]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/rt.c
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 /*
62                  * SCHED_DEADLINE updates the bandwidth, as a run away
63                  * RT task with a DL task could hog a CPU. But DL does
64                  * not reset the period. If a deadline task was running
65                  * without an RT task running, it can cause RT tasks to
66                  * throttle when they start up. Kick the timer right away
67                  * to update the period.
68                  */
69                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
78
79 void init_rt_rq(struct rt_rq *rt_rq)
80 {
81         struct rt_prio_array *array;
82         int i;
83
84         array = &rt_rq->active;
85         for (i = 0; i < MAX_RT_PRIO; i++) {
86                 INIT_LIST_HEAD(array->queue + i);
87                 __clear_bit(i, array->bitmap);
88         }
89         /* delimiter for bitsearch: */
90         __set_bit(MAX_RT_PRIO, array->bitmap);
91
92 #if defined CONFIG_SMP
93         rt_rq->highest_prio.curr = MAX_RT_PRIO;
94         rt_rq->highest_prio.next = MAX_RT_PRIO;
95         rt_rq->rt_nr_migratory = 0;
96         rt_rq->overloaded = 0;
97         plist_head_init(&rt_rq->pushable_tasks);
98
99 #ifdef HAVE_RT_PUSH_IPI
100         rt_rq->push_flags = 0;
101         rt_rq->push_cpu = nr_cpu_ids;
102         raw_spin_lock_init(&rt_rq->push_lock);
103         init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106         /* We start is dequeued state, because no RT tasks are queued */
107         rt_rq->rt_queued = 0;
108
109         rt_rq->rt_time = 0;
110         rt_rq->rt_throttled = 0;
111         rt_rq->rt_runtime = 0;
112         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113 }
114
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117 {
118         hrtimer_cancel(&rt_b->rt_period_timer);
119 }
120
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128         return container_of(rt_se, struct task_struct, rt);
129 }
130
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132 {
133         return rt_rq->rq;
134 }
135
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137 {
138         return rt_se->rt_rq;
139 }
140
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142 {
143         struct rt_rq *rt_rq = rt_se->rt_rq;
144
145         return rt_rq->rq;
146 }
147
148 void free_rt_sched_group(struct task_group *tg)
149 {
150         int i;
151
152         if (tg->rt_se)
153                 destroy_rt_bandwidth(&tg->rt_bandwidth);
154
155         for_each_possible_cpu(i) {
156                 if (tg->rt_rq)
157                         kfree(tg->rt_rq[i]);
158                 if (tg->rt_se)
159                         kfree(tg->rt_se[i]);
160         }
161
162         kfree(tg->rt_rq);
163         kfree(tg->rt_se);
164 }
165
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167                 struct sched_rt_entity *rt_se, int cpu,
168                 struct sched_rt_entity *parent)
169 {
170         struct rq *rq = cpu_rq(cpu);
171
172         rt_rq->highest_prio.curr = MAX_RT_PRIO;
173         rt_rq->rt_nr_boosted = 0;
174         rt_rq->rq = rq;
175         rt_rq->tg = tg;
176
177         tg->rt_rq[cpu] = rt_rq;
178         tg->rt_se[cpu] = rt_se;
179
180         if (!rt_se)
181                 return;
182
183         if (!parent)
184                 rt_se->rt_rq = &rq->rt;
185         else
186                 rt_se->rt_rq = parent->my_q;
187
188         rt_se->my_q = rt_rq;
189         rt_se->parent = parent;
190         INIT_LIST_HEAD(&rt_se->run_list);
191 }
192
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 {
195         struct rt_rq *rt_rq;
196         struct sched_rt_entity *rt_se;
197         int i;
198
199         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200         if (!tg->rt_rq)
201                 goto err;
202         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203         if (!tg->rt_se)
204                 goto err;
205
206         init_rt_bandwidth(&tg->rt_bandwidth,
207                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208
209         for_each_possible_cpu(i) {
210                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211                                      GFP_KERNEL, cpu_to_node(i));
212                 if (!rt_rq)
213                         goto err;
214
215                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216                                      GFP_KERNEL, cpu_to_node(i));
217                 if (!rt_se)
218                         goto err_free_rq;
219
220                 init_rt_rq(rt_rq);
221                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223         }
224
225         return 1;
226
227 err_free_rq:
228         kfree(rt_rq);
229 err:
230         return 0;
231 }
232
233 #else /* CONFIG_RT_GROUP_SCHED */
234
235 #define rt_entity_is_task(rt_se) (1)
236
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238 {
239         return container_of(rt_se, struct task_struct, rt);
240 }
241
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243 {
244         return container_of(rt_rq, struct rq, rt);
245 }
246
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
248 {
249         struct task_struct *p = rt_task_of(rt_se);
250
251         return task_rq(p);
252 }
253
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255 {
256         struct rq *rq = rq_of_rt_se(rt_se);
257
258         return &rq->rt;
259 }
260
261 void free_rt_sched_group(struct task_group *tg) { }
262
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265         return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268
269 #ifdef CONFIG_SMP
270
271 static void pull_rt_task(struct rq *this_rq);
272
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274 {
275         /* Try to pull RT tasks here if we lower this rq's prio */
276         return rq->rt.highest_prio.curr > prev->prio;
277 }
278
279 static inline int rt_overloaded(struct rq *rq)
280 {
281         return atomic_read(&rq->rd->rto_count);
282 }
283
284 static inline void rt_set_overload(struct rq *rq)
285 {
286         if (!rq->online)
287                 return;
288
289         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
290         /*
291          * Make sure the mask is visible before we set
292          * the overload count. That is checked to determine
293          * if we should look at the mask. It would be a shame
294          * if we looked at the mask, but the mask was not
295          * updated yet.
296          *
297          * Matched by the barrier in pull_rt_task().
