED_IDLE tasks get minimal weight:
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768 sched_info_queued(p);
769 p->sched_class->enqueue_task(rq, p, flags);
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 sched_info_dequeued(p);
776 p->sched_class->dequeue_task(rq, p, flags);
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
784 enqueue_task(rq, p, flags);
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
792 dequeue_task(rq, p, flags);
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
822 if (irq_delta > delta)
825 rq->prev_irq_time += irq_delta;
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((¶virt_steal_rq_enabled))) {
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
835 if (unlikely(steal > delta))
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
841 rq->prev_steal_time_rq += steal;
847 rq->clock_task += delta;
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
855 void sched_set_stop_task(int cpu, struct task_struct *stop)
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
871 stop->sched_class = &stop_sched_class;
874 cpu_rq(cpu)->stop = stop;
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
881 old_stop->sched_class = &rt_sched_class;
886 * __normal_prio - return the priority that is based on the static prio
888 static inline int __normal_prio(struct task_struct *p)
890 return p->static_prio;
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
900 static inline int normal_prio(struct task_struct *p)
904 if (task_has_rt_policy(p))
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
907 prio = __normal_prio(p);
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
918 static int effective_prio(struct task_struct *p)
920 p->normal_prio = normal_prio(p);
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
935 inline int task_curr(const struct task_struct *p)
937 return cpu_curr(task_cpu(p)) == p;
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
954 const struct sched_class *class;
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
979 void register_task_migration_notifier(struct notifier_block *n)
981 atomic_notifier_chain_register(&task_migration_notifier, n);
985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
987 #ifdef CONFIG_SCHED_DEBUG
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
995 #ifdef CONFIG_LOCKDEP
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
1003 * Furthermore, all task_rq users should acquire both locks, see
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1011 trace_sched_migrate_task(p, new_cpu);
1013 if (task_cpu(p) != new_cpu) {
1014 struct task_migration_notifier tmn;
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
1018 p->se.nr_migrations++;
1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1028 __set_task_cpu(p, new_cpu);
1031 struct migration_arg {
1032 struct task_struct *task;
1036 static int migration_cpu_stop(void *data);
1039 * wait_task_inactive - wait for a thread to unschedule.
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1056 unsigned long flags;
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1092 rq = task_rq_lock(p, &flags);
1093 trace_sched_wait_task(p);
1094 running = task_running(rq, p);
1097 if (!match_state || p->state == match_state)
1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099 task_rq_unlock(rq, p, &flags);
1102 * If it changed from the expected state, bail out now.
1104 if (unlikely(!ncsw))
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1111 * Oops. Go back and try again..
1113 if (unlikely(running)) {
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1123 * So if it was still runnable (but just not actively
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1127 if (unlikely(on_rq)) {
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1159 void kick_process(struct task_struct *p)
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1169 EXPORT_SYMBOL_GPL(kick_process);
1170 #endif /* CONFIG_SMP */
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1176 static int select_fallback_rq(int cpu, struct task_struct *p)
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
1180 enum { cpuset, possible, fail } state = cpuset;
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1189 nodemask = cpumask_of_node(nid);
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1195 if (!cpu_active(dest_cpu))
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1203 /* Any allowed, online CPU? */
1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 if (!cpu_online(dest_cpu))
1207 if (!cpu_active(dest_cpu))
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1231 if (state != cpuset) {
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1237 if (p->mm && printk_ratelimit()) {
1238 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1259 * Since this is common to all placement strategies, this lives here.
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1266 cpu = select_fallback_rq(task_cpu(p), p);
1271 static void update_avg(u64 *avg, u64 sample)
1273 s64 diff = sample - *avg;
1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1281 #ifdef CONFIG_SCHEDSTATS
1282 struct rq *rq = this_rq();
1285 int this_cpu = smp_processor_id();
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1291 struct sched_domain *sd;
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1307 #endif /* CONFIG_SMP */
1309 schedstat_inc(rq, ttwu_count);
1310 schedstat_inc(p, se.statistics.nr_wakeups);
1312 if (wake_flags & WF_SYNC)
1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1315 #endif /* CONFIG_SCHEDSTATS */
1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1320 activate_task(rq, p, en_flags);
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
1329 * Mark the task runnable and perform wakeup-preemption.
1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1334 check_preempt_curr(rq, p, wake_flags);
1335 trace_sched_wakeup(p, true);
1337 p->state = TASK_RUNNING;
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1342 if (rq->idle_stamp) {
1343 u64 delta = rq_clock(rq) - rq->idle_stamp;
1344 u64 max = 2*sysctl_sched_migration_cost;
1349 update_avg(&rq->avg_idle, delta);
1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1373 static int ttwu_remote(struct task_struct *p, int wake_flags)
1378 rq = __task_rq_lock(p);
1380 /* check_preempt_curr() may use rq clock */
1381 update_rq_clock(rq);
1382 ttwu_do_wakeup(rq, p, wake_flags);
1385 __task_rq_unlock(rq);
1391 static void sched_ttwu_pending(void)
1393 struct rq *rq = this_rq();
1394 struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 struct task_struct *p;
1397 raw_spin_lock(&rq->lock);
1400 p = llist_entry(llist, struct task_struct, wake_entry);
1401 llist = llist_next(llist);
1402 ttwu_do_activate(rq, p, 0);
1405 raw_spin_unlock(&rq->lock);
1408 void scheduler_ipi(void)
1410 if (llist_empty(&this_rq()->wake_list)
1411 && !tick_nohz_full_cpu(smp_processor_id())
1412 && !got_nohz_idle_kick())
1416 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 * traditionally all their work was done from the interrupt return
1418 * path. Now that we actually do some work, we need to make sure
1421 * Some archs already do call them, luckily irq_enter/exit nest
1424 * Arguably we should visit all archs and update all handlers,
1425 * however a fair share of IPIs are still resched only so this would
1426 * somewhat pessimize the simple resched case.
1429 tick_nohz_full_check();
1430 sched_ttwu_pending();
1433 * Check if someone kicked us for doing the nohz idle load balance.
1435 if (unlikely(got_nohz_idle_kick())) {
1436 this_rq()->idle_balance = 1;
1437 raise_softirq_irqoff(SCHED_SOFTIRQ);
1442 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1444 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445 smp_send_reschedule(cpu);
1448 bool cpus_share_cache(int this_cpu, int that_cpu)
1450 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1452 #endif /* CONFIG_SMP */
1454 static void ttwu_queue(struct task_struct *p, int cpu)
1456 struct rq *rq = cpu_rq(cpu);
1458 #if defined(CONFIG_SMP)
1459 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461 ttwu_queue_remote(p, cpu);
1466 raw_spin_lock(&rq->lock);
1467 ttwu_do_activate(rq, p, 0);
1468 raw_spin_unlock(&rq->lock);
1472 * try_to_wake_up - wake up a thread
1473 * @p: the thread to be awakened
1474 * @state: the mask of task states that can be woken
1475 * @wake_flags: wake modifier flags (WF_*)
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1487 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1489 unsigned long flags;
1490 int cpu, success = 0;
1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
1494 if (!(p->state & state))
1497 success = 1; /* we're going to change ->state */
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
1511 * Pairs with the smp_wmb() in finish_lock_switch().
1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516 p->state = TASK_WAKING;
1518 if (p->sched_class->task_waking)
1519 p->sched_class->task_waking(p);
1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
1524 set_task_cpu(p, cpu);
1526 #endif /* CONFIG_SMP */
1530 ttwu_stat(p, cpu, wake_flags);
1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1545 static void try_to_wake_up_local(struct task_struct *p)
1547 struct rq *rq = task_rq(p);
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1553 lockdep_assert_held(&rq->lock);
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1561 if (!(p->state & TASK_NORMAL))
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1567 ttwu_do_wakeup(rq, p, 0);
1568 ttwu_stat(p, smp_processor_id(), 0);
1570 raw_spin_unlock(&p->pi_lock);
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes. Returns 1 if the process was woken up, 0 if it was already
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1584 int wake_up_process(struct task_struct *p)
1586 WARN_ON(task_is_stopped_or_traced(p));
1587 return try_to_wake_up(p, TASK_NORMAL, 0);
1589 EXPORT_SYMBOL(wake_up_process);
1591 int wake_up_state(struct task_struct *p, unsigned int state)
1593 return try_to_wake_up(p, state, 0);
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1600 * __sched_fork() is basic setup used by init_idle() too:
1602 static void __sched_fork(struct task_struct *p)
1607 p->se.exec_start = 0;
1608 p->se.sum_exec_runtime = 0;
1609 p->se.prev_sum_exec_runtime = 0;
1610 p->se.nr_migrations = 0;
1612 INIT_LIST_HEAD(&p->se.group_node);
1614 #ifdef CONFIG_SCHEDSTATS
1615 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1618 INIT_LIST_HEAD(&p->rt.run_list);
1620 #ifdef CONFIG_PREEMPT_NOTIFIERS
1621 INIT_HLIST_HEAD(&p->preempt_notifiers);
1624 #ifdef CONFIG_NUMA_BALANCING
1625 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1626 p->mm->numa_next_scan = jiffies;
1627 p->mm->numa_next_reset = jiffies;
1628 p->mm->numa_scan_seq = 0;
1631 p->node_stamp = 0ULL;
1632 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1633 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1634 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1635 p->numa_work.next = &p->numa_work;
1636 #endif /* CONFIG_NUMA_BALANCING */
1639 #ifdef CONFIG_NUMA_BALANCING
1640 #ifdef CONFIG_SCHED_DEBUG
1641 void set_numabalancing_state(bool enabled)
1644 sched_feat_set("NUMA");
1646 sched_feat_set("NO_NUMA");
1649 __read_mostly bool numabalancing_enabled;
1651 void set_numabalancing_state(bool enabled)
1653 numabalancing_enabled = enabled;
1655 #endif /* CONFIG_SCHED_DEBUG */
1656 #endif /* CONFIG_NUMA_BALANCING */
1659 * fork()/clone()-time setup:
1661 void sched_fork(struct task_struct *p)
1663 unsigned long flags;
1664 int cpu = get_cpu();
1668 * We mark the process as running here. This guarantees that
1669 * nobody will actually run it, and a signal or other external
1670 * event cannot wake it up and insert it on the runqueue either.
1672 p->state = TASK_RUNNING;
1675 * Make sure we do not leak PI boosting priority to the child.
1677 p->prio = current->normal_prio;
1680 * Revert to default priority/policy on fork if requested.
1682 if (unlikely(p->sched_reset_on_fork)) {
1683 if (task_has_rt_policy(p)) {
1684 p->policy = SCHED_NORMAL;
1685 p->static_prio = NICE_TO_PRIO(0);
1687 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1688 p->static_prio = NICE_TO_PRIO(0);
1690 p->prio = p->normal_prio = __normal_prio(p);
1694 * We don't need the reset flag anymore after the fork. It has
1695 * fulfilled its duty:
1697 p->sched_reset_on_fork = 0;
1700 if (!rt_prio(p->prio))
1701 p->sched_class = &fair_sched_class;
1703 if (p->sched_class->task_fork)
1704 p->sched_class->task_fork(p);
1707 * The child is not yet in the pid-hash so no cgroup attach races,
1708 * and the cgroup is pinned to this child due to cgroup_fork()
1709 * is ran before sched_fork().
1711 * Silence PROVE_RCU.
1713 raw_spin_lock_irqsave(&p->pi_lock, flags);
1714 set_task_cpu(p, cpu);
1715 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1718 if (likely(sched_info_on()))
1719 memset(&p->sched_info, 0, sizeof(p->sched_info));
1721 #if defined(CONFIG_SMP)
1724 #ifdef CONFIG_PREEMPT_COUNT
1725 /* Want to start with kernel preemption disabled. */
1726 task_thread_info(p)->preempt_count = 1;
1729 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1736 * wake_up_new_task - wake up a newly created task for the first time.
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1742 void wake_up_new_task(struct task_struct *p)
1744 unsigned long flags;
1747 raw_spin_lock_irqsave(&p->pi_lock, flags);
1750 * Fork balancing, do it here and not earlier because:
1751 * - cpus_allowed can change in the fork path
1752 * - any previously selected cpu might disappear through hotplug
1754 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1757 /* Initialize new task's runnable average */
1758 init_task_runnable_average(p);
1759 rq = __task_rq_lock(p);
1760 activate_task(rq, p, 0);
1762 trace_sched_wakeup_new(p, true);
1763 check_preempt_curr(rq, p, WF_FORK);
1765 if (p->sched_class->task_woken)
1766 p->sched_class->task_woken(rq, p);
1768 task_rq_unlock(rq, p, &flags);
1771 #ifdef CONFIG_PREEMPT_NOTIFIERS
1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1775 * @notifier: notifier struct to register
1777 void preempt_notifier_register(struct preempt_notifier *notifier)
1779 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
1781 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1787 * This is safe to call from within a preemption notifier.
1789 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1791 hlist_del(¬ifier->link);
1793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1795 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1797 struct preempt_notifier *notifier;
1799 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1804 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 struct task_struct *next)
1807 struct preempt_notifier *notifier;
1809 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810 notifier->ops->sched_out(notifier, next);
1813 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1815 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1820 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821 struct task_struct *next)
1825 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
1830 * @prev: the current task that is being switched out
1831 * @next: the task we are going to switch to.
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1837 * prepare_task_switch sets up locking and calls architecture specific
1841 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842 struct task_struct *next)
1844 trace_sched_switch(prev, next);
1845 sched_info_switch(prev, next);
1846 perf_event_task_sched_out(prev, next);
1847 fire_sched_out_preempt_notifiers(prev, next);
1848 prepare_lock_switch(rq, next);
1849 prepare_arch_switch(next);
1853 * finish_task_switch - clean up after a task-switch
1854 * @rq: runqueue associated with task-switch
1855 * @prev: the thread we just switched away from.
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1862 * Note that we may have delayed dropping an mm in context_switch(). If
1863 * so, we finish that here outside of the runqueue lock. (Doing it
1864 * with the lock held can cause deadlocks; see schedule() for
1867 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1868 __releases(rq->lock)
1870 struct mm_struct *mm = rq->prev_mm;
1876 * A task struct has one reference for the use as "current".
1877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1878 * schedule one last time. The schedule call will never return, and
1879 * the scheduled task must drop that reference.
1880 * The test for TASK_DEAD must occur while the runqueue locks are
1881 * still held, otherwise prev could be scheduled on another cpu, die
1882 * there before we look at prev->state, and then the reference would
1884 * Manfred Spraul <manfred@colorfullife.com>
1886 prev_state = prev->state;
1887 vtime_task_switch(prev);
1888 finish_arch_switch(prev);
1889 perf_event_task_sched_in(prev, current);
1890 finish_lock_switch(rq, prev);
1891 finish_arch_post_lock_switch();
1893 fire_sched_in_preempt_notifiers(current);
1896 if (unlikely(prev_state == TASK_DEAD)) {
1898 * Remove function-return probe instances associated with this
1899 * task and put them back on the free list.
1901 kprobe_flush_task(prev);
1902 put_task_struct(prev);
1905 tick_nohz_task_switch(current);
1910 /* assumes rq->lock is held */
1911 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1913 if (prev->sched_class->pre_schedule)
1914 prev->sched_class->pre_schedule(rq, prev);
1917 /* rq->lock is NOT held, but preemption is disabled */
1918 static inline void post_schedule(struct rq *rq)
1920 if (rq->post_schedule) {
1921 unsigned long flags;
1923 raw_spin_lock_irqsave(&rq->lock, flags);
1924 if (rq->curr->sched_class->post_schedule)
1925 rq->curr->sched_class->post_schedule(rq);
1926 raw_spin_unlock_irqrestore(&rq->lock, flags);
1928 rq->post_schedule = 0;
1934 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1938 static inline void post_schedule(struct rq *rq)
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1948 asmlinkage void schedule_tail(struct task_struct *prev)
1949 __releases(rq->lock)
1951 struct rq *rq = this_rq();
1953 finish_task_switch(rq, prev);
1956 * FIXME: do we need to worry about rq being invalidated by the
1961 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962 /* In this case, finish_task_switch does not reenable preemption */
1965 if (current->set_child_tid)
1966 put_user(task_pid_vnr(current), current->set_child_tid);
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1974 context_switch(struct rq *rq, struct task_struct *prev,
1975 struct task_struct *next)
1977 struct mm_struct *mm, *oldmm;
1979 prepare_task_switch(rq, prev, next);
1982 oldmm = prev->active_mm;
1984 * For paravirt, this is coupled with an exit in switch_to to
1985 * combine the page table reload and the switch backend into
1988 arch_start_context_switch(prev);
1991 next->active_mm = oldmm;
1992 atomic_inc(&oldmm->mm_count);
1993 enter_lazy_tlb(oldmm, next);
1995 switch_mm(oldmm, mm, next);
1998 prev->active_mm = NULL;
1999 rq->prev_mm = oldmm;
2002 * Since the runqueue lock will be released by the next
2003 * task (which is an invalid locking op but in the case
2004 * of the scheduler it's an obvious special-case), so we
2005 * do an early lockdep release here:
2007 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2011 context_tracking_task_switch(prev, next);
2012 /* Here we just switch the register state and the stack. */
2013 switch_to(prev, next, prev);
2017 * this_rq must be evaluated again because prev may have moved
2018 * CPUs since it called schedule(), thus the 'rq' on its stack
2019 * frame will be invalid.
