]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/cputime.c
sched: Lower chances of cputime scaling overflow
[karo-tx-linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31         sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36         sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49         unsigned long flags;
50         s64 delta;
51         int cpu;
52
53         if (!sched_clock_irqtime)
54                 return;
55
56         local_irq_save(flags);
57
58         cpu = smp_processor_id();
59         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60         __this_cpu_add(irq_start_time, delta);
61
62         irq_time_write_begin();
63         /*
64          * We do not account for softirq time from ksoftirqd here.
65          * We want to continue accounting softirq time to ksoftirqd thread
66          * in that case, so as not to confuse scheduler with a special task
67          * that do not consume any time, but still wants to run.
68          */
69         if (hardirq_count())
70                 __this_cpu_add(cpu_hardirq_time, delta);
71         else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72                 __this_cpu_add(cpu_softirq_time, delta);
73
74         irq_time_write_end();
75         local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81         u64 *cpustat = kcpustat_this_cpu->cpustat;
82         unsigned long flags;
83         u64 latest_ns;
84         int ret = 0;
85
86         local_irq_save(flags);
87         latest_ns = this_cpu_read(cpu_hardirq_time);
88         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89                 ret = 1;
90         local_irq_restore(flags);
91         return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96         u64 *cpustat = kcpustat_this_cpu->cpustat;
97         unsigned long flags;
98         u64 latest_ns;
99         int ret = 0;
100
101         local_irq_save(flags);
102         latest_ns = this_cpu_read(cpu_softirq_time);
103         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104                 ret = 1;
105         local_irq_restore(flags);
106         return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime     (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116                                             u64 tmp)
117 {
118 #ifdef CONFIG_CGROUP_CPUACCT
119         struct kernel_cpustat *kcpustat;
120         struct cpuacct *ca;
121 #endif
122         /*
123          * Since all updates are sure to touch the root cgroup, we
124          * get ourselves ahead and touch it first. If the root cgroup
125          * is the only cgroup, then nothing else should be necessary.
126          *
127          */
128         __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
129
130 #ifdef CONFIG_CGROUP_CPUACCT
131         if (unlikely(!cpuacct_subsys.active))
132                 return;
133
134         rcu_read_lock();
135         ca = task_ca(p);
136         while (ca && (ca != &root_cpuacct)) {
137                 kcpustat = this_cpu_ptr(ca->cpustat);
138                 kcpustat->cpustat[index] += tmp;
139                 ca = parent_ca(ca);
140         }
141         rcu_read_unlock();
142 #endif
143 }
144
145 /*
146  * Account user cpu time to a process.
147  * @p: the process that the cpu time gets accounted to
148  * @cputime: the cpu time spent in user space since the last update
149  * @cputime_scaled: cputime scaled by cpu frequency
150  */
151 void account_user_time(struct task_struct *p, cputime_t cputime,
152                        cputime_t cputime_scaled)
153 {
154         int index;
155
156         /* Add user time to process. */
157         p->utime += cputime;
158         p->utimescaled += cputime_scaled;
159         account_group_user_time(p, cputime);
160
161         index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
162
163         /* Add user time to cpustat. */
164         task_group_account_field(p, index, (__force u64) cputime);
165
166         /* Account for user time used */
167         acct_account_cputime(p);
168 }
169
170 /*
171  * Account guest cpu time to a process.