298          */
299         smp_wmb();
300         atomic_inc(&rq->rd->rto_count);
301 }
302
303 static inline void rt_clear_overload(struct rq *rq)
304 {
305         if (!rq->online)
306                 return;
307
308         /* the order here really doesn't matter */
309         atomic_dec(&rq->rd->rto_count);
310         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 }
312
313 static void update_rt_migration(struct rt_rq *rt_rq)
314 {
315         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316                 if (!rt_rq->overloaded) {
317                         rt_set_overload(rq_of_rt_rq(rt_rq));
318                         rt_rq->overloaded = 1;
319                 }
320         } else if (rt_rq->overloaded) {
321                 rt_clear_overload(rq_of_rt_rq(rt_rq));
322                 rt_rq->overloaded = 0;
323         }
324 }
325
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327 {
328         struct task_struct *p;
329
330         if (!rt_entity_is_task(rt_se))
331                 return;
332
333         p = rt_task_of(rt_se);
334         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335
336         rt_rq->rt_nr_total++;
337         if (p->nr_cpus_allowed > 1)
338                 rt_rq->rt_nr_migratory++;
339
340         update_rt_migration(rt_rq);
341 }
342
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345         struct task_struct *p;
346
347         if (!rt_entity_is_task(rt_se))
348                 return;
349
350         p = rt_task_of(rt_se);
351         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352
353         rt_rq->rt_nr_total--;
354         if (p->nr_cpus_allowed > 1)
355                 rt_rq->rt_nr_migratory--;
356
357         update_rt_migration(rt_rq);
358 }
359
360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362         return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
367
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370
371 static inline void queue_push_tasks(struct rq *rq)
372 {
373         if (!has_pushable_tasks(rq))
374                 return;
375
376         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378
379 static inline void queue_pull_task(struct rq *rq)
380 {
381         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387         plist_node_init(&p->pushable_tasks, p->prio);
388         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389
390         /* Update the highest prio pushable task */
391         if (p->prio < rq->rt.highest_prio.next)
392                 rq->rt.highest_prio.next = p->prio;
393 }
394
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396 {
397         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
398
399         /* Update the new highest prio pushable task */
400         if (has_pushable_tasks(rq)) {
401                 p = plist_first_entry(&rq->rt.pushable_tasks,
402                                       struct task_struct, pushable_tasks);
403                 rq->rt.highest_prio.next = p->prio;
404         } else
405                 rq->rt.highest_prio.next = MAX_RT_PRIO;
406 }
407
408 #else
409
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 {
421 }
422
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429 {
430         return false;
431 }
432
433 static inline void pull_rt_task(struct rq *this_rq)
434 {
435 }
436
437 static inline void queue_push_tasks(struct rq *rq)
438 {
439 }
440 #endif /* CONFIG_SMP */
441
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 {
447         return rt_se->on_rq;
448 }
449
450 #ifdef CONFIG_RT_GROUP_SCHED
451
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
453 {
454         if (!rt_rq->tg)
455                 return RUNTIME_INF;
456
457         return rt_rq->rt_runtime;
458 }
459
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461 {
462         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
463 }
464
465 typedef struct task_group *rt_rq_iter_t;
466
467 static inline struct task_group *next_task_group(struct task_group *tg)
468 {
469         do {
470                 tg = list_entry_rcu(tg->list.next,
471                         typeof(struct task_group), list);
472         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473
474         if (&tg->list == &task_groups)
475                 tg = NULL;
476
477         return tg;
478 }
479
480 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
481         for (iter = container_of(&task_groups, typeof(*iter), list);    \
482                 (iter = next_task_group(iter)) &&                       \
483                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
484
485 #define for_each_sched_rt_entity(rt_se) \
486         for (; rt_se; rt_se = rt_se->parent)
487
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489 {
490         return rt_se->my_q;
491 }
492
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
497 {
498         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499         struct rq *rq = rq_of_rt_rq(rt_rq);
500         struct sched_rt_entity *rt_se;
501
502         int cpu = cpu_of(rq);
503
504         rt_se = rt_rq->tg->rt_se[cpu];
505
506         if (rt_rq->rt_nr_running) {
507                 if (!rt_se)
508                         enqueue_top_rt_rq(rt_rq);
509                 else if (!on_rt_rq(rt_se))
510                         enqueue_rt_entity(rt_se, 0);
511
512                 if (rt_rq->highest_prio.curr < curr->prio)
513                         resched_curr(rq);
514         }
515 }
516
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
518 {
519         struct sched_rt_entity *rt_se;
520         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
521
522         rt_se = rt_rq->tg->rt_se[cpu];
523
524         if (!rt_se)
525                 dequeue_top_rt_rq(rt_rq);
526         else if (on_rt_rq(rt_se))
527                 dequeue_rt_entity(rt_se, 0);
528 }
529
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537         struct rt_rq *rt_rq = group_rt_rq(rt_se);
538         struct task_struct *p;
539
540         if (rt_rq)
541                 return !!rt_rq->rt_nr_boosted;
542
543         p = rt_task_of(rt_se);
544         return p->prio != p->normal_prio;
545 }
546
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550         return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555         return cpu_online_mask;
556 }
557 #endif
558
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567         return &rt_rq->tg->rt_bandwidth;
568 }
569
570 #else /* !CONFIG_RT_GROUP_SCHED */
571
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574         return rt_rq->rt_runtime;
575 }
576
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579         return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581
582 typedef struct rt_rq *rt_rq_iter_t;
583
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
587 #define for_each_sched_rt_entity(rt_se) \
588         for (; rt_se; rt_se = NULL)
589
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592         return NULL;
593 }
594
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597         struct rq *rq = rq_of_rt_rq(rt_rq);
598
599         if (!rt_rq->rt_nr_running)
600                 return;
601
602         enqueue_top_rt_rq(rt_rq);
603         resched_curr(rq);
604 }
605
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608         dequeue_top_rt_rq(rt_rq);
609 }
610
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613         return rt_rq->rt_throttled;
614 }
615
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618         return cpu_online_mask;
619 }
620
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624         return &cpu_rq(cpu)->rt;
625 }
626
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629         return &def_rt_bandwidth;
630 }
631
632 #endif /* CONFIG_RT_GROUP_SCHED */
633
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638         return (hrtimer_active(&rt_b->rt_period_timer) ||
639                 rt_rq->rt_time < rt_b->rt_runtime);
640 }
641
642 #ifdef CONFIG_SMP
643 /*
644  * We ran out of runtime, see if we can borrow some from our neighbours.
645  */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650         int i, weight;
651         u64 rt_period;
652
653         weight = cpumask_weight(rd->span);
654
655         raw_spin_lock(&rt_b->rt_runtime_lock);
656         rt_period = ktime_to_ns(rt_b->rt_period);
657         for_each_cpu(i, rd->span) {
658                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659                 s64 diff;
660
661                 if (iter == rt_rq)
662                         continue;
663
664                 raw_spin_lock(&iter->rt_runtime_lock);
665                 /*
666                  * Either all rqs have inf runtime and there's nothing to steal
667                  * or __disable_runtime() below sets a specific rq to inf to
668                  * indicate its been disabled and disalow stealing.
669                  */
670                 if (iter->rt_runtime == RUNTIME_INF)
671                         goto next;
672
673                 /*
674                  * From runqueues with spare time, take 1/n part of their
675                  * spare time, but no more than our period.
676                  */
677                 diff = iter->rt_runtime - iter->rt_time;
678                 if (diff > 0) {
679                         diff = div_u64((u64)diff, weight);
680                         if (rt_rq->rt_runtime + diff > rt_period)
681                                 diff = rt_period - rt_rq->rt_runtime;
682                         iter->rt_runtime -= diff;
683                         rt_rq->rt_runtime += diff;
684                         if (rt_rq->rt_runtime == rt_period) {
685                                 raw_spin_unlock(&iter->rt_runtime_lock);
686                                 break;
687                         }
688                 }
689 next:
690                 raw_spin_unlock(&iter->rt_runtime_lock);
691         }
692         raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694
695 /*
696  * Ensure this RQ takes back all the runtime it lend to its neighbours.
697  */
698 static void __disable_runtime(struct rq *rq)
699 {
700         struct root_domain *rd = rq->rd;
701         rt_rq_iter_t iter;
702         struct rt_rq *rt_rq;
703
704         if (unlikely(!scheduler_running))
705                 return;
706
707         for_each_rt_rq(rt_rq, iter, rq) {
708                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709                 s64 want;
710                 int i;
711
712                 raw_spin_lock(&rt_b->rt_runtime_lock);
713                 raw_spin_lock(&rt_rq->rt_runtime_lock);
714                 /*
715                  * Either we're all inf and nobody needs to borrow, or we're
716                  * already disabled and thus have nothing to do, or we have
717                  * exactly the right amount of runtime to take out.
718                  */
719                 if (rt_rq->rt_runtime == RUNTIME_INF ||
720                                 rt_rq->rt_runtime == rt_b->rt_runtime)
721                         goto balanced;
722                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
723
724                 /*
725                  * Calculate the difference between what we started out with
726                  * and what we current have, that's the amount of runtime
727                  * we lend and now have to reclaim.
728                  */
729                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
731                 /*
732                  * Greedy reclaim, take back as much as we can.
733                  */
734                 for_each_cpu(i, rd->span) {
735                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736                         s64 diff;
737
738                         /*
739                          * Can't reclaim from ourselves or disabled runqueues.
740                          */
741                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742                                 continue;
743
744                         raw_spin_lock(&iter->rt_runtime_lock);
745                         if (want > 0) {
746                                 diff = min_t(s64, iter->rt_runtime, want);
747                                 iter->rt_runtime -= diff;
748                                 want -= diff;
749                         } else {
750                                 iter->rt_runtime -= want;
751                                 want -= want;
752                         }
753                         raw_spin_unlock(&iter->rt_runtime_lock);
754
755                         if (!want)
756                                 break;
757                 }
758
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * We cannot be left wanting - that would mean some runtime
762                  * leaked out of the system.
