]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/rt.c
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
[karo-tx-linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13
14 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
15
16 struct rt_bandwidth def_rt_bandwidth;
17
18 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
19 {
20         struct rt_bandwidth *rt_b =
21                 container_of(timer, struct rt_bandwidth, rt_period_timer);
22         int idle = 0;
23         int overrun;
24
25         raw_spin_lock(&rt_b->rt_runtime_lock);
26         for (;;) {
27                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
28                 if (!overrun)
29                         break;
30
31                 raw_spin_unlock(&rt_b->rt_runtime_lock);
32                 idle = do_sched_rt_period_timer(rt_b, overrun);
33                 raw_spin_lock(&rt_b->rt_runtime_lock);
34         }
35         if (idle)
36                 rt_b->rt_period_active = 0;
37         raw_spin_unlock(&rt_b->rt_runtime_lock);
38
39         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
40 }
41
42 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
43 {
44         rt_b->rt_period = ns_to_ktime(period);
45         rt_b->rt_runtime = runtime;
46
47         raw_spin_lock_init(&rt_b->rt_runtime_lock);
48
49         hrtimer_init(&rt_b->rt_period_timer,
50                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
51         rt_b->rt_period_timer.function = sched_rt_period_timer;
52 }
53
54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 {
56         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
57                 return;
58
59         raw_spin_lock(&rt_b->rt_runtime_lock);
60         if (!rt_b->rt_period_active) {
61                 rt_b->rt_period_active = 1;
62                 /*
63                  * SCHED_DEADLINE updates the bandwidth, as a run away
64                  * RT task with a DL task could hog a CPU. But DL does
65                  * not reset the period. If a deadline task was running
66                  * without an RT task running, it can cause RT tasks to
67                  * throttle when they start up. Kick the timer right away
68                  * to update the period.
69                  */
70                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
72         }
73         raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75
76 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
77 static void push_irq_work_func(struct irq_work *work);
78 #endif
79
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82         struct rt_prio_array *array;
83         int i;
84
85         array = &rt_rq->active;
86         for (i = 0; i < MAX_RT_PRIO; i++) {
87                 INIT_LIST_HEAD(array->queue + i);
88                 __clear_bit(i, array->bitmap);
89         }
90         /* delimiter for bitsearch: */
91         __set_bit(MAX_RT_PRIO, array->bitmap);
92
93 #if defined CONFIG_SMP
94         rt_rq->highest_prio.curr = MAX_RT_PRIO;
95         rt_rq->highest_prio.next = MAX_RT_PRIO;
96         rt_rq->rt_nr_migratory = 0;
97         rt_rq->overloaded = 0;
98         plist_head_init(&rt_rq->pushable_tasks);
99
100 #ifdef HAVE_RT_PUSH_IPI
101         rt_rq->push_flags = 0;
102         rt_rq->push_cpu = nr_cpu_ids;
103         raw_spin_lock_init(&rt_rq->push_lock);
104         init_irq_work(&rt_rq->push_work, push_irq_work_func);
105 #endif
106 #endif /* CONFIG_SMP */
107         /* We start is dequeued state, because no RT tasks are queued */
108         rt_rq->rt_queued = 0;
109
110         rt_rq->rt_time = 0;
111         rt_rq->rt_throttled = 0;
112         rt_rq->rt_runtime = 0;
113         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
114 }
115
116 #ifdef CONFIG_RT_GROUP_SCHED
117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 {
119         hrtimer_cancel(&rt_b->rt_period_timer);
120 }
121
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123
124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 {
126 #ifdef CONFIG_SCHED_DEBUG
127         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
128 #endif
129         return container_of(rt_se, struct task_struct, rt);
130 }
131
132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 {
134         return rt_rq->rq;
135 }
136
137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 {
139         return rt_se->rt_rq;
140 }
141
142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 {
144         struct rt_rq *rt_rq = rt_se->rt_rq;
145
146         return rt_rq->rq;
147 }
148
149 void free_rt_sched_group(struct task_group *tg)
150 {
151         int i;
152
153         if (tg->rt_se)
154                 destroy_rt_bandwidth(&tg->rt_bandwidth);
155
156         for_each_possible_cpu(i) {
157                 if (tg->rt_rq)
158                         kfree(tg->rt_rq[i]);
159                 if (tg->rt_se)
160                         kfree(tg->rt_se[i]);
161         }
162
163         kfree(tg->rt_rq);
164         kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168                 struct sched_rt_entity *rt_se, int cpu,
169                 struct sched_rt_entity *parent)
170 {
171         struct rq *rq = cpu_rq(cpu);
172
173         rt_rq->highest_prio.curr = MAX_RT_PRIO;
174         rt_rq->rt_nr_boosted = 0;
175         rt_rq->rq = rq;
176         rt_rq->tg = tg;
177
178         tg->rt_rq[cpu] = rt_rq;
179         tg->rt_se[cpu] = rt_se;
180
181         if (!rt_se)
182                 return;
183
184         if (!parent)
185                 rt_se->rt_rq = &rq->rt;
186         else
187                 rt_se->rt_rq = parent->my_q;
188
189         rt_se->my_q = rt_rq;
190         rt_se->parent = parent;
191         INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196         struct rt_rq *rt_rq;
197         struct sched_rt_entity *rt_se;
198         int i;
199
200         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
201         if (!tg->rt_rq)
202                 goto err;
203         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
204         if (!tg->rt_se)
205                 goto err;
206
207         init_rt_bandwidth(&tg->rt_bandwidth,
208                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210         for_each_possible_cpu(i) {
211                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212                                      GFP_KERNEL, cpu_to_node(i));
213                 if (!rt_rq)
214                         goto err;
215
216                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217                                      GFP_KERNEL, cpu_to_node(i));
218                 if (!rt_se)
219                         goto err_free_rq;
220
221                 init_rt_rq(rt_rq);
222                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224         }
225
226         return 1;
227
228 err_free_rq:
229         kfree(rt_rq);
230 err:
231         return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240         return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245         return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250         struct task_struct *p = rt_task_of(rt_se);
251
252         return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257         struct rq *rq = rq_of_rt_se(rt_se);
258
259         return &rq->rt;
260 }
261
262 void free_rt_sched_group(struct task_group *tg) { }
263
264 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
265 {
266         return 1;
267 }
268 #endif /* CONFIG_RT_GROUP_SCHED */
269
270 #ifdef CONFIG_SMP
271
272 static void pull_rt_task(struct rq *this_rq);
273
274 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
275 {
276         /* Try to pull RT tasks here if we lower this rq's prio */
277         return rq->rt.highest_prio.curr > prev->prio;
278 }
279
280 static inline int rt_overloaded(struct rq *rq)
281 {
282         return atomic_read(&rq->rd->rto_count);
283 }
284
285 static inline void rt_set_overload(struct rq *rq)
286 {
287         if (!rq->online)
288                 return;
289
290         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
291         /*
292          * Make sure the mask is visible before we set
293          * the overload count. That is checked to determine
294          * if we should look at the mask. It would be a shame
295          * if we looked at the mask, but the mask was not
296          * updated yet.
297          *
298          * Matched by the barrier in pull_rt_task().