2021 finish_task_switch(this_rq(), prev);
2025 * nr_running and nr_context_switches:
2027 * externally visible scheduler statistics: current number of runnable
2028 * threads, total number of context switches performed since bootup.
2030 unsigned long nr_running(void)
2032 unsigned long i, sum = 0;
2034 for_each_online_cpu(i)
2035 sum += cpu_rq(i)->nr_running;
2040 unsigned long long nr_context_switches(void)
2043 unsigned long long sum = 0;
2045 for_each_possible_cpu(i)
2046 sum += cpu_rq(i)->nr_switches;
2051 unsigned long nr_iowait(void)
2053 unsigned long i, sum = 0;
2055 for_each_possible_cpu(i)
2056 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2061 unsigned long nr_iowait_cpu(int cpu)
2063 struct rq *this = cpu_rq(cpu);
2064 return atomic_read(&this->nr_iowait);
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
2073 void sched_exec(void)
2075 struct task_struct *p = current;
2076 unsigned long flags;
2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081 if (dest_cpu == smp_processor_id())
2084 if (likely(cpu_active(dest_cpu))) {
2085 struct migration_arg arg = { p, dest_cpu };
2087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2097 DEFINE_PER_CPU(struct kernel_stat, kstat);
2098 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2100 EXPORT_PER_CPU_SYMBOL(kstat);
2101 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2104 * Return any ns on the sched_clock that have not yet been accounted in
2105 * @p in case that task is currently running.
2107 * Called with task_rq_lock() held on @rq.
2109 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2113 if (task_current(rq, p)) {
2114 update_rq_clock(rq);
2115 ns = rq_clock_task(rq) - p->se.exec_start;
2123 unsigned long long task_delta_exec(struct task_struct *p)
2125 unsigned long flags;
2129 rq = task_rq_lock(p, &flags);
2130 ns = do_task_delta_exec(p, rq);
2131 task_rq_unlock(rq, p, &flags);
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2141 unsigned long long task_sched_runtime(struct task_struct *p)
2143 unsigned long flags;
2147 rq = task_rq_lock(p, &flags);
2148 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149 task_rq_unlock(rq, p, &flags);
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
2158 void scheduler_tick(void)
2160 int cpu = smp_processor_id();
2161 struct rq *rq = cpu_rq(cpu);
2162 struct task_struct *curr = rq->curr;
2166 raw_spin_lock(&rq->lock);
2167 update_rq_clock(rq);
2168 curr->sched_class->task_tick(rq, curr, 0);
2169 update_cpu_load_active(rq);
2170 raw_spin_unlock(&rq->lock);
2172 perf_event_task_tick();
2175 rq->idle_balance = idle_cpu(cpu);
2176 trigger_load_balance(rq, cpu);
2178 rq_last_tick_reset(rq);
2181 #ifdef CONFIG_NO_HZ_FULL
2183 * scheduler_tick_max_deferment
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
2193 u64 scheduler_tick_max_deferment(void)
2195 struct rq *rq = this_rq();
2196 unsigned long next, now = ACCESS_ONCE(jiffies);
2198 next = rq->last_sched_tick + HZ;
2200 if (time_before_eq(next, now))
2203 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2207 notrace unsigned long get_parent_ip(unsigned long addr)
2209 if (in_lock_functions(addr)) {
2210 addr = CALLER_ADDR2;
2211 if (in_lock_functions(addr))
2212 addr = CALLER_ADDR3;
2217 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218 defined(CONFIG_PREEMPT_TRACER))
2220 void __kprobes add_preempt_count(int val)
2222 #ifdef CONFIG_DEBUG_PREEMPT
2226 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229 preempt_count() += val;
2230 #ifdef CONFIG_DEBUG_PREEMPT
2232 * Spinlock count overflowing soon?
2234 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237 if (preempt_count() == val)
2238 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2240 EXPORT_SYMBOL(add_preempt_count);
2242 void __kprobes sub_preempt_count(int val)
2244 #ifdef CONFIG_DEBUG_PREEMPT
2248 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251 * Is the spinlock portion underflowing?
2253 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254 !(preempt_count() & PREEMPT_MASK)))
2258 if (preempt_count() == val)
2259 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260 preempt_count() -= val;
2262 EXPORT_SYMBOL(sub_preempt_count);
2267 * Print scheduling while atomic bug:
2269 static noinline void __schedule_bug(struct task_struct *prev)
2271 if (oops_in_progress)
2274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275 prev->comm, prev->pid, preempt_count());
2277 debug_show_held_locks(prev);
2279 if (irqs_disabled())
2280 print_irqtrace_events(prev);
2282 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2286 * Various schedule()-time debugging checks and statistics:
2288 static inline void schedule_debug(struct task_struct *prev)
2291 * Test if we are atomic. Since do_exit() needs to call into
2292 * schedule() atomically, we ignore that path for now.
2293 * Otherwise, whine if we are scheduling when we should not be.
2295 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2296 __schedule_bug(prev);
2299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2301 schedstat_inc(this_rq(), sched_count);
2304 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2306 if (prev->on_rq || rq->skip_clock_update < 0)
2307 update_rq_clock(rq);
2308 prev->sched_class->put_prev_task(rq, prev);
2312 * Pick up the highest-prio task:
2314 static inline struct task_struct *
2315 pick_next_task(struct rq *rq)
2317 const struct sched_class *class;
2318 struct task_struct *p;
2321 * Optimization: we know that if all tasks are in
2322 * the fair class we can call that function directly:
2324 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325 p = fair_sched_class.pick_next_task(rq);
2330 for_each_class(class) {
2331 p = class->pick_next_task(rq);
2336 BUG(); /* the idle class will always have a runnable task */
2340 * __schedule() is the main scheduler function.
2342 * The main means of driving the scheduler and thus entering this function are:
2344 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2346 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 * paths. For example, see arch/x86/entry_64.S.
2349 * To drive preemption between tasks, the scheduler sets the flag in timer
2350 * interrupt handler scheduler_tick().
2352 * 3. Wakeups don't really cause entry into schedule(). They add a
2353 * task to the run-queue and that's it.
2355 * Now, if the new task added to the run-queue preempts the current
2356 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 * called on the nearest possible occasion:
2359 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2361 * - in syscall or exception context, at the next outmost
2362 * preempt_enable(). (this might be as soon as the wake_up()'s
2365 * - in IRQ context, return from interrupt-handler to
2366 * preemptible context
2368 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371 * - cond_resched() call
2372 * - explicit schedule() call
2373 * - return from syscall or exception to user-space
2374 * - return from interrupt-handler to user-space
2376 static void __sched __schedule(void)
2378 struct task_struct *prev, *next;
2379 unsigned long *switch_count;
2385 cpu = smp_processor_id();
2387 rcu_note_context_switch(cpu);
2390 schedule_debug(prev);
2392 if (sched_feat(HRTICK))
2395 raw_spin_lock_irq(&rq->lock);
2397 switch_count = &prev->nivcsw;
2398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2399 if (unlikely(signal_pending_state(prev->state, prev))) {
2400 prev->state = TASK_RUNNING;
2402 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2406 * If a worker went to sleep, notify and ask workqueue
2407 * whether it wants to wake up a task to maintain
2410 if (prev->flags & PF_WQ_WORKER) {
2411 struct task_struct *to_wakeup;
2413 to_wakeup = wq_worker_sleeping(prev, cpu);
2415 try_to_wake_up_local(to_wakeup);
2418 switch_count = &prev->nvcsw;
2421 pre_schedule(rq, prev);
2423 if (unlikely(!rq->nr_running))
2424 idle_balance(cpu, rq);
2426 put_prev_task(rq, prev);
2427 next = pick_next_task(rq);
2428 clear_tsk_need_resched(prev);
2429 rq->skip_clock_update = 0;
2431 if (likely(prev != next)) {
2436 context_switch(rq, prev, next); /* unlocks the rq */
2438 * The context switch have flipped the stack from under us
2439 * and restored the local variables which were saved when
2440 * this task called schedule() in the past. prev == current
2441 * is still correct, but it can be moved to another cpu/rq.
2443 cpu = smp_processor_id();
2446 raw_spin_unlock_irq(&rq->lock);
2450 sched_preempt_enable_no_resched();
2455 static inline void sched_submit_work(struct task_struct *tsk)
2457 if (!tsk->state || tsk_is_pi_blocked(tsk))
2460 * If we are going to sleep and we have plugged IO queued,
2461 * make sure to submit it to avoid deadlocks.
2463 if (blk_needs_flush_plug(tsk))
2464 blk_schedule_flush_plug(tsk);
2467 asmlinkage void __sched schedule(void)
2469 struct task_struct *tsk = current;
2471 sched_submit_work(tsk);
2474 EXPORT_SYMBOL(schedule);
2476 #ifdef CONFIG_CONTEXT_TRACKING
2477 asmlinkage void __sched schedule_user(void)
2480 * If we come here after a random call to set_need_resched(),
2481 * or we have been woken up remotely but the IPI has not yet arrived,
2482 * we haven't yet exited the RCU idle mode. Do it here manually until
2483 * we find a better solution.
2492 * schedule_preempt_disabled - called with preemption disabled
2494 * Returns with preemption disabled. Note: preempt_count must be 1
2496 void __sched schedule_preempt_disabled(void)
2498 sched_preempt_enable_no_resched();
2503 #ifdef CONFIG_PREEMPT
2505 * this is the entry point to schedule() from in-kernel preemption
2506 * off of preempt_enable. Kernel preemptions off return from interrupt
2507 * occur there and call schedule directly.
2509 asmlinkage void __sched notrace preempt_schedule(void)
2511 struct thread_info *ti = current_thread_info();
2514 * If there is a non-zero preempt_count or interrupts are disabled,
2515 * we do not want to preempt the current task. Just return..
2517 if (likely(ti->preempt_count || irqs_disabled()))
2521 add_preempt_count_notrace(PREEMPT_ACTIVE);
2523 sub_preempt_count_notrace(PREEMPT_ACTIVE);
2526 * Check again in case we missed a preemption opportunity
2527 * between schedule and now.
2530 } while (need_resched());
2532 EXPORT_SYMBOL(preempt_schedule);
2535 * this is the entry point to schedule() from kernel preemption
2536 * off of irq context.
2537 * Note, that this is called and return with irqs disabled. This will
2538 * protect us against recursive calling from irq.
2540 asmlinkage void __sched preempt_schedule_irq(void)
2542 struct thread_info *ti = current_thread_info();
2543 enum ctx_state prev_state;
2545 /* Catch callers which need to be fixed */
2546 BUG_ON(ti->preempt_count || !irqs_disabled());
2548 prev_state = exception_enter();
2551 add_preempt_count(PREEMPT_ACTIVE);
2554 local_irq_disable();
2555 sub_preempt_count(PREEMPT_ACTIVE);
2558 * Check again in case we missed a preemption opportunity
2559 * between schedule and now.
2562 } while (need_resched());
2564 exception_exit(prev_state);
2567 #endif /* CONFIG_PREEMPT */
2569 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2572 return try_to_wake_up(curr->private, mode, wake_flags);
2574 EXPORT_SYMBOL(default_wake_function);
2577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2579 * number) then we wake all the non-exclusive tasks and one exclusive task.
2581 * There are circumstances in which we can try to wake a task which has already
2582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2585 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2586 int nr_exclusive, int wake_flags, void *key)
2588 wait_queue_t *curr, *next;
2590 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2591 unsigned flags = curr->flags;
2593 if (curr->func(curr, mode, wake_flags, key) &&
2594 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2600 * __wake_up - wake up threads blocked on a waitqueue.
2602 * @mode: which threads
2603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2604 * @key: is directly passed to the wakeup function
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2609 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2610 int nr_exclusive, void *key)
2612 unsigned long flags;
2614 spin_lock_irqsave(&q->lock, flags);
2615 __wake_up_common(q, mode, nr_exclusive, 0, key);
2616 spin_unlock_irqrestore(&q->lock, flags);
2618 EXPORT_SYMBOL(__wake_up);
2621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2623 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2625 __wake_up_common(q, mode, nr, 0, NULL);
2627 EXPORT_SYMBOL_GPL(__wake_up_locked);
2629 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2631 __wake_up_common(q, mode, 1, 0, key);
2633 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2638 * @mode: which threads
2639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2640 * @key: opaque value to be passed to wakeup targets
2642 * The sync wakeup differs that the waker knows that it will schedule
2643 * away soon, so while the target thread will be woken up, it will not
2644 * be migrated to another CPU - ie. the two threads are 'synchronized'
2645 * with each other. This can prevent needless bouncing between CPUs.
2647 * On UP it can prevent extra preemption.
2649 * It may be assumed that this function implies a write memory barrier before
2650 * changing the task state if and only if any tasks are woken up.
2652 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2653 int nr_exclusive, void *key)
2655 unsigned long flags;
2656 int wake_flags = WF_SYNC;
2661 if (unlikely(!nr_exclusive))
2664 spin_lock_irqsave(&q->lock, flags);
2665 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2666 spin_unlock_irqrestore(&q->lock, flags);
2668 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671 * __wake_up_sync - see __wake_up_sync_key()
2673 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2675 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2677 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2680 * complete: - signals a single thread waiting on this completion
2681 * @x: holds the state of this particular completion
2683 * This will wake up a single thread waiting on this completion. Threads will be
2684 * awakened in the same order in which they were queued.
2686 * See also complete_all(), wait_for_completion() and related routines.
2688 * It may be assumed that this function implies a write memory barrier before
2689 * changing the task state if and only if any tasks are woken up.
2691 void complete(struct completion *x)
2693 unsigned long flags;
2695 spin_lock_irqsave(&x->wait.lock, flags);
2697 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2698 spin_unlock_irqrestore(&x->wait.lock, flags);
2700 EXPORT_SYMBOL(complete);
2703 * complete_all: - signals all threads waiting on this completion
2704 * @x: holds the state of this particular completion
2706 * This will wake up all threads waiting on this particular completion event.
2708 * It may be assumed that this function implies a write memory barrier before
2709 * changing the task state if and only if any tasks are woken up.
2711 void complete_all(struct completion *x)
2713 unsigned long flags;
2715 spin_lock_irqsave(&x->wait.lock, flags);
2716 x->done += UINT_MAX/2;
2717 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2718 spin_unlock_irqrestore(&x->wait.lock, flags);
2720 EXPORT_SYMBOL(complete_all);
2722 static inline long __sched
2723 do_wait_for_common(struct completion *x,
2724 long (*action)(long), long timeout, int state)
2727 DECLARE_WAITQUEUE(wait, current);
2729 __add_wait_queue_tail_exclusive(&x->wait, &wait);
2731 if (signal_pending_state(state, current)) {
2732 timeout = -ERESTARTSYS;
2735 __set_current_state(state);
2736 spin_unlock_irq(&x->wait.lock);
2737 timeout = action(timeout);
2738 spin_lock_irq(&x->wait.lock);
2739 } while (!x->done && timeout);
2740 __remove_wait_queue(&x->wait, &wait);
2745 return timeout ?: 1;
2748 static inline long __sched
2749 __wait_for_common(struct completion *x,
2750 long (*action)(long), long timeout, int state)
2754 spin_lock_irq(&x->wait.lock);
2755 timeout = do_wait_for_common(x, action, timeout, state);
2756 spin_unlock_irq(&x->wait.lock);
2761 wait_for_common(struct completion *x, long timeout, int state)
2763 return __wait_for_common(x, schedule_timeout, timeout, state);
2767 wait_for_common_io(struct completion *x, long timeout, int state)
2769 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2773 * wait_for_completion: - waits for completion of a task
2774 * @x: holds the state of this particular completion
2776 * This waits to be signaled for completion of a specific task. It is NOT
2777 * interruptible and there is no timeout.