172  * @p: the process that the cpu time gets accounted to
173  * @cputime: the cpu time spent in virtual machine since the last update
174  * @cputime_scaled: cputime scaled by cpu frequency
175  */
176 static void account_guest_time(struct task_struct *p, cputime_t cputime,
177                                cputime_t cputime_scaled)
178 {
179         u64 *cpustat = kcpustat_this_cpu->cpustat;
180
181         /* Add guest time to process. */
182         p->utime += cputime;
183         p->utimescaled += cputime_scaled;
184         account_group_user_time(p, cputime);
185         p->gtime += cputime;
186
187         /* Add guest time to cpustat. */
188         if (TASK_NICE(p) > 0) {
189                 cpustat[CPUTIME_NICE] += (__force u64) cputime;
190                 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
191         } else {
192                 cpustat[CPUTIME_USER] += (__force u64) cputime;
193                 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
194         }
195 }
196
197 /*
198  * Account system cpu time to a process and desired cpustat field
199  * @p: the process that the cpu time gets accounted to
200  * @cputime: the cpu time spent in kernel space since the last update
201  * @cputime_scaled: cputime scaled by cpu frequency
202  * @target_cputime64: pointer to cpustat field that has to be updated
203  */
204 static inline
205 void __account_system_time(struct task_struct *p, cputime_t cputime,
206                         cputime_t cputime_scaled, int index)
207 {
208         /* Add system time to process. */
209         p->stime += cputime;
210         p->stimescaled += cputime_scaled;
211         account_group_system_time(p, cputime);
212
213         /* Add system time to cpustat. */
214         task_group_account_field(p, index, (__force u64) cputime);
215
216         /* Account for system time used */
217         acct_account_cputime(p);
218 }
219
220 /*
221  * Account system cpu time to a process.
222  * @p: the process that the cpu time gets accounted to
223  * @hardirq_offset: the offset to subtract from hardirq_count()
224  * @cputime: the cpu time spent in kernel space since the last update
225  * @cputime_scaled: cputime scaled by cpu frequency
226  */
227 void account_system_time(struct task_struct *p, int hardirq_offset,
228                          cputime_t cputime, cputime_t cputime_scaled)
229 {
230         int index;
231
232         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
233                 account_guest_time(p, cputime, cputime_scaled);
234                 return;
235         }
236
237         if (hardirq_count() - hardirq_offset)
238                 index = CPUTIME_IRQ;
239         else if (in_serving_softirq())
240                 index = CPUTIME_SOFTIRQ;
241         else
242                 index = CPUTIME_SYSTEM;
243
244         __account_system_time(p, cputime, cputime_scaled, index);
245 }
246
247 /*
248  * Account for involuntary wait time.
249  * @cputime: the cpu time spent in involuntary wait
250  */
251 void account_steal_time(cputime_t cputime)
252 {
253         u64 *cpustat = kcpustat_this_cpu->cpustat;
254
255         cpustat[CPUTIME_STEAL] += (__force u64) cputime;
256 }
257
258 /*
259  * Account for idle time.
260  * @cputime: the cpu time spent in idle wait
261  */
262 void account_idle_time(cputime_t cputime)
263 {
264         u64 *cpustat = kcpustat_this_cpu->cpustat;
265         struct rq *rq = this_rq();
266
267         if (atomic_read(&rq->nr_iowait) > 0)
268                 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
269         else
270                 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
271 }
272
273 static __always_inline bool steal_account_process_tick(void)
274 {
275 #ifdef CONFIG_PARAVIRT
276         if (static_key_false(&paravirt_steal_enabled)) {
277                 u64 steal, st = 0;
278
279                 steal = paravirt_steal_clock(smp_processor_id());
280                 steal -= this_rq()->prev_steal_time;
281
282                 st = steal_ticks(steal);
283                 this_rq()->prev_steal_time += st * TICK_NSEC;
284
285                 account_steal_time(st);
286                 return st;
287         }
288 #endif
289         return false;
290 }
291
292 /*
293  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294  * tasks (sum on group iteration) belonging to @tsk's group.