299          */
300         smp_wmb();
301         atomic_inc(&rq->rd->rto_count);
302 }
303
304 static inline void rt_clear_overload(struct rq *rq)
305 {
306         if (!rq->online)
307                 return;
308
309         /* the order here really doesn't matter */
310         atomic_dec(&rq->rd->rto_count);
311         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
312 }
313
314 static void update_rt_migration(struct rt_rq *rt_rq)
315 {
316         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
317                 if (!rt_rq->overloaded) {
318                         rt_set_overload(rq_of_rt_rq(rt_rq));
319                         rt_rq->overloaded = 1;
320                 }
321         } else if (rt_rq->overloaded) {
322                 rt_clear_overload(rq_of_rt_rq(rt_rq));
323                 rt_rq->overloaded = 0;
324         }
325 }
326
327 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
328 {
329         struct task_struct *p;
330
331         if (!rt_entity_is_task(rt_se))
332                 return;
333
334         p = rt_task_of(rt_se);
335         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
336
337         rt_rq->rt_nr_total++;
338         if (tsk_nr_cpus_allowed(p) > 1)
339                 rt_rq->rt_nr_migratory++;
340
341         update_rt_migration(rt_rq);
342 }
343
344 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
345 {
346         struct task_struct *p;
347
348         if (!rt_entity_is_task(rt_se))
349                 return;
350
351         p = rt_task_of(rt_se);
352         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
353
354         rt_rq->rt_nr_total--;
355         if (tsk_nr_cpus_allowed(p) > 1)
356                 rt_rq->rt_nr_migratory--;
357
358         update_rt_migration(rt_rq);
359 }
360
361 static inline int has_pushable_tasks(struct rq *rq)
362 {
363         return !plist_head_empty(&rq->rt.pushable_tasks);
364 }
365
366 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
367 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
368
369 static void push_rt_tasks(struct rq *);
370 static void pull_rt_task(struct rq *);
371
372 static inline void queue_push_tasks(struct rq *rq)
373 {
374         if (!has_pushable_tasks(rq))
375                 return;
376
377         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
378 }
379
380 static inline void queue_pull_task(struct rq *rq)
381 {
382         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
383 }
384
385 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388         plist_node_init(&p->pushable_tasks, p->prio);
389         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391         /* Update the highest prio pushable task */
392         if (p->prio < rq->rt.highest_prio.next)
393                 rq->rt.highest_prio.next = p->prio;
394 }
395
396 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
397 {
398         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
399
400         /* Update the new highest prio pushable task */
401         if (has_pushable_tasks(rq)) {
402                 p = plist_first_entry(&rq->rt.pushable_tasks,
403                                       struct task_struct, pushable_tasks);
404                 rq->rt.highest_prio.next = p->prio;
405         } else
406                 rq->rt.highest_prio.next = MAX_RT_PRIO;
407 }
408
409 #else
410
411 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
412 {
413 }
414
415 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
416 {
417 }
418
419 static inline
420 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421 {
422 }
423
424 static inline
425 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
426 {
427 }
428
429 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
430 {
431         return false;
432 }
433
434 static inline void pull_rt_task(struct rq *this_rq)
435 {
436 }
437
438 static inline void queue_push_tasks(struct rq *rq)
439 {
440 }
441 #endif /* CONFIG_SMP */
442
443 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
444 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
445
446 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
447 {
448         return rt_se->on_rq;
449 }
450
451 #ifdef CONFIG_RT_GROUP_SCHED
452
453 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
454 {
455         if (!rt_rq->tg)
456                 return RUNTIME_INF;
457
458         return rt_rq->rt_runtime;
459 }
460
461 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
462 {
463         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
464 }
465
466 typedef struct task_group *rt_rq_iter_t;
467
468 static inline struct task_group *next_task_group(struct task_group *tg)
469 {
470         do {
471                 tg = list_entry_rcu(tg->list.next,
472                         typeof(struct task_group), list);
473         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
474
475         if (&tg->list == &task_groups)
476                 tg = NULL;
477
478         return tg;
479 }
480
481 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
482         for (iter = container_of(&task_groups, typeof(*iter), list);    \
483                 (iter = next_task_group(iter)) &&                       \
484                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
485
486 #define for_each_sched_rt_entity(rt_se) \
487         for (; rt_se; rt_se = rt_se->parent)
488
489 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
490 {
491         return rt_se->my_q;
492 }
493
494 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496
497 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
498 {
499         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
500         struct rq *rq = rq_of_rt_rq(rt_rq);
501         struct sched_rt_entity *rt_se;
502
503         int cpu = cpu_of(rq);
504
505         rt_se = rt_rq->tg->rt_se[cpu];
506
507         if (rt_rq->rt_nr_running) {
508                 if (!rt_se)
509                         enqueue_top_rt_rq(rt_rq);
510                 else if (!on_rt_rq(rt_se))
511                         enqueue_rt_entity(rt_se, 0);
512
513                 if (rt_rq->highest_prio.curr < curr->prio)
514                         resched_curr(rq);
515         }
516 }
517
518 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
519 {
520         struct sched_rt_entity *rt_se;
521         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
522
523         rt_se = rt_rq->tg->rt_se[cpu];
524
525         if (!rt_se)
526                 dequeue_top_rt_rq(rt_rq);
527         else if (on_rt_rq(rt_se))
528                 dequeue_rt_entity(rt_se, 0);
529 }
530
531 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
532 {
533         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
534 }
535
536 static int rt_se_boosted(struct sched_rt_entity *rt_se)
537 {
538         struct rt_rq *rt_rq = group_rt_rq(rt_se);
539         struct task_struct *p;
540
541         if (rt_rq)
542                 return !!rt_rq->rt_nr_boosted;
543
544         p = rt_task_of(rt_se);
545         return p->prio != p->normal_prio;
546 }
547
548 #ifdef CONFIG_SMP
549 static inline const struct cpumask *sched_rt_period_mask(void)
550 {
551         return this_rq()->rd->span;
552 }
553 #else
554 static inline const struct cpumask *sched_rt_period_mask(void)
555 {
556         return cpu_online_mask;
557 }
558 #endif
559
560 static inline
561 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
562 {
563         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
564 }
565
566 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
567 {
568         return &rt_rq->tg->rt_bandwidth;
569 }
570
571 #else /* !CONFIG_RT_GROUP_SCHED */
572
573 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
574 {
575         return rt_rq->rt_runtime;
576 }
577
578 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
579 {
580         return ktime_to_ns(def_rt_bandwidth.rt_period);
581 }
582
583 typedef struct rt_rq *rt_rq_iter_t;
584
585 #define for_each_rt_rq(rt_rq, iter, rq) \
586         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
587
588 #define for_each_sched_rt_entity(rt_se) \
589         for (; rt_se; rt_se = NULL)
590
591 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
592 {
593         return NULL;
594 }
595
596 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
597 {
598         struct rq *rq = rq_of_rt_rq(rt_rq);
599
600         if (!rt_rq->rt_nr_running)
601                 return;
602
603         enqueue_top_rt_rq(rt_rq);
604         resched_curr(rq);
605 }
606
607 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
608 {
609         dequeue_top_rt_rq(rt_rq);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614         return rt_rq->rt_throttled;
615 }
616
617 static inline const struct cpumask *sched_rt_period_mask(void)
618 {
619         return cpu_online_mask;
620 }
621
622 static inline
623 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
624 {
625         return &cpu_rq(cpu)->rt;
626 }
627
628 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
629 {
630         return &def_rt_bandwidth;
631 }
632
633 #endif /* CONFIG_RT_GROUP_SCHED */
634
635 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
636 {
637         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
638
639         return (hrtimer_active(&rt_b->rt_period_timer) ||
640                 rt_rq->rt_time < rt_b->rt_runtime);
641 }
642
643 #ifdef CONFIG_SMP
644 /*
645  * We ran out of runtime, see if we can borrow some from our neighbours.
646  */
647 static void do_balance_runtime(struct rt_rq *rt_rq)
648 {
649         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
650         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
651         int i, weight;
652         u64 rt_period;
653
654         weight = cpumask_weight(rd->span);
655
656         raw_spin_lock(&rt_b->rt_runtime_lock);
657         rt_period = ktime_to_ns(rt_b->rt_period);
658         for_each_cpu(i, rd->span) {
659                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
660                 s64 diff;
661
662                 if (iter == rt_rq)
663                         continue;
664
665                 raw_spin_lock(&iter->rt_runtime_lock);
666                 /*
667                  * Either all rqs have inf runtime and there's nothing to steal
668                  * or __disable_runtime() below sets a specific rq to inf to
669                  * indicate its been disabled and disalow stealing.
670                  */
671                 if (iter->rt_runtime == RUNTIME_INF)
672                         goto next;
673
674                 /*
675                  * From runqueues with spare time, take 1/n part of their
676                  * spare time, but no more than our period.