2779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2780 * and interrupt capability. Also see complete().
2782 void __sched wait_for_completion(struct completion *x)
2784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2786 EXPORT_SYMBOL(wait_for_completion);
2789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2790 * @x: holds the state of this particular completion
2791 * @timeout: timeout value in jiffies
2793 * This waits for either a completion of a specific task to be signaled or for a
2794 * specified timeout to expire. The timeout is in jiffies. It is not
2797 * The return value is 0 if timed out, and positive (at least 1, or number of
2798 * jiffies left till timeout) if completed.
2800 unsigned long __sched
2801 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2805 EXPORT_SYMBOL(wait_for_completion_timeout);
2808 * wait_for_completion_io: - waits for completion of a task
2809 * @x: holds the state of this particular completion
2811 * This waits to be signaled for completion of a specific task. It is NOT
2812 * interruptible and there is no timeout. The caller is accounted as waiting
2815 void __sched wait_for_completion_io(struct completion *x)
2817 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2819 EXPORT_SYMBOL(wait_for_completion_io);
2822 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2823 * @x: holds the state of this particular completion
2824 * @timeout: timeout value in jiffies
2826 * This waits for either a completion of a specific task to be signaled or for a
2827 * specified timeout to expire. The timeout is in jiffies. It is not
2828 * interruptible. The caller is accounted as waiting for IO.
2830 * The return value is 0 if timed out, and positive (at least 1, or number of
2831 * jiffies left till timeout) if completed.
2833 unsigned long __sched
2834 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2836 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2838 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2842 * @x: holds the state of this particular completion
2844 * This waits for completion of a specific task to be signaled. It is
2847 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2849 int __sched wait_for_completion_interruptible(struct completion *x)
2851 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2852 if (t == -ERESTARTSYS)
2856 EXPORT_SYMBOL(wait_for_completion_interruptible);
2859 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2860 * @x: holds the state of this particular completion
2861 * @timeout: timeout value in jiffies
2863 * This waits for either a completion of a specific task to be signaled or for a
2864 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2866 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2867 * positive (at least 1, or number of jiffies left till timeout) if completed.
2870 wait_for_completion_interruptible_timeout(struct completion *x,
2871 unsigned long timeout)
2873 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2875 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2878 * wait_for_completion_killable: - waits for completion of a task (killable)
2879 * @x: holds the state of this particular completion
2881 * This waits to be signaled for completion of a specific task. It can be
2882 * interrupted by a kill signal.
2884 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2886 int __sched wait_for_completion_killable(struct completion *x)
2888 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2889 if (t == -ERESTARTSYS)
2893 EXPORT_SYMBOL(wait_for_completion_killable);
2896 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2897 * @x: holds the state of this particular completion
2898 * @timeout: timeout value in jiffies
2900 * This waits for either a completion of a specific task to be
2901 * signaled or for a specified timeout to expire. It can be
2902 * interrupted by a kill signal. The timeout is in jiffies.
2904 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2905 * positive (at least 1, or number of jiffies left till timeout) if completed.
2908 wait_for_completion_killable_timeout(struct completion *x,
2909 unsigned long timeout)
2911 return wait_for_common(x, timeout, TASK_KILLABLE);
2913 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916 * try_wait_for_completion - try to decrement a completion without blocking
2917 * @x: completion structure
2919 * Returns: 0 if a decrement cannot be done without blocking
2920 * 1 if a decrement succeeded.
2922 * If a completion is being used as a counting completion,
2923 * attempt to decrement the counter without blocking. This
2924 * enables us to avoid waiting if the resource the completion
2925 * is protecting is not available.
2927 bool try_wait_for_completion(struct completion *x)
2929 unsigned long flags;
2932 spin_lock_irqsave(&x->wait.lock, flags);
2937 spin_unlock_irqrestore(&x->wait.lock, flags);
2940 EXPORT_SYMBOL(try_wait_for_completion);
2943 * completion_done - Test to see if a completion has any waiters
2944 * @x: completion structure
2946 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2947 * 1 if there are no waiters.
2950 bool completion_done(struct completion *x)
2952 unsigned long flags;
2955 spin_lock_irqsave(&x->wait.lock, flags);
2958 spin_unlock_irqrestore(&x->wait.lock, flags);
2961 EXPORT_SYMBOL(completion_done);
2964 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2966 unsigned long flags;
2969 init_waitqueue_entry(&wait, current);
2971 __set_current_state(state);
2973 spin_lock_irqsave(&q->lock, flags);
2974 __add_wait_queue(q, &wait);
2975 spin_unlock(&q->lock);
2976 timeout = schedule_timeout(timeout);
2977 spin_lock_irq(&q->lock);
2978 __remove_wait_queue(q, &wait);
2979 spin_unlock_irqrestore(&q->lock, flags);
2984 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2986 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2988 EXPORT_SYMBOL(interruptible_sleep_on);
2991 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2993 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2995 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2997 void __sched sleep_on(wait_queue_head_t *q)
2999 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3001 EXPORT_SYMBOL(sleep_on);
3003 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3005 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3007 EXPORT_SYMBOL(sleep_on_timeout);
3009 #ifdef CONFIG_RT_MUTEXES
3012 * rt_mutex_setprio - set the current priority of a task
3014 * @prio: prio value (kernel-internal form)
3016 * This function changes the 'effective' priority of a task. It does
3017 * not touch ->normal_prio like __setscheduler().
3019 * Used by the rt_mutex code to implement priority inheritance logic.
3021 void rt_mutex_setprio(struct task_struct *p, int prio)
3023 int oldprio, on_rq, running;
3025 const struct sched_class *prev_class;
3027 BUG_ON(prio < 0 || prio > MAX_PRIO);
3029 rq = __task_rq_lock(p);
3032 * Idle task boosting is a nono in general. There is one
3033 * exception, when PREEMPT_RT and NOHZ is active:
3035 * The idle task calls get_next_timer_interrupt() and holds
3036 * the timer wheel base->lock on the CPU and another CPU wants
3037 * to access the timer (probably to cancel it). We can safely
3038 * ignore the boosting request, as the idle CPU runs this code
3039 * with interrupts disabled and will complete the lock
3040 * protected section without being interrupted. So there is no
3041 * real need to boost.
3043 if (unlikely(p == rq->idle)) {
3044 WARN_ON(p != rq->curr);
3045 WARN_ON(p->pi_blocked_on);
3049 trace_sched_pi_setprio(p, prio);
3051 prev_class = p->sched_class;
3053 running = task_current(rq, p);
3055 dequeue_task(rq, p, 0);
3057 p->sched_class->put_prev_task(rq, p);
3060 p->sched_class = &rt_sched_class;
3062 p->sched_class = &fair_sched_class;
3067 p->sched_class->set_curr_task(rq);
3069 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3071 check_class_changed(rq, p, prev_class, oldprio);
3073 __task_rq_unlock(rq);
3076 void set_user_nice(struct task_struct *p, long nice)
3078 int old_prio, delta, on_rq;
3079 unsigned long flags;
3082 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085 * We have to be careful, if called from sys_setpriority(),
3086 * the task might be in the middle of scheduling on another CPU.
3088 rq = task_rq_lock(p, &flags);
3090 * The RT priorities are set via sched_setscheduler(), but we still
3091 * allow the 'normal' nice value to be set - but as expected
3092 * it wont have any effect on scheduling until the task is
3093 * SCHED_FIFO/SCHED_RR:
3095 if (task_has_rt_policy(p)) {
3096 p->static_prio = NICE_TO_PRIO(nice);
3101 dequeue_task(rq, p, 0);
3103 p->static_prio = NICE_TO_PRIO(nice);
3106 p->prio = effective_prio(p);
3107 delta = p->prio - old_prio;
3110 enqueue_task(rq, p, 0);
3112 * If the task increased its priority or is running and
3113 * lowered its priority, then reschedule its CPU:
3115 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3116 resched_task(rq->curr);
3119 task_rq_unlock(rq, p, &flags);
3121 EXPORT_SYMBOL(set_user_nice);
3124 * can_nice - check if a task can reduce its nice value
3128 int can_nice(const struct task_struct *p, const int nice)
3130 /* convert nice value [19,-20] to rlimit style value [1,40] */
3131 int nice_rlim = 20 - nice;
3133 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3134 capable(CAP_SYS_NICE));
3137 #ifdef __ARCH_WANT_SYS_NICE
3140 * sys_nice - change the priority of the current process.
3141 * @increment: priority increment
3143 * sys_setpriority is a more generic, but much slower function that
3144 * does similar things.
3146 SYSCALL_DEFINE1(nice, int, increment)
3151 * Setpriority might change our priority at the same moment.
3152 * We don't have to worry. Conceptually one call occurs first
3153 * and we have a single winner.
3155 if (increment < -40)
3160 nice = TASK_NICE(current) + increment;
3166 if (increment < 0 && !can_nice(current, nice))
3169 retval = security_task_setnice(current, nice);
3173 set_user_nice(current, nice);
3180 * task_prio - return the priority value of a given task.
3181 * @p: the task in question.
3183 * This is the priority value as seen by users in /proc.
3184 * RT tasks are offset by -200. Normal tasks are centered
3185 * around 0, value goes from -16 to +15.
3187 int task_prio(const struct task_struct *p)
3189 return p->prio - MAX_RT_PRIO;
3193 * task_nice - return the nice value of a given task.
3194 * @p: the task in question.
3196 int task_nice(const struct task_struct *p)
3198 return TASK_NICE(p);
3200 EXPORT_SYMBOL(task_nice);
3203 * idle_cpu - is a given cpu idle currently?
3204 * @cpu: the processor in question.
3206 int idle_cpu(int cpu)
3208 struct rq *rq = cpu_rq(cpu);
3210 if (rq->curr != rq->idle)
3217 if (!llist_empty(&rq->wake_list))
3225 * idle_task - return the idle task for a given cpu.
3226 * @cpu: the processor in question.
3228 struct task_struct *idle_task(int cpu)
3230 return cpu_rq(cpu)->idle;
3234 * find_process_by_pid - find a process with a matching PID value.
3235 * @pid: the pid in question.
3237 static struct task_struct *find_process_by_pid(pid_t pid)
3239 return pid ? find_task_by_vpid(pid) : current;
3242 /* Actually do priority change: must hold rq lock. */
3244 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3247 p->rt_priority = prio;
3248 p->normal_prio = normal_prio(p);
3249 /* we are holding p->pi_lock already */
3250 p->prio = rt_mutex_getprio(p);
3251 if (rt_prio(p->prio))
3252 p->sched_class = &rt_sched_class;
3254 p->sched_class = &fair_sched_class;
3259 * check the target process has a UID that matches the current process's
3261 static bool check_same_owner(struct task_struct *p)
3263 const struct cred *cred = current_cred(), *pcred;
3267 pcred = __task_cred(p);
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
3274 static int __sched_setscheduler(struct task_struct *p, int policy,
3275 const struct sched_param *param, bool user)
3277 int retval, oldprio, oldpolicy = -1, on_rq, running;
3278 unsigned long flags;
3279 const struct sched_class *prev_class;
3283 /* may grab non-irq protected spin_locks */
3284 BUG_ON(in_interrupt());
3286 /* double check policy once rq lock held */
3288 reset_on_fork = p->sched_reset_on_fork;
3289 policy = oldpolicy = p->policy;
3291 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3292 policy &= ~SCHED_RESET_ON_FORK;
3294 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3295 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3296 policy != SCHED_IDLE)
3301 * Valid priorities for SCHED_FIFO and SCHED_RR are
3302 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3303 * SCHED_BATCH and SCHED_IDLE is 0.
3305 if (param->sched_priority < 0 ||
3306 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3307 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3309 if (rt_policy(policy) != (param->sched_priority != 0))
3313 * Allow unprivileged RT tasks to decrease priority:
3315 if (user && !capable(CAP_SYS_NICE)) {
3316 if (rt_policy(policy)) {
3317 unsigned long rlim_rtprio =
3318 task_rlimit(p, RLIMIT_RTPRIO);
3320 /* can't set/change the rt policy */
3321 if (policy != p->policy && !rlim_rtprio)
3324 /* can't increase priority */
3325 if (param->sched_priority > p->rt_priority &&
3326 param->sched_priority > rlim_rtprio)
3331 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3332 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3334 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3335 if (!can_nice(p, TASK_NICE(p)))
3339 /* can't change other user's priorities */
3340 if (!check_same_owner(p))
3343 /* Normal users shall not reset the sched_reset_on_fork flag */
3344 if (p->sched_reset_on_fork && !reset_on_fork)
3349 retval = security_task_setscheduler(p);
3355 * make sure no PI-waiters arrive (or leave) while we are
3356 * changing the priority of the task:
3358 * To be able to change p->policy safely, the appropriate
3359 * runqueue lock must be held.
3361 rq = task_rq_lock(p, &flags);
3364 * Changing the policy of the stop threads its a very bad idea
3366 if (p == rq->stop) {
3367 task_rq_unlock(rq, p, &flags);
3372 * If not changing anything there's no need to proceed further:
3374 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3375 param->sched_priority == p->rt_priority))) {
3376 task_rq_unlock(rq, p, &flags);
3380 #ifdef CONFIG_RT_GROUP_SCHED
3383 * Do not allow realtime tasks into groups that have no runtime
3386 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3387 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388 !task_group_is_autogroup(task_group(p))) {
3389 task_rq_unlock(rq, p, &flags);
3395 /* recheck policy now with rq lock held */
3396 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 policy = oldpolicy = -1;
3398 task_rq_unlock(rq, p, &flags);
3402 running = task_current(rq, p);
3404 dequeue_task(rq, p, 0);
3406 p->sched_class->put_prev_task(rq, p);
3408 p->sched_reset_on_fork = reset_on_fork;
3411 prev_class = p->sched_class;
3412 __setscheduler(rq, p, policy, param->sched_priority);
3415 p->sched_class->set_curr_task(rq);
3417 enqueue_task(rq, p, 0);
3419 check_class_changed(rq, p, prev_class, oldprio);
3420 task_rq_unlock(rq, p, &flags);
3422 rt_mutex_adjust_pi(p);
3428 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3429 * @p: the task in question.
3430 * @policy: new policy.
3431 * @param: structure containing the new RT priority.
3433 * NOTE that the task may be already dead.
3435 int sched_setscheduler(struct task_struct *p, int policy,
3436 const struct sched_param *param)
3438 return __sched_setscheduler(p, policy, param, true);
3440 EXPORT_SYMBOL_GPL(sched_setscheduler);
3443 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3448 * Just like sched_setscheduler, only don't bother checking if the
3449 * current context has permission. For example, this is needed in
3450 * stop_machine(): we create temporary high priority worker threads,
3451 * but our caller might not have that capability.
3453 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3454 const struct sched_param *param)
3456 return __sched_setscheduler(p, policy, param, false);
3460 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3462 struct sched_param lparam;
3463 struct task_struct *p;
3466 if (!param || pid < 0)
3468 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3473 p = find_process_by_pid(pid);
3475 retval = sched_setscheduler(p, policy, &lparam);
3482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3483 * @pid: the pid in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3487 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3488 struct sched_param __user *, param)
3490 /* negative values for policy are not valid */
3494 return do_sched_setscheduler(pid, policy, param);
3498 * sys_sched_setparam - set/change the RT priority of a thread
3499 * @pid: the pid in question.
3500 * @param: structure containing the new RT priority.
3502 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3504 return do_sched_setscheduler(pid, -1, param);
3508 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3509 * @pid: the pid in question.
3511 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3513 struct task_struct *p;
3521 p = find_process_by_pid(pid);
3523 retval = security_task_getscheduler(p);
3526 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3533 * sys_sched_getparam - get the RT priority of a thread
3534 * @pid: the pid in question.
3535 * @param: structure containing the RT priority.
3537 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3539 struct sched_param lp;
3540 struct task_struct *p;
3543 if (!param || pid < 0)
3547 p = find_process_by_pid(pid);
3552 retval = security_task_getscheduler(p);
3556 lp.sched_priority = p->rt_priority;
3560 * This one might sleep, we cannot do it with a spinlock held ...