295  */
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
297 {
298         struct signal_struct *sig = tsk->signal;
299         cputime_t utime, stime;
300         struct task_struct *t;
301
302         times->utime = sig->utime;
303         times->stime = sig->stime;
304         times->sum_exec_runtime = sig->sum_sched_runtime;
305
306         rcu_read_lock();
307         /* make sure we can trust tsk->thread_group list */
308         if (!likely(pid_alive(tsk)))
309                 goto out;
310
311         t = tsk;
312         do {
313                 task_cputime(t, &utime, &stime);
314                 times->utime += utime;
315                 times->stime += stime;
316                 times->sum_exec_runtime += task_sched_runtime(t);
317         } while_each_thread(tsk, t);
318 out:
319         rcu_read_unlock();
320 }
321
322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
323 /*
324  * Account a tick to a process and cpustat
325  * @p: the process that the cpu time gets accounted to
326  * @user_tick: is the tick from userspace
327  * @rq: the pointer to rq
328  *
329  * Tick demultiplexing follows the order
330  * - pending hardirq update
331  * - pending softirq update
332  * - user_time
333  * - idle_time
334  * - system time
335  *   - check for guest_time
336  *   - else account as system_time
337  *
338  * Check for hardirq is done both for system and user time as there is
339  * no timer going off while we are on hardirq and hence we may never get an
340  * opportunity to update it solely in system time.
341  * p->stime and friends are only updated on system time and not on irq
342  * softirq as those do not count in task exec_runtime any more.
343  */
344 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
345                                                 struct rq *rq)
346 {
347         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
348         u64 *cpustat = kcpustat_this_cpu->cpustat;
349
350         if (steal_account_process_tick())
351                 return;
352
353         if (irqtime_account_hi_update()) {
354                 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
355         } else if (irqtime_account_si_update()) {
356                 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
357         } else if (this_cpu_ksoftirqd() == p) {
358                 /*
359                  * ksoftirqd time do not get accounted in cpu_softirq_time.
360                  * So, we have to handle it separately here.
361                  * Also, p->stime needs to be updated for ksoftirqd.
362                  */
363                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
364                                         CPUTIME_SOFTIRQ);
365         } else if (user_tick) {
366                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
367         } else if (p == rq->idle) {
368                 account_idle_time(cputime_one_jiffy);
369         } else if (p->flags & PF_VCPU) { /* System time or guest time */
370                 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
371         } else {
372                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
373                                         CPUTIME_SYSTEM);
374         }
375 }
376
377 static void irqtime_account_idle_ticks(int ticks)
378 {
379         int i;
380         struct rq *rq = this_rq();
381
382         for (i = 0; i < ticks; i++)
383                 irqtime_account_process_tick(current, 0, rq);
384 }
385 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
386 static inline void irqtime_account_idle_ticks(int ticks) {}
387 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
388                                                 struct rq *rq) {}
389 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
390
391 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392 /*
393  * Account a single tick of cpu time.
394  * @p: the process that the cpu time gets accounted to
395  * @user_tick: indicates if the tick is a user or a system tick
396  */
397 void account_process_tick(struct task_struct *p, int user_tick)
398 {
399         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
400         struct rq *rq = this_rq();
401
402         if (vtime_accounting_enabled())
403                 return;
404
405         if (sched_clock_irqtime) {
406                 irqtime_account_process_tick(p, user_tick, rq);
407                 return;
408         }
409
410         if (steal_account_process_tick())
411                 return;
412
413         if (user_tick)
414                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
415         else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
416                 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
417                                     one_jiffy_scaled);
418         else
419                 account_idle_time(cputime_one_jiffy);
420 }
421
422 /*
423  * Account multiple ticks of steal time.
424  * @p: the process from which the cpu time has been stolen
425  * @ticks: number of stolen ticks
426  */
427 void account_steal_ticks(unsigned long ticks)
428 {
429         account_steal_time(jiffies_to_cputime(ticks));
430 }
431
432 /*
433  * Account multiple ticks of idle time.
