]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/debug.c
Merge branches 'fixes', 'misc', 'mmci', 'unstable/dma-for-next' and 'sa11x0' into...
[karo-tx-linux.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18
19 #include "sched.h"
20
21 static DEFINE_SPINLOCK(sched_debug_lock);
22
23 /*
24  * This allows printing both to /proc/sched_debug and
25  * to the console
26  */
27 #define SEQ_printf(m, x...)                     \
28  do {                                           \
29         if (m)                                  \
30                 seq_printf(m, x);               \
31         else                                    \
32                 printk(x);                      \
33  } while (0)
34
35 /*
36  * Ease the printing of nsec fields:
37  */
38 static long long nsec_high(unsigned long long nsec)
39 {
40         if ((long long)nsec < 0) {
41                 nsec = -nsec;
42                 do_div(nsec, 1000000);
43                 return -nsec;
44         }
45         do_div(nsec, 1000000);
46
47         return nsec;
48 }
49
50 static unsigned long nsec_low(unsigned long long nsec)
51 {
52         if ((long long)nsec < 0)
53                 nsec = -nsec;
54
55         return do_div(nsec, 1000000);
56 }
57
58 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
59
60 #ifdef CONFIG_FAIR_GROUP_SCHED
61 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
62 {
63         struct sched_entity *se = tg->se[cpu];
64
65 #define P(F) \
66         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
67 #define PN(F) \
68         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
69
70         if (!se) {
71                 struct sched_avg *avg = &cpu_rq(cpu)->avg;
72                 P(avg->runnable_avg_sum);
73                 P(avg->runnable_avg_period);
74                 return;
75         }
76
77
78         PN(se->exec_start);
79         PN(se->vruntime);
80         PN(se->sum_exec_runtime);
81 #ifdef CONFIG_SCHEDSTATS
82         PN(se->statistics.wait_start);
83         PN(se->statistics.sleep_start);
84         PN(se->statistics.block_start);
85         PN(se->statistics.sleep_max);
86         PN(se->statistics.block_max);
87         PN(se->statistics.exec_max);
88         PN(se->statistics.slice_max);
89         PN(se->statistics.wait_max);
90         PN(se->statistics.wait_sum);
91         P(se->statistics.wait_count);
92 #endif
93         P(se->load.weight);
94 #ifdef CONFIG_SMP
95         P(se->avg.runnable_avg_sum);
96         P(se->avg.runnable_avg_period);
97         P(se->avg.load_avg_contrib);
98         P(se->avg.decay_count);
99 #endif
100 #undef PN
101 #undef P
102 }
103 #endif
104
105 #ifdef CONFIG_CGROUP_SCHED
106 static char group_path[PATH_MAX];
107
108 static char *task_group_path(struct task_group *tg)
109 {
110         if (autogroup_path(tg, group_path, PATH_MAX))
111                 return group_path;
112
113         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
114         return group_path;
115 }
116 #endif
117
118 static void
119 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
120 {
121         if (rq->curr == p)
122                 SEQ_printf(m, "R");
123         else
124                 SEQ_printf(m, " ");
125
126         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
127                 p->comm, task_pid_nr(p),
128                 SPLIT_NS(p->se.vruntime),
129                 (long long)(p->nvcsw + p->nivcsw),
130                 p->prio);
131 #ifdef CONFIG_SCHEDSTATS
132         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
133                 SPLIT_NS(p->se.vruntime),
134                 SPLIT_NS(p->se.sum_exec_runtime),
135                 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
136 #else
137         SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
138                 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
139 #endif
140 #ifdef CONFIG_CGROUP_SCHED
141         SEQ_printf(m, " %s", task_group_path(task_group(p)));
142 #endif
143
144         SEQ_printf(m, "\n");
145 }
146
147 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
148 {
149         struct task_struct *g, *p;
150         unsigned long flags;
151
152         SEQ_printf(m,
153         "\nrunnable tasks:\n"
154         "            task   PID         tree-key  switches  prio"
155         "     exec-runtime         sum-exec        sum-sleep\n"
156         "------------------------------------------------------"
157         "----------------------------------------------------\n");
158
159         read_lock_irqsave(&tasklist_lock, flags);
160
161         do_each_thread(g, p) {
162                 if (!p->on_rq || task_cpu(p) != rq_cpu)
163                         continue;
164
165                 print_task(m, rq, p);
166         } while_each_thread(g, p);
167
168         read_unlock_irqrestore(&tasklist_lock, flags);
169 }
170
171 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
172 {
173         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
174                 spread, rq0_min_vruntime, spread0;
175         struct rq *rq = cpu_rq(cpu);
176         struct sched_entity *last;
177         unsigned long flags;
178
179 #ifdef CONFIG_FAIR_GROUP_SCHED
180         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
181 #else
182         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
183 #endif
184         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
185                         SPLIT_NS(cfs_rq->exec_clock));
186
187         raw_spin_lock_irqsave(&rq->lock, flags);
188         if (cfs_rq->rb_leftmost)
189                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
190         last = __pick_last_entity(cfs_rq);
191         if (last)
192                 max_vruntime = last->vruntime;
193         min_vruntime = cfs_rq->min_vruntime;
194         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
195         raw_spin_unlock_irqrestore(&rq->lock, flags);
196         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
197                         SPLIT_NS(MIN_vruntime));
198         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
199                         SPLIT_NS(min_vruntime));
200         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
201                         SPLIT_NS(max_vruntime));
202         spread = max_vruntime - MIN_vruntime;
203         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
204                         SPLIT_NS(spread));
205         spread0 = min_vruntime - rq0_min_vruntime;
206         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
207                         SPLIT_NS(spread0));
208         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
209                         cfs_rq->nr_spread_over);
210         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
211         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
212 #ifdef CONFIG_SMP
213         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
214                         cfs_rq->runnable_load_avg);
215         SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
216                         cfs_rq->blocked_load_avg);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
219                         cfs_rq->tg_load_contrib);
220         SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
221                         cfs_rq->tg_runnable_contrib);
222         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
223                         atomic_long_read(&cfs_rq->tg->load_avg));
224         SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
225                         atomic_read(&cfs_rq->tg->runnable_avg));
226 #endif
227 #endif
228
229 #ifdef CONFIG_FAIR_GROUP_SCHED
230         print_cfs_group_stats(m, cpu, cfs_rq->tg);
231 #endif
232 }
233
234 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
235 {
236 #ifdef CONFIG_RT_GROUP_SCHED
237         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
238 #else
239         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
240 #endif
241
242 #define P(x) \
243         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
244 #define PN(x) \
245         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
246
247         P(rt_nr_running);
248         P(rt_throttled);
249         PN(rt_time);
250         PN(rt_runtime);
251
252 #undef PN
253 #undef P
254 }
255
256 extern __read_mostly int sched_clock_running;
257
258 static void print_cpu(struct seq_file *m, int cpu)
259 {
260         struct rq *rq = cpu_rq(cpu);
261         unsigned long flags;
262
263 #ifdef CONFIG_X86
264         {
265                 unsigned int freq = cpu_khz ? : 1;
266
267                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
268                            cpu, freq / 1000, (freq % 1000));
269         }
270 #else
271         SEQ_printf(m, "cpu#%d\n", cpu);
272 #endif
273
274 #define P(x)                                                            \
275 do {                                                                    \
276         if (sizeof(rq->x) == 4)                                         \
277                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
278         else                                                            \
279                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
280 } while (0)
281
282 #define PN(x) \
283         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
284
285         P(nr_running);
286         SEQ_printf(m, "  .%-30s: %lu\n", "load",
287                    rq->load.weight);
288         P(nr_switches);
289         P(nr_load_updates);
290         P(nr_uninterruptible);
291         PN(next_balance);
292         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
293         PN(clock);
294         P(cpu_load[0]);
295         P(cpu_load[1]);
296         P(cpu_load[2]);
297         P(cpu_load[3]);
298         P(cpu_load[4]);
299 #undef P
300 #undef PN
301
302 #ifdef CONFIG_SCHEDSTATS
303 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
304 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
305
306         P(yld_count);
307
308         P(sched_count);
309         P(sched_goidle);
310 #ifdef CONFIG_SMP
311         P64(avg_idle);
312 #endif
313
314         P(ttwu_count);
315         P(ttwu_local);
316
317 #undef P
318 #undef P64
319 #endif
320         spin_lock_irqsave(&sched_debug_lock, flags);
321         print_cfs_stats(m, cpu);
322         print_rt_stats(m, cpu);
323
324         rcu_read_lock();
325         print_rq(m, rq, cpu);
326         rcu_read_unlock();
327         spin_unlock_irqrestore(&sched_debug_lock, flags);
328         SEQ_printf(m, "\n");
329 }
330
331 static const char *sched_tunable_scaling_names[] = {
332         "none",
333         "logaritmic",
334         "linear"
335 };
336
337 static void sched_debug_header(struct seq_file *m)
338 {
339         u64 ktime, sched_clk, cpu_clk;
340         unsigned long flags;
341
342         local_irq_save(flags);
343         ktime = ktime_to_ns(ktime_get());
344         sched_clk = sched_clock();
345         cpu_clk = local_clock();
346         local_irq_restore(flags);
347
348         SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
349                 init_utsname()->release,
350                 (int)strcspn(init_utsname()->version, " "),
351                 init_utsname()->version);
352
353 #define P(x) \
354         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
355 #define PN(x) \
356         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
357         PN(ktime);
358         PN(sched_clk);
359         PN(cpu_clk);
360         P(jiffies);
361 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
362         P(sched_clock_stable);
363 #endif
364 #undef PN
365 #undef P
366
367         SEQ_printf(m, "\n");
368         SEQ_printf(m, "sysctl_sched\n");
369
370 #define P(x) \
371         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
372 #define PN(x) \
373         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
374         PN(sysctl_sched_latency);
375         PN(sysctl_sched_min_granularity);
376         PN(sysctl_sched_wakeup_granularity);
377         P(sysctl_sched_child_runs_first);
378         P(sysctl_sched_features);
379 #undef PN
380 #undef P
381
382         SEQ_printf(m, "  .%-40s: %d (%s)\n",
383                 "sysctl_sched_tunable_scaling",
384                 sysctl_sched_tunable_scaling,
385                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
386         SEQ_printf(m, "\n");
387 }
388
389 static int sched_debug_show(struct seq_file *m, void *v)
390 {
391         int cpu = (unsigned long)(v - 2);
392
393         if (cpu != -1)
394                 print_cpu(m, cpu);
395         else
396                 sched_debug_header(m);
397
398         return 0;
399 }
400
401 void sysrq_sched_debug_show(void)
402 {
403         int cpu;
404
405         sched_debug_header(NULL);
406         for_each_online_cpu(cpu)
407                 print_cpu(NULL, cpu);
408
409 }
410
411 /*
412  * This itererator needs some explanation.
413  * It returns 1 for the header position.
414  * This means 2 is cpu 0.
415  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
416  * to use cpumask_* to iterate over the cpus.
417  */
418 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
419 {
420         unsigned long n = *offset;
421
422         if (n == 0)
423                 return (void *) 1;
424
425         n--;
426
427         if (n > 0)
428                 n = cpumask_next(n - 1, cpu_online_mask);
429         else
430                 n = cpumask_first(cpu_online_mask);
431
432         *offset = n + 1;
433
434         if (n < nr_cpu_ids)
435                 return (void *)(unsigned long)(n + 2);
436         return NULL;
437 }
438
439 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
440 {
441         (*offset)++;
442         return sched_debug_start(file, offset);
443 }
444
445 static void sched_debug_stop(struct seq_file *file, void *data)
446 {
447 }
448
449 static const struct seq_operations sched_debug_sops = {
450         .start = sched_debug_start,
451         .next = sched_debug_next,
452         .stop = sched_debug_stop,
453         .show = sched_debug_show,
454 };
455
456 static int sched_debug_release(struct inode *inode, struct file *file)
457 {
458         seq_release(inode, file);
459
460         return 0;
461 }
462
463 static int sched_debug_open(struct inode *inode, struct file *filp)
464 {
465         int ret = 0;
466
467         ret = seq_open(filp, &sched_debug_sops);
468
469         return ret;
470 }
471
472 static const struct file_operations sched_debug_fops = {
473         .open           = sched_debug_open,
474         .read           = seq_read,
475         .llseek         = seq_lseek,
476         .release        = sched_debug_release,
477 };
478
479 static int __init init_sched_debug_procfs(void)
480 {
481         struct proc_dir_entry *pe;
482
483         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
484         if (!pe)
485                 return -ENOMEM;
486         return 0;
487 }
488
489 __initcall(init_sched_debug_procfs);
490
491 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
492 {
493         unsigned long nr_switches;
494
495         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
496                                                 get_nr_threads(p));
497         SEQ_printf(m,
498                 "---------------------------------------------------------"
499                 "----------\n");
500 #define __P(F) \
501         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
502 #define P(F) \
503         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
504 #define __PN(F) \
505         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
506 #define PN(F) \
507         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
508
509         PN(se.exec_start);
510         PN(se.vruntime);
511         PN(se.sum_exec_runtime);
512
513         nr_switches = p->nvcsw + p->nivcsw;
514
515 #ifdef CONFIG_SCHEDSTATS
516         PN(se.statistics.wait_start);
517         PN(se.statistics.sleep_start);
518         PN(se.statistics.block_start);
519         PN(se.statistics.sleep_max);
520         PN(se.statistics.block_max);
521         PN(se.statistics.exec_max);
522         PN(se.statistics.slice_max);
523         PN(se.statistics.wait_max);
524         PN(se.statistics.wait_sum);
525         P(se.statistics.wait_count);
526         PN(se.statistics.iowait_sum);
527         P(se.statistics.iowait_count);
528         P(se.nr_migrations);
529         P(se.statistics.nr_migrations_cold);
530         P(se.statistics.nr_failed_migrations_affine);
531         P(se.statistics.nr_failed_migrations_running);
532         P(se.statistics.nr_failed_migrations_hot);
533         P(se.statistics.nr_forced_migrations);
534         P(se.statistics.nr_wakeups);
535         P(se.statistics.nr_wakeups_sync);
536         P(se.statistics.nr_wakeups_migrate);
537         P(se.statistics.nr_wakeups_local);
538         P(se.statistics.nr_wakeups_remote);
539         P(se.statistics.nr_wakeups_affine);
540         P(se.statistics.nr_wakeups_affine_attempts);
541         P(se.statistics.nr_wakeups_passive);
542         P(se.statistics.nr_wakeups_idle);
543
544         {
545                 u64 avg_atom, avg_per_cpu;
546
547                 avg_atom = p->se.sum_exec_runtime;
548                 if (nr_switches)
549                         do_div(avg_atom, nr_switches);
550                 else
551                         avg_atom = -1LL;
552
553                 avg_per_cpu = p->se.sum_exec_runtime;
554                 if (p->se.nr_migrations) {
555                         avg_per_cpu = div64_u64(avg_per_cpu,
556                                                 p->se.nr_migrations);
557                 } else {
558                         avg_per_cpu = -1LL;
559                 }
560
561                 __PN(avg_atom);
562                 __PN(avg_per_cpu);
563         }
564 #endif
565         __P(nr_switches);
566         SEQ_printf(m, "%-45s:%21Ld\n",
567                    "nr_voluntary_switches", (long long)p->nvcsw);
568         SEQ_printf(m, "%-45s:%21Ld\n",
569                    "nr_involuntary_switches", (long long)p->nivcsw);
570
571         P(se.load.weight);
572 #ifdef CONFIG_SMP
573         P(se.avg.runnable_avg_sum);
574         P(se.avg.runnable_avg_period);
575         P(se.avg.load_avg_contrib);
576         P(se.avg.decay_count);
577 #endif
578         P(policy);
579         P(prio);
580 #undef PN
581 #undef __PN
582 #undef P
583 #undef __P
584
585         {
586                 unsigned int this_cpu = raw_smp_processor_id();
587                 u64 t0, t1;
588
589                 t0 = cpu_clock(this_cpu);
590                 t1 = cpu_clock(this_cpu);
591                 SEQ_printf(m, "%-45s:%21Ld\n",
592                            "clock-delta", (long long)(t1-t0));
593         }
594 }
595
596 void proc_sched_set_task(struct task_struct *p)
597 {
598 #ifdef CONFIG_SCHEDSTATS
599         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
600 #endif
601 }