3562 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3571 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3573 cpumask_var_t cpus_allowed, new_mask;
3574 struct task_struct *p;
3580 p = find_process_by_pid(pid);
3587 /* Prevent p going away */
3591 if (p->flags & PF_NO_SETAFFINITY) {
3595 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3599 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3601 goto out_free_cpus_allowed;
3604 if (!check_same_owner(p)) {
3606 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3613 retval = security_task_setscheduler(p);
3617 cpuset_cpus_allowed(p, cpus_allowed);
3618 cpumask_and(new_mask, in_mask, cpus_allowed);
3620 retval = set_cpus_allowed_ptr(p, new_mask);
3623 cpuset_cpus_allowed(p, cpus_allowed);
3624 if (!cpumask_subset(new_mask, cpus_allowed)) {
3626 * We must have raced with a concurrent cpuset
3627 * update. Just reset the cpus_allowed to the
3628 * cpuset's cpus_allowed
3630 cpumask_copy(new_mask, cpus_allowed);
3635 free_cpumask_var(new_mask);
3636 out_free_cpus_allowed:
3637 free_cpumask_var(cpus_allowed);
3644 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3645 struct cpumask *new_mask)
3647 if (len < cpumask_size())
3648 cpumask_clear(new_mask);
3649 else if (len > cpumask_size())
3650 len = cpumask_size();
3652 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3656 * sys_sched_setaffinity - set the cpu affinity of a process
3657 * @pid: pid of the process
3658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3659 * @user_mask_ptr: user-space pointer to the new cpu mask
3661 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3662 unsigned long __user *, user_mask_ptr)
3664 cpumask_var_t new_mask;
3667 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3670 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3672 retval = sched_setaffinity(pid, new_mask);
3673 free_cpumask_var(new_mask);
3677 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3679 struct task_struct *p;
3680 unsigned long flags;
3687 p = find_process_by_pid(pid);
3691 retval = security_task_getscheduler(p);
3695 raw_spin_lock_irqsave(&p->pi_lock, flags);
3696 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3697 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3707 * sys_sched_getaffinity - get the cpu affinity of a process
3708 * @pid: pid of the process
3709 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3710 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3712 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3713 unsigned long __user *, user_mask_ptr)
3718 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3720 if (len & (sizeof(unsigned long)-1))
3723 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3726 ret = sched_getaffinity(pid, mask);
3728 size_t retlen = min_t(size_t, len, cpumask_size());
3730 if (copy_to_user(user_mask_ptr, mask, retlen))
3735 free_cpumask_var(mask);
3741 * sys_sched_yield - yield the current processor to other threads.
3743 * This function yields the current CPU to other tasks. If there are no
3744 * other threads running on this CPU then this function will return.
3746 SYSCALL_DEFINE0(sched_yield)
3748 struct rq *rq = this_rq_lock();
3750 schedstat_inc(rq, yld_count);
3751 current->sched_class->yield_task(rq);
3754 * Since we are going to call schedule() anyway, there's
3755 * no need to preempt or enable interrupts:
3757 __release(rq->lock);
3758 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3759 do_raw_spin_unlock(&rq->lock);
3760 sched_preempt_enable_no_resched();
3767 static inline int should_resched(void)
3769 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3772 static void __cond_resched(void)
3774 add_preempt_count(PREEMPT_ACTIVE);
3776 sub_preempt_count(PREEMPT_ACTIVE);
3779 int __sched _cond_resched(void)
3781 if (should_resched()) {
3787 EXPORT_SYMBOL(_cond_resched);
3790 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3791 * call schedule, and on return reacquire the lock.
3793 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3794 * operations here to prevent schedule() from being called twice (once via
3795 * spin_unlock(), once by hand).
3797 int __cond_resched_lock(spinlock_t *lock)
3799 int resched = should_resched();
3802 lockdep_assert_held(lock);
3804 if (spin_needbreak(lock) || resched) {
3815 EXPORT_SYMBOL(__cond_resched_lock);
3817 int __sched __cond_resched_softirq(void)
3819 BUG_ON(!in_softirq());
3821 if (should_resched()) {
3829 EXPORT_SYMBOL(__cond_resched_softirq);
3832 * yield - yield the current processor to other threads.
3834 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3836 * The scheduler is at all times free to pick the calling task as the most
3837 * eligible task to run, if removing the yield() call from your code breaks
3838 * it, its already broken.
3840 * Typical broken usage is:
3845 * where one assumes that yield() will let 'the other' process run that will
3846 * make event true. If the current task is a SCHED_FIFO task that will never
3847 * happen. Never use yield() as a progress guarantee!!
3849 * If you want to use yield() to wait for something, use wait_event().
3850 * If you want to use yield() to be 'nice' for others, use cond_resched().
3851 * If you still want to use yield(), do not!
3853 void __sched yield(void)
3855 set_current_state(TASK_RUNNING);
3858 EXPORT_SYMBOL(yield);
3861 * yield_to - yield the current processor to another thread in
3862 * your thread group, or accelerate that thread toward the
3863 * processor it's on.
3865 * @preempt: whether task preemption is allowed or not
3867 * It's the caller's job to ensure that the target task struct
3868 * can't go away on us before we can do any checks.
3871 * true (>0) if we indeed boosted the target task.
3872 * false (0) if we failed to boost the target.
3873 * -ESRCH if there's no task to yield to.
3875 bool __sched yield_to(struct task_struct *p, bool preempt)
3877 struct task_struct *curr = current;
3878 struct rq *rq, *p_rq;
3879 unsigned long flags;
3882 local_irq_save(flags);
3888 * If we're the only runnable task on the rq and target rq also
3889 * has only one task, there's absolutely no point in yielding.
3891 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3896 double_rq_lock(rq, p_rq);
3897 while (task_rq(p) != p_rq) {
3898 double_rq_unlock(rq, p_rq);
3902 if (!curr->sched_class->yield_to_task)
3905 if (curr->sched_class != p->sched_class)
3908 if (task_running(p_rq, p) || p->state)
3911 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3913 schedstat_inc(rq, yld_count);
3915 * Make p's CPU reschedule; pick_next_entity takes care of
3918 if (preempt && rq != p_rq)
3919 resched_task(p_rq->curr);
3923 double_rq_unlock(rq, p_rq);
3925 local_irq_restore(flags);
3932 EXPORT_SYMBOL_GPL(yield_to);
3935 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3936 * that process accounting knows that this is a task in IO wait state.
3938 void __sched io_schedule(void)
3940 struct rq *rq = raw_rq();
3942 delayacct_blkio_start();
3943 atomic_inc(&rq->nr_iowait);
3944 blk_flush_plug(current);
3945 current->in_iowait = 1;
3947 current->in_iowait = 0;
3948 atomic_dec(&rq->nr_iowait);
3949 delayacct_blkio_end();
3951 EXPORT_SYMBOL(io_schedule);
3953 long __sched io_schedule_timeout(long timeout)
3955 struct rq *rq = raw_rq();
3958 delayacct_blkio_start();
3959 atomic_inc(&rq->nr_iowait);
3960 blk_flush_plug(current);
3961 current->in_iowait = 1;
3962 ret = schedule_timeout(timeout);
3963 current->in_iowait = 0;
3964 atomic_dec(&rq->nr_iowait);
3965 delayacct_blkio_end();
3970 * sys_sched_get_priority_max - return maximum RT priority.
3971 * @policy: scheduling class.
3973 * this syscall returns the maximum rt_priority that can be used
3974 * by a given scheduling class.
3976 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3983 ret = MAX_USER_RT_PRIO-1;
3995 * sys_sched_get_priority_min - return minimum RT priority.
3996 * @policy: scheduling class.
3998 * this syscall returns the minimum rt_priority that can be used
3999 * by a given scheduling class.
4001 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4019 * sys_sched_rr_get_interval - return the default timeslice of a process.
4020 * @pid: pid of the process.
4021 * @interval: userspace pointer to the timeslice value.
4023 * this syscall writes the default timeslice value of a given process
4024 * into the user-space timespec buffer. A value of '0' means infinity.
4026 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4027 struct timespec __user *, interval)
4029 struct task_struct *p;
4030 unsigned int time_slice;
4031 unsigned long flags;
4041 p = find_process_by_pid(pid);
4045 retval = security_task_getscheduler(p);
4049 rq = task_rq_lock(p, &flags);
4050 time_slice = p->sched_class->get_rr_interval(rq, p);
4051 task_rq_unlock(rq, p, &flags);
4054 jiffies_to_timespec(time_slice, &t);
4055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4063 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4065 void sched_show_task(struct task_struct *p)
4067 unsigned long free = 0;
4071 state = p->state ? __ffs(p->state) + 1 : 0;
4072 printk(KERN_INFO "%-15.15s %c", p->comm,
4073 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4074 #if BITS_PER_LONG == 32
4075 if (state == TASK_RUNNING)
4076 printk(KERN_CONT " running ");
4078 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4080 if (state == TASK_RUNNING)
4081 printk(KERN_CONT " running task ");
4083 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4085 #ifdef CONFIG_DEBUG_STACK_USAGE
4086 free = stack_not_used(p);
4089 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4091 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4092 task_pid_nr(p), ppid,
4093 (unsigned long)task_thread_info(p)->flags);
4095 print_worker_info(KERN_INFO, p);
4096 show_stack(p, NULL);
4099 void show_state_filter(unsigned long state_filter)
4101 struct task_struct *g, *p;
4103 #if BITS_PER_LONG == 32
4105 " task PC stack pid father\n");
4108 " task PC stack pid father\n");
4111 do_each_thread(g, p) {
4113 * reset the NMI-timeout, listing all files on a slow
4114 * console might take a lot of time:
4116 touch_nmi_watchdog();
4117 if (!state_filter || (p->state & state_filter))
4119 } while_each_thread(g, p);
4121 touch_all_softlockup_watchdogs();
4123 #ifdef CONFIG_SCHED_DEBUG
4124 sysrq_sched_debug_show();
4128 * Only show locks if all tasks are dumped:
4131 debug_show_all_locks();
4134 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4136 idle->sched_class = &idle_sched_class;
4140 * init_idle - set up an idle thread for a given CPU
4141 * @idle: task in question
4142 * @cpu: cpu the idle task belongs to
4144 * NOTE: this function does not set the idle thread's NEED_RESCHED
4145 * flag, to make booting more robust.
4147 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4149 struct rq *rq = cpu_rq(cpu);
4150 unsigned long flags;
4152 raw_spin_lock_irqsave(&rq->lock, flags);
4155 idle->state = TASK_RUNNING;
4156 idle->se.exec_start = sched_clock();
4158 do_set_cpus_allowed(idle, cpumask_of(cpu));
4160 * We're having a chicken and egg problem, even though we are
4161 * holding rq->lock, the cpu isn't yet set to this cpu so the
4162 * lockdep check in task_group() will fail.
4164 * Similar case to sched_fork(). / Alternatively we could
4165 * use task_rq_lock() here and obtain the other rq->lock.
4170 __set_task_cpu(idle, cpu);
4173 rq->curr = rq->idle = idle;
4174 #if defined(CONFIG_SMP)
4177 raw_spin_unlock_irqrestore(&rq->lock, flags);
4179 /* Set the preempt count _outside_ the spinlocks! */
4180 task_thread_info(idle)->preempt_count = 0;
4183 * The idle tasks have their own, simple scheduling class:
4185 idle->sched_class = &idle_sched_class;
4186 ftrace_graph_init_idle_task(idle, cpu);
4187 vtime_init_idle(idle, cpu);
4188 #if defined(CONFIG_SMP)
4189 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4194 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4196 if (p->sched_class && p->sched_class->set_cpus_allowed)
4197 p->sched_class->set_cpus_allowed(p, new_mask);
4199 cpumask_copy(&p->cpus_allowed, new_mask);
4200 p->nr_cpus_allowed = cpumask_weight(new_mask);
4204 * This is how migration works:
4206 * 1) we invoke migration_cpu_stop() on the target CPU using
4208 * 2) stopper starts to run (implicitly forcing the migrated thread
4210 * 3) it checks whether the migrated task is still in the wrong runqueue.
4211 * 4) if it's in the wrong runqueue then the migration thread removes
4212 * it and puts it into the right queue.
4213 * 5) stopper completes and stop_one_cpu() returns and the migration
4218 * Change a given task's CPU affinity. Migrate the thread to a
4219 * proper CPU and schedule it away if the CPU it's executing on
4220 * is removed from the allowed bitmask.
4222 * NOTE: the caller must have a valid reference to the task, the
4223 * task must not exit() & deallocate itself prematurely. The
4224 * call is not atomic; no spinlocks may be held.
4226 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4228 unsigned long flags;
4230 unsigned int dest_cpu;
4233 rq = task_rq_lock(p, &flags);
4235 if (cpumask_equal(&p->cpus_allowed, new_mask))
4238 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4243 do_set_cpus_allowed(p, new_mask);
4245 /* Can the task run on the task's current CPU? If so, we're done */
4246 if (cpumask_test_cpu(task_cpu(p), new_mask))
4249 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4251 struct migration_arg arg = { p, dest_cpu };
4252 /* Need help from migration thread: drop lock and wait. */
4253 task_rq_unlock(rq, p, &flags);
4254 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4255 tlb_migrate_finish(p->mm);
4259 task_rq_unlock(rq, p, &flags);
4263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4266 * Move (not current) task off this cpu, onto dest cpu. We're doing
4267 * this because either it can't run here any more (set_cpus_allowed()
4268 * away from this CPU, or CPU going down), or because we're
4269 * attempting to rebalance this task on exec (sched_exec).
4271 * So we race with normal scheduler movements, but that's OK, as long
4272 * as the task is no longer on this CPU.
4274 * Returns non-zero if task was successfully migrated.
4276 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4278 struct rq *rq_dest, *rq_src;
4281 if (unlikely(!cpu_active(dest_cpu)))
4284 rq_src = cpu_rq(src_cpu);
4285 rq_dest = cpu_rq(dest_cpu);
4287 raw_spin_lock(&p->pi_lock);
4288 double_rq_lock(rq_src, rq_dest);
4289 /* Already moved. */
4290 if (task_cpu(p) != src_cpu)
4292 /* Affinity changed (again). */
4293 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4297 * If we're not on a rq, the next wake-up will ensure we're
4301 dequeue_task(rq_src, p, 0);
4302 set_task_cpu(p, dest_cpu);
4303 enqueue_task(rq_dest, p, 0);
4304 check_preempt_curr(rq_dest, p, 0);
4309 double_rq_unlock(rq_src, rq_dest);
4310 raw_spin_unlock(&p->pi_lock);
4315 * migration_cpu_stop - this will be executed by a highprio stopper thread
4316 * and performs thread migration by bumping thread off CPU then
4317 * 'pushing' onto another runqueue.
4319 static int migration_cpu_stop(void *data)
4321 struct migration_arg *arg = data;
4324 * The original target cpu might have gone down and we might
4325 * be on another cpu but it doesn't matter.
4327 local_irq_disable();
4328 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4333 #ifdef CONFIG_HOTPLUG_CPU
4336 * Ensures that the idle task is using init_mm right before its cpu goes
4339 void idle_task_exit(void)
4341 struct mm_struct *mm = current->active_mm;
4343 BUG_ON(cpu_online(smp_processor_id()));
4346 switch_mm(mm, &init_mm, current);
4351 * Since this CPU is going 'away' for a while, fold any nr_active delta
4352 * we might have. Assumes we're called after migrate_tasks() so that the
4353 * nr_active count is stable.
4355 * Also see the comment "Global load-average calculations".
4357 static void calc_load_migrate(struct rq *rq)
4359 long delta = calc_load_fold_active(rq);
4361 atomic_long_add(delta, &calc_load_tasks);
4365 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4366 * try_to_wake_up()->select_task_rq().
4368 * Called with rq->lock held even though we'er in stop_machine() and
4369 * there's no concurrency possible, we hold the required locks anyway
4370 * because of lock validation efforts.
4372 static void migrate_tasks(unsigned int dead_cpu)
4374 struct rq *rq = cpu_rq(dead_cpu);
4375 struct task_struct *next, *stop = rq->stop;
4379 * Fudge the rq selection such that the below task selection loop
4380 * doesn't get stuck on the currently eligible stop task.