434  * @ticks: number of stolen ticks
435  */
436 void account_idle_ticks(unsigned long ticks)
437 {
438
439         if (sched_clock_irqtime) {
440                 irqtime_account_idle_ticks(ticks);
441                 return;
442         }
443
444         account_idle_time(jiffies_to_cputime(ticks));
445 }
446 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
447
448 /*
449  * Use precise platform statistics if available:
450  */
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
452 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453 {
454         *ut = p->utime;
455         *st = p->stime;
456 }
457
458 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
459 {
460         struct task_cputime cputime;
461
462         thread_group_cputime(p, &cputime);
463
464         *ut = cputime.utime;
465         *st = cputime.stime;
466 }
467
468 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
469 void vtime_task_switch(struct task_struct *prev)
470 {
471         if (!vtime_accounting_enabled())
472                 return;
473
474         if (is_idle_task(prev))
475                 vtime_account_idle(prev);
476         else
477                 vtime_account_system(prev);
478
479 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
480         vtime_account_user(prev);
481 #endif
482         arch_vtime_task_switch(prev);
483 }
484 #endif
485
486 /*
487  * Archs that account the whole time spent in the idle task
488  * (outside irq) as idle time can rely on this and just implement
489  * vtime_account_system() and vtime_account_idle(). Archs that
490  * have other meaning of the idle time (s390 only includes the
491  * time spent by the CPU when it's in low power mode) must override
492  * vtime_account().
493  */
494 #ifndef __ARCH_HAS_VTIME_ACCOUNT
495 void vtime_account_irq_enter(struct task_struct *tsk)
496 {
497         if (!vtime_accounting_enabled())
498                 return;
499
500         if (!in_interrupt()) {
501                 /*
502                  * If we interrupted user, context_tracking_in_user()
503                  * is 1 because the context tracking don't hook
504                  * on irq entry/exit. This way we know if
505                  * we need to flush user time on kernel entry.
506                  */
507                 if (context_tracking_in_user()) {
508                         vtime_account_user(tsk);
509                         return;
510                 }
511
512                 if (is_idle_task(tsk)) {
513                         vtime_account_idle(tsk);
514                         return;
515                 }
516         }
517         vtime_account_system(tsk);
518 }
519 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
520 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
521
522 #else /* !CONFIG_VIRT_CPU_ACCOUNTING */
523
524 /*
525  * Perform (stime * rtime) / total with reduced chances
526  * of multiplication overflows by using smaller factors
527  * like quotient and remainders of divisions between
528  * rtime and total.
529  */
530 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
531 {
532         u64 rem, res, scaled;
533
534         if (rtime >= total) {
535                 /*
536                  * Scale up to rtime / total then add
537                  * the remainder scaled to stime / total.
538                  */
539                 res = div64_u64_rem(rtime, total, &rem);
540                 scaled = stime * res;
541                 scaled += div64_u64(stime * rem, total);
542         } else {
543                 /*
544                  * Same in reverse: scale down to total / rtime
545                  * then substract that result scaled to
546                  * to the remaining part.
547                  */
548                 res = div64_u64_rem(total, rtime, &rem);
549                 scaled = div64_u64(stime, res);
550                 scaled -= div64_u64(scaled * rem, total);
551         }
552
553         return (__force cputime_t) scaled;
554 }
555
556 /*
557  * Adjust tick based cputime random precision against scheduler
558  * runtime accounting.
559  */
560 static void cputime_adjust(struct task_cputime *curr,
561                            struct cputime *prev,
562                            cputime_t *ut, cputime_t *st)
563 {
564         cputime_t rtime, stime, total;
565
566         stime = curr->stime;
567         total = stime + curr->utime;
568
569         /*
570          * Tick based cputime accounting depend on random scheduling
571          * timeslices of a task to be interrupted or not by the timer.
572          * Depending on these circumstances, the number of these interrupts
573          * may be over or under-optimistic, matching the real user and system
574          * cputime with a variable precision.
575          *
576          * Fix this by scaling these tick based values against the total
577          * runtime accounted by the CFS scheduler.
