]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched/sched.h
24dc2989774937be3f1161541d8fb8860aeec4d0
[karo-tx-linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9
10 #include "cpupri.h"
11 #include "cpuacct.h"
12
13 extern __read_mostly int scheduler_running;
14
15 /*
16  * Convert user-nice values [ -20 ... 0 ... 19 ]
17  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
18  * and back.
19  */
20 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
21 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
22 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
23
24 /*
25  * 'User priority' is the nice value converted to something we
26  * can work with better when scaling various scheduler parameters,
27  * it's a [ 0 ... 39 ] range.
28  */
29 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
30 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
31 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
32
33 /*
34  * Helpers for converting nanosecond timing to jiffy resolution
35  */
36 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
37
38 /*
39  * Increase resolution of nice-level calculations for 64-bit architectures.
40  * The extra resolution improves shares distribution and load balancing of
41  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
42  * hierarchies, especially on larger systems. This is not a user-visible change
43  * and does not change the user-interface for setting shares/weights.
44  *
45  * We increase resolution only if we have enough bits to allow this increased
46  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
47  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
48  * increased costs.
49  */
50 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
51 # define SCHED_LOAD_RESOLUTION  10
52 # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
53 # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
54 #else
55 # define SCHED_LOAD_RESOLUTION  0
56 # define scale_load(w)          (w)
57 # define scale_load_down(w)     (w)
58 #endif
59
60 #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
61 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
62
63 #define NICE_0_LOAD             SCHED_LOAD_SCALE
64 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
65
66 /*
67  * These are the 'tuning knobs' of the scheduler:
68  */
69
70 /*
71  * single value that denotes runtime == period, ie unlimited time.
72  */
73 #define RUNTIME_INF     ((u64)~0ULL)
74
75 static inline int rt_policy(int policy)
76 {
77         if (policy == SCHED_FIFO || policy == SCHED_RR)
78                 return 1;
79         return 0;
80 }
81
82 static inline int task_has_rt_policy(struct task_struct *p)
83 {
84         return rt_policy(p->policy);
85 }
86
87 /*
88  * This is the priority-queue data structure of the RT scheduling class:
89  */
90 struct rt_prio_array {
91         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
92         struct list_head queue[MAX_RT_PRIO];
93 };
94
95 struct rt_bandwidth {
96         /* nests inside the rq lock: */
97         raw_spinlock_t          rt_runtime_lock;
98         ktime_t                 rt_period;
99         u64                     rt_runtime;
100         struct hrtimer          rt_period_timer;
101 };
102
103 extern struct mutex sched_domains_mutex;
104
105 #ifdef CONFIG_CGROUP_SCHED
106
107 #include <linux/cgroup.h>
108
109 struct cfs_rq;
110 struct rt_rq;
111
112 extern struct list_head task_groups;
113
114 struct cfs_bandwidth {
115 #ifdef CONFIG_CFS_BANDWIDTH
116         raw_spinlock_t lock;
117         ktime_t period;
118         u64 quota, runtime;
119         s64 hierarchal_quota;
120         u64 runtime_expires;
121
122         int idle, timer_active;
123         struct hrtimer period_timer, slack_timer;
124         struct list_head throttled_cfs_rq;
125
126         /* statistics */
127         int nr_periods, nr_throttled;
128         u64 throttled_time;
129 #endif
130 };
131
132 /* task group related information */
133 struct task_group {
134         struct cgroup_subsys_state css;
135
136 #ifdef CONFIG_FAIR_GROUP_SCHED
137         /* schedulable entities of this group on each cpu */
138         struct sched_entity **se;
139         /* runqueue "owned" by this group on each cpu */
140         struct cfs_rq **cfs_rq;
141         unsigned long shares;
142
143         atomic_t load_weight;
144         atomic64_t load_avg;
145         atomic_t runnable_avg;
146 #endif
147
148 #ifdef CONFIG_RT_GROUP_SCHED
149         struct sched_rt_entity **rt_se;
150         struct rt_rq **rt_rq;
151
152         struct rt_bandwidth rt_bandwidth;
153 #endif
154
155         struct rcu_head rcu;
156         struct list_head list;
157
158         struct task_group *parent;
159         struct list_head siblings;
160         struct list_head children;
161
162 #ifdef CONFIG_SCHED_AUTOGROUP
163         struct autogroup *autogroup;
164 #endif
165
166         struct cfs_bandwidth cfs_bandwidth;
167 };
168
169 #ifdef CONFIG_FAIR_GROUP_SCHED
170 #define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
171
172 /*
173  * A weight of 0 or 1 can cause arithmetics problems.