4382 * We're currently inside stop_machine() and the rq is either stuck
4383 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4384 * either way we should never end up calling schedule() until we're
4390 * put_prev_task() and pick_next_task() sched
4391 * class method both need to have an up-to-date
4392 * value of rq->clock[_task]
4394 update_rq_clock(rq);
4398 * There's this thread running, bail when that's the only
4401 if (rq->nr_running == 1)
4404 next = pick_next_task(rq);
4406 next->sched_class->put_prev_task(rq, next);
4408 /* Find suitable destination for @next, with force if needed. */
4409 dest_cpu = select_fallback_rq(dead_cpu, next);
4410 raw_spin_unlock(&rq->lock);
4412 __migrate_task(next, dead_cpu, dest_cpu);
4414 raw_spin_lock(&rq->lock);
4420 #endif /* CONFIG_HOTPLUG_CPU */
4422 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4424 static struct ctl_table sd_ctl_dir[] = {
4426 .procname = "sched_domain",
4432 static struct ctl_table sd_ctl_root[] = {
4434 .procname = "kernel",
4436 .child = sd_ctl_dir,
4441 static struct ctl_table *sd_alloc_ctl_entry(int n)
4443 struct ctl_table *entry =
4444 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4449 static void sd_free_ctl_entry(struct ctl_table **tablep)
4451 struct ctl_table *entry;
4454 * In the intermediate directories, both the child directory and
4455 * procname are dynamically allocated and could fail but the mode
4456 * will always be set. In the lowest directory the names are
4457 * static strings and all have proc handlers.
4459 for (entry = *tablep; entry->mode; entry++) {
4461 sd_free_ctl_entry(&entry->child);
4462 if (entry->proc_handler == NULL)
4463 kfree(entry->procname);
4470 static int min_load_idx = 0;
4471 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4474 set_table_entry(struct ctl_table *entry,
4475 const char *procname, void *data, int maxlen,
4476 umode_t mode, proc_handler *proc_handler,
4479 entry->procname = procname;
4481 entry->maxlen = maxlen;
4483 entry->proc_handler = proc_handler;
4486 entry->extra1 = &min_load_idx;
4487 entry->extra2 = &max_load_idx;
4491 static struct ctl_table *
4492 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4494 struct ctl_table *table = sd_alloc_ctl_entry(13);
4499 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4500 sizeof(long), 0644, proc_doulongvec_minmax, false);
4501 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4502 sizeof(long), 0644, proc_doulongvec_minmax, false);
4503 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4504 sizeof(int), 0644, proc_dointvec_minmax, true);
4505 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4506 sizeof(int), 0644, proc_dointvec_minmax, true);
4507 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4508 sizeof(int), 0644, proc_dointvec_minmax, true);
4509 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4510 sizeof(int), 0644, proc_dointvec_minmax, true);
4511 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4512 sizeof(int), 0644, proc_dointvec_minmax, true);
4513 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4514 sizeof(int), 0644, proc_dointvec_minmax, false);
4515 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4516 sizeof(int), 0644, proc_dointvec_minmax, false);
4517 set_table_entry(&table[9], "cache_nice_tries",
4518 &sd->cache_nice_tries,
4519 sizeof(int), 0644, proc_dointvec_minmax, false);
4520 set_table_entry(&table[10], "flags", &sd->flags,
4521 sizeof(int), 0644, proc_dointvec_minmax, false);
4522 set_table_entry(&table[11], "name", sd->name,
4523 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4524 /* &table[12] is terminator */
4529 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4531 struct ctl_table *entry, *table;
4532 struct sched_domain *sd;
4533 int domain_num = 0, i;
4536 for_each_domain(cpu, sd)
4538 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4543 for_each_domain(cpu, sd) {
4544 snprintf(buf, 32, "domain%d", i);
4545 entry->procname = kstrdup(buf, GFP_KERNEL);
4547 entry->child = sd_alloc_ctl_domain_table(sd);
4554 static struct ctl_table_header *sd_sysctl_header;
4555 static void register_sched_domain_sysctl(void)
4557 int i, cpu_num = num_possible_cpus();
4558 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4561 WARN_ON(sd_ctl_dir[0].child);
4562 sd_ctl_dir[0].child = entry;
4567 for_each_possible_cpu(i) {
4568 snprintf(buf, 32, "cpu%d", i);
4569 entry->procname = kstrdup(buf, GFP_KERNEL);
4571 entry->child = sd_alloc_ctl_cpu_table(i);
4575 WARN_ON(sd_sysctl_header);
4576 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4579 /* may be called multiple times per register */
4580 static void unregister_sched_domain_sysctl(void)
4582 if (sd_sysctl_header)
4583 unregister_sysctl_table(sd_sysctl_header);
4584 sd_sysctl_header = NULL;
4585 if (sd_ctl_dir[0].child)
4586 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4589 static void register_sched_domain_sysctl(void)
4592 static void unregister_sched_domain_sysctl(void)
4597 static void set_rq_online(struct rq *rq)
4600 const struct sched_class *class;
4602 cpumask_set_cpu(rq->cpu, rq->rd->online);
4605 for_each_class(class) {
4606 if (class->rq_online)
4607 class->rq_online(rq);
4612 static void set_rq_offline(struct rq *rq)
4615 const struct sched_class *class;
4617 for_each_class(class) {
4618 if (class->rq_offline)
4619 class->rq_offline(rq);
4622 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4628 * migration_call - callback that gets triggered when a CPU is added.
4629 * Here we can start up the necessary migration thread for the new CPU.
4631 static int __cpuinit
4632 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4634 int cpu = (long)hcpu;
4635 unsigned long flags;
4636 struct rq *rq = cpu_rq(cpu);
4638 switch (action & ~CPU_TASKS_FROZEN) {
4640 case CPU_UP_PREPARE:
4641 rq->calc_load_update = calc_load_update;
4645 /* Update our root-domain */
4646 raw_spin_lock_irqsave(&rq->lock, flags);
4648 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4652 raw_spin_unlock_irqrestore(&rq->lock, flags);
4655 #ifdef CONFIG_HOTPLUG_CPU
4657 sched_ttwu_pending();
4658 /* Update our root-domain */
4659 raw_spin_lock_irqsave(&rq->lock, flags);
4661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4665 BUG_ON(rq->nr_running != 1); /* the migration thread */
4666 raw_spin_unlock_irqrestore(&rq->lock, flags);
4670 calc_load_migrate(rq);
4675 update_max_interval();
4681 * Register at high priority so that task migration (migrate_all_tasks)
4682 * happens before everything else. This has to be lower priority than
4683 * the notifier in the perf_event subsystem, though.
4685 static struct notifier_block __cpuinitdata migration_notifier = {
4686 .notifier_call = migration_call,
4687 .priority = CPU_PRI_MIGRATION,
4690 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4691 unsigned long action, void *hcpu)
4693 switch (action & ~CPU_TASKS_FROZEN) {
4695 case CPU_DOWN_FAILED:
4696 set_cpu_active((long)hcpu, true);
4703 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4704 unsigned long action, void *hcpu)
4706 switch (action & ~CPU_TASKS_FROZEN) {
4707 case CPU_DOWN_PREPARE:
4708 set_cpu_active((long)hcpu, false);
4715 static int __init migration_init(void)
4717 void *cpu = (void *)(long)smp_processor_id();
4720 /* Initialize migration for the boot CPU */
4721 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4722 BUG_ON(err == NOTIFY_BAD);
4723 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4724 register_cpu_notifier(&migration_notifier);
4726 /* Register cpu active notifiers */
4727 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4728 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4732 early_initcall(migration_init);
4737 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4739 #ifdef CONFIG_SCHED_DEBUG
4741 static __read_mostly int sched_debug_enabled;
4743 static int __init sched_debug_setup(char *str)
4745 sched_debug_enabled = 1;
4749 early_param("sched_debug", sched_debug_setup);
4751 static inline bool sched_debug(void)
4753 return sched_debug_enabled;
4756 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4757 struct cpumask *groupmask)
4759 struct sched_group *group = sd->groups;
4762 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4763 cpumask_clear(groupmask);
4765 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4767 if (!(sd->flags & SD_LOAD_BALANCE)) {
4768 printk("does not load-balance\n");
4770 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4775 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4777 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4778 printk(KERN_ERR "ERROR: domain->span does not contain "
4781 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4782 printk(KERN_ERR "ERROR: domain->groups does not contain"
4786 printk(KERN_DEBUG "%*s groups:", level + 1, "");
4790 printk(KERN_ERR "ERROR: group is NULL\n");
4795 * Even though we initialize ->power to something semi-sane,
4796 * we leave power_orig unset. This allows us to detect if
4797 * domain iteration is still funny without causing /0 traps.
4799 if (!group->sgp->power_orig) {
4800 printk(KERN_CONT "\n");
4801 printk(KERN_ERR "ERROR: domain->cpu_power not "
4806 if (!cpumask_weight(sched_group_cpus(group))) {
4807 printk(KERN_CONT "\n");
4808 printk(KERN_ERR "ERROR: empty group\n");
4812 if (!(sd->flags & SD_OVERLAP) &&
4813 cpumask_intersects(groupmask, sched_group_cpus(group))) {
4814 printk(KERN_CONT "\n");
4815 printk(KERN_ERR "ERROR: repeated CPUs\n");
4819 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4821 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4823 printk(KERN_CONT " %s", str);
4824 if (group->sgp->power != SCHED_POWER_SCALE) {
4825 printk(KERN_CONT " (cpu_power = %d)",
4829 group = group->next;
4830 } while (group != sd->groups);
4831 printk(KERN_CONT "\n");
4833 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4834 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4837 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4838 printk(KERN_ERR "ERROR: parent span is not a superset "
4839 "of domain->span\n");
4843 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4847 if (!sched_debug_enabled)
4851 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4855 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4858 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4866 #else /* !CONFIG_SCHED_DEBUG */
4867 # define sched_domain_debug(sd, cpu) do { } while (0)
4868 static inline bool sched_debug(void)
4872 #endif /* CONFIG_SCHED_DEBUG */
4874 static int sd_degenerate(struct sched_domain *sd)
4876 if (cpumask_weight(sched_domain_span(sd)) == 1)
4879 /* Following flags need at least 2 groups */
4880 if (sd->flags & (SD_LOAD_BALANCE |
4881 SD_BALANCE_NEWIDLE |
4885 SD_SHARE_PKG_RESOURCES)) {
4886 if (sd->groups != sd->groups->next)
4890 /* Following flags don't use groups */
4891 if (sd->flags & (SD_WAKE_AFFINE))
4898 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4900 unsigned long cflags = sd->flags, pflags = parent->flags;
4902 if (sd_degenerate(parent))
4905 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4908 /* Flags needing groups don't count if only 1 group in parent */
4909 if (parent->groups == parent->groups->next) {
4910 pflags &= ~(SD_LOAD_BALANCE |
4911 SD_BALANCE_NEWIDLE |
4915 SD_SHARE_PKG_RESOURCES);
4916 if (nr_node_ids == 1)
4917 pflags &= ~SD_SERIALIZE;
4919 if (~cflags & pflags)
4925 static void free_rootdomain(struct rcu_head *rcu)
4927 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4929 cpupri_cleanup(&rd->cpupri);
4930 free_cpumask_var(rd->rto_mask);
4931 free_cpumask_var(rd->online);
4932 free_cpumask_var(rd->span);
4936 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4938 struct root_domain *old_rd = NULL;
4939 unsigned long flags;
4941 raw_spin_lock_irqsave(&rq->lock, flags);
4946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
4949 cpumask_clear_cpu(rq->cpu, old_rd->span);
4952 * If we dont want to free the old_rt yet then
4953 * set old_rd to NULL to skip the freeing later
4956 if (!atomic_dec_and_test(&old_rd->refcount))
4960 atomic_inc(&rd->refcount);
4963 cpumask_set_cpu(rq->cpu, rd->span);
4964 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4967 raw_spin_unlock_irqrestore(&rq->lock, flags);
4970 call_rcu_sched(&old_rd->rcu, free_rootdomain);
4973 static int init_rootdomain(struct root_domain *rd)
4975 memset(rd, 0, sizeof(*rd));
4977 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4979 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4981 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4984 if (cpupri_init(&rd->cpupri) != 0)
4989 free_cpumask_var(rd->rto_mask);
4991 free_cpumask_var(rd->online);
4993 free_cpumask_var(rd->span);
4999 * By default the system creates a single root-domain with all cpus as
5000 * members (mimicking the global state we have today).
5002 struct root_domain def_root_domain;
5004 static void init_defrootdomain(void)
5006 init_rootdomain(&def_root_domain);
5008 atomic_set(&def_root_domain.refcount, 1);
5011 static struct root_domain *alloc_rootdomain(void)
5013 struct root_domain *rd;
5015 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5019 if (init_rootdomain(rd) != 0) {
5027 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5029 struct sched_group *tmp, *first;
5038 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5043 } while (sg != first);
5046 static void free_sched_domain(struct rcu_head *rcu)
5048 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5051 * If its an overlapping domain it has private groups, iterate and
5054 if (sd->flags & SD_OVERLAP) {
5055 free_sched_groups(sd->groups, 1);
5056 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5057 kfree(sd->groups->sgp);
5063 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5065 call_rcu(&sd->rcu, free_sched_domain);
5068 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5070 for (; sd; sd = sd->parent)
5071 destroy_sched_domain(sd, cpu);
5075 * Keep a special pointer to the highest sched_domain that has
5076 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5077 * allows us to avoid some pointer chasing select_idle_sibling().
5079 * Also keep a unique ID per domain (we use the first cpu number in
5080 * the cpumask of the domain), this allows us to quickly tell if
5081 * two cpus are in the same cache domain, see cpus_share_cache().
5083 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5084 DEFINE_PER_CPU(int, sd_llc_id);
5086 static void update_top_cache_domain(int cpu)
5088 struct sched_domain *sd;
5091 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5093 id = cpumask_first(sched_domain_span(sd));
5095 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5096 per_cpu(sd_llc_id, cpu) = id;
5100 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5101 * hold the hotplug lock.
5104 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5106 struct rq *rq = cpu_rq(cpu);
5107 struct sched_domain *tmp;
5109 /* Remove the sched domains which do not contribute to scheduling. */
5110 for (tmp = sd; tmp; ) {
5111 struct sched_domain *parent = tmp->parent;
5115 if (sd_parent_degenerate(tmp, parent)) {
5116 tmp->parent = parent->parent;
5118 parent->parent->child = tmp;
5119 destroy_sched_domain(parent, cpu);
5124 if (sd && sd_degenerate(sd)) {
5127 destroy_sched_domain(tmp, cpu);
5132 sched_domain_debug(sd, cpu);
5134 rq_attach_root(rq, rd);
5136 rcu_assign_pointer(rq->sd, sd);
5137 destroy_sched_domains(tmp, cpu);
5139 update_top_cache_domain(cpu);
5142 /* cpus with isolated domains */
5143 static cpumask_var_t cpu_isolated_map;
5145 /* Setup the mask of cpus configured for isolated domains */
5146 static int __init isolated_cpu_setup(char *str)
5148 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5149 cpulist_parse(str, cpu_isolated_map);
5153 __setup("isolcpus=", isolated_cpu_setup);
5155 static const struct cpumask *cpu_cpu_mask(int cpu)
5157 return cpumask_of_node(cpu_to_node(cpu));
5161 struct sched_domain **__percpu sd;
5162 struct sched_group **__percpu sg;
5163 struct sched_group_power **__percpu sgp;
5167 struct sched_domain ** __percpu sd;
5168 struct root_domain *rd;
5178 struct sched_domain_topology_level;
5180 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5181 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5183 #define SDTL_OVERLAP 0x01
5185 struct sched_domain_topology_level {
5186 sched_domain_init_f init;
5187 sched_domain_mask_f mask;
5190 struct sd_data data;
5194 * Build an iteration mask that can exclude certain CPUs from the upwards
5197 * Asymmetric node setups can result in situations where the domain tree is of
5198 * unequal depth, make sure to skip domains that already cover the entire
5201 * In that case build_sched_domains() will have terminated the iteration early
5202 * and our sibling sd spans will be empty. Domains should always include the
5203 * cpu they're built on, so check that.
5206 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5208 const struct cpumask *span = sched_domain_span(sd);
5209 struct sd_data *sdd = sd->private;
5210 struct sched_domain *sibling;
5213 for_each_cpu(i, span) {
5214 sibling = *per_cpu_ptr(sdd->sd, i);
5215 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5218 cpumask_set_cpu(i, sched_group_mask(sg));
5223 * Return the canonical balance cpu for this group, this is the first cpu
5224 * of this group that's also in the iteration mask.