763                  */
764                 BUG_ON(want);
765 balanced:
766                 /*
767                  * Disable all the borrow logic by pretending we have inf
768                  * runtime - in which case borrowing doesn't make sense.
769                  */
770                 rt_rq->rt_runtime = RUNTIME_INF;
771                 rt_rq->rt_throttled = 0;
772                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773                 raw_spin_unlock(&rt_b->rt_runtime_lock);
774
775                 /* Make rt_rq available for pick_next_task() */
776                 sched_rt_rq_enqueue(rt_rq);
777         }
778 }
779
780 static void __enable_runtime(struct rq *rq)
781 {
782         rt_rq_iter_t iter;
783         struct rt_rq *rt_rq;
784
785         if (unlikely(!scheduler_running))
786                 return;
787
788         /*
789          * Reset each runqueue's bandwidth settings
790          */
791         for_each_rt_rq(rt_rq, iter, rq) {
792                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 rt_rq->rt_runtime = rt_b->rt_runtime;
797                 rt_rq->rt_time = 0;
798                 rt_rq->rt_throttled = 0;
799                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800                 raw_spin_unlock(&rt_b->rt_runtime_lock);
801         }
802 }
803
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806         if (!sched_feat(RT_RUNTIME_SHARE))
807                 return;
808
809         if (rt_rq->rt_time > rt_rq->rt_runtime) {
810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811                 do_balance_runtime(rt_rq);
812                 raw_spin_lock(&rt_rq->rt_runtime_lock);
813         }
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821         int i, idle = 1, throttled = 0;
822         const struct cpumask *span;
823
824         span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826         /*
827          * FIXME: isolated CPUs should really leave the root task group,
828          * whether they are isolcpus or were isolated via cpusets, lest
829          * the timer run on a CPU which does not service all runqueues,
830          * potentially leaving other CPUs indefinitely throttled.  If
831          * isolation is really required, the user will turn the throttle
832          * off to kill the perturbations it causes anyway.  Meanwhile,
833          * this maintains functionality for boot and/or troubleshooting.
834          */
835         if (rt_b == &root_task_group.rt_bandwidth)
836                 span = cpu_online_mask;
837 #endif
838         for_each_cpu(i, span) {
839                 int enqueue = 0;
840                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841                 struct rq *rq = rq_of_rt_rq(rt_rq);
842
843                 raw_spin_lock(&rq->lock);
844                 if (rt_rq->rt_time) {
845                         u64 runtime;
846
847                         raw_spin_lock(&rt_rq->rt_runtime_lock);
848                         if (rt_rq->rt_throttled)
849                                 balance_runtime(rt_rq);
850                         runtime = rt_rq->rt_runtime;
851                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853                                 rt_rq->rt_throttled = 0;
854                                 enqueue = 1;
855
856                                 /*
857                                  * When we're idle and a woken (rt) task is
858                                  * throttled check_preempt_curr() will set
859                                  * skip_update and the time between the wakeup
860                                  * and this unthrottle will get accounted as
861                                  * 'runtime'.
862                                  */
863                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864                                         rq_clock_skip_update(rq, false);
865                         }
866                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
867                                 idle = 0;
868                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
869                 } else if (rt_rq->rt_nr_running) {
870                         idle = 0;
871                         if (!rt_rq_throttled(rt_rq))
872                                 enqueue = 1;
873                 }
874                 if (rt_rq->rt_throttled)
875                         throttled = 1;
876
877                 if (enqueue)
878                         sched_rt_rq_enqueue(rt_rq);
879                 raw_spin_unlock(&rq->lock);
880         }
881
882         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883                 return 1;
884
885         return idle;
886 }
887
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889 {
890 #ifdef CONFIG_RT_GROUP_SCHED
891         struct rt_rq *rt_rq = group_rt_rq(rt_se);
892
893         if (rt_rq)
894                 return rt_rq->highest_prio.curr;
895 #endif
896
897         return rt_task_of(rt_se)->prio;
898 }
899
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
901 {
902         u64 runtime = sched_rt_runtime(rt_rq);
903
904         if (rt_rq->rt_throttled)
905                 return rt_rq_throttled(rt_rq);
906
907         if (runtime >= sched_rt_period(rt_rq))
908                 return 0;
909
910         balance_runtime(rt_rq);
911         runtime = sched_rt_runtime(rt_rq);
912         if (runtime == RUNTIME_INF)
913                 return 0;
914
915         if (rt_rq->rt_time > runtime) {
916                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917
918                 /*
919                  * Don't actually throttle groups that have no runtime assigned
920                  * but accrue some time due to boosting.
921                  */
922                 if (likely(rt_b->rt_runtime)) {
923                         rt_rq->rt_throttled = 1;
924                         printk_deferred_once("sched: RT throttling activated\n");
925                 } else {
926                         /*
927                          * In case we did anyway, make it go away,
928                          * replenishment is a joke, since it will replenish us
929                          * with exactly 0 ns.
930                          */
931                         rt_rq->rt_time = 0;
932                 }
933
934                 if (rt_rq_throttled(rt_rq)) {
935                         sched_rt_rq_dequeue(rt_rq);
936                         return 1;
937                 }
938         }
939
940         return 0;
941 }
942
943 /*
944  * Update the current task's runtime statistics. Skip current tasks that
945  * are not in our scheduling class.
946  */
947 static void update_curr_rt(struct rq *rq)
948 {
949         struct task_struct *curr = rq->curr;
950         struct sched_rt_entity *rt_se = &curr->rt;
951         u64 delta_exec;
952
953         if (curr->sched_class != &rt_sched_class)
954                 return;
955
956         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
957         if (unlikely((s64)delta_exec <= 0))
958                 return;
959
960         schedstat_set(curr->se.statistics.exec_max,
961                       max(curr->se.statistics.exec_max, delta_exec));
962
963         curr->se.sum_exec_runtime += delta_exec;
964         account_group_exec_runtime(curr, delta_exec);
965
966         curr->se.exec_start = rq_clock_task(rq);
967         cpuacct_charge(curr, delta_exec);
968
969         sched_rt_avg_update(rq, delta_exec);
970
971         if (!rt_bandwidth_enabled())
972                 return;
973
974         for_each_sched_rt_entity(rt_se) {
975                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
976
977                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
978                         raw_spin_lock(&rt_rq->rt_runtime_lock);
979                         rt_rq->rt_time += delta_exec;
980                         if (sched_rt_runtime_exceeded(rt_rq))
981                                 resched_curr(rq);
982                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
983                 }
984         }
985 }
986
987 static void
988 dequeue_top_rt_rq(struct rt_rq *rt_rq)
989 {
990         struct rq *rq = rq_of_rt_rq(rt_rq);
991
992         BUG_ON(&rq->rt != rt_rq);
993
994         if (!rt_rq->rt_queued)
995                 return;
996
997         BUG_ON(!rq->nr_running);
998
999         sub_nr_running(rq, rt_rq->rt_nr_running);
1000         rt_rq->rt_queued = 0;
1001 }
1002
1003 static void
1004 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1005 {
1006         struct rq *rq = rq_of_rt_rq(rt_rq);
1007
1008         BUG_ON(&rq->rt != rt_rq);
1009
1010         if (rt_rq->rt_queued)
1011                 return;
1012         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1013                 return;
1014
1015         add_nr_running(rq, rt_rq->rt_nr_running);
1016         rt_rq->rt_queued = 1;
1017 }
1018
1019 #if defined CONFIG_SMP
1020
1021 static void
1022 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1023 {
1024         struct rq *rq = rq_of_rt_rq(rt_rq);
1025
1026 #ifdef CONFIG_RT_GROUP_SCHED
1027         /*
1028          * Change rq's cpupri only if rt_rq is the top queue.