578          */
579         rtime = nsecs_to_cputime(curr->sum_exec_runtime);
580
581         if (!rtime) {
582                 stime = 0;
583         } else if (!total) {
584                 stime = rtime;
585         } else {
586                 stime = scale_stime((__force u64)stime,
587                                     (__force u64)rtime, (__force u64)total);
588         }
589
590         /*
591          * If the tick based count grows faster than the scheduler one,
592          * the result of the scaling may go backward.
593          * Let's enforce monotonicity.
594          */
595         prev->stime = max(prev->stime, stime);
596         prev->utime = max(prev->utime, rtime - prev->stime);
597
598         *ut = prev->utime;
599         *st = prev->stime;
600 }
601
602 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
603 {
604         struct task_cputime cputime = {
605                 .sum_exec_runtime = p->se.sum_exec_runtime,
606         };
607
608         task_cputime(p, &cputime.utime, &cputime.stime);
609         cputime_adjust(&cputime, &p->prev_cputime, ut, st);
610 }
611
612 /*
613  * Must be called with siglock held.
614  */
615 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
616 {
617         struct task_cputime cputime;
618
619         thread_group_cputime(p, &cputime);
620         cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
621 }
622 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
623
624 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
625 static unsigned long long vtime_delta(struct task_struct *tsk)
626 {
627         unsigned long long clock;
628
629         clock = local_clock();
630         if (clock < tsk->vtime_snap)
631                 return 0;
632
633         return clock - tsk->vtime_snap;
634 }
635
636 static cputime_t get_vtime_delta(struct task_struct *tsk)
637 {
638         unsigned long long delta = vtime_delta(tsk);
639
640         WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
641         tsk->vtime_snap += delta;
642
643         /* CHECKME: always safe to convert nsecs to cputime? */
644         return nsecs_to_cputime(delta);
645 }
646
647 static void __vtime_account_system(struct task_struct *tsk)
648 {
649         cputime_t delta_cpu = get_vtime_delta(tsk);
650
651         account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
652 }
653
654 void vtime_account_system(struct task_struct *tsk)
655 {
656         if (!vtime_accounting_enabled())
657                 return;
658
659         write_seqlock(&tsk->vtime_seqlock);
660         __vtime_account_system(tsk);
661         write_sequnlock(&tsk->vtime_seqlock);
662 }
663
664 void vtime_account_irq_exit(struct task_struct *tsk)
665 {
666         if (!vtime_accounting_enabled())
667                 return;
668
669         write_seqlock(&tsk->vtime_seqlock);
670         if (context_tracking_in_user())
671                 tsk->vtime_snap_whence = VTIME_USER;
672         __vtime_account_system(tsk);
673         write_sequnlock(&tsk->vtime_seqlock);
674 }
675
676 void vtime_account_user(struct task_struct *tsk)
677 {
678         cputime_t delta_cpu;
679
680         if (!vtime_accounting_enabled())
681                 return;
682
683         delta_cpu = get_vtime_delta(tsk);
684
685         write_seqlock(&tsk->vtime_seqlock);
686         tsk->vtime_snap_whence = VTIME_SYS;
687         account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
688         write_sequnlock(&tsk->vtime_seqlock);
689 }
690
691 void vtime_user_enter(struct task_struct *tsk)
692 {
693         if (!vtime_accounting_enabled())
694                 return;
695
696         write_seqlock(&tsk->vtime_seqlock);
697         tsk->vtime_snap_whence = VTIME_USER;
698         __vtime_account_system(tsk);
699         write_sequnlock(&tsk->vtime_seqlock);
700 }
701
702 void vtime_guest_enter(struct task_struct *tsk)
703 {
704         write_seqlock(&tsk->vtime_seqlock);
705         __vtime_account_system(tsk);
706         current->flags |= PF_VCPU;
707         write_sequnlock(&tsk->vtime_seqlock);
708 }
709
710 void vtime_guest_exit(struct task_struct *tsk)
711 {