5226 int group_balance_cpu(struct sched_group *sg)
5228 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5232 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5234 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5235 const struct cpumask *span = sched_domain_span(sd);
5236 struct cpumask *covered = sched_domains_tmpmask;
5237 struct sd_data *sdd = sd->private;
5238 struct sched_domain *child;
5241 cpumask_clear(covered);
5243 for_each_cpu(i, span) {
5244 struct cpumask *sg_span;
5246 if (cpumask_test_cpu(i, covered))
5249 child = *per_cpu_ptr(sdd->sd, i);
5251 /* See the comment near build_group_mask(). */
5252 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5255 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5256 GFP_KERNEL, cpu_to_node(cpu));
5261 sg_span = sched_group_cpus(sg);
5263 child = child->child;
5264 cpumask_copy(sg_span, sched_domain_span(child));
5266 cpumask_set_cpu(i, sg_span);
5268 cpumask_or(covered, covered, sg_span);
5270 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5271 if (atomic_inc_return(&sg->sgp->ref) == 1)
5272 build_group_mask(sd, sg);
5275 * Initialize sgp->power such that even if we mess up the
5276 * domains and no possible iteration will get us here, we won't
5279 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5282 * Make sure the first group of this domain contains the
5283 * canonical balance cpu. Otherwise the sched_domain iteration
5284 * breaks. See update_sg_lb_stats().
5286 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5287 group_balance_cpu(sg) == cpu)
5297 sd->groups = groups;
5302 free_sched_groups(first, 0);
5307 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5309 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5310 struct sched_domain *child = sd->child;
5313 cpu = cpumask_first(sched_domain_span(child));
5316 *sg = *per_cpu_ptr(sdd->sg, cpu);
5317 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5318 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5325 * build_sched_groups will build a circular linked list of the groups
5326 * covered by the given span, and will set each group's ->cpumask correctly,
5327 * and ->cpu_power to 0.
5329 * Assumes the sched_domain tree is fully constructed
5332 build_sched_groups(struct sched_domain *sd, int cpu)
5334 struct sched_group *first = NULL, *last = NULL;
5335 struct sd_data *sdd = sd->private;
5336 const struct cpumask *span = sched_domain_span(sd);
5337 struct cpumask *covered;
5340 get_group(cpu, sdd, &sd->groups);
5341 atomic_inc(&sd->groups->ref);
5343 if (cpu != cpumask_first(span))
5346 lockdep_assert_held(&sched_domains_mutex);
5347 covered = sched_domains_tmpmask;
5349 cpumask_clear(covered);
5351 for_each_cpu(i, span) {
5352 struct sched_group *sg;
5355 if (cpumask_test_cpu(i, covered))
5358 group = get_group(i, sdd, &sg);
5359 cpumask_clear(sched_group_cpus(sg));
5361 cpumask_setall(sched_group_mask(sg));
5363 for_each_cpu(j, span) {
5364 if (get_group(j, sdd, NULL) != group)
5367 cpumask_set_cpu(j, covered);
5368 cpumask_set_cpu(j, sched_group_cpus(sg));
5383 * Initialize sched groups cpu_power.
5385 * cpu_power indicates the capacity of sched group, which is used while
5386 * distributing the load between different sched groups in a sched domain.
5387 * Typically cpu_power for all the groups in a sched domain will be same unless
5388 * there are asymmetries in the topology. If there are asymmetries, group
5389 * having more cpu_power will pickup more load compared to the group having
5392 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5394 struct sched_group *sg = sd->groups;
5399 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5401 } while (sg != sd->groups);
5403 if (cpu != group_balance_cpu(sg))
5406 update_group_power(sd, cpu);
5407 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5410 int __weak arch_sd_sibling_asym_packing(void)
5412 return 0*SD_ASYM_PACKING;
5416 * Initializers for schedule domains
5417 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5420 #ifdef CONFIG_SCHED_DEBUG
5421 # define SD_INIT_NAME(sd, type) sd->name = #type
5423 # define SD_INIT_NAME(sd, type) do { } while (0)
5426 #define SD_INIT_FUNC(type) \
5427 static noinline struct sched_domain * \
5428 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5430 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5431 *sd = SD_##type##_INIT; \
5432 SD_INIT_NAME(sd, type); \
5433 sd->private = &tl->data; \
5438 #ifdef CONFIG_SCHED_SMT
5439 SD_INIT_FUNC(SIBLING)
5441 #ifdef CONFIG_SCHED_MC
5444 #ifdef CONFIG_SCHED_BOOK
5448 static int default_relax_domain_level = -1;
5449 int sched_domain_level_max;
5451 static int __init setup_relax_domain_level(char *str)
5453 if (kstrtoint(str, 0, &default_relax_domain_level))
5454 pr_warn("Unable to set relax_domain_level\n");
5458 __setup("relax_domain_level=", setup_relax_domain_level);
5460 static void set_domain_attribute(struct sched_domain *sd,
5461 struct sched_domain_attr *attr)
5465 if (!attr || attr->relax_domain_level < 0) {
5466 if (default_relax_domain_level < 0)
5469 request = default_relax_domain_level;
5471 request = attr->relax_domain_level;
5472 if (request < sd->level) {
5473 /* turn off idle balance on this domain */
5474 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5476 /* turn on idle balance on this domain */
5477 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5481 static void __sdt_free(const struct cpumask *cpu_map);
5482 static int __sdt_alloc(const struct cpumask *cpu_map);
5484 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5485 const struct cpumask *cpu_map)
5489 if (!atomic_read(&d->rd->refcount))
5490 free_rootdomain(&d->rd->rcu); /* fall through */
5492 free_percpu(d->sd); /* fall through */
5494 __sdt_free(cpu_map); /* fall through */
5500 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5501 const struct cpumask *cpu_map)
5503 memset(d, 0, sizeof(*d));
5505 if (__sdt_alloc(cpu_map))
5506 return sa_sd_storage;
5507 d->sd = alloc_percpu(struct sched_domain *);
5509 return sa_sd_storage;
5510 d->rd = alloc_rootdomain();
5513 return sa_rootdomain;
5517 * NULL the sd_data elements we've used to build the sched_domain and
5518 * sched_group structure so that the subsequent __free_domain_allocs()
5519 * will not free the data we're using.
5521 static void claim_allocations(int cpu, struct sched_domain *sd)
5523 struct sd_data *sdd = sd->private;
5525 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5526 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5528 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5529 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5531 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5532 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5535 #ifdef CONFIG_SCHED_SMT
5536 static const struct cpumask *cpu_smt_mask(int cpu)
5538 return topology_thread_cpumask(cpu);
5543 * Topology list, bottom-up.
5545 static struct sched_domain_topology_level default_topology[] = {
5546 #ifdef CONFIG_SCHED_SMT
5547 { sd_init_SIBLING, cpu_smt_mask, },
5549 #ifdef CONFIG_SCHED_MC
5550 { sd_init_MC, cpu_coregroup_mask, },
5552 #ifdef CONFIG_SCHED_BOOK
5553 { sd_init_BOOK, cpu_book_mask, },
5555 { sd_init_CPU, cpu_cpu_mask, },
5559 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5561 #define for_each_sd_topology(tl) \
5562 for (tl = sched_domain_topology; tl->init; tl++)
5566 static int sched_domains_numa_levels;
5567 static int *sched_domains_numa_distance;
5568 static struct cpumask ***sched_domains_numa_masks;
5569 static int sched_domains_curr_level;
5571 static inline int sd_local_flags(int level)
5573 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5576 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5579 static struct sched_domain *
5580 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5582 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5583 int level = tl->numa_level;
5584 int sd_weight = cpumask_weight(
5585 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5587 *sd = (struct sched_domain){
5588 .min_interval = sd_weight,
5589 .max_interval = 2*sd_weight,
5591 .imbalance_pct = 125,
5592 .cache_nice_tries = 2,
5599 .flags = 1*SD_LOAD_BALANCE
5600 | 1*SD_BALANCE_NEWIDLE
5605 | 0*SD_SHARE_CPUPOWER
5606 | 0*SD_SHARE_PKG_RESOURCES
5608 | 0*SD_PREFER_SIBLING
5609 | sd_local_flags(level)
5611 .last_balance = jiffies,
5612 .balance_interval = sd_weight,
5614 SD_INIT_NAME(sd, NUMA);
5615 sd->private = &tl->data;
5618 * Ugly hack to pass state to sd_numa_mask()...
5620 sched_domains_curr_level = tl->numa_level;
5625 static const struct cpumask *sd_numa_mask(int cpu)
5627 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5630 static void sched_numa_warn(const char *str)
5632 static int done = false;
5640 printk(KERN_WARNING "ERROR: %s\n\n", str);
5642 for (i = 0; i < nr_node_ids; i++) {
5643 printk(KERN_WARNING " ");
5644 for (j = 0; j < nr_node_ids; j++)
5645 printk(KERN_CONT "%02d ", node_distance(i,j));
5646 printk(KERN_CONT "\n");
5648 printk(KERN_WARNING "\n");
5651 static bool find_numa_distance(int distance)
5655 if (distance == node_distance(0, 0))
5658 for (i = 0; i < sched_domains_numa_levels; i++) {
5659 if (sched_domains_numa_distance[i] == distance)
5666 static void sched_init_numa(void)
5668 int next_distance, curr_distance = node_distance(0, 0);
5669 struct sched_domain_topology_level *tl;
5673 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5674 if (!sched_domains_numa_distance)
5678 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5679 * unique distances in the node_distance() table.
5681 * Assumes node_distance(0,j) includes all distances in
5682 * node_distance(i,j) in order to avoid cubic time.
5684 next_distance = curr_distance;
5685 for (i = 0; i < nr_node_ids; i++) {
5686 for (j = 0; j < nr_node_ids; j++) {
5687 for (k = 0; k < nr_node_ids; k++) {
5688 int distance = node_distance(i, k);
5690 if (distance > curr_distance &&
5691 (distance < next_distance ||
5692 next_distance == curr_distance))
5693 next_distance = distance;
5696 * While not a strong assumption it would be nice to know
5697 * about cases where if node A is connected to B, B is not
5698 * equally connected to A.
5700 if (sched_debug() && node_distance(k, i) != distance)
5701 sched_numa_warn("Node-distance not symmetric");
5703 if (sched_debug() && i && !find_numa_distance(distance))
5704 sched_numa_warn("Node-0 not representative");
5706 if (next_distance != curr_distance) {
5707 sched_domains_numa_distance[level++] = next_distance;
5708 sched_domains_numa_levels = level;
5709 curr_distance = next_distance;
5714 * In case of sched_debug() we verify the above assumption.
5720 * 'level' contains the number of unique distances, excluding the
5721 * identity distance node_distance(i,i).
5723 * The sched_domains_numa_distance[] array includes the actual distance
5728 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5729 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5730 * the array will contain less then 'level' members. This could be
5731 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5732 * in other functions.
5734 * We reset it to 'level' at the end of this function.
5736 sched_domains_numa_levels = 0;
5738 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5739 if (!sched_domains_numa_masks)
5743 * Now for each level, construct a mask per node which contains all
5744 * cpus of nodes that are that many hops away from us.
5746 for (i = 0; i < level; i++) {
5747 sched_domains_numa_masks[i] =
5748 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5749 if (!sched_domains_numa_masks[i])
5752 for (j = 0; j < nr_node_ids; j++) {
5753 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5757 sched_domains_numa_masks[i][j] = mask;
5759 for (k = 0; k < nr_node_ids; k++) {
5760 if (node_distance(j, k) > sched_domains_numa_distance[i])
5763 cpumask_or(mask, mask, cpumask_of_node(k));
5768 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5769 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5774 * Copy the default topology bits..
5776 for (i = 0; default_topology[i].init; i++)
5777 tl[i] = default_topology[i];
5780 * .. and append 'j' levels of NUMA goodness.
5782 for (j = 0; j < level; i++, j++) {
5783 tl[i] = (struct sched_domain_topology_level){
5784 .init = sd_numa_init,
5785 .mask = sd_numa_mask,
5786 .flags = SDTL_OVERLAP,
5791 sched_domain_topology = tl;
5793 sched_domains_numa_levels = level;
5796 static void sched_domains_numa_masks_set(int cpu)
5799 int node = cpu_to_node(cpu);
5801 for (i = 0; i < sched_domains_numa_levels; i++) {
5802 for (j = 0; j < nr_node_ids; j++) {
5803 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5804 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5809 static void sched_domains_numa_masks_clear(int cpu)
5812 for (i = 0; i < sched_domains_numa_levels; i++) {
5813 for (j = 0; j < nr_node_ids; j++)
5814 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5819 * Update sched_domains_numa_masks[level][node] array when new cpus
5822 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5823 unsigned long action,
5826 int cpu = (long)hcpu;
5828 switch (action & ~CPU_TASKS_FROZEN) {
5830 sched_domains_numa_masks_set(cpu);
5834 sched_domains_numa_masks_clear(cpu);
5844 static inline void sched_init_numa(void)
5848 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5849 unsigned long action,
5854 #endif /* CONFIG_NUMA */
5856 static int __sdt_alloc(const struct cpumask *cpu_map)
5858 struct sched_domain_topology_level *tl;
5861 for_each_sd_topology(tl) {
5862 struct sd_data *sdd = &tl->data;
5864 sdd->sd = alloc_percpu(struct sched_domain *);
5868 sdd->sg = alloc_percpu(struct sched_group *);
5872 sdd->sgp = alloc_percpu(struct sched_group_power *);
5876 for_each_cpu(j, cpu_map) {
5877 struct sched_domain *sd;
5878 struct sched_group *sg;
5879 struct sched_group_power *sgp;
5881 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5882 GFP_KERNEL, cpu_to_node(j));
5886 *per_cpu_ptr(sdd->sd, j) = sd;
5888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889 GFP_KERNEL, cpu_to_node(j));
5895 *per_cpu_ptr(sdd->sg, j) = sg;
5897 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5898 GFP_KERNEL, cpu_to_node(j));
5902 *per_cpu_ptr(sdd->sgp, j) = sgp;
5909 static void __sdt_free(const struct cpumask *cpu_map)
5911 struct sched_domain_topology_level *tl;
5914 for_each_sd_topology(tl) {
5915 struct sd_data *sdd = &tl->data;
5917 for_each_cpu(j, cpu_map) {
5918 struct sched_domain *sd;
5921 sd = *per_cpu_ptr(sdd->sd, j);
5922 if (sd && (sd->flags & SD_OVERLAP))
5923 free_sched_groups(sd->groups, 0);
5924 kfree(*per_cpu_ptr(sdd->sd, j));
5928 kfree(*per_cpu_ptr(sdd->sg, j));
5930 kfree(*per_cpu_ptr(sdd->sgp, j));
5932 free_percpu(sdd->sd);
5934 free_percpu(sdd->sg);
5936 free_percpu(sdd->sgp);
5941 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5942 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5943 struct sched_domain *child, int cpu)
5945 struct sched_domain *sd = tl->init(tl, cpu);
5949 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5951 sd->level = child->level + 1;
5952 sched_domain_level_max = max(sched_domain_level_max, sd->level);
5956 set_domain_attribute(sd, attr);
5962 * Build sched domains for a given set of cpus and attach the sched domains
5963 * to the individual cpus
5965 static int build_sched_domains(const struct cpumask *cpu_map,
5966 struct sched_domain_attr *attr)
5968 enum s_alloc alloc_state;
5969 struct sched_domain *sd;
5971 int i, ret = -ENOMEM;
5973 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5974 if (alloc_state != sa_rootdomain)
5977 /* Set up domains for cpus specified by the cpu_map. */
5978 for_each_cpu(i, cpu_map) {
5979 struct sched_domain_topology_level *tl;
5982 for_each_sd_topology(tl) {
5983 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5984 if (tl == sched_domain_topology)
5985 *per_cpu_ptr(d.sd, i) = sd;
5986 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5987 sd->flags |= SD_OVERLAP;
5988 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5993 /* Build the groups for the domains */
5994 for_each_cpu(i, cpu_map) {
5995 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5996 sd->span_weight = cpumask_weight(sched_domain_span(sd));
5997 if (sd->flags & SD_OVERLAP) {
5998 if (build_overlap_sched_groups(sd, i))
6001 if (build_sched_groups(sd, i))
6007 /* Calculate CPU power for physical packages and nodes */
6008 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6009 if (!cpumask_test_cpu(i, cpu_map))
6012 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6013 claim_allocations(i, sd);
6014 init_sched_groups_power(i, sd);
6018 /* Attach the domains */
6020 for_each_cpu(i, cpu_map) {
6021 sd = *per_cpu_ptr(d.sd, i);
6022 cpu_attach_domain(sd, d.rd, i);
6028 __free_domain_allocs(&d, alloc_state, cpu_map);
6032 static cpumask_var_t *doms_cur; /* current sched domains */
6033 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6034 static struct sched_domain_attr *dattr_cur;
6035 /* attribues of custom domains in 'doms_cur' */
6038 * Special case: If a kmalloc of a doms_cur partition (array of
6039 * cpumask) fails, then fallback to a single sched domain,
6040 * as determined by the single cpumask fallback_doms.
6042 static cpumask_var_t fallback_doms;
6045 * arch_update_cpu_topology lets virtualized architectures update the
6046 * cpu core maps. It is supposed to return 1 if the topology changed
6047 * or 0 if it stayed the same.
6049 int __attribute__((weak)) arch_update_cpu_topology(void)
6054 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6057 cpumask_var_t *doms;
6059 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6062 for (i = 0; i < ndoms; i++) {
6063 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6064 free_sched_domains(doms, i);
6071 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6074 for (i = 0; i < ndoms; i++)
6075 free_cpumask_var(doms[i]);
6080 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6081 * For now this just excludes isolated cpus, but could be used to
6082 * exclude other special cases in the future.
6084 static int init_sched_domains(const struct cpumask *cpu_map)
6088 arch_update_cpu_topology();
6090 doms_cur = alloc_sched_domains(ndoms_cur);
6092 doms_cur = &fallback_doms;
6093 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6094 err = build_sched_domains(doms_cur[0], NULL);
6095 register_sched_domain_sysctl();
6101 * Detach sched domains from a group of cpus specified in cpu_map
6102 * These cpus will now be attached to the NULL domain
6104 static void detach_destroy_domains(const struct cpumask *cpu_map)
6109 for_each_cpu(i, cpu_map)
6110 cpu_attach_domain(NULL, &def_root_domain, i);
6114 /* handle null as "default" */
6115 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6116 struct sched_domain_attr *new, int idx_new)
6118 struct sched_domain_attr tmp;
6125 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6126 new ? (new + idx_new) : &tmp,
6127 sizeof(struct sched_domain_attr));
6131 * Partition sched domains as specified by the 'ndoms_new'
6132 * cpumasks in the array doms_new[] of cpumasks. This compares
6133 * doms_new[] to the current sched domain partitioning, doms_cur[].
6134 * It destroys each deleted domain and builds each new domain.
6136 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6137 * The masks don't intersect (don't overlap.) We should setup one
6138 * sched domain for each mask. CPUs not in any of the cpumasks will
6139 * not be load balanced. If the same cpumask appears both in the
6140 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6143 * The passed in 'doms_new' should be allocated using
6144 * alloc_sched_domains. This routine takes ownership of it and will
6145 * free_sched_domains it when done with it. If the caller failed the
6146 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6147 * and partition_sched_domains() will fallback to the single partition
6148 * 'fallback_doms', it also forces the domains to be rebuilt.
6150 * If doms_new == NULL it will be replaced with cpu_online_mask.
6151 * ndoms_new == 0 is a special case for destroying existing domains,
6152 * and it will not create the default domain.
6154 * Call with hotplug lock held
6156 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6157 struct sched_domain_attr *dattr_new)
6162 mutex_lock(&sched_domains_mutex);
6164 /* always unregister in case we don't destroy any domains */
6165 unregister_sched_domain_sysctl();
6167 /* Let architecture update cpu core mappings. */
6168 new_topology = arch_update_cpu_topology();
6170 n = doms_new ? ndoms_new : 0;
6172 /* Destroy deleted domains */
6173 for (i = 0; i < ndoms_cur; i++) {
6174 for (j = 0; j < n && !new_topology; j++) {
6175 if (cpumask_equal(doms_cur[i], doms_new[j])
6176 && dattrs_equal(dattr_cur, i, dattr_new, j))
6179 /* no match - a current sched domain not in new doms_new[] */
6180 detach_destroy_domains(doms_cur[i]);
6185 if (doms_new == NULL) {
6187 doms_new = &fallback_doms;
6188 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6189 WARN_ON_ONCE(dattr_new);
6192 /* Build new domains */
6193 for (i = 0; i < ndoms_new; i++) {
6194 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6195 if (cpumask_equal(doms_new[i], doms_cur[j])
6196 && dattrs_equal(dattr_new, i, dattr_cur, j))
6199 /* no match - add a new doms_new */
6200 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6205 /* Remember the new sched domains */
6206 if (doms_cur != &fallback_doms)
6207 free_sched_domains(doms_cur, ndoms_cur);
6208 kfree(dattr_cur); /* kfree(NULL) is safe */
6209 doms_cur = doms_new;
6210 dattr_cur = dattr_new;
6211 ndoms_cur = ndoms_new;
6213 register_sched_domain_sysctl();
6215 mutex_unlock(&sched_domains_mutex);
6218 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6221 * Update cpusets according to cpu_active mask. If cpusets are
6222 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6223 * around partition_sched_domains().
6225 * If we come here as part of a suspend/resume, don't touch cpusets because we
6226 * want to restore it back to its original state upon resume anyway.
6228 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6232 case CPU_ONLINE_FROZEN:
6233 case CPU_DOWN_FAILED_FROZEN:
6236 * num_cpus_frozen tracks how many CPUs are involved in suspend
6237 * resume sequence. As long as this is not the last online
6238 * operation in the resume sequence, just build a single sched
6239 * domain, ignoring cpusets.
6242 if (likely(num_cpus_frozen)) {
6243 partition_sched_domains(1, NULL, NULL);
6248 * This is the last CPU online operation. So fall through and
6249 * restore the original sched domains by considering the
6250 * cpuset configurations.
6254 case CPU_DOWN_FAILED:
6255 cpuset_update_active_cpus(true);
6263 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6267 case CPU_DOWN_PREPARE:
6268 cpuset_update_active_cpus(false);
6270 case CPU_DOWN_PREPARE_FROZEN:
6272 partition_sched_domains(1, NULL, NULL);
6280 void __init sched_init_smp(void)
6282 cpumask_var_t non_isolated_cpus;
6284 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6285 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6290 mutex_lock(&sched_domains_mutex);
6291 init_sched_domains(cpu_active_mask);
6292 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6293 if (cpumask_empty(non_isolated_cpus))
6294 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6295 mutex_unlock(&sched_domains_mutex);
6298 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6299 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6300 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6304 /* Move init over to a non-isolated CPU */
6305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6307 sched_init_granularity();
6308 free_cpumask_var(non_isolated_cpus);
6310 init_sched_rt_class();
6313 void __init sched_init_smp(void)
6315 sched_init_granularity();
6317 #endif /* CONFIG_SMP */
6319 const_debug unsigned int sysctl_timer_migration = 1;
6321 int in_sched_functions(unsigned long addr)
6323 return in_lock_functions(addr) ||
6324 (addr >= (unsigned long)__sched_text_start
6325 && addr < (unsigned long)__sched_text_end);
6328 #ifdef CONFIG_CGROUP_SCHED
6330 * Default task group.
6331 * Every task in system belongs to this group at bootup.
6333 struct task_group root_task_group;
6334 LIST_HEAD(task_groups);
6337 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6339 void __init sched_init(void)
6342 unsigned long alloc_size = 0, ptr;
6344 #ifdef CONFIG_FAIR_GROUP_SCHED
6345 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6347 #ifdef CONFIG_RT_GROUP_SCHED
6348 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6350 #ifdef CONFIG_CPUMASK_OFFSTACK
6351 alloc_size += num_possible_cpus() * cpumask_size();
6354 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6356 #ifdef CONFIG_FAIR_GROUP_SCHED
6357 root_task_group.se = (struct sched_entity **)ptr;
6358 ptr += nr_cpu_ids * sizeof(void **);
6360 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6361 ptr += nr_cpu_ids * sizeof(void **);
6363 #endif /* CONFIG_FAIR_GROUP_SCHED */
6364 #ifdef CONFIG_RT_GROUP_SCHED
6365 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6366 ptr += nr_cpu_ids * sizeof(void **);
6368 root_task_group.rt_rq = (struct rt_rq **)ptr;
6369 ptr += nr_cpu_ids * sizeof(void **);
6371 #endif /* CONFIG_RT_GROUP_SCHED */
6372 #ifdef CONFIG_CPUMASK_OFFSTACK
6373 for_each_possible_cpu(i) {
6374 per_cpu(load_balance_mask, i) = (void *)ptr;
6375 ptr += cpumask_size();
6377 #endif /* CONFIG_CPUMASK_OFFSTACK */
6381 init_defrootdomain();
6384 init_rt_bandwidth(&def_rt_bandwidth,
6385 global_rt_period(), global_rt_runtime());
6387 #ifdef CONFIG_RT_GROUP_SCHED
6388 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6389 global_rt_period(), global_rt_runtime());
6390 #endif /* CONFIG_RT_GROUP_SCHED */
6392 #ifdef CONFIG_CGROUP_SCHED
6393 list_add(&root_task_group.list, &task_groups);
6394 INIT_LIST_HEAD(&root_task_group.children);
6395 INIT_LIST_HEAD(&root_task_group.siblings);
6396 autogroup_init(&init_task);
6398 #endif /* CONFIG_CGROUP_SCHED */
6400 for_each_possible_cpu(i) {
6404 raw_spin_lock_init(&rq->lock);
6406 rq->calc_load_active = 0;
6407 rq->calc_load_update = jiffies + LOAD_FREQ;
6408 init_cfs_rq(&rq->cfs);
6409 init_rt_rq(&rq->rt, rq);
6410 #ifdef CONFIG_FAIR_GROUP_SCHED
6411 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6412 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6414 * How much cpu bandwidth does root_task_group get?
6416 * In case of task-groups formed thr' the cgroup filesystem, it
6417 * gets 100% of the cpu resources in the system. This overall
6418 * system cpu resource is divided among the tasks of
6419 * root_task_group and its child task-groups in a fair manner,
6420 * based on each entity's (task or task-group's) weight
6421 * (se->load.weight).
6423 * In other words, if root_task_group has 10 tasks of weight
6424 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6425 * then A0's share of the cpu resource is:
6427 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6429 * We achieve this by letting root_task_group's tasks sit
6430 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6432 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6433 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6434 #endif /* CONFIG_FAIR_GROUP_SCHED */
6436 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6437 #ifdef CONFIG_RT_GROUP_SCHED
6438 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6439 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6442 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6443 rq->cpu_load[j] = 0;
6445 rq->last_load_update_tick = jiffies;
6450 rq->cpu_power = SCHED_POWER_SCALE;
6451 rq->post_schedule = 0;
6452 rq->active_balance = 0;
6453 rq->next_balance = jiffies;
6458 rq->avg_idle = 2*sysctl_sched_migration_cost;
6460 INIT_LIST_HEAD(&rq->cfs_tasks);
6462 rq_attach_root(rq, &def_root_domain);
6463 #ifdef CONFIG_NO_HZ_COMMON
6466 #ifdef CONFIG_NO_HZ_FULL
6467 rq->last_sched_tick = 0;
6471 atomic_set(&rq->nr_iowait, 0);
6474 set_load_weight(&init_task);
6476 #ifdef CONFIG_PREEMPT_NOTIFIERS
6477 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6480 #ifdef CONFIG_RT_MUTEXES
6481 plist_head_init(&init_task.pi_waiters);
6485 * The boot idle thread does lazy MMU switching as well:
6487 atomic_inc(&init_mm.mm_count);
6488 enter_lazy_tlb(&init_mm, current);
6491 * Make us the idle thread. Technically, schedule() should not be
6492 * called from this thread, however somewhere below it might be,
6493 * but because we are the idle thread, we just pick up running again
6494 * when this runqueue becomes "idle".
6496 init_idle(current, smp_processor_id());
6498 calc_load_update = jiffies + LOAD_FREQ;
6501 * During early bootup we pretend to be a normal task:
6503 current->sched_class = &fair_sched_class;
6506 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6507 /* May be allocated at isolcpus cmdline parse time */
6508 if (cpu_isolated_map == NULL)
6509 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6510 idle_thread_set_boot_cpu();
6512 init_sched_fair_class();
6514 scheduler_running = 1;
6517 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6518 static inline int preempt_count_equals(int preempt_offset)
6520 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6522 return (nested == preempt_offset);
6525 void __might_sleep(const char *file, int line, int preempt_offset)
6527 static unsigned long prev_jiffy; /* ratelimiting */
6529 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6530 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6531 system_state != SYSTEM_RUNNING || oops_in_progress)
6533 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6535 prev_jiffy = jiffies;
6538 "BUG: sleeping function called from invalid context at %s:%d\n",
6541 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6542 in_atomic(), irqs_disabled(),
6543 current->pid, current->comm);
6545 debug_show_held_locks(current);
6546 if (irqs_disabled())
6547 print_irqtrace_events(current);
6550 EXPORT_SYMBOL(__might_sleep);
6553 #ifdef CONFIG_MAGIC_SYSRQ
6554 static void normalize_task(struct rq *rq, struct task_struct *p)
6556 const struct sched_class *prev_class = p->sched_class;
6557 int old_prio = p->prio;
6562 dequeue_task(rq, p, 0);
6563 __setscheduler(rq, p, SCHED_NORMAL, 0);
6565 enqueue_task(rq, p, 0);
6566 resched_task(rq->curr);
6569 check_class_changed(rq, p, prev_class, old_prio);
6572 void normalize_rt_tasks(void)
6574 struct task_struct *g, *p;
6575 unsigned long flags;
6578 read_lock_irqsave(&tasklist_lock, flags);
6579 do_each_thread(g, p) {
6581 * Only normalize user tasks:
6586 p->se.exec_start = 0;
6587 #ifdef CONFIG_SCHEDSTATS
6588 p->se.statistics.wait_start = 0;
6589 p->se.statistics.sleep_start = 0;
6590 p->se.statistics.block_start = 0;
6595 * Renice negative nice level userspace
6598 if (TASK_NICE(p) < 0 && p->mm)
6599 set_user_nice(p, 0);
6603 raw_spin_lock(&p->pi_lock);
6604 rq = __task_rq_lock(p);
6606 normalize_task(rq, p);
6608 __task_rq_unlock(rq);
6609 raw_spin_unlock(&p->pi_lock);
6610 } while_each_thread(g, p);
6612 read_unlock_irqrestore(&tasklist_lock, flags);
6615 #endif /* CONFIG_MAGIC_SYSRQ */
6617 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6619 * These functions are only useful for the IA64 MCA handling, or kdb.
6621 * They can only be called when the whole system has been
6622 * stopped - every CPU needs to be quiescent, and no scheduling
6623 * activity can take place. Using them for anything else would
6624 * be a serious bug, and as a result, they aren't even visible
6625 * under any other configuration.
6629 * curr_task - return the current task for a given cpu.
6630 * @cpu: the processor in question.
6632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6634 struct task_struct *curr_task(int cpu)
6636 return cpu_curr(cpu);
6639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6643 * set_curr_task - set the current task for a given cpu.
6644 * @cpu: the processor in question.
6645 * @p: the task pointer to set.
6647 * Description: This function must only be used when non-maskable interrupts
6648 * are serviced on a separate stack. It allows the architecture to switch the
6649 * notion of the current task on a cpu in a non-blocking manner. This function
6650 * must be called with all CPU's synchronized, and interrupts disabled, the
6651 * and caller must save the original value of the current task (see
6652 * curr_task() above) and restore that value before reenabling interrupts and
6653 * re-starting the system.
6655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6657 void set_curr_task(int cpu, struct task_struct *p)
6664 #ifdef CONFIG_CGROUP_SCHED
6665 /* task_group_lock serializes the addition/removal of task groups */
6666 static DEFINE_SPINLOCK(task_group_lock);
6668 static void free_sched_group(struct task_group *tg)
6670 free_fair_sched_group(tg);
6671 free_rt_sched_group(tg);
6676 /* allocate runqueue etc for a new task group */
6677 struct task_group *sched_create_group(struct task_group *parent)
6679 struct task_group *tg;
6681 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6683 return ERR_PTR(-ENOMEM);
6685 if (!alloc_fair_sched_group(tg, parent))
6688 if (!alloc_rt_sched_group(tg, parent))
6694 free_sched_group(tg);
6695 return ERR_PTR(-ENOMEM);
6698 void sched_online_group(struct task_group *tg, struct task_group *parent)
6700 unsigned long flags;
6702 spin_lock_irqsave(&task_group_lock, flags);
6703 list_add_rcu(&tg->list, &task_groups);
6705 WARN_ON(!parent); /* root should already exist */
6707 tg->parent = parent;
6708 INIT_LIST_HEAD(&tg->children);
6709 list_add_rcu(&tg->siblings, &parent->children);
6710 spin_unlock_irqrestore(&task_group_lock, flags);
6713 /* rcu callback to free various structures associated with a task group */
6714 static void free_sched_group_rcu(struct rcu_head *rhp)
6716 /* now it should be safe to free those cfs_rqs */
6717 free_sched_group(container_of(rhp, struct task_group, rcu));
6720 /* Destroy runqueue etc associated with a task group */
6721 void sched_destroy_group(struct task_group *tg)
6723 /* wait for possible concurrent references to cfs_rqs complete */
6724 call_rcu(&tg->rcu, free_sched_group_rcu);
6727 void sched_offline_group(struct task_group *tg)
6729 unsigned long flags;
6732 /* end participation in shares distribution */
6733 for_each_possible_cpu(i)
6734 unregister_fair_sched_group(tg, i);
6736 spin_lock_irqsave(&task_group_lock, flags);
6737 list_del_rcu(&tg->list);
6738 list_del_rcu(&tg->siblings);
6739 spin_unlock_irqrestore(&task_group_lock, flags);
6742 /* change task's runqueue when it moves between groups.