1029          */
1030         if (&rq->rt != rt_rq)
1031                 return;
1032 #endif
1033         if (rq->online && prio < prev_prio)
1034                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1035 }
1036
1037 static void
1038 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1039 {
1040         struct rq *rq = rq_of_rt_rq(rt_rq);
1041
1042 #ifdef CONFIG_RT_GROUP_SCHED
1043         /*
1044          * Change rq's cpupri only if rt_rq is the top queue.
1045          */
1046         if (&rq->rt != rt_rq)
1047                 return;
1048 #endif
1049         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1050                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1051 }
1052
1053 #else /* CONFIG_SMP */
1054
1055 static inline
1056 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1057 static inline
1058 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1059
1060 #endif /* CONFIG_SMP */
1061
1062 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1063 static void
1064 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1065 {
1066         int prev_prio = rt_rq->highest_prio.curr;
1067
1068         if (prio < prev_prio)
1069                 rt_rq->highest_prio.curr = prio;
1070
1071         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1072 }
1073
1074 static void
1075 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1076 {
1077         int prev_prio = rt_rq->highest_prio.curr;
1078
1079         if (rt_rq->rt_nr_running) {
1080
1081                 WARN_ON(prio < prev_prio);
1082
1083                 /*
1084                  * This may have been our highest task, and therefore
1085                  * we may have some recomputation to do
1086                  */
1087                 if (prio == prev_prio) {
1088                         struct rt_prio_array *array = &rt_rq->active;
1089
1090                         rt_rq->highest_prio.curr =
1091                                 sched_find_first_bit(array->bitmap);
1092                 }
1093
1094         } else
1095                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1096
1097         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1098 }
1099
1100 #else
1101
1102 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1103 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1104
1105 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1106
1107 #ifdef CONFIG_RT_GROUP_SCHED
1108
1109 static void
1110 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1111 {
1112         if (rt_se_boosted(rt_se))
1113                 rt_rq->rt_nr_boosted++;
1114
1115         if (rt_rq->tg)
1116                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1117 }
1118
1119 static void
1120 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121 {
1122         if (rt_se_boosted(rt_se))
1123                 rt_rq->rt_nr_boosted--;
1124
1125         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1126 }
1127
1128 #else /* CONFIG_RT_GROUP_SCHED */
1129
1130 static void
1131 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1132 {
1133         start_rt_bandwidth(&def_rt_bandwidth);
1134 }
1135
1136 static inline
1137 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1138
1139 #endif /* CONFIG_RT_GROUP_SCHED */
1140
1141 static inline
1142 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1143 {
1144         struct rt_rq *group_rq = group_rt_rq(rt_se);
1145
1146         if (group_rq)
1147                 return group_rq->rt_nr_running;
1148         else
1149                 return 1;
1150 }
1151
1152 static inline
1153 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1154 {
1155         struct rt_rq *group_rq = group_rt_rq(rt_se);
1156         struct task_struct *tsk;
1157
1158         if (group_rq)
1159                 return group_rq->rr_nr_running;
1160
1161         tsk = rt_task_of(rt_se);
1162
1163         return (tsk->policy == SCHED_RR) ? 1 : 0;
1164 }
1165
1166 static inline
1167 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1168 {
1169         int prio = rt_se_prio(rt_se);
1170
1171         WARN_ON(!rt_prio(prio));
1172         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1173         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1174
1175         inc_rt_prio(rt_rq, prio);
1176         inc_rt_migration(rt_se, rt_rq);
1177         inc_rt_group(rt_se, rt_rq);
1178 }
1179
1180 static inline
1181 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1184         WARN_ON(!rt_rq->rt_nr_running);
1185         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1186         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1187
1188         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1189         dec_rt_migration(rt_se, rt_rq);
1190         dec_rt_group(rt_se, rt_rq);
1191 }
1192
1193 /*
1194  * Change rt_se->run_list location unless SAVE && !MOVE
1195  *
1196  * assumes ENQUEUE/DEQUEUE flags match
1197  */
1198 static inline bool move_entity(unsigned int flags)
1199 {
1200         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1201                 return false;
1202
1203         return true;
1204 }
1205
1206 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1207 {
1208         list_del_init(&rt_se->run_list);
1209
1210         if (list_empty(array->queue + rt_se_prio(rt_se)))
1211                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1212
1213         rt_se->on_list = 0;
1214 }
1215
1216 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1217 {
1218         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1219         struct rt_prio_array *array = &rt_rq->active;
1220         struct rt_rq *group_rq = group_rt_rq(rt_se);
1221         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1222
1223         /*
1224          * Don't enqueue the group if its throttled, or when empty.
1225          * The latter is a consequence of the former when a child group
1226          * get throttled and the current group doesn't have any other
1227          * active members.
1228          */
1229         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1230                 if (rt_se->on_list)
1231                         __delist_rt_entity(rt_se, array);
1232                 return;
1233         }
1234
1235         if (move_entity(flags)) {
1236                 WARN_ON_ONCE(rt_se->on_list);
1237                 if (flags & ENQUEUE_HEAD)
1238                         list_add(&rt_se->run_list, queue);
1239                 else
1240                         list_add_tail(&rt_se->run_list, queue);
1241
1242                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1243                 rt_se->on_list = 1;
1244         }
1245         rt_se->on_rq = 1;
1246
1247         inc_rt_tasks(rt_se, rt_rq);
1248 }
1249
1250 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1251 {
1252         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1253         struct rt_prio_array *array = &rt_rq->active;
1254
1255         if (move_entity(flags)) {
1256                 WARN_ON_ONCE(!rt_se->on_list);
1257                 __delist_rt_entity(rt_se, array);
1258         }
1259         rt_se->on_rq = 0;
1260
1261         dec_rt_tasks(rt_se, rt_rq);
1262 }
1263
1264 /*
1265  * Because the prio of an upper entry depends on the lower
1266  * entries, we must remove entries top - down.
1267  */
1268 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1269 {
1270         struct sched_rt_entity *back = NULL;
1271
1272         for_each_sched_rt_entity(rt_se) {
1273                 rt_se->back = back;
1274                 back = rt_se;
1275         }
1276
1277         dequeue_top_rt_rq(rt_rq_of_se(back));
1278
1279         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1280                 if (on_rt_rq(rt_se))
1281                         __dequeue_rt_entity(rt_se, flags);
1282         }
1283 }
1284
1285 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1286 {
1287         struct rq *rq = rq_of_rt_se(rt_se);
1288
1289         dequeue_rt_stack(rt_se, flags);
1290         for_each_sched_rt_entity(rt_se)
1291                 __enqueue_rt_entity(rt_se, flags);
1292         enqueue_top_rt_rq(&rq->rt);
1293 }
1294
1295 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1296 {
1297         struct rq *rq = rq_of_rt_se(rt_se);
1298
1299         dequeue_rt_stack(rt_se, flags);
1300
1301         for_each_sched_rt_entity(rt_se) {
1302                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1303
1304                 if (rt_rq && rt_rq->rt_nr_running)
1305                         __enqueue_rt_entity(rt_se, flags);
1306         }
1307         enqueue_top_rt_rq(&rq->rt);
1308 }
1309
1310 /*
1311  * Adding/removing a task to/from a priority array:
1312  */
1313 static void
1314 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1315 {
1316         struct sched_rt_entity *rt_se = &p->rt;
1317
1318         if (flags & ENQUEUE_WAKEUP)
1319                 rt_se->timeout = 0;
1320
1321         enqueue_rt_entity(rt_se, flags);
1322
1323         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1324                 enqueue_pushable_task(rq, p);
1325 }
1326
1327 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329         struct sched_rt_entity *rt_se = &p->rt;
1330
1331         update_curr_rt(rq);
1332         dequeue_rt_entity(rt_se, flags);
1333
1334         dequeue_pushable_task(rq, p);
1335 }
1336
1337 /*
1338  * Put task to the head or the end of the run list without the overhead of
1339  * dequeue followed by enqueue.
1340  */
1341 static void
1342 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1343 {
1344         if (on_rt_rq(rt_se)) {
1345                 struct rt_prio_array *array = &rt_rq->active;
1346                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1347
1348                 if (head)
1349                         list_move(&rt_se->run_list, queue);
1350                 else
1351                         list_move_tail(&rt_se->run_list, queue);
1352         }
1353 }
1354
1355 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1356 {
1357         struct sched_rt_entity *rt_se = &p->rt;
1358         struct rt_rq *rt_rq;
1359
1360         for_each_sched_rt_entity(rt_se) {
1361                 rt_rq = rt_rq_of_se(rt_se);
1362                 requeue_rt_entity(rt_rq, rt_se, head);
1363         }
1364 }
1365
1366 static void yield_task_rt(struct rq *rq)
1367 {
1368         requeue_task_rt(rq, rq->curr, 0);
1369 }
1370
1371 #ifdef CONFIG_SMP
1372 static int find_lowest_rq(struct task_struct *task);
1373
1374 static int
1375 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1376 {
1377         struct task_struct *curr;
1378         struct rq *rq;
1379
1380         /* For anything but wake ups, just return the task_cpu */
1381         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1382                 goto out;
1383
1384         rq = cpu_rq(cpu);
1385
1386         rcu_read_lock();
1387         curr = READ_ONCE(rq->curr); /* unlocked access */
1388
1389         /*
1390          * If the current task on @p's runqueue is an RT task, then
1391          * try to see if we can wake this RT task up on another
1392          * runqueue. Otherwise simply start this RT task
1393          * on its current runqueue.
1394          *
1395          * We want to avoid overloading runqueues. If the woken
1396          * task is a higher priority, then it will stay on this CPU
1397          * and the lower prio task should be moved to another CPU.
1398          * Even though this will probably make the lower prio task
1399          * lose its cache, we do not want to bounce a higher task
1400          * around just because it gave up its CPU, perhaps for a
1401          * lock?
1402          *
1403          * For equal prio tasks, we just let the scheduler sort it out.
1404          *
1405          * Otherwise, just let it ride on the affined RQ and the
1406          * post-schedule router will push the preempted task away
1407          *
1408          * This test is optimistic, if we get it wrong the load-balancer
1409          * will have to sort it out.
1410          */
1411         if (curr && unlikely(rt_task(curr)) &&
1412             (curr->nr_cpus_allowed < 2 ||
1413              curr->prio <= p->prio)) {
1414                 int target = find_lowest_rq(p);
1415
1416                 /*
1417                  * Don't bother moving it if the destination CPU is
1418                  * not running a lower priority task.
1419                  */
1420                 if (target != -1 &&
1421                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1422                         cpu = target;
1423         }
1424         rcu_read_unlock();
1425
1426 out:
1427         return cpu;
1428 }
1429
1430 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1431 {
1432         /*
1433          * Current can't be migrated, useless to reschedule,
1434          * let's hope p can move out.
1435          */
1436         if (rq->curr->nr_cpus_allowed == 1 ||
1437             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1438                 return;
1439
1440         /*
1441          * p is migratable, so let's not schedule it and
1442          * see if it is pushed or pulled somewhere else.
1443          */
1444         if (p->nr_cpus_allowed != 1
1445             && cpupri_find(&rq->rd->cpupri, p, NULL))
1446                 return;
1447
1448         /*
1449          * There appears to be other cpus that can accept
1450          * current and none to run 'p', so lets reschedule
1451          * to try and push current away:
1452          */
1453         requeue_task_rt(rq, p, 1);
1454         resched_curr(rq);
1455 }
1456
1457 #endif /* CONFIG_SMP */
1458
1459 /*
1460  * Preempt the current task with a newly woken task if needed:
1461  */
1462 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1463 {
1464         if (p->prio < rq->curr->prio) {
1465                 resched_curr(rq);
1466                 return;
1467         }
1468
1469 #ifdef CONFIG_SMP
1470         /*
1471          * If:
1472          *
1473          * - the newly woken task is of equal priority to the current task
1474          * - the newly woken task is non-migratable while current is migratable
1475          * - current will be preempted on the next reschedule
1476          *
1477          * we should check to see if current can readily move to a different
1478          * cpu.  If so, we will reschedule to allow the push logic to try
1479          * to move current somewhere else, making room for our non-migratable
1480          * task.
1481          */
1482         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1483                 check_preempt_equal_prio(rq, p);
1484 #endif
1485 }
1486
1487 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1488                                                    struct rt_rq *rt_rq)
1489 {
1490         struct rt_prio_array *array = &rt_rq->active;
1491         struct sched_rt_entity *next = NULL;
1492         struct list_head *queue;
1493         int idx;
1494
1495         idx = sched_find_first_bit(array->bitmap);
1496         BUG_ON(idx >= MAX_RT_PRIO);
1497
1498         queue = array->queue + idx;
1499         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1500
1501         return next;
1502 }
1503
1504 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1505 {
1506         struct sched_rt_entity *rt_se;
1507         struct task_struct *p;
1508         struct rt_rq *rt_rq  = &rq->rt;
1509
1510         do {
1511                 rt_se = pick_next_rt_entity(rq, rt_rq);
1512                 BUG_ON(!rt_se);
1513                 rt_rq = group_rt_rq(rt_se);
1514         } while (rt_rq);
1515
1516         p = rt_task_of(rt_se);
1517         p->se.exec_start = rq_clock_task(rq);
1518
1519         return p;
1520 }
1521
1522 static struct task_struct *
1523 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1524 {
1525         struct task_struct *p;
1526         struct rt_rq *rt_rq = &rq->rt;
1527
1528         if (need_pull_rt_task(rq, prev)) {
1529                 /*
1530                  * This is OK, because current is on_cpu, which avoids it being
1531                  * picked for load-balance and preemption/IRQs are still
1532                  * disabled avoiding further scheduler activity on it and we're
1533                  * being very careful to re-start the picking loop.
1534                  */
1535                 lockdep_unpin_lock(&rq->lock);
1536                 pull_rt_task(rq);
1537                 lockdep_pin_lock(&rq->lock);
1538                 /*
1539                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1540                  * means a dl or stop task can slip in, in which case we need
1541                  * to re-start task selection.
1542                  */
1543                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1544                              rq->dl.dl_nr_running))
1545                         return RETRY_TASK;
1546         }
1547
1548         /*
1549          * We may dequeue prev's rt_rq in put_prev_task().
1550          * So, we update time before rt_nr_running check.
1551          */
1552         if (prev->sched_class == &rt_sched_class)
1553                 update_curr_rt(rq);
1554
1555         if (!rt_rq->rt_queued)
1556                 return NULL;
1557
1558         put_prev_task(rq, prev);
1559
1560         p = _pick_next_task_rt(rq);
1561
1562         /* The running task is never eligible for pushing */
1563         dequeue_pushable_task(rq, p);
1564
1565         queue_push_tasks(rq);
1566
1567         return p;
1568 }
1569
1570 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1571 {
1572         update_curr_rt(rq);
1573
1574         /*
1575          * The previous task needs to be made eligible for pushing
1576          * if it is still active
1577          */
1578         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1579                 enqueue_pushable_task(rq, p);
1580 }
1581
1582 #ifdef CONFIG_SMP
1583
1584 /* Only try algorithms three times */
1585 #define RT_MAX_TRIES 3
1586
1587 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1588 {
1589         if (!task_running(rq, p) &&
1590             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1591                 return 1;
1592         return 0;
1593 }
1594
1595 /*
1596  * Return the highest pushable rq's task, which is suitable to be executed
1597  * on the cpu, NULL otherwise
1598  */
1599 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1600 {
1601         struct plist_head *head = &rq->rt.pushable_tasks;
1602         struct task_struct *p;
1603
1604         if (!has_pushable_tasks(rq))
1605                 return NULL;
1606
1607         plist_for_each_entry(p, head, pushable_tasks) {
1608                 if (pick_rt_task(rq, p, cpu))
1609                         return p;
1610         }
1611
1612         return NULL;
1613 }
1614
1615 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1616
1617 static int find_lowest_rq(struct task_struct *task)
1618 {
1619         struct sched_domain *sd;
1620         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1621         int this_cpu = smp_processor_id();
1622         int cpu      = task_cpu(task);
1623
1624         /* Make sure the mask is initialized first */
1625         if (unlikely(!lowest_mask))
1626                 return -1;
1627
1628         if (task->nr_cpus_allowed == 1)
1629                 return -1; /* No other targets possible */
1630
1631         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1632                 return -1; /* No targets found */
1633
1634         /*
1635          * At this point we have built a mask of cpus representing the
1636          * lowest priority tasks in the system.  Now we want to elect
1637          * the best one based on our affinity and topology.