677                  */
678                 diff = iter->rt_runtime - iter->rt_time;
679                 if (diff > 0) {
680                         diff = div_u64((u64)diff, weight);
681                         if (rt_rq->rt_runtime + diff > rt_period)
682                                 diff = rt_period - rt_rq->rt_runtime;
683                         iter->rt_runtime -= diff;
684                         rt_rq->rt_runtime += diff;
685                         if (rt_rq->rt_runtime == rt_period) {
686                                 raw_spin_unlock(&iter->rt_runtime_lock);
687                                 break;
688                         }
689                 }
690 next:
691                 raw_spin_unlock(&iter->rt_runtime_lock);
692         }
693         raw_spin_unlock(&rt_b->rt_runtime_lock);
694 }
695
696 /*
697  * Ensure this RQ takes back all the runtime it lend to its neighbours.
698  */
699 static void __disable_runtime(struct rq *rq)
700 {
701         struct root_domain *rd = rq->rd;
702         rt_rq_iter_t iter;
703         struct rt_rq *rt_rq;
704
705         if (unlikely(!scheduler_running))
706                 return;
707
708         for_each_rt_rq(rt_rq, iter, rq) {
709                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
710                 s64 want;
711                 int i;
712
713                 raw_spin_lock(&rt_b->rt_runtime_lock);
714                 raw_spin_lock(&rt_rq->rt_runtime_lock);
715                 /*
716                  * Either we're all inf and nobody needs to borrow, or we're
717                  * already disabled and thus have nothing to do, or we have
718                  * exactly the right amount of runtime to take out.
719                  */
720                 if (rt_rq->rt_runtime == RUNTIME_INF ||
721                                 rt_rq->rt_runtime == rt_b->rt_runtime)
722                         goto balanced;
723                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
724
725                 /*
726                  * Calculate the difference between what we started out with
727                  * and what we current have, that's the amount of runtime
728                  * we lend and now have to reclaim.
729                  */
730                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
731
732                 /*
733                  * Greedy reclaim, take back as much as we can.
734                  */
735                 for_each_cpu(i, rd->span) {
736                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
737                         s64 diff;
738
739                         /*
740                          * Can't reclaim from ourselves or disabled runqueues.
741                          */
742                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
743                                 continue;
744
745                         raw_spin_lock(&iter->rt_runtime_lock);
746                         if (want > 0) {
747                                 diff = min_t(s64, iter->rt_runtime, want);
748                                 iter->rt_runtime -= diff;
749                                 want -= diff;
750                         } else {
751                                 iter->rt_runtime -= want;
752                                 want -= want;
753                         }
754                         raw_spin_unlock(&iter->rt_runtime_lock);
755
756                         if (!want)
757                                 break;
758                 }
759
760                 raw_spin_lock(&rt_rq->rt_runtime_lock);
761                 /*
762                  * We cannot be left wanting - that would mean some runtime
763                  * leaked out of the system.
764                  */
765                 BUG_ON(want);
766 balanced:
767                 /*
768                  * Disable all the borrow logic by pretending we have inf
769                  * runtime - in which case borrowing doesn't make sense.
770                  */
771                 rt_rq->rt_runtime = RUNTIME_INF;
772                 rt_rq->rt_throttled = 0;
773                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
774                 raw_spin_unlock(&rt_b->rt_runtime_lock);
775
776                 /* Make rt_rq available for pick_next_task() */
777                 sched_rt_rq_enqueue(rt_rq);
778         }
779 }
780
781 static void __enable_runtime(struct rq *rq)
782 {
783         rt_rq_iter_t iter;
784         struct rt_rq *rt_rq;
785
786         if (unlikely(!scheduler_running))
787                 return;
788
789         /*
790          * Reset each runqueue's bandwidth settings
791          */
792         for_each_rt_rq(rt_rq, iter, rq) {
793                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
794
795                 raw_spin_lock(&rt_b->rt_runtime_lock);
796                 raw_spin_lock(&rt_rq->rt_runtime_lock);
797                 rt_rq->rt_runtime = rt_b->rt_runtime;
798                 rt_rq->rt_time = 0;
799                 rt_rq->rt_throttled = 0;
800                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
801                 raw_spin_unlock(&rt_b->rt_runtime_lock);
802         }
803 }
804
805 static void balance_runtime(struct rt_rq *rt_rq)
806 {
807         if (!sched_feat(RT_RUNTIME_SHARE))
808                 return;
809
810         if (rt_rq->rt_time > rt_rq->rt_runtime) {
811                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
812                 do_balance_runtime(rt_rq);
813                 raw_spin_lock(&rt_rq->rt_runtime_lock);
814         }
815 }
816 #else /* !CONFIG_SMP */
817 static inline void balance_runtime(struct rt_rq *rt_rq) {}
818 #endif /* CONFIG_SMP */
819
820 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
821 {
822         int i, idle = 1, throttled = 0;
823         const struct cpumask *span;
824
825         span = sched_rt_period_mask();
826 #ifdef CONFIG_RT_GROUP_SCHED
827         /*
828          * FIXME: isolated CPUs should really leave the root task group,
829          * whether they are isolcpus or were isolated via cpusets, lest
830          * the timer run on a CPU which does not service all runqueues,
831          * potentially leaving other CPUs indefinitely throttled.  If
832          * isolation is really required, the user will turn the throttle
833          * off to kill the perturbations it causes anyway.  Meanwhile,
834          * this maintains functionality for boot and/or troubleshooting.
835          */
836         if (rt_b == &root_task_group.rt_bandwidth)
837                 span = cpu_online_mask;
838 #endif
839         for_each_cpu(i, span) {
840                 int enqueue = 0;
841                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
842                 struct rq *rq = rq_of_rt_rq(rt_rq);
843
844                 raw_spin_lock(&rq->lock);
845                 if (rt_rq->rt_time) {
846                         u64 runtime;
847
848                         raw_spin_lock(&rt_rq->rt_runtime_lock);
849                         if (rt_rq->rt_throttled)
850                                 balance_runtime(rt_rq);
851                         runtime = rt_rq->rt_runtime;
852                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
853                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
854                                 rt_rq->rt_throttled = 0;
855                                 enqueue = 1;
856
857                                 /*
858                                  * When we're idle and a woken (rt) task is
859                                  * throttled check_preempt_curr() will set
860                                  * skip_update and the time between the wakeup
861                                  * and this unthrottle will get accounted as
862                                  * 'runtime'.
863                                  */
864                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
865                                         rq_clock_skip_update(rq, false);
866                         }
867                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
868                                 idle = 0;
869                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
870                 } else if (rt_rq->rt_nr_running) {
871                         idle = 0;
872                         if (!rt_rq_throttled(rt_rq))
873                                 enqueue = 1;
874                 }
875                 if (rt_rq->rt_throttled)
876                         throttled = 1;
877
878                 if (enqueue)
879                         sched_rt_rq_enqueue(rt_rq);
880                 raw_spin_unlock(&rq->lock);
881         }
882
883         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
884                 return 1;
885
886         return idle;
887 }
888
889 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
890 {
891 #ifdef CONFIG_RT_GROUP_SCHED
892         struct rt_rq *rt_rq = group_rt_rq(rt_se);
893
894         if (rt_rq)
895                 return rt_rq->highest_prio.curr;
896 #endif
897
898         return rt_task_of(rt_se)->prio;
899 }
900
901 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
902 {
903         u64 runtime = sched_rt_runtime(rt_rq);
904
905         if (rt_rq->rt_throttled)
906                 return rt_rq_throttled(rt_rq);
907
908         if (runtime >= sched_rt_period(rt_rq))
909                 return 0;
910
911         balance_runtime(rt_rq);
912         runtime = sched_rt_runtime(rt_rq);
913         if (runtime == RUNTIME_INF)
914                 return 0;
915
916         if (rt_rq->rt_time > runtime) {
917                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
918
919                 /*
920                  * Don't actually throttle groups that have no runtime assigned
921                  * but accrue some time due to boosting.
922                  */
923                 if (likely(rt_b->rt_runtime)) {
924                         rt_rq->rt_throttled = 1;
925                         printk_deferred_once("sched: RT throttling activated\n");
926                 } else {
927                         /*
928                          * In case we did anyway, make it go away,
929                          * replenishment is a joke, since it will replenish us
930                          * with exactly 0 ns.
931                          */
932                         rt_rq->rt_time = 0;
933                 }
934
935                 if (rt_rq_throttled(rt_rq)) {
936                         sched_rt_rq_dequeue(rt_rq);
937                         return 1;
938                 }
939         }
940
941         return 0;
942 }
943
944 /*
945  * Update the current task's runtime statistics. Skip current tasks that
946  * are not in our scheduling class.