6743 * The caller of this function should have put the task in its new group
6744 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6745 * reflect its new group.
6747 void sched_move_task(struct task_struct *tsk)
6749 struct task_group *tg;
6751 unsigned long flags;
6754 rq = task_rq_lock(tsk, &flags);
6756 running = task_current(rq, tsk);
6760 dequeue_task(rq, tsk, 0);
6761 if (unlikely(running))
6762 tsk->sched_class->put_prev_task(rq, tsk);
6764 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6765 lockdep_is_held(&tsk->sighand->siglock)),
6766 struct task_group, css);
6767 tg = autogroup_task_group(tsk, tg);
6768 tsk->sched_task_group = tg;
6770 #ifdef CONFIG_FAIR_GROUP_SCHED
6771 if (tsk->sched_class->task_move_group)
6772 tsk->sched_class->task_move_group(tsk, on_rq);
6775 set_task_rq(tsk, task_cpu(tsk));
6777 if (unlikely(running))
6778 tsk->sched_class->set_curr_task(rq);
6780 enqueue_task(rq, tsk, 0);
6782 task_rq_unlock(rq, tsk, &flags);
6784 #endif /* CONFIG_CGROUP_SCHED */
6786 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6787 static unsigned long to_ratio(u64 period, u64 runtime)
6789 if (runtime == RUNTIME_INF)
6792 return div64_u64(runtime << 20, period);
6796 #ifdef CONFIG_RT_GROUP_SCHED
6798 * Ensure that the real time constraints are schedulable.
6800 static DEFINE_MUTEX(rt_constraints_mutex);
6802 /* Must be called with tasklist_lock held */
6803 static inline int tg_has_rt_tasks(struct task_group *tg)
6805 struct task_struct *g, *p;
6807 do_each_thread(g, p) {
6808 if (rt_task(p) && task_rq(p)->rt.tg == tg)
6810 } while_each_thread(g, p);
6815 struct rt_schedulable_data {
6816 struct task_group *tg;
6821 static int tg_rt_schedulable(struct task_group *tg, void *data)
6823 struct rt_schedulable_data *d = data;
6824 struct task_group *child;
6825 unsigned long total, sum = 0;
6826 u64 period, runtime;
6828 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6829 runtime = tg->rt_bandwidth.rt_runtime;
6832 period = d->rt_period;
6833 runtime = d->rt_runtime;
6837 * Cannot have more runtime than the period.
6839 if (runtime > period && runtime != RUNTIME_INF)
6843 * Ensure we don't starve existing RT tasks.
6845 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6848 total = to_ratio(period, runtime);
6851 * Nobody can have more than the global setting allows.
6853 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6857 * The sum of our children's runtime should not exceed our own.
6859 list_for_each_entry_rcu(child, &tg->children, siblings) {
6860 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6861 runtime = child->rt_bandwidth.rt_runtime;
6863 if (child == d->tg) {
6864 period = d->rt_period;
6865 runtime = d->rt_runtime;
6868 sum += to_ratio(period, runtime);
6877 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6881 struct rt_schedulable_data data = {
6883 .rt_period = period,
6884 .rt_runtime = runtime,
6888 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6894 static int tg_set_rt_bandwidth(struct task_group *tg,
6895 u64 rt_period, u64 rt_runtime)
6899 mutex_lock(&rt_constraints_mutex);
6900 read_lock(&tasklist_lock);
6901 err = __rt_schedulable(tg, rt_period, rt_runtime);
6905 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6906 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6907 tg->rt_bandwidth.rt_runtime = rt_runtime;
6909 for_each_possible_cpu(i) {
6910 struct rt_rq *rt_rq = tg->rt_rq[i];
6912 raw_spin_lock(&rt_rq->rt_runtime_lock);
6913 rt_rq->rt_runtime = rt_runtime;
6914 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6916 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6918 read_unlock(&tasklist_lock);
6919 mutex_unlock(&rt_constraints_mutex);
6924 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6926 u64 rt_runtime, rt_period;
6928 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6929 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6930 if (rt_runtime_us < 0)
6931 rt_runtime = RUNTIME_INF;
6933 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6936 static long sched_group_rt_runtime(struct task_group *tg)
6940 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6943 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6944 do_div(rt_runtime_us, NSEC_PER_USEC);
6945 return rt_runtime_us;
6948 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6950 u64 rt_runtime, rt_period;
6952 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6953 rt_runtime = tg->rt_bandwidth.rt_runtime;
6958 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6961 static long sched_group_rt_period(struct task_group *tg)
6965 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6966 do_div(rt_period_us, NSEC_PER_USEC);
6967 return rt_period_us;
6970 static int sched_rt_global_constraints(void)
6972 u64 runtime, period;
6975 if (sysctl_sched_rt_period <= 0)
6978 runtime = global_rt_runtime();
6979 period = global_rt_period();
6982 * Sanity check on the sysctl variables.
6984 if (runtime > period && runtime != RUNTIME_INF)
6987 mutex_lock(&rt_constraints_mutex);
6988 read_lock(&tasklist_lock);
6989 ret = __rt_schedulable(NULL, 0, 0);
6990 read_unlock(&tasklist_lock);
6991 mutex_unlock(&rt_constraints_mutex);
6996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6998 /* Don't accept realtime tasks when there is no way for them to run */
6999 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7005 #else /* !CONFIG_RT_GROUP_SCHED */
7006 static int sched_rt_global_constraints(void)
7008 unsigned long flags;
7011 if (sysctl_sched_rt_period <= 0)
7015 * There's always some RT tasks in the root group
7016 * -- migration, kstopmachine etc..
7018 if (sysctl_sched_rt_runtime == 0)
7021 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7022 for_each_possible_cpu(i) {
7023 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7025 raw_spin_lock(&rt_rq->rt_runtime_lock);
7026 rt_rq->rt_runtime = global_rt_runtime();
7027 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7029 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7033 #endif /* CONFIG_RT_GROUP_SCHED */
7035 int sched_rr_handler(struct ctl_table *table, int write,
7036 void __user *buffer, size_t *lenp,
7040 static DEFINE_MUTEX(mutex);
7043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7044 /* make sure that internally we keep jiffies */
7045 /* also, writing zero resets timeslice to default */
7046 if (!ret && write) {
7047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7050 mutex_unlock(&mutex);
7054 int sched_rt_handler(struct ctl_table *table, int write,
7055 void __user *buffer, size_t *lenp,
7059 int old_period, old_runtime;
7060 static DEFINE_MUTEX(mutex);
7063 old_period = sysctl_sched_rt_period;
7064 old_runtime = sysctl_sched_rt_runtime;
7066 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7068 if (!ret && write) {
7069 ret = sched_rt_global_constraints();
7071 sysctl_sched_rt_period = old_period;
7072 sysctl_sched_rt_runtime = old_runtime;
7074 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7075 def_rt_bandwidth.rt_period =
7076 ns_to_ktime(global_rt_period());
7079 mutex_unlock(&mutex);
7084 #ifdef CONFIG_CGROUP_SCHED
7086 /* return corresponding task_group object of a cgroup */
7087 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7089 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7090 struct task_group, css);
7093 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7095 struct task_group *tg, *parent;
7097 if (!cgrp->parent) {
7098 /* This is early initialization for the top cgroup */
7099 return &root_task_group.css;
7102 parent = cgroup_tg(cgrp->parent);
7103 tg = sched_create_group(parent);
7105 return ERR_PTR(-ENOMEM);
7110 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7112 struct task_group *tg = cgroup_tg(cgrp);
7113 struct task_group *parent;
7118 parent = cgroup_tg(cgrp->parent);
7119 sched_online_group(tg, parent);
7123 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7125 struct task_group *tg = cgroup_tg(cgrp);
7127 sched_destroy_group(tg);
7130 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7132 struct task_group *tg = cgroup_tg(cgrp);
7134 sched_offline_group(tg);
7137 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7138 struct cgroup_taskset *tset)
7140 struct task_struct *task;
7142 cgroup_taskset_for_each(task, cgrp, tset) {
7143 #ifdef CONFIG_RT_GROUP_SCHED
7144 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7147 /* We don't support RT-tasks being in separate groups */
7148 if (task->sched_class != &fair_sched_class)
7155 static void cpu_cgroup_attach(struct cgroup *cgrp,
7156 struct cgroup_taskset *tset)
7158 struct task_struct *task;
7160 cgroup_taskset_for_each(task, cgrp, tset)
7161 sched_move_task(task);
7165 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7166 struct task_struct *task)
7169 * cgroup_exit() is called in the copy_process() failure path.
7170 * Ignore this case since the task hasn't ran yet, this avoids
7171 * trying to poke a half freed task state from generic code.
7173 if (!(task->flags & PF_EXITING))
7176 sched_move_task(task);
7179 #ifdef CONFIG_FAIR_GROUP_SCHED
7180 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7183 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7186 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7188 struct task_group *tg = cgroup_tg(cgrp);
7190 return (u64) scale_load_down(tg->shares);
7193 #ifdef CONFIG_CFS_BANDWIDTH
7194 static DEFINE_MUTEX(cfs_constraints_mutex);
7196 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7197 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7199 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7201 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7203 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7204 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7206 if (tg == &root_task_group)
7210 * Ensure we have at some amount of bandwidth every period. This is
7211 * to prevent reaching a state of large arrears when throttled via
7212 * entity_tick() resulting in prolonged exit starvation.
7214 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7218 * Likewise, bound things on the otherside by preventing insane quota
7219 * periods. This also allows us to normalize in computing quota
7222 if (period > max_cfs_quota_period)
7225 mutex_lock(&cfs_constraints_mutex);
7226 ret = __cfs_schedulable(tg, period, quota);
7230 runtime_enabled = quota != RUNTIME_INF;
7231 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7232 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7233 raw_spin_lock_irq(&cfs_b->lock);
7234 cfs_b->period = ns_to_ktime(period);
7235 cfs_b->quota = quota;
7237 __refill_cfs_bandwidth_runtime(cfs_b);
7238 /* restart the period timer (if active) to handle new period expiry */
7239 if (runtime_enabled && cfs_b->timer_active) {
7240 /* force a reprogram */
7241 cfs_b->timer_active = 0;
7242 __start_cfs_bandwidth(cfs_b);
7244 raw_spin_unlock_irq(&cfs_b->lock);
7246 for_each_possible_cpu(i) {
7247 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7248 struct rq *rq = cfs_rq->rq;
7250 raw_spin_lock_irq(&rq->lock);
7251 cfs_rq->runtime_enabled = runtime_enabled;
7252 cfs_rq->runtime_remaining = 0;
7254 if (cfs_rq->throttled)
7255 unthrottle_cfs_rq(cfs_rq);
7256 raw_spin_unlock_irq(&rq->lock);
7259 mutex_unlock(&cfs_constraints_mutex);
7264 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7268 period = ktime_to_ns(tg->cfs_bandwidth.period);
7269 if (cfs_quota_us < 0)
7270 quota = RUNTIME_INF;
7272 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7274 return tg_set_cfs_bandwidth(tg, period, quota);
7277 long tg_get_cfs_quota(struct task_group *tg)
7281 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7284 quota_us = tg->cfs_bandwidth.quota;
7285 do_div(quota_us, NSEC_PER_USEC);
7290 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7294 period = (u64)cfs_period_us * NSEC_PER_USEC;
7295 quota = tg->cfs_bandwidth.quota;
7297 return tg_set_cfs_bandwidth(tg, period, quota);
7300 long tg_get_cfs_period(struct task_group *tg)
7304 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7305 do_div(cfs_period_us, NSEC_PER_USEC);
7307 return cfs_period_us;
7310 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7312 return tg_get_cfs_quota(cgroup_tg(cgrp));
7315 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7318 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7321 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7323 return tg_get_cfs_period(cgroup_tg(cgrp));
7326 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7329 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7332 struct cfs_schedulable_data {
7333 struct task_group *tg;
7338 * normalize group quota/period to be quota/max_period
7339 * note: units are usecs
7341 static u64 normalize_cfs_quota(struct task_group *tg,
7342 struct cfs_schedulable_data *d)
7350 period = tg_get_cfs_period(tg);
7351 quota = tg_get_cfs_quota(tg);
7354 /* note: these should typically be equivalent */
7355 if (quota == RUNTIME_INF || quota == -1)
7358 return to_ratio(period, quota);
7361 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7363 struct cfs_schedulable_data *d = data;
7364 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7365 s64 quota = 0, parent_quota = -1;
7368 quota = RUNTIME_INF;
7370 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7372 quota = normalize_cfs_quota(tg, d);
7373 parent_quota = parent_b->hierarchal_quota;
7376 * ensure max(child_quota) <= parent_quota, inherit when no
7379 if (quota == RUNTIME_INF)
7380 quota = parent_quota;
7381 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7384 cfs_b->hierarchal_quota = quota;
7389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7392 struct cfs_schedulable_data data = {
7398 if (quota != RUNTIME_INF) {
7399 do_div(data.period, NSEC_PER_USEC);
7400 do_div(data.quota, NSEC_PER_USEC);
7404 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7410 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7411 struct cgroup_map_cb *cb)
7413 struct task_group *tg = cgroup_tg(cgrp);
7414 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7416 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7417 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7418 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7422 #endif /* CONFIG_CFS_BANDWIDTH */
7423 #endif /* CONFIG_FAIR_GROUP_SCHED */
7425 #ifdef CONFIG_RT_GROUP_SCHED
7426 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7429 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7432 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7434 return sched_group_rt_runtime(cgroup_tg(cgrp));
7437 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7440 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7443 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7445 return sched_group_rt_period(cgroup_tg(cgrp));
7447 #endif /* CONFIG_RT_GROUP_SCHED */
7449 static struct cftype cpu_files[] = {
7450 #ifdef CONFIG_FAIR_GROUP_SCHED
7453 .read_u64 = cpu_shares_read_u64,
7454 .write_u64 = cpu_shares_write_u64,
7457 #ifdef CONFIG_CFS_BANDWIDTH
7459 .name = "cfs_quota_us",
7460 .read_s64 = cpu_cfs_quota_read_s64,
7461 .write_s64 = cpu_cfs_quota_write_s64,
7464 .name = "cfs_period_us",
7465 .read_u64 = cpu_cfs_period_read_u64,
7466 .write_u64 = cpu_cfs_period_write_u64,
7470 .read_map = cpu_stats_show,
7473 #ifdef CONFIG_RT_GROUP_SCHED
7475 .name = "rt_runtime_us",
7476 .read_s64 = cpu_rt_runtime_read,
7477 .write_s64 = cpu_rt_runtime_write,
7480 .name = "rt_period_us",
7481 .read_u64 = cpu_rt_period_read_uint,
7482 .write_u64 = cpu_rt_period_write_uint,
7488 struct cgroup_subsys cpu_cgroup_subsys = {
7490 .css_alloc = cpu_cgroup_css_alloc,
7491 .css_free = cpu_cgroup_css_free,
7492 .css_online = cpu_cgroup_css_online,
7493 .css_offline = cpu_cgroup_css_offline,
7494 .can_attach = cpu_cgroup_can_attach,
7495 .attach = cpu_cgroup_attach,
7496 .exit = cpu_cgroup_exit,
7497 .subsys_id = cpu_cgroup_subsys_id,
7498 .base_cftypes = cpu_files,
7502 #endif /* CONFIG_CGROUP_SCHED */
7504 void dump_cpu_task(int cpu)
7506 pr_info("Task dump for CPU %d:\n", cpu);
7507 sched_show_task(cpu_curr(cpu));