1638          *
1639          * We prioritize the last cpu that the task executed on since
1640          * it is most likely cache-hot in that location.
1641          */
1642         if (cpumask_test_cpu(cpu, lowest_mask))
1643                 return cpu;
1644
1645         /*
1646          * Otherwise, we consult the sched_domains span maps to figure
1647          * out which cpu is logically closest to our hot cache data.
1648          */
1649         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1650                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1651
1652         rcu_read_lock();
1653         for_each_domain(cpu, sd) {
1654                 if (sd->flags & SD_WAKE_AFFINE) {
1655                         int best_cpu;
1656
1657                         /*
1658                          * "this_cpu" is cheaper to preempt than a
1659                          * remote processor.
1660                          */
1661                         if (this_cpu != -1 &&
1662                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1663                                 rcu_read_unlock();
1664                                 return this_cpu;
1665                         }
1666
1667                         best_cpu = cpumask_first_and(lowest_mask,
1668                                                      sched_domain_span(sd));
1669                         if (best_cpu < nr_cpu_ids) {
1670                                 rcu_read_unlock();
1671                                 return best_cpu;
1672                         }
1673                 }
1674         }
1675         rcu_read_unlock();
1676
1677         /*
1678          * And finally, if there were no matches within the domains
1679          * just give the caller *something* to work with from the compatible
1680          * locations.
1681          */
1682         if (this_cpu != -1)
1683                 return this_cpu;
1684
1685         cpu = cpumask_any(lowest_mask);
1686         if (cpu < nr_cpu_ids)
1687                 return cpu;
1688         return -1;
1689 }
1690
1691 /* Will lock the rq it finds */
1692 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1693 {
1694         struct rq *lowest_rq = NULL;
1695         int tries;
1696         int cpu;
1697
1698         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1699                 cpu = find_lowest_rq(task);
1700
1701                 if ((cpu == -1) || (cpu == rq->cpu))
1702                         break;
1703
1704                 lowest_rq = cpu_rq(cpu);
1705
1706                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1707                         /*
1708                          * Target rq has tasks of equal or higher priority,
1709                          * retrying does not release any lock and is unlikely
1710                          * to yield a different result.
1711                          */
1712                         lowest_rq = NULL;
1713                         break;
1714                 }
1715
1716                 /* if the prio of this runqueue changed, try again */
1717                 if (double_lock_balance(rq, lowest_rq)) {
1718                         /*
1719                          * We had to unlock the run queue. In
1720                          * the mean time, task could have
1721                          * migrated already or had its affinity changed.
1722                          * Also make sure that it wasn't scheduled on its rq.
1723                          */
1724                         if (unlikely(task_rq(task) != rq ||
1725                                      !cpumask_test_cpu(lowest_rq->cpu,
1726                                                        tsk_cpus_allowed(task)) ||
1727                                      task_running(rq, task) ||
1728                                      !task_on_rq_queued(task))) {
1729
1730                                 double_unlock_balance(rq, lowest_rq);
1731                                 lowest_rq = NULL;
1732                                 break;
1733                         }
1734                 }
1735
1736                 /* If this rq is still suitable use it. */
1737                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1738                         break;
1739
1740                 /* try again */
1741                 double_unlock_balance(rq, lowest_rq);
1742                 lowest_rq = NULL;
1743         }
1744
1745         return lowest_rq;
1746 }
1747
1748 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1749 {
1750         struct task_struct *p;
1751
1752         if (!has_pushable_tasks(rq))
1753                 return NULL;
1754
1755         p = plist_first_entry(&rq->rt.pushable_tasks,
1756                               struct task_struct, pushable_tasks);
1757
1758         BUG_ON(rq->cpu != task_cpu(p));
1759         BUG_ON(task_current(rq, p));
1760         BUG_ON(p->nr_cpus_allowed <= 1);
1761
1762         BUG_ON(!task_on_rq_queued(p));
1763         BUG_ON(!rt_task(p));
1764
1765         return p;
1766 }
1767
1768 /*
1769  * If the current CPU has more than one RT task, see if the non
1770  * running task can migrate over to a CPU that is running a task
1771  * of lesser priority.
1772  */
1773 static int push_rt_task(struct rq *rq)
1774 {
1775         struct task_struct *next_task;
1776         struct rq *lowest_rq;
1777         int ret = 0;
1778
1779         if (!rq->rt.overloaded)
1780                 return 0;
1781
1782         next_task = pick_next_pushable_task(rq);
1783         if (!next_task)
1784                 return 0;
1785
1786 retry:
1787         if (unlikely(next_task == rq->curr)) {
1788                 WARN_ON(1);
1789                 return 0;
1790         }
1791
1792         /*
1793          * It's possible that the next_task slipped in of
1794          * higher priority than current. If that's the case
1795          * just reschedule current.
1796          */
1797         if (unlikely(next_task->prio < rq->curr->prio)) {
1798                 resched_curr(rq);
1799                 return 0;
1800         }
1801
1802         /* We might release rq lock */
1803         get_task_struct(next_task);
1804
1805         /* find_lock_lowest_rq locks the rq if found */
1806         lowest_rq = find_lock_lowest_rq(next_task, rq);
1807         if (!lowest_rq) {
1808                 struct task_struct *task;
1809                 /*
1810                  * find_lock_lowest_rq releases rq->lock
1811                  * so it is possible that next_task has migrated.
1812                  *
1813                  * We need to make sure that the task is still on the same
1814                  * run-queue and is also still the next task eligible for
1815                  * pushing.
1816                  */
1817                 task = pick_next_pushable_task(rq);
1818                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1819                         /*
1820                          * The task hasn't migrated, and is still the next
1821                          * eligible task, but we failed to find a run-queue
1822                          * to push it to.  Do not retry in this case, since
1823                          * other cpus will pull from us when ready.
1824                          */
1825                         goto out;
1826                 }
1827
1828                 if (!task)
1829                         /* No more tasks, just exit */
1830                         goto out;
1831
1832                 /*
1833                  * Something has shifted, try again.
1834                  */
1835                 put_task_struct(next_task);
1836                 next_task = task;
1837                 goto retry;
1838         }
1839
1840         deactivate_task(rq, next_task, 0);
1841         set_task_cpu(next_task, lowest_rq->cpu);
1842         activate_task(lowest_rq, next_task, 0);
1843         ret = 1;
1844
1845         resched_curr(lowest_rq);
1846
1847         double_unlock_balance(rq, lowest_rq);
1848
1849 out:
1850         put_task_struct(next_task);
1851
1852         return ret;
1853 }
1854
1855 static void push_rt_tasks(struct rq *rq)
1856 {
1857         /* push_rt_task will return true if it moved an RT */
1858         while (push_rt_task(rq))
1859                 ;
1860 }
1861
1862 #ifdef HAVE_RT_PUSH_IPI
1863 /*
1864  * The search for the next cpu always starts at rq->cpu and ends
1865  * when we reach rq->cpu again. It will never return rq->cpu.
1866  * This returns the next cpu to check, or nr_cpu_ids if the loop
1867  * is complete.
1868  *
1869  * rq->rt.push_cpu holds the last cpu returned by this function,
1870  * or if this is the first instance, it must hold rq->cpu.
1871  */
1872 static int rto_next_cpu(struct rq *rq)
1873 {
1874         int prev_cpu = rq->rt.push_cpu;
1875         int cpu;
1876
1877         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1878
1879         /*
1880          * If the previous cpu is less than the rq's CPU, then it already
1881          * passed the end of the mask, and has started from the beginning.
1882          * We end if the next CPU is greater or equal to rq's CPU.
1883          */
1884         if (prev_cpu < rq->cpu) {
1885                 if (cpu >= rq->cpu)
1886                         return nr_cpu_ids;
1887
1888         } else if (cpu >= nr_cpu_ids) {
1889                 /*
1890                  * We passed the end of the mask, start at the beginning.
1891                  * If the result is greater or equal to the rq's CPU, then
1892                  * the loop is finished.
1893                  */
1894                 cpu = cpumask_first(rq->rd->rto_mask);
1895                 if (cpu >= rq->cpu)
1896                         return nr_cpu_ids;
1897         }
1898         rq->rt.push_cpu = cpu;
1899
1900         /* Return cpu to let the caller know if the loop is finished or not */
1901         return cpu;
1902 }
1903
1904 static int find_next_push_cpu(struct rq *rq)
1905 {
1906         struct rq *next_rq;
1907         int cpu;
1908
1909         while (1) {
1910                 cpu = rto_next_cpu(rq);
1911                 if (cpu >= nr_cpu_ids)
1912                         break;
1913                 next_rq = cpu_rq(cpu);
1914
1915                 /* Make sure the next rq can push to this rq */
1916                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1917                         break;
1918         }
1919
1920         return cpu;
1921 }
1922
1923 #define RT_PUSH_IPI_EXECUTING           1
1924 #define RT_PUSH_IPI_RESTART             2
1925
1926 static void tell_cpu_to_push(struct rq *rq)
1927 {
1928         int cpu;
1929
1930         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1931                 raw_spin_lock(&rq->rt.push_lock);
1932                 /* Make sure it's still executing */
1933                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1934                         /*
1935                          * Tell the IPI to restart the loop as things have
1936                          * changed since it started.
1937                          */
1938                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1939                         raw_spin_unlock(&rq->rt.push_lock);
1940                         return;
1941                 }
1942                 raw_spin_unlock(&rq->rt.push_lock);
1943         }
1944
1945         /* When here, there's no IPI going around */
1946
1947         rq->rt.push_cpu = rq->cpu;
1948         cpu = find_next_push_cpu(rq);
1949         if (cpu >= nr_cpu_ids)
1950                 return;
1951
1952         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1953
1954         irq_work_queue_on(&rq->rt.push_work, cpu);
1955 }
1956
1957 /* Called from hardirq context */
1958 static void try_to_push_tasks(void *arg)
1959 {
1960         struct rt_rq *rt_rq = arg;
1961         struct rq *rq, *src_rq;
1962         int this_cpu;
1963         int cpu;
1964
1965         this_cpu = rt_rq->push_cpu;
1966
1967         /* Paranoid check */
1968         BUG_ON(this_cpu != smp_processor_id());
1969
1970         rq = cpu_rq(this_cpu);
1971         src_rq = rq_of_rt_rq(rt_rq);
1972
1973 again:
1974         if (has_pushable_tasks(rq)) {
1975                 raw_spin_lock(&rq->lock);
1976                 push_rt_task(rq);
1977                 raw_spin_unlock(&rq->lock);
1978         }
1979
1980         /* Pass the IPI to the next rt overloaded queue */
1981         raw_spin_lock(&rt_rq->push_lock);
1982         /*
1983          * If the source queue changed since the IPI went out,
1984          * we need to restart the search from that CPU again.
1985          */
1986         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1987                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1988                 rt_rq->push_cpu = src_rq->cpu;
1989         }
1990
1991         cpu = find_next_push_cpu(src_rq);
1992
1993         if (cpu >= nr_cpu_ids)
1994                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1995         raw_spin_unlock(&rt_rq->push_lock);
1996
1997         if (cpu >= nr_cpu_ids)
1998                 return;
1999
2000         /*
2001          * It is possible that a restart caused this CPU to be
2002          * chosen again. Don't bother with an IPI, just see if we
2003          * have more to push.
2004          */
2005         if (unlikely(cpu == rq->cpu))
2006                 goto again;
2007
2008         /* Try the next RT overloaded CPU */
2009         irq_work_queue_on(&rt_rq->push_work, cpu);
2010 }
2011
2012 static void push_irq_work_func(struct irq_work *work)
2013 {
2014         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2015
2016         try_to_push_tasks(rt_rq);
2017 }
2018 #endif /* HAVE_RT_PUSH_IPI */
2019
2020 static void pull_rt_task(struct rq *this_rq)
2021 {
2022         int this_cpu = this_rq->cpu, cpu;
2023         bool resched = false;
2024         struct task_struct *p;
2025         struct rq *src_rq;
2026
2027         if (likely(!rt_overloaded(this_rq)))
2028                 return;
2029
2030         /*
2031          * Match the barrier from rt_set_overloaded; this guarantees that if we
2032          * see overloaded we must also see the rto_mask bit.
2033          */
2034         smp_rmb();
2035
2036 #ifdef HAVE_RT_PUSH_IPI
2037         if (sched_feat(RT_PUSH_IPI)) {
2038                 tell_cpu_to_push(this_rq);
2039                 return;
2040         }
2041 #endif
2042
2043         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2044                 if (this_cpu == cpu)
2045                         continue;
2046
2047                 src_rq = cpu_rq(cpu);
2048
2049                 /*
2050                  * Don't bother taking the src_rq->lock if the next highest
2051                  * task is known to be lower-priority than our current task.
2052                  * This may look racy, but if this value is about to go
2053                  * logically higher, the src_rq will push this task away.
2054                  * And if its going logically lower, we do not care
2055                  */
2056                 if (src_rq->rt.highest_prio.next >=
2057                     this_rq->rt.highest_prio.curr)
2058                         continue;
2059
2060                 /*
2061                  * We can potentially drop this_rq's lock in
2062                  * double_lock_balance, and another CPU could
2063                  * alter this_rq
2064                  */
2065                 double_lock_balance(this_rq, src_rq);
2066
2067                 /*
2068                  * We can pull only a task, which is pushable
2069                  * on its rq, and no others.
2070                  */
2071                 p = pick_highest_pushable_task(src_rq, this_cpu);
2072
2073                 /*
2074                  * Do we have an RT task that preempts
2075                  * the to-be-scheduled task?
2076                  */
2077                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2078                         WARN_ON(p == src_rq->curr);
2079                         WARN_ON(!task_on_rq_queued(p));
2080
2081                         /*
2082                          * There's a chance that p is higher in priority
2083                          * than what's currently running on its cpu.
2084                          * This is just that p is wakeing up and hasn't
2085                          * had a chance to schedule. We only pull
2086                          * p if it is lower in priority than the
2087                          * current task on the run queue
2088                          */
2089                         if (p->prio < src_rq->curr->prio)
2090                                 goto skip;
2091
2092                         resched = true;
2093
2094                         deactivate_task(src_rq, p, 0);
2095                         set_task_cpu(p, this_cpu);
2096                         activate_task(this_rq, p, 0);
2097                         /*
2098                          * We continue with the search, just in
2099                          * case there's an even higher prio task
2100                          * in another runqueue. (low likelihood
2101                          * but possible)
2102                          */
2103                 }
2104 skip:
2105                 double_unlock_balance(this_rq, src_rq);
2106         }
2107
2108         if (resched)
2109                 resched_curr(this_rq);
2110 }
2111
2112 /*
2113  * If we are not running and we are not going to reschedule soon, we should
2114  * try to push tasks away now
2115  */
2116 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2117 {
2118         if (!task_running(rq, p) &&
2119             !test_tsk_need_resched(rq->curr) &&
2120             p->nr_cpus_allowed > 1 &&
2121             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2122             (rq->curr->nr_cpus_allowed < 2 ||
2123              rq->curr->prio <= p->prio))
2124                 push_rt_tasks(rq);
2125 }
2126
2127 /* Assumes rq->lock is held */
2128 static void rq_online_rt(struct rq *rq)
2129 {
2130         if (rq->rt.overloaded)
2131                 rt_set_overload(rq);
2132
2133         __enable_runtime(rq);
2134
2135         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2136 }
2137
2138 /* Assumes rq->lock is held */
2139 static void rq_offline_rt(struct rq *rq)
2140 {
2141         if (rq->rt.overloaded)
2142                 rt_clear_overload(rq);
2143
2144         __disable_runtime(rq);
2145
2146         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2147 }
2148
2149 /*
2150  * When switch from the rt queue, we bring ourselves to a position
2151  * that we might want to pull RT tasks from other runqueues.
2152  */
2153 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2154 {
2155         /*
2156          * If there are other RT tasks then we will reschedule
2157          * and the scheduling of the other RT tasks will handle
2158          * the balancing. But if we are the last RT task
2159          * we may need to handle the pulling of RT tasks
2160          * now.
2161          */
2162         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2163                 return;
2164
2165         queue_pull_task(rq);
2166 }
2167
2168 void __init init_sched_rt_class(void)
2169 {
2170         unsigned int i;
2171
2172         for_each_possible_cpu(i) {
2173                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2174                                         GFP_KERNEL, cpu_to_node(i));
2175         }
2176 }
2177 #endif /* CONFIG_SMP */
2178
2179 /*
2180  * When switching a task to RT, we may overload the runqueue
2181  * with RT tasks. In this case we try to push them off to
2182  * other runqueues.
2183  */
2184 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2185 {
2186         /*
2187          * If we are already running, then there's nothing
2188          * that needs to be done. But if we are not running
2189          * we may need to preempt the current running task.
2190          * If that current running task is also an RT task
2191          * then see if we can move to another run queue.
2192          */
2193         if (task_on_rq_queued(p) && rq->curr != p) {
2194 #ifdef CONFIG_SMP
2195                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2196                         queue_push_tasks(rq);
2197 #else
2198                 if (p->prio < rq->curr->prio)
2199                         resched_curr(rq);
2200 #endif /* CONFIG_SMP */
2201         }
2202 }
2203
2204 /*
2205  * Priority of the task has changed. This may cause
2206  * us to initiate a push or pull.
2207  */
2208 static void
2209 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2210 {
2211         if (!task_on_rq_queued(p))
2212                 return;
2213
2214         if (rq->curr == p) {
2215 #ifdef CONFIG_SMP
2216                 /*
2217                  * If our priority decreases while running, we
2218                  * may need to pull tasks to this runqueue.
2219                  */
2220                 if (oldprio < p->prio)
2221                         queue_pull_task(rq);
2222
2223                 /*
2224                  * If there's a higher priority task waiting to run
2225                  * then reschedule.
2226                  */
2227                 if (p->prio > rq->rt.highest_prio.curr)
2228                         resched_curr(rq);
2229 #else
2230                 /* For UP simply resched on drop of prio */
2231                 if (oldprio < p->prio)
2232                         resched_curr(rq);
2233 #endif /* CONFIG_SMP */
2234         } else {
2235                 /*
2236                  * This task is not running, but if it is
2237                  * greater than the current running task
2238                  * then reschedule.
2239                  */
2240                 if (p->prio < rq->curr->prio)
2241                         resched_curr(rq);
2242         }
2243 }
2244
2245 static void watchdog(struct rq *rq, struct task_struct *p)
2246 {
2247         unsigned long soft, hard;
2248
2249         /* max may change after cur was read, this will be fixed next tick */
2250         soft = task_rlimit(p, RLIMIT_RTTIME);
2251         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2252
2253         if (soft != RLIM_INFINITY) {
2254                 unsigned long next;
2255
2256                 if (p->rt.watchdog_stamp != jiffies) {
2257                         p->rt.timeout++;
2258                         p->rt.watchdog_stamp = jiffies;
2259                 }
2260
2261                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2262                 if (p->rt.timeout > next)
2263                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2264         }
2265 }
2266
2267 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2268 {
2269         struct sched_rt_entity *rt_se = &p->rt;
2270
2271         update_curr_rt(rq);
2272
2273         watchdog(rq, p);
2274
2275         /*
2276          * RR tasks need a special form of timeslice management.
2277          * FIFO tasks have no timeslices.
2278          */
2279         if (p->policy != SCHED_RR)
2280                 return;
2281
2282         if (--p->rt.time_slice)
2283                 return;
2284
2285         p->rt.time_slice = sched_rr_timeslice;
2286
2287         /*
2288          * Requeue to the end of queue if we (and all of our ancestors) are not
2289          * the only element on the queue
2290          */
2291         for_each_sched_rt_entity(rt_se) {
2292                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2293                         requeue_task_rt(rq, p, 0);
2294                         resched_curr(rq);
2295                         return;
2296                 }
2297         }
2298 }
2299
2300 static void set_curr_task_rt(struct rq *rq)
2301 {
2302         struct task_struct *p = rq->curr;
2303
2304         p->se.exec_start = rq_clock_task(rq);
2305
2306         /* The running task is never eligible for pushing */
2307         dequeue_pushable_task(rq, p);
2308 }
2309
2310 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2311 {
2312         /*
2313          * Time slice is 0 for SCHED_FIFO tasks
2314          */
2315         if (task->policy == SCHED_RR)
2316                 return sched_rr_timeslice;
2317         else
2318                 return 0;
2319 }
2320
2321 const struct sched_class rt_sched_class = {
2322         .next                   = &fair_sched_class,
2323         .enqueue_task           = enqueue_task_rt,
2324         .dequeue_task           = dequeue_task_rt,
2325         .yield_task             = yield_task_rt,
2326
2327         .check_preempt_curr     = check_preempt_curr_rt,
2328
2329         .pick_next_task         = pick_next_task_rt,
2330         .put_prev_task          = put_prev_task_rt,
2331
2332 #ifdef CONFIG_SMP
2333         .select_task_rq         = select_task_rq_rt,
2334
2335         .set_cpus_allowed       = set_cpus_allowed_common,
2336         .rq_online              = rq_online_rt,
2337         .rq_offline             = rq_offline_rt,
2338         .task_woken             = task_woken_rt,
2339         .switched_from          = switched_from_rt,
2340 #endif
2341
2342         .set_curr_task          = set_curr_task_rt,
2343         .task_tick              = task_tick_rt,
2344
2345         .get_rr_interval        = get_rr_interval_rt,
2346
2347         .prio_changed           = prio_changed_rt,
2348         .switched_to            = switched_to_rt,
2349
2350         .update_curr            = update_curr_rt,
2351 };
2352
2353 #ifdef CONFIG_SCHED_DEBUG
2354 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2355
2356 void print_rt_stats(struct seq_file *m, int cpu)
2357 {
2358         rt_rq_iter_t iter;
2359         struct rt_rq *rt_rq;
2360
2361         rcu_read_lock();
2362         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2363                 print_rt_rq(m, cpu, rt_rq);
2364         rcu_read_unlock();
2365 }
2366 #endif /* CONFIG_SCHED_DEBUG */