947  */
948 static void update_curr_rt(struct rq *rq)
949 {
950         struct task_struct *curr = rq->curr;
951         struct sched_rt_entity *rt_se = &curr->rt;
952         u64 delta_exec;
953
954         if (curr->sched_class != &rt_sched_class)
955                 return;
956
957         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
958         if (unlikely((s64)delta_exec <= 0))
959                 return;
960
961         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
962         cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
963
964         schedstat_set(curr->se.statistics.exec_max,
965                       max(curr->se.statistics.exec_max, delta_exec));
966
967         curr->se.sum_exec_runtime += delta_exec;
968         account_group_exec_runtime(curr, delta_exec);
969
970         curr->se.exec_start = rq_clock_task(rq);
971         cpuacct_charge(curr, delta_exec);
972
973         sched_rt_avg_update(rq, delta_exec);
974
975         if (!rt_bandwidth_enabled())
976                 return;
977
978         for_each_sched_rt_entity(rt_se) {
979                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
980
981                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
982                         raw_spin_lock(&rt_rq->rt_runtime_lock);
983                         rt_rq->rt_time += delta_exec;
984                         if (sched_rt_runtime_exceeded(rt_rq))
985                                 resched_curr(rq);
986                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
987                 }
988         }
989 }
990
991 static void
992 dequeue_top_rt_rq(struct rt_rq *rt_rq)
993 {
994         struct rq *rq = rq_of_rt_rq(rt_rq);
995
996         BUG_ON(&rq->rt != rt_rq);
997
998         if (!rt_rq->rt_queued)
999                 return;
1000
1001         BUG_ON(!rq->nr_running);
1002
1003         sub_nr_running(rq, rt_rq->rt_nr_running);
1004         rt_rq->rt_queued = 0;
1005 }
1006
1007 static void
1008 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009 {
1010         struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012         BUG_ON(&rq->rt != rt_rq);
1013
1014         if (rt_rq->rt_queued)
1015                 return;
1016         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017                 return;
1018
1019         add_nr_running(rq, rt_rq->rt_nr_running);
1020         rt_rq->rt_queued = 1;
1021 }
1022
1023 #if defined CONFIG_SMP
1024
1025 static void
1026 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1027 {
1028         struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030 #ifdef CONFIG_RT_GROUP_SCHED
1031         /*
1032          * Change rq's cpupri only if rt_rq is the top queue.
1033          */
1034         if (&rq->rt != rt_rq)
1035                 return;
1036 #endif
1037         if (rq->online && prio < prev_prio)
1038                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1039 }
1040
1041 static void
1042 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043 {
1044         struct rq *rq = rq_of_rt_rq(rt_rq);
1045
1046 #ifdef CONFIG_RT_GROUP_SCHED
1047         /*
1048          * Change rq's cpupri only if rt_rq is the top queue.
1049          */
1050         if (&rq->rt != rt_rq)
1051                 return;
1052 #endif
1053         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1055 }
1056
1057 #else /* CONFIG_SMP */
1058
1059 static inline
1060 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061 static inline
1062 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063
1064 #endif /* CONFIG_SMP */
1065
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1067 static void
1068 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069 {
1070         int prev_prio = rt_rq->highest_prio.curr;
1071
1072         if (prio < prev_prio)
1073                 rt_rq->highest_prio.curr = prio;
1074
1075         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076 }
1077
1078 static void
1079 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080 {
1081         int prev_prio = rt_rq->highest_prio.curr;
1082
1083         if (rt_rq->rt_nr_running) {
1084
1085                 WARN_ON(prio < prev_prio);
1086
1087                 /*
1088                  * This may have been our highest task, and therefore
1089                  * we may have some recomputation to do
1090                  */
1091                 if (prio == prev_prio) {
1092                         struct rt_prio_array *array = &rt_rq->active;
1093
1094                         rt_rq->highest_prio.curr =
1095                                 sched_find_first_bit(array->bitmap);
1096                 }
1097
1098         } else
1099                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1100
1101         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102 }
1103
1104 #else
1105
1106 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1110
1111 #ifdef CONFIG_RT_GROUP_SCHED
1112
1113 static void
1114 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115 {
1116         if (rt_se_boosted(rt_se))
1117                 rt_rq->rt_nr_boosted++;
1118
1119         if (rt_rq->tg)
1120                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121 }
1122
1123 static void
1124 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126         if (rt_se_boosted(rt_se))
1127                 rt_rq->rt_nr_boosted--;
1128
1129         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1130 }
1131
1132 #else /* CONFIG_RT_GROUP_SCHED */
1133
1134 static void
1135 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136 {
1137         start_rt_bandwidth(&def_rt_bandwidth);
1138 }
1139
1140 static inline
1141 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1144
1145 static inline
1146 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147 {
1148         struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
1150         if (group_rq)
1151                 return group_rq->rt_nr_running;
1152         else
1153                 return 1;
1154 }
1155
1156 static inline
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158 {
1159         struct rt_rq *group_rq = group_rt_rq(rt_se);
1160         struct task_struct *tsk;
1161
1162         if (group_rq)
1163                 return group_rq->rr_nr_running;
1164
1165         tsk = rt_task_of(rt_se);
1166
1167         return (tsk->policy == SCHED_RR) ? 1 : 0;
1168 }
1169
1170 static inline
1171 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172 {
1173         int prio = rt_se_prio(rt_se);
1174
1175         WARN_ON(!rt_prio(prio));
1176         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1177         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1178
1179         inc_rt_prio(rt_rq, prio);
1180         inc_rt_migration(rt_se, rt_rq);
1181         inc_rt_group(rt_se, rt_rq);
1182 }
1183
1184 static inline
1185 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188         WARN_ON(!rt_rq->rt_nr_running);
1189         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1190         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1191
1192         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193         dec_rt_migration(rt_se, rt_rq);
1194         dec_rt_group(rt_se, rt_rq);
1195 }
1196
1197 /*
1198  * Change rt_se->run_list location unless SAVE && !MOVE
1199  *
1200  * assumes ENQUEUE/DEQUEUE flags match
1201  */
1202 static inline bool move_entity(unsigned int flags)
1203 {
1204         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205                 return false;
1206
1207         return true;
1208 }
1209
1210 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211 {
1212         list_del_init(&rt_se->run_list);
1213
1214         if (list_empty(array->queue + rt_se_prio(rt_se)))
1215                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1216
1217         rt_se->on_list = 0;
1218 }
1219
1220 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1221 {
1222         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223         struct rt_prio_array *array = &rt_rq->active;
1224         struct rt_rq *group_rq = group_rt_rq(rt_se);
1225         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1226
1227         /*
1228          * Don't enqueue the group if its throttled, or when empty.
1229          * The latter is a consequence of the former when a child group
1230          * get throttled and the current group doesn't have any other
1231          * active members.
1232          */
1233         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234                 if (rt_se->on_list)
1235                         __delist_rt_entity(rt_se, array);
1236                 return;
1237         }
1238
1239         if (move_entity(flags)) {
1240                 WARN_ON_ONCE(rt_se->on_list);
1241                 if (flags & ENQUEUE_HEAD)
1242                         list_add(&rt_se->run_list, queue);
1243                 else
1244                         list_add_tail(&rt_se->run_list, queue);
1245
1246                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1247                 rt_se->on_list = 1;
1248         }
1249         rt_se->on_rq = 1;
1250
1251         inc_rt_tasks(rt_se, rt_rq);
1252 }
1253
1254 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1255 {
1256         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257         struct rt_prio_array *array = &rt_rq->active;
1258
1259         if (move_entity(flags)) {
1260                 WARN_ON_ONCE(!rt_se->on_list);
1261                 __delist_rt_entity(rt_se, array);
1262         }
1263         rt_se->on_rq = 0;
1264
1265         dec_rt_tasks(rt_se, rt_rq);
1266 }
1267
1268 /*
1269  * Because the prio of an upper entry depends on the lower
1270  * entries, we must remove entries top - down.
1271  */
1272 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1273 {
1274         struct sched_rt_entity *back = NULL;
1275
1276         for_each_sched_rt_entity(rt_se) {
1277                 rt_se->back = back;
1278                 back = rt_se;
1279         }
1280
1281         dequeue_top_rt_rq(rt_rq_of_se(back));
1282
1283         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284                 if (on_rt_rq(rt_se))
1285                         __dequeue_rt_entity(rt_se, flags);
1286         }
1287 }
1288
1289 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1290 {
1291         struct rq *rq = rq_of_rt_se(rt_se);
1292
1293         dequeue_rt_stack(rt_se, flags);
1294         for_each_sched_rt_entity(rt_se)
1295                 __enqueue_rt_entity(rt_se, flags);
1296         enqueue_top_rt_rq(&rq->rt);
1297 }
1298
1299 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301         struct rq *rq = rq_of_rt_se(rt_se);
1302
1303         dequeue_rt_stack(rt_se, flags);
1304
1305         for_each_sched_rt_entity(rt_se) {
1306                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307
1308                 if (rt_rq && rt_rq->rt_nr_running)
1309                         __enqueue_rt_entity(rt_se, flags);
1310         }
1311         enqueue_top_rt_rq(&rq->rt);
1312 }
1313
1314 /*
1315  * Adding/removing a task to/from a priority array:
1316  */
1317 static void
1318 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1319 {
1320         struct sched_rt_entity *rt_se = &p->rt;
1321
1322         if (flags & ENQUEUE_WAKEUP)
1323                 rt_se->timeout = 0;
1324
1325         enqueue_rt_entity(rt_se, flags);
1326
1327         if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1328                 enqueue_pushable_task(rq, p);
1329 }
1330
1331 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1332 {
1333         struct sched_rt_entity *rt_se = &p->rt;
1334
1335         update_curr_rt(rq);
1336         dequeue_rt_entity(rt_se, flags);
1337
1338         dequeue_pushable_task(rq, p);
1339 }
1340
1341 /*
1342  * Put task to the head or the end of the run list without the overhead of
1343  * dequeue followed by enqueue.
1344  */
1345 static void
1346 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1347 {
1348         if (on_rt_rq(rt_se)) {
1349                 struct rt_prio_array *array = &rt_rq->active;
1350                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351
1352                 if (head)
1353                         list_move(&rt_se->run_list, queue);
1354                 else
1355                         list_move_tail(&rt_se->run_list, queue);
1356         }
1357 }
1358
1359 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1360 {
1361         struct sched_rt_entity *rt_se = &p->rt;
1362         struct rt_rq *rt_rq;
1363
1364         for_each_sched_rt_entity(rt_se) {
1365                 rt_rq = rt_rq_of_se(rt_se);
1366                 requeue_rt_entity(rt_rq, rt_se, head);
1367         }
1368 }
1369
1370 static void yield_task_rt(struct rq *rq)
1371 {
1372         requeue_task_rt(rq, rq->curr, 0);
1373 }
1374
1375 #ifdef CONFIG_SMP
1376 static int find_lowest_rq(struct task_struct *task);
1377
1378 static int
1379 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1380 {
1381         struct task_struct *curr;
1382         struct rq *rq;
1383
1384         /* For anything but wake ups, just return the task_cpu */
1385         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386                 goto out;
1387
1388         rq = cpu_rq(cpu);
1389
1390         rcu_read_lock();
1391         curr = READ_ONCE(rq->curr); /* unlocked access */
1392
1393         /*
1394          * If the current task on @p's runqueue is an RT task, then
1395          * try to see if we can wake this RT task up on another
1396          * runqueue. Otherwise simply start this RT task
1397          * on its current runqueue.
1398          *
1399          * We want to avoid overloading runqueues. If the woken
1400          * task is a higher priority, then it will stay on this CPU
1401          * and the lower prio task should be moved to another CPU.
1402          * Even though this will probably make the lower prio task
1403          * lose its cache, we do not want to bounce a higher task
1404          * around just because it gave up its CPU, perhaps for a
1405          * lock?
1406          *
1407          * For equal prio tasks, we just let the scheduler sort it out.
1408          *
1409          * Otherwise, just let it ride on the affined RQ and the
1410          * post-schedule router will push the preempted task away
1411          *
1412          * This test is optimistic, if we get it wrong the load-balancer
1413          * will have to sort it out.
1414          */
1415         if (curr && unlikely(rt_task(curr)) &&
1416             (tsk_nr_cpus_allowed(curr) < 2 ||
1417              curr->prio <= p->prio)) {
1418                 int target = find_lowest_rq(p);
1419
1420                 /*
1421                  * Don't bother moving it if the destination CPU is
1422                  * not running a lower priority task.
1423                  */
1424                 if (target != -1 &&
1425                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1426                         cpu = target;
1427         }
1428         rcu_read_unlock();
1429
1430 out:
1431         return cpu;
1432 }
1433
1434 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435 {
1436         /*
1437          * Current can't be migrated, useless to reschedule,
1438          * let's hope p can move out.
1439          */
1440         if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1441             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1442                 return;
1443
1444         /*
1445          * p is migratable, so let's not schedule it and
1446          * see if it is pushed or pulled somewhere else.
1447          */
1448         if (tsk_nr_cpus_allowed(p) != 1
1449             && cpupri_find(&rq->rd->cpupri, p, NULL))
1450                 return;
1451
1452         /*
1453          * There appears to be other cpus that can accept
1454          * current and none to run 'p', so lets reschedule
1455          * to try and push current away:
1456          */
1457         requeue_task_rt(rq, p, 1);
1458         resched_curr(rq);
1459 }
1460
1461 #endif /* CONFIG_SMP */
1462
1463 /*
1464  * Preempt the current task with a newly woken task if needed:
1465  */
1466 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1467 {
1468         if (p->prio < rq->curr->prio) {
1469                 resched_curr(rq);
1470                 return;
1471         }
1472
1473 #ifdef CONFIG_SMP
1474         /*
1475          * If:
1476          *
1477          * - the newly woken task is of equal priority to the current task
1478          * - the newly woken task is non-migratable while current is migratable
1479          * - current will be preempted on the next reschedule
1480          *
1481          * we should check to see if current can readily move to a different
1482          * cpu.  If so, we will reschedule to allow the push logic to try
1483          * to move current somewhere else, making room for our non-migratable
1484          * task.
1485          */
1486         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1487                 check_preempt_equal_prio(rq, p);
1488 #endif
1489 }
1490
1491 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492                                                    struct rt_rq *rt_rq)
1493 {
1494         struct rt_prio_array *array = &rt_rq->active;
1495         struct sched_rt_entity *next = NULL;
1496         struct list_head *queue;
1497         int idx;
1498
1499         idx = sched_find_first_bit(array->bitmap);
1500         BUG_ON(idx >= MAX_RT_PRIO);
1501
1502         queue = array->queue + idx;
1503         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1504
1505         return next;
1506 }
1507
1508 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1509 {
1510         struct sched_rt_entity *rt_se;
1511         struct task_struct *p;
1512         struct rt_rq *rt_rq  = &rq->rt;
1513
1514         do {
1515                 rt_se = pick_next_rt_entity(rq, rt_rq);
1516                 BUG_ON(!rt_se);
1517                 rt_rq = group_rt_rq(rt_se);
1518         } while (rt_rq);
1519
1520         p = rt_task_of(rt_se);
1521         p->se.exec_start = rq_clock_task(rq);
1522
1523         return p;
1524 }
1525
1526 static struct task_struct *
1527 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1528 {
1529         struct task_struct *p;
1530         struct rt_rq *rt_rq = &rq->rt;
1531
1532         if (need_pull_rt_task(rq, prev)) {
1533                 /*
1534                  * This is OK, because current is on_cpu, which avoids it being
1535                  * picked for load-balance and preemption/IRQs are still
1536                  * disabled avoiding further scheduler activity on it and we're
1537                  * being very careful to re-start the picking loop.
1538                  */
1539                 rq_unpin_lock(rq, rf);
1540                 pull_rt_task(rq);
1541                 rq_repin_lock(rq, rf);
1542                 /*
1543                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544                  * means a dl or stop task can slip in, in which case we need
1545                  * to re-start task selection.
1546                  */
1547                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1548                              rq->dl.dl_nr_running))
1549                         return RETRY_TASK;
1550         }
1551
1552         /*
1553          * We may dequeue prev's rt_rq in put_prev_task().
1554          * So, we update time before rt_nr_running check.
1555          */
1556         if (prev->sched_class == &rt_sched_class)
1557                 update_curr_rt(rq);
1558
1559         if (!rt_rq->rt_queued)
1560                 return NULL;
1561
1562         put_prev_task(rq, prev);
1563
1564         p = _pick_next_task_rt(rq);
1565
1566         /* The running task is never eligible for pushing */
1567         dequeue_pushable_task(rq, p);
1568
1569         queue_push_tasks(rq);
1570
1571         return p;
1572 }
1573
1574 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1575 {
1576         update_curr_rt(rq);
1577
1578         /*
1579          * The previous task needs to be made eligible for pushing
1580          * if it is still active
1581          */
1582         if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1583                 enqueue_pushable_task(rq, p);
1584 }
1585
1586 #ifdef CONFIG_SMP
1587
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1590
1591 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592 {
1593         if (!task_running(rq, p) &&
1594             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1595                 return 1;
1596         return 0;
1597 }
1598
1599 /*
1600  * Return the highest pushable rq's task, which is suitable to be executed
1601  * on the cpu, NULL otherwise
1602  */
1603 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1604 {
1605         struct plist_head *head = &rq->rt.pushable_tasks;
1606         struct task_struct *p;
1607
1608         if (!has_pushable_tasks(rq))
1609                 return NULL;
1610
1611         plist_for_each_entry(p, head, pushable_tasks) {
1612                 if (pick_rt_task(rq, p, cpu))
1613                         return p;
1614         }
1615
1616         return NULL;
1617 }
1618
1619 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1620
1621 static int find_lowest_rq(struct task_struct *task)
1622 {
1623         struct sched_domain *sd;
1624         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1625         int this_cpu = smp_processor_id();
1626         int cpu      = task_cpu(task);
1627
1628         /* Make sure the mask is initialized first */
1629         if (unlikely(!lowest_mask))
1630                 return -1;
1631
1632         if (tsk_nr_cpus_allowed(task) == 1)
1633                 return -1; /* No other targets possible */
1634
1635         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636                 return -1; /* No targets found */
1637
1638         /*
1639          * At this point we have built a mask of cpus representing the
1640          * lowest priority tasks in the system.  Now we want to elect
1641          * the best one based on our affinity and topology.
1642          *
1643          * We prioritize the last cpu that the task executed on since
1644          * it is most likely cache-hot in that location.
1645          */
1646         if (cpumask_test_cpu(cpu, lowest_mask))
1647                 return cpu;
1648
1649         /*
1650          * Otherwise, we consult the sched_domains span maps to figure
1651          * out which cpu is logically closest to our hot cache data.
1652          */
1653         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1655
1656         rcu_read_lock();
1657         for_each_domain(cpu, sd) {
1658                 if (sd->flags & SD_WAKE_AFFINE) {
1659                         int best_cpu;
1660
1661                         /*
1662                          * "this_cpu" is cheaper to preempt than a
1663                          * remote processor.
1664                          */
1665                         if (this_cpu != -1 &&
1666                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667                                 rcu_read_unlock();
1668                                 return this_cpu;
1669                         }
1670
1671                         best_cpu = cpumask_first_and(lowest_mask,
1672                                                      sched_domain_span(sd));
1673                         if (best_cpu < nr_cpu_ids) {
1674                                 rcu_read_unlock();
1675                                 return best_cpu;
1676                         }
1677                 }
1678         }
1679         rcu_read_unlock();
1680
1681         /*
1682          * And finally, if there were no matches within the domains
1683          * just give the caller *something* to work with from the compatible
1684          * locations.
1685          */
1686         if (this_cpu != -1)
1687                 return this_cpu;
1688
1689         cpu = cpumask_any(lowest_mask);
1690         if (cpu < nr_cpu_ids)
1691                 return cpu;
1692         return -1;
1693 }
1694
1695 /* Will lock the rq it finds */
1696 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1697 {
1698         struct rq *lowest_rq = NULL;
1699         int tries;
1700         int cpu;
1701
1702         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703                 cpu = find_lowest_rq(task);
1704
1705                 if ((cpu == -1) || (cpu == rq->cpu))
1706                         break;
1707
1708                 lowest_rq = cpu_rq(cpu);
1709
1710                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711                         /*
1712                          * Target rq has tasks of equal or higher priority,
1713                          * retrying does not release any lock and is unlikely
1714                          * to yield a different result.
1715                          */
1716                         lowest_rq = NULL;
1717                         break;
1718                 }
1719
1720                 /* if the prio of this runqueue changed, try again */
1721                 if (double_lock_balance(rq, lowest_rq)) {
1722                         /*
1723                          * We had to unlock the run queue. In
1724                          * the mean time, task could have
1725                          * migrated already or had its affinity changed.
1726                          * Also make sure that it wasn't scheduled on its rq.
1727                          */
1728                         if (unlikely(task_rq(task) != rq ||
1729                                      !cpumask_test_cpu(lowest_rq->cpu,
1730                                                        tsk_cpus_allowed(task)) ||
1731                                      task_running(rq, task) ||
1732                                      !rt_task(task) ||
1733                                      !task_on_rq_queued(task))) {
1734
1735                                 double_unlock_balance(rq, lowest_rq);
1736                                 lowest_rq = NULL;
1737                                 break;
1738                         }
1739                 }
1740
1741                 /* If this rq is still suitable use it. */
1742                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1743                         break;
1744
1745                 /* try again */
1746                 double_unlock_balance(rq, lowest_rq);
1747                 lowest_rq = NULL;
1748         }
1749
1750         return lowest_rq;
1751 }
1752
1753 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754 {
1755         struct task_struct *p;
1756
1757         if (!has_pushable_tasks(rq))
1758                 return NULL;
1759
1760         p = plist_first_entry(&rq->rt.pushable_tasks,
1761                               struct task_struct, pushable_tasks);
1762
1763         BUG_ON(rq->cpu != task_cpu(p));
1764         BUG_ON(task_current(rq, p));
1765         BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1766
1767         BUG_ON(!task_on_rq_queued(p));
1768         BUG_ON(!rt_task(p));
1769
1770         return p;
1771 }
1772
1773 /*
1774  * If the current CPU has more than one RT task, see if the non
1775  * running task can migrate over to a CPU that is running a task
1776  * of lesser priority.
1777  */
1778 static int push_rt_task(struct rq *rq)
1779 {
1780         struct task_struct *next_task;
1781         struct rq *lowest_rq;
1782         int ret = 0;
1783
1784         if (!rq->rt.overloaded)
1785                 return 0;
1786
1787         next_task = pick_next_pushable_task(rq);
1788         if (!next_task)
1789                 return 0;
1790
1791 retry:
1792         if (unlikely(next_task == rq->curr)) {
1793                 WARN_ON(1);
1794                 return 0;
1795         }
1796
1797         /*
1798          * It's possible that the next_task slipped in of
1799          * higher priority than current. If that's the case
1800          * just reschedule current.
1801          */
1802         if (unlikely(next_task->prio < rq->curr->prio)) {
1803                 resched_curr(rq);
1804                 return 0;
1805         }
1806
1807         /* We might release rq lock */
1808         get_task_struct(next_task);
1809
1810         /* find_lock_lowest_rq locks the rq if found */
1811         lowest_rq = find_lock_lowest_rq(next_task, rq);
1812         if (!lowest_rq) {
1813                 struct task_struct *task;
1814                 /*
1815                  * find_lock_lowest_rq releases rq->lock
1816                  * so it is possible that next_task has migrated.
1817                  *
1818                  * We need to make sure that the task is still on the same
1819                  * run-queue and is also still the next task eligible for
1820                  * pushing.
1821                  */
1822                 task = pick_next_pushable_task(rq);
1823                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1824                         /*
1825                          * The task hasn't migrated, and is still the next
1826                          * eligible task, but we failed to find a run-queue
1827                          * to push it to.  Do not retry in this case, since
1828                          * other cpus will pull from us when ready.
1829                          */
1830                         goto out;
1831                 }
1832
1833                 if (!task)
1834                         /* No more tasks, just exit */
1835                         goto out;
1836
1837                 /*
1838                  * Something has shifted, try again.
1839                  */
1840                 put_task_struct(next_task);
1841                 next_task = task;
1842                 goto retry;
1843         }
1844
1845         deactivate_task(rq, next_task, 0);
1846         set_task_cpu(next_task, lowest_rq->cpu);
1847         activate_task(lowest_rq, next_task, 0);
1848         ret = 1;
1849
1850         resched_curr(lowest_rq);
1851
1852         double_unlock_balance(rq, lowest_rq);
1853
1854 out:
1855         put_task_struct(next_task);
1856
1857         return ret;
1858 }
1859
1860 static void push_rt_tasks(struct rq *rq)
1861 {
1862         /* push_rt_task will return true if it moved an RT */
1863         while (push_rt_task(rq))
1864                 ;
1865 }
1866
1867 #ifdef HAVE_RT_PUSH_IPI
1868 /*
1869  * The search for the next cpu always starts at rq->cpu and ends
1870  * when we reach rq->cpu again. It will never return rq->cpu.
1871  * This returns the next cpu to check, or nr_cpu_ids if the loop
1872  * is complete.
1873  *
1874  * rq->rt.push_cpu holds the last cpu returned by this function,
1875  * or if this is the first instance, it must hold rq->cpu.
1876  */
1877 static int rto_next_cpu(struct rq *rq)
1878 {
1879         int prev_cpu = rq->rt.push_cpu;
1880         int cpu;
1881
1882         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1883
1884         /*
1885          * If the previous cpu is less than the rq's CPU, then it already
1886          * passed the end of the mask, and has started from the beginning.
1887          * We end if the next CPU is greater or equal to rq's CPU.
1888          */
1889         if (prev_cpu < rq->cpu) {
1890                 if (cpu >= rq->cpu)
1891                         return nr_cpu_ids;
1892
1893         } else if (cpu >= nr_cpu_ids) {
1894                 /*
1895                  * We passed the end of the mask, start at the beginning.
1896                  * If the result is greater or equal to the rq's CPU, then
1897                  * the loop is finished.
1898                  */
1899                 cpu = cpumask_first(rq->rd->rto_mask);
1900                 if (cpu >= rq->cpu)
1901                         return nr_cpu_ids;
1902         }
1903         rq->rt.push_cpu = cpu;
1904
1905         /* Return cpu to let the caller know if the loop is finished or not */
1906         return cpu;
1907 }
1908
1909 static int find_next_push_cpu(struct rq *rq)
1910 {
1911         struct rq *next_rq;
1912         int cpu;
1913
1914         while (1) {
1915                 cpu = rto_next_cpu(rq);
1916                 if (cpu >= nr_cpu_ids)
1917                         break;
1918                 next_rq = cpu_rq(cpu);
1919
1920                 /* Make sure the next rq can push to this rq */
1921                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1922                         break;
1923         }
1924
1925         return cpu;
1926 }
1927
1928 #define RT_PUSH_IPI_EXECUTING           1
1929 #define RT_PUSH_IPI_RESTART             2
1930
1931 static void tell_cpu_to_push(struct rq *rq)
1932 {
1933         int cpu;
1934
1935         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1936                 raw_spin_lock(&rq->rt.push_lock);
1937                 /* Make sure it's still executing */
1938                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1939                         /*
1940                          * Tell the IPI to restart the loop as things have
1941                          * changed since it started.
1942                          */
1943                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1944                         raw_spin_unlock(&rq->rt.push_lock);
1945                         return;
1946                 }
1947                 raw_spin_unlock(&rq->rt.push_lock);
1948         }
1949
1950         /* When here, there's no IPI going around */
1951
1952         rq->rt.push_cpu = rq->cpu;
1953         cpu = find_next_push_cpu(rq);
1954         if (cpu >= nr_cpu_ids)
1955                 return;
1956
1957         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1958
1959         irq_work_queue_on(&rq->rt.push_work, cpu);
1960 }
1961
1962 /* Called from hardirq context */
1963 static void try_to_push_tasks(void *arg)
1964 {
1965         struct rt_rq *rt_rq = arg;
1966         struct rq *rq, *src_rq;
1967         int this_cpu;
1968         int cpu;
1969
1970         this_cpu = rt_rq->push_cpu;
1971
1972         /* Paranoid check */
1973         BUG_ON(this_cpu != smp_processor_id());
1974
1975         rq = cpu_rq(this_cpu);
1976         src_rq = rq_of_rt_rq(rt_rq);
1977
1978 again:
1979         if (has_pushable_tasks(rq)) {
1980                 raw_spin_lock(&rq->lock);
1981                 push_rt_task(rq);
1982                 raw_spin_unlock(&rq->lock);
1983         }
1984
1985         /* Pass the IPI to the next rt overloaded queue */
1986         raw_spin_lock(&rt_rq->push_lock);
1987         /*
1988          * If the source queue changed since the IPI went out,
1989          * we need to restart the search from that CPU again.
1990          */
1991         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1992                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1993                 rt_rq->push_cpu = src_rq->cpu;
1994         }
1995
1996         cpu = find_next_push_cpu(src_rq);
1997
1998         if (cpu >= nr_cpu_ids)
1999                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2000         raw_spin_unlock(&rt_rq->push_lock);
2001
2002         if (cpu >= nr_cpu_ids)
2003                 return;
2004
2005         /*
2006          * It is possible that a restart caused this CPU to be
2007          * chosen again. Don't bother with an IPI, just see if we
2008          * have more to push.
2009          */
2010         if (unlikely(cpu == rq->cpu))
2011                 goto again;
2012
2013         /* Try the next RT overloaded CPU */
2014         irq_work_queue_on(&rt_rq->push_work, cpu);
2015 }
2016
2017 static void push_irq_work_func(struct irq_work *work)
2018 {
2019         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2020
2021         try_to_push_tasks(rt_rq);
2022 }
2023 #endif /* HAVE_RT_PUSH_IPI */
2024
2025 static void pull_rt_task(struct rq *this_rq)
2026 {
2027         int this_cpu = this_rq->cpu, cpu;
2028         bool resched = false;
2029         struct task_struct *p;
2030         struct rq *src_rq;
2031
2032         if (likely(!rt_overloaded(this_rq)))
2033                 return;
2034
2035         /*
2036          * Match the barrier from rt_set_overloaded; this guarantees that if we
2037          * see overloaded we must also see the rto_mask bit.
2038          */
2039         smp_rmb();
2040
2041 #ifdef HAVE_RT_PUSH_IPI
2042         if (sched_feat(RT_PUSH_IPI)) {
2043                 tell_cpu_to_push(this_rq);
2044                 return;
2045         }
2046 #endif
2047
2048         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2049                 if (this_cpu == cpu)
2050                         continue;
2051
2052                 src_rq = cpu_rq(cpu);
2053
2054                 /*
2055                  * Don't bother taking the src_rq->lock if the next highest
2056                  * task is known to be lower-priority than our current task.
2057                  * This may look racy, but if this value is about to go
2058                  * logically higher, the src_rq will push this task away.
2059                  * And if its going logically lower, we do not care
2060                  */
2061                 if (src_rq->rt.highest_prio.next >=
2062                     this_rq->rt.highest_prio.curr)
2063                         continue;
2064
2065                 /*
2066                  * We can potentially drop this_rq's lock in
2067                  * double_lock_balance, and another CPU could
2068                  * alter this_rq
2069                  */
2070                 double_lock_balance(this_rq, src_rq);
2071
2072                 /*
2073                  * We can pull only a task, which is pushable
2074                  * on its rq, and no others.
2075                  */
2076                 p = pick_highest_pushable_task(src_rq, this_cpu);
2077
2078                 /*
2079                  * Do we have an RT task that preempts
2080                  * the to-be-scheduled task?
2081                  */
2082                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2083                         WARN_ON(p == src_rq->curr);
2084                         WARN_ON(!task_on_rq_queued(p));
2085
2086                         /*
2087                          * There's a chance that p is higher in priority
2088                          * than what's currently running on its cpu.