712         write_seqlock(&tsk->vtime_seqlock);
713         __vtime_account_system(tsk);
714         current->flags &= ~PF_VCPU;
715         write_sequnlock(&tsk->vtime_seqlock);
716 }
717
718 void vtime_account_idle(struct task_struct *tsk)
719 {
720         cputime_t delta_cpu = get_vtime_delta(tsk);
721
722         account_idle_time(delta_cpu);
723 }
724
725 bool vtime_accounting_enabled(void)
726 {
727         return context_tracking_active();
728 }
729
730 void arch_vtime_task_switch(struct task_struct *prev)
731 {
732         write_seqlock(&prev->vtime_seqlock);
733         prev->vtime_snap_whence = VTIME_SLEEPING;
734         write_sequnlock(&prev->vtime_seqlock);
735
736         write_seqlock(&current->vtime_seqlock);
737         current->vtime_snap_whence = VTIME_SYS;
738         current->vtime_snap = sched_clock();
739         write_sequnlock(&current->vtime_seqlock);
740 }
741
742 void vtime_init_idle(struct task_struct *t)
743 {
744         unsigned long flags;
745
746         write_seqlock_irqsave(&t->vtime_seqlock, flags);
747         t->vtime_snap_whence = VTIME_SYS;
748         t->vtime_snap = sched_clock();
749         write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
750 }
751
752 cputime_t task_gtime(struct task_struct *t)
753 {
754         unsigned int seq;
755         cputime_t gtime;
756
757         do {
758                 seq = read_seqbegin(&t->vtime_seqlock);
759
760                 gtime = t->gtime;
761                 if (t->flags & PF_VCPU)
762                         gtime += vtime_delta(t);
763
764         } while (read_seqretry(&t->vtime_seqlock, seq));
765
766         return gtime;
767 }
768
769 /*
770  * Fetch cputime raw values from fields of task_struct and
771  * add up the pending nohz execution time since the last
772  * cputime snapshot.
773  */
774 static void
775 fetch_task_cputime(struct task_struct *t,
776                    cputime_t *u_dst, cputime_t *s_dst,
777                    cputime_t *u_src, cputime_t *s_src,
778                    cputime_t *udelta, cputime_t *sdelta)
779 {
780         unsigned int seq;
781         unsigned long long delta;
782
783         do {
784                 *udelta = 0;
785                 *sdelta = 0;
786
787                 seq = read_seqbegin(&t->vtime_seqlock);
788
789                 if (u_dst)
790                         *u_dst = *u_src;
791                 if (s_dst)
792                         *s_dst = *s_src;
793
794                 /* Task is sleeping, nothing to add */
795                 if (t->vtime_snap_whence == VTIME_SLEEPING ||
796                     is_idle_task(t))
797                         continue;
798
799                 delta = vtime_delta(t);
800
801                 /*
802                  * Task runs either in user or kernel space, add pending nohz time to
803                  * the right place.
804                  */
805                 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
806                         *udelta = delta;
807                 } else {
808                         if (t->vtime_snap_whence == VTIME_SYS)
809                                 *sdelta = delta;
810                 }
811         } while (read_seqretry(&t->vtime_seqlock, seq));
812 }
813
814
815 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
816 {
817         cputime_t udelta, sdelta;
818
819         fetch_task_cputime(t, utime, stime, &t->utime,
820                            &t->stime, &udelta, &sdelta);
821         if (utime)
822                 *utime += udelta;
823         if (stime)
824                 *stime += sdelta;
825 }
826
827 void task_cputime_scaled(struct task_struct *t,
828                          cputime_t *utimescaled, cputime_t *stimescaled)
829 {
830         cputime_t udelta, sdelta;
831
832         fetch_task_cputime(t, utimescaled, stimescaled,
833                            &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
834         if (utimescaled)
835                 *utimescaled += cputime_to_scaled(udelta);
836         if (stimescaled)
837                 *stimescaled += cputime_to_scaled(sdelta);
838 }
839 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */