]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/loadavg.c
cpufreq: intel_pstate: Add support for Gemini Lake
[karo-tx-linux.git] / kernel / sched / loadavg.c
1 /*
2  * kernel/sched/loadavg.c
3  *
4  * This file contains the magic bits required to compute the global loadavg
5  * figure. Its a silly number but people think its important. We go through
6  * great pains to make it work on big machines and tickless kernels.
7  */
8
9 #include <linux/export.h>
10 #include <linux/sched/loadavg.h>
11
12 #include "sched.h"
13
14 /*
15  * Global load-average calculations
16  *
17  * We take a distributed and async approach to calculating the global load-avg
18  * in order to minimize overhead.
19  *
20  * The global load average is an exponentially decaying average of nr_running +
21  * nr_uninterruptible.
22  *
23  * Once every LOAD_FREQ:
24  *
25  *   nr_active = 0;
26  *   for_each_possible_cpu(cpu)
27  *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
28  *
29  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
30  *
31  * Due to a number of reasons the above turns in the mess below:
32  *
33  *  - for_each_possible_cpu() is prohibitively expensive on machines with
34  *    serious number of cpus, therefore we need to take a distributed approach
35  *    to calculating nr_active.
36  *
37  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
38  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
39  *
40  *    So assuming nr_active := 0 when we start out -- true per definition, we
41  *    can simply take per-cpu deltas and fold those into a global accumulate
42  *    to obtain the same result. See calc_load_fold_active().
43  *
44  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
45  *    across the machine, we assume 10 ticks is sufficient time for every
46  *    cpu to have completed this task.
47  *
48  *    This places an upper-bound on the IRQ-off latency of the machine. Then
49  *    again, being late doesn't loose the delta, just wrecks the sample.
50  *
51  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
52  *    this would add another cross-cpu cacheline miss and atomic operation
53  *    to the wakeup path. Instead we increment on whatever cpu the task ran
54  *    when it went into uninterruptible state and decrement on whatever cpu
55  *    did the wakeup. This means that only the sum of nr_uninterruptible over
56  *    all cpus yields the correct result.
57  *
58  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
59  */
60
61 /* Variables and functions for calc_load */
62 atomic_long_t calc_load_tasks;
63 unsigned long calc_load_update;
64 unsigned long avenrun[3];
65 EXPORT_SYMBOL(avenrun); /* should be removed */
66
67 /**
68  * get_avenrun - get the load average array
69  * @loads:      pointer to dest load array
70  * @offset:     offset to add
71  * @shift:      shift count to shift the result left
72  *
73  * These values are estimates at best, so no need for locking.
74  */
75 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
76 {
77         loads[0] = (avenrun[0] + offset) << shift;
78         loads[1] = (avenrun[1] + offset) << shift;
79         loads[2] = (avenrun[2] + offset) << shift;
80 }
81
82 long calc_load_fold_active(struct rq *this_rq, long adjust)
83 {
84         long nr_active, delta = 0;
85
86         nr_active = this_rq->nr_running - adjust;
87         nr_active += (long)this_rq->nr_uninterruptible;
88
89         if (nr_active != this_rq->calc_load_active) {
90                 delta = nr_active - this_rq->calc_load_active;
91                 this_rq->calc_load_active = nr_active;
92         }
93
94         return delta;
95 }
96
97 /*
98  * a1 = a0 * e + a * (1 - e)
99  */
100 static unsigned long
101 calc_load(unsigned long load, unsigned long exp, unsigned long active)
102 {
103         unsigned long newload;
104
105         newload = load * exp + active * (FIXED_1 - exp);
106         if (active >= load)
107                 newload += FIXED_1-1;
108
109         return newload / FIXED_1;
110 }
111
112 #ifdef CONFIG_NO_HZ_COMMON
113 /*
114  * Handle NO_HZ for the global load-average.
115  *
116  * Since the above described distributed algorithm to compute the global
117  * load-average relies on per-cpu sampling from the tick, it is affected by
118  * NO_HZ.
119  *
120  * The basic idea is to fold the nr_active delta into a global idle-delta upon
121  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
122  * when we read the global state.
123  *
124  * Obviously reality has to ruin such a delightfully simple scheme:
125  *
126  *  - When we go NO_HZ idle during the window, we can negate our sample
127  *    contribution, causing under-accounting.
128  *
129  *    We avoid this by keeping two idle-delta counters and flipping them
130  *    when the window starts, thus separating old and new NO_HZ load.
131  *
132  *    The only trick is the slight shift in index flip for read vs write.
133  *
134  *        0s            5s            10s           15s
135  *          +10           +10           +10           +10
136  *        |-|-----------|-|-----------|-|-----------|-|
137  *    r:0 0 1           1 0           0 1           1 0
138  *    w:0 1 1           0 0           1 1           0 0
139  *
140  *    This ensures we'll fold the old idle contribution in this window while
141  *    accumlating the new one.
142  *
143  *  - When we wake up from NO_HZ idle during the window, we push up our
144  *    contribution, since we effectively move our sample point to a known
145  *    busy state.
146  *
147  *    This is solved by pushing the window forward, and thus skipping the
148  *    sample, for this cpu (effectively using the idle-delta for this cpu which
149  *    was in effect at the time the window opened). This also solves the issue
150  *    of having to deal with a cpu having been in NOHZ idle for multiple
151  *    LOAD_FREQ intervals.
152  *
153  * When making the ILB scale, we should try to pull this in as well.
154  */
155 static atomic_long_t calc_load_idle[2];
156 static int calc_load_idx;
157
158 static inline int calc_load_write_idx(void)
159 {
160         int idx = calc_load_idx;
161
162         /*
163          * See calc_global_nohz(), if we observe the new index, we also
164          * need to observe the new update time.
165          */
166         smp_rmb();
167
168         /*
169          * If the folding window started, make sure we start writing in the
170          * next idle-delta.
171          */
172         if (!time_before(jiffies, calc_load_update))
173                 idx++;
174
175         return idx & 1;
176 }
177
178 static inline int calc_load_read_idx(void)
179 {
180         return calc_load_idx & 1;
181 }
182
183 void calc_load_enter_idle(void)
184 {
185         struct rq *this_rq = this_rq();
186         long delta;
187
188         /*
189          * We're going into NOHZ mode, if there's any pending delta, fold it
190          * into the pending idle delta.
191          */
192         delta = calc_load_fold_active(this_rq, 0);
193         if (delta) {
194                 int idx = calc_load_write_idx();
195
196                 atomic_long_add(delta, &calc_load_idle[idx]);
197         }
198 }
199
200 void calc_load_exit_idle(void)
201 {
202         struct rq *this_rq = this_rq();
203
204         /*
205          * If we're still before the sample window, we're done.
206          */
207         if (time_before(jiffies, this_rq->calc_load_update))
208                 return;
209
210         /*
211          * We woke inside or after the sample window, this means we're already
212          * accounted through the nohz accounting, so skip the entire deal and
213          * sync up for the next window.
214          */
215         this_rq->calc_load_update = calc_load_update;
216         if (time_before(jiffies, this_rq->calc_load_update + 10))
217                 this_rq->calc_load_update += LOAD_FREQ;
218 }
219
220 static long calc_load_fold_idle(void)
221 {
222         int idx = calc_load_read_idx();
223         long delta = 0;
224
225         if (atomic_long_read(&calc_load_idle[idx]))
226                 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
227
228         return delta;
229 }
230
231 /**
232  * fixed_power_int - compute: x^n, in O(log n) time
233  *
234  * @x:         base of the power
235  * @frac_bits: fractional bits of @x
236  * @n:         power to raise @x to.
237  *
238  * By exploiting the relation between the definition of the natural power
239  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
240  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
241  * (where: n_i \elem {0, 1}, the binary vector representing n),
242  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
243  * of course trivially computable in O(log_2 n), the length of our binary
244  * vector.
245  */
246 static unsigned long
247 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
248 {
249         unsigned long result = 1UL << frac_bits;
250
251         if (n) {
252                 for (;;) {
253                         if (n & 1) {
254                                 result *= x;
255                                 result += 1UL << (frac_bits - 1);
256                                 result >>= frac_bits;
257                         }
258                         n >>= 1;
259                         if (!n)
260                                 break;
261                         x *= x;
262                         x += 1UL << (frac_bits - 1);
263                         x >>= frac_bits;
264                 }
265         }
266
267         return result;
268 }
269
270 /*
271  * a1 = a0 * e + a * (1 - e)
272  *
273  * a2 = a1 * e + a * (1 - e)
274  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
275  *    = a0 * e^2 + a * (1 - e) * (1 + e)
276  *
277  * a3 = a2 * e + a * (1 - e)
278  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
279  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
280  *
281  *  ...
282  *
283  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
284  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
285  *    = a0 * e^n + a * (1 - e^n)
286  *
287  * [1] application of the geometric series:
288  *
289  *              n         1 - x^(n+1)
290  *     S_n := \Sum x^i = -------------
291  *             i=0          1 - x
292  */
293 static unsigned long
294 calc_load_n(unsigned long load, unsigned long exp,
295             unsigned long active, unsigned int n)
296 {
297         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
298 }
299
300 /*
301  * NO_HZ can leave us missing all per-cpu ticks calling
302  * calc_load_account_active(), but since an idle CPU folds its delta into
303  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
304  * in the pending idle delta if our idle period crossed a load cycle boundary.
305  *
306  * Once we've updated the global active value, we need to apply the exponential
307  * weights adjusted to the number of cycles missed.
308  */
309 static void calc_global_nohz(void)
310 {
311         long delta, active, n;
312
313         if (!time_before(jiffies, calc_load_update + 10)) {
314                 /*
315                  * Catch-up, fold however many we are behind still
316                  */
317                 delta = jiffies - calc_load_update - 10;
318                 n = 1 + (delta / LOAD_FREQ);
319
320                 active = atomic_long_read(&calc_load_tasks);
321                 active = active > 0 ? active * FIXED_1 : 0;
322
323                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
324                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
325                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
326
327                 calc_load_update += n * LOAD_FREQ;
328         }
329
330         /*
331          * Flip the idle index...
332          *
333          * Make sure we first write the new time then flip the index, so that
334          * calc_load_write_idx() will see the new time when it reads the new
335          * index, this avoids a double flip messing things up.
336          */
337         smp_wmb();
338         calc_load_idx++;
339 }
340 #else /* !CONFIG_NO_HZ_COMMON */
341
342 static inline long calc_load_fold_idle(void) { return 0; }
343 static inline void calc_global_nohz(void) { }
344
345 #endif /* CONFIG_NO_HZ_COMMON */
346
347 /*
348  * calc_load - update the avenrun load estimates 10 ticks after the
349  * CPUs have updated calc_load_tasks.
350  *
351  * Called from the global timer code.
352  */
353 void calc_global_load(unsigned long ticks)
354 {
355         long active, delta;
356
357         if (time_before(jiffies, calc_load_update + 10))
358                 return;
359
360         /*
361          * Fold the 'old' idle-delta to include all NO_HZ cpus.
362          */
363         delta = calc_load_fold_idle();
364         if (delta)
365                 atomic_long_add(delta, &calc_load_tasks);
366
367         active = atomic_long_read(&calc_load_tasks);
368         active = active > 0 ? active * FIXED_1 : 0;
369
370         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
371         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
372         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
373
374         calc_load_update += LOAD_FREQ;
375
376         /*
377          * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
378          */
379         calc_global_nohz();
380 }
381
382 /*
383  * Called from scheduler_tick() to periodically update this CPU's
384  * active count.
385  */
386 void calc_global_load_tick(struct rq *this_rq)
387 {
388         long delta;
389
390         if (time_before(jiffies, this_rq->calc_load_update))
391                 return;
392
393         delta  = calc_load_fold_active(this_rq, 0);
394         if (delta)
395                 atomic_long_add(delta, &calc_load_tasks);
396
397         this_rq->calc_load_update += LOAD_FREQ;
398 }