2089                          * This is just that p is wakeing up and hasn't
2090                          * had a chance to schedule. We only pull
2091                          * p if it is lower in priority than the
2092                          * current task on the run queue
2093                          */
2094                         if (p->prio < src_rq->curr->prio)
2095                                 goto skip;
2096
2097                         resched = true;
2098
2099                         deactivate_task(src_rq, p, 0);
2100                         set_task_cpu(p, this_cpu);
2101                         activate_task(this_rq, p, 0);
2102                         /*
2103                          * We continue with the search, just in
2104                          * case there's an even higher prio task
2105                          * in another runqueue. (low likelihood
2106                          * but possible)
2107                          */
2108                 }
2109 skip:
2110                 double_unlock_balance(this_rq, src_rq);
2111         }
2112
2113         if (resched)
2114                 resched_curr(this_rq);
2115 }
2116
2117 /*
2118  * If we are not running and we are not going to reschedule soon, we should
2119  * try to push tasks away now
2120  */
2121 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2122 {
2123         if (!task_running(rq, p) &&
2124             !test_tsk_need_resched(rq->curr) &&
2125             tsk_nr_cpus_allowed(p) > 1 &&
2126             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2127             (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2128              rq->curr->prio <= p->prio))
2129                 push_rt_tasks(rq);
2130 }
2131
2132 /* Assumes rq->lock is held */
2133 static void rq_online_rt(struct rq *rq)
2134 {
2135         if (rq->rt.overloaded)
2136                 rt_set_overload(rq);
2137
2138         __enable_runtime(rq);
2139
2140         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2141 }
2142
2143 /* Assumes rq->lock is held */
2144 static void rq_offline_rt(struct rq *rq)
2145 {
2146         if (rq->rt.overloaded)
2147                 rt_clear_overload(rq);
2148
2149         __disable_runtime(rq);
2150
2151         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2152 }
2153
2154 /*
2155  * When switch from the rt queue, we bring ourselves to a position
2156  * that we might want to pull RT tasks from other runqueues.
2157  */
2158 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2159 {
2160         /*
2161          * If there are other RT tasks then we will reschedule
2162          * and the scheduling of the other RT tasks will handle
2163          * the balancing. But if we are the last RT task
2164          * we may need to handle the pulling of RT tasks
2165          * now.
2166          */
2167         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2168                 return;
2169
2170         queue_pull_task(rq);
2171 }
2172
2173 void __init init_sched_rt_class(void)
2174 {
2175         unsigned int i;
2176
2177         for_each_possible_cpu(i) {
2178                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2179                                         GFP_KERNEL, cpu_to_node(i));
2180         }
2181 }
2182 #endif /* CONFIG_SMP */
2183
2184 /*
2185  * When switching a task to RT, we may overload the runqueue
2186  * with RT tasks. In this case we try to push them off to
2187  * other runqueues.
2188  */
2189 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2190 {
2191         /*
2192          * If we are already running, then there's nothing
2193          * that needs to be done. But if we are not running
2194          * we may need to preempt the current running task.
2195          * If that current running task is also an RT task
2196          * then see if we can move to another run queue.
2197          */
2198         if (task_on_rq_queued(p) && rq->curr != p) {
2199 #ifdef CONFIG_SMP
2200                 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2201                         queue_push_tasks(rq);
2202 #endif /* CONFIG_SMP */
2203                 if (p->prio < rq->curr->prio)
2204                         resched_curr(rq);
2205         }
2206 }
2207
2208 /*
2209  * Priority of the task has changed. This may cause
2210  * us to initiate a push or pull.
2211  */
2212 static void
2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2214 {
2215         if (!task_on_rq_queued(p))
2216                 return;
2217
2218         if (rq->curr == p) {
2219 #ifdef CONFIG_SMP
2220                 /*
2221                  * If our priority decreases while running, we
2222                  * may need to pull tasks to this runqueue.
2223                  */
2224                 if (oldprio < p->prio)
2225                         queue_pull_task(rq);
2226
2227                 /*
2228                  * If there's a higher priority task waiting to run
2229                  * then reschedule.
2230                  */
2231                 if (p->prio > rq->rt.highest_prio.curr)
2232                         resched_curr(rq);
2233 #else
2234                 /* For UP simply resched on drop of prio */
2235                 if (oldprio < p->prio)
2236                         resched_curr(rq);
2237 #endif /* CONFIG_SMP */
2238         } else {
2239                 /*
2240                  * This task is not running, but if it is
2241                  * greater than the current running task
2242                  * then reschedule.
2243                  */
2244                 if (p->prio < rq->curr->prio)
2245                         resched_curr(rq);
2246         }
2247 }
2248
2249 static void watchdog(struct rq *rq, struct task_struct *p)
2250 {
2251         unsigned long soft, hard;
2252
2253         /* max may change after cur was read, this will be fixed next tick */
2254         soft = task_rlimit(p, RLIMIT_RTTIME);
2255         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2256
2257         if (soft != RLIM_INFINITY) {
2258                 unsigned long next;
2259
2260                 if (p->rt.watchdog_stamp != jiffies) {
2261                         p->rt.timeout++;
2262                         p->rt.watchdog_stamp = jiffies;
2263                 }
2264
2265                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2266                 if (p->rt.timeout > next)
2267                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2268         }
2269 }
2270
2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2272 {
2273         struct sched_rt_entity *rt_se = &p->rt;
2274
2275         update_curr_rt(rq);
2276
2277         watchdog(rq, p);
2278
2279         /*
2280          * RR tasks need a special form of timeslice management.
2281          * FIFO tasks have no timeslices.
2282          */
2283         if (p->policy != SCHED_RR)
2284                 return;
2285
2286         if (--p->rt.time_slice)
2287                 return;
2288
2289         p->rt.time_slice = sched_rr_timeslice;
2290
2291         /*
2292          * Requeue to the end of queue if we (and all of our ancestors) are not
2293          * the only element on the queue
2294          */
2295         for_each_sched_rt_entity(rt_se) {
2296                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2297                         requeue_task_rt(rq, p, 0);
2298                         resched_curr(rq);
2299                         return;
2300                 }
2301         }
2302 }
2303
2304 static void set_curr_task_rt(struct rq *rq)
2305 {
2306         struct task_struct *p = rq->curr;
2307
2308         p->se.exec_start = rq_clock_task(rq);
2309
2310         /* The running task is never eligible for pushing */
2311         dequeue_pushable_task(rq, p);
2312 }
2313
2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2315 {
2316         /*
2317          * Time slice is 0 for SCHED_FIFO tasks
2318          */
2319         if (task->policy == SCHED_RR)
2320                 return sched_rr_timeslice;
2321         else
2322                 return 0;
2323 }
2324
2325 const struct sched_class rt_sched_class = {
2326         .next                   = &fair_sched_class,
2327         .enqueue_task           = enqueue_task_rt,
2328         .dequeue_task           = dequeue_task_rt,
2329         .yield_task             = yield_task_rt,
2330
2331         .check_preempt_curr     = check_preempt_curr_rt,
2332
2333         .pick_next_task         = pick_next_task_rt,
2334         .put_prev_task          = put_prev_task_rt,
2335
2336 #ifdef CONFIG_SMP
2337         .select_task_rq         = select_task_rq_rt,
2338
2339         .set_cpus_allowed       = set_cpus_allowed_common,
2340         .rq_online              = rq_online_rt,
2341         .rq_offline             = rq_offline_rt,
2342         .task_woken             = task_woken_rt,
2343         .switched_from          = switched_from_rt,
2344 #endif
2345
2346         .set_curr_task          = set_curr_task_rt,
2347         .task_tick              = task_tick_rt,
2348
2349         .get_rr_interval        = get_rr_interval_rt,
2350
2351         .prio_changed           = prio_changed_rt,
2352         .switched_to            = switched_to_rt,
2353
2354         .update_curr            = update_curr_rt,
2355 };
2356
2357 #ifdef CONFIG_SCHED_DEBUG
2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2359
2360 void print_rt_stats(struct seq_file *m, int cpu)
2361 {
2362         rt_rq_iter_t iter;
2363         struct rt_rq *rt_rq;
2364
2365         rcu_read_lock();
2366         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2367                 print_rt_rq(m, cpu, rt_rq);
2368         rcu_read_unlock();
2369 }
2370 #endif /* CONFIG_SCHED_DEBUG */