174  * A weight of a cfs_rq is the sum of weights of which entities
175  * are queued on this cfs_rq, so a weight of a entity should not be
176  * too large, so as the shares value of a task group.
177  * (The default weight is 1024 - so there's no practical
178  *  limitation from this.)
179  */
180 #define MIN_SHARES      (1UL <<  1)
181 #define MAX_SHARES      (1UL << 18)
182 #endif
183
184 typedef int (*tg_visitor)(struct task_group *, void *);
185
186 extern int walk_tg_tree_from(struct task_group *from,
187                              tg_visitor down, tg_visitor up, void *data);
188
189 /*
190  * Iterate the full tree, calling @down when first entering a node and @up when
191  * leaving it for the final time.
192  *
193  * Caller must hold rcu_lock or sufficient equivalent.
194  */
195 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
196 {
197         return walk_tg_tree_from(&root_task_group, down, up, data);
198 }
199
200 extern int tg_nop(struct task_group *tg, void *data);
201
202 extern void free_fair_sched_group(struct task_group *tg);
203 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
204 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
205 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
206                         struct sched_entity *se, int cpu,
207                         struct sched_entity *parent);
208 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
209 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
210
211 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
212 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
213 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
214
215 extern void free_rt_sched_group(struct task_group *tg);
216 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
217 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218                 struct sched_rt_entity *rt_se, int cpu,
219                 struct sched_rt_entity *parent);
220
221 extern struct task_group *sched_create_group(struct task_group *parent);
222 extern void sched_online_group(struct task_group *tg,
223                                struct task_group *parent);
224 extern void sched_destroy_group(struct task_group *tg);
225 extern void sched_offline_group(struct task_group *tg);
226
227 extern void sched_move_task(struct task_struct *tsk);
228
229 #ifdef CONFIG_FAIR_GROUP_SCHED
230 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
231 #endif
232
233 #else /* CONFIG_CGROUP_SCHED */
234
235 struct cfs_bandwidth { };
236
237 #endif  /* CONFIG_CGROUP_SCHED */
238
239 /* CFS-related fields in a runqueue */
240 struct cfs_rq {
241         struct load_weight load;
242         unsigned int nr_running, h_nr_running;
243
244         u64 exec_clock;
245         u64 min_vruntime;
246 #ifndef CONFIG_64BIT
247         u64 min_vruntime_copy;
248 #endif
249
250         struct rb_root tasks_timeline;
251         struct rb_node *rb_leftmost;
252
253         /*
254          * 'curr' points to currently running entity on this cfs_rq.
255          * It is set to NULL otherwise (i.e when none are currently running).
256          */
257         struct sched_entity *curr, *next, *last, *skip;
258
259 #ifdef  CONFIG_SCHED_DEBUG
260         unsigned int nr_spread_over;
261 #endif
262
263 #ifdef CONFIG_SMP
264 /*
265  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
266  * removed when useful for applications beyond shares distribution (e.g.
267  * load-balance).
268  */
269 #ifdef CONFIG_FAIR_GROUP_SCHED
270         /*
271          * CFS Load tracking
272          * Under CFS, load is tracked on a per-entity basis and aggregated up.
273          * This allows for the description of both thread and group usage (in
274          * the FAIR_GROUP_SCHED case).
275          */
276         u64 runnable_load_avg, blocked_load_avg;
277         atomic64_t decay_counter, removed_load;
278         u64 last_decay;
279 #endif /* CONFIG_FAIR_GROUP_SCHED */
280 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
281 #ifdef CONFIG_FAIR_GROUP_SCHED
282         u32 tg_runnable_contrib;
283         u64 tg_load_contrib;
284 #endif /* CONFIG_FAIR_GROUP_SCHED */
285
286         /*
287          *   h_load = weight * f(tg)
288          *
289          * Where f(tg) is the recursive weight fraction assigned to
290          * this group.
291          */
292         unsigned long h_load;
293 #endif /* CONFIG_SMP */
294
295 #ifdef CONFIG_FAIR_GROUP_SCHED
296         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
297
298         /*
299          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
300          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
301          * (like users, containers etc.)
302          *
303          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
304          * list is used during load balance.
305          */
306         int on_list;
307         struct list_head leaf_cfs_rq_list;
308         struct task_group *tg;  /* group that "owns" this runqueue */
309
310 #ifdef CONFIG_CFS_BANDWIDTH
311         int runtime_enabled;
312         u64 runtime_expires;
313         s64 runtime_remaining;
314
315         u64 throttled_clock, throttled_clock_task;
316         u64 throttled_clock_task_time;
317         int throttled, throttle_count;
318         struct list_head throttled_list;
319 #endif /* CONFIG_CFS_BANDWIDTH */
320 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 };
322
323 static inline int rt_bandwidth_enabled(void)
324 {
325         return sysctl_sched_rt_runtime >= 0;
326 }
327
328 /* Real-Time classes' related field in a runqueue: */
329 struct rt_rq {
330         struct rt_prio_array active;
331         unsigned int rt_nr_running;
332 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
333         struct {
334                 int curr; /* highest queued rt task prio */
335 #ifdef CONFIG_SMP
336                 int next; /* next highest */
337 #endif
338         } highest_prio;
339 #endif
340 #ifdef CONFIG_SMP
341         unsigned long rt_nr_migratory;
342         unsigned long rt_nr_total;
343         int overloaded;
344         struct plist_head pushable_tasks;
345 #endif
346         int rt_throttled;
347         u64 rt_time;
348         u64 rt_runtime;
349         /* Nests inside the rq lock: */
350         raw_spinlock_t rt_runtime_lock;
351
352 #ifdef CONFIG_RT_GROUP_SCHED
353         unsigned long rt_nr_boosted;
354
355         struct rq *rq;
356         struct list_head leaf_rt_rq_list;
357         struct task_group *tg;
358 #endif
359 };
360
361 #ifdef CONFIG_SMP
362
363 /*
364  * We add the notion of a root-domain which will be used to define per-domain
365  * variables. Each exclusive cpuset essentially defines an island domain by
366  * fully partitioning the member cpus from any other cpuset. Whenever a new
367  * exclusive cpuset is created, we also create and attach a new root-domain
368  * object.
369  *
370  */
371 struct root_domain {
372         atomic_t refcount;
373         atomic_t rto_count;
374         struct rcu_head rcu;
375         cpumask_var_t span;
376         cpumask_var_t online;
377
378         /*
379          * The "RT overload" flag: it gets set if a CPU has more than
380          * one runnable RT task.
381          */
382         cpumask_var_t rto_mask;
383         struct cpupri cpupri;
384 };
385
386 extern struct root_domain def_root_domain;
387
388 #endif /* CONFIG_SMP */
389
390 /*
391  * This is the main, per-CPU runqueue data structure.
392  *
393  * Locking rule: those places that want to lock multiple runqueues
394  * (such as the load balancing or the thread migration code), lock
395  * acquire operations must be ordered by ascending &runqueue.
396  */
397 struct rq {
398         /* runqueue lock: */
399         raw_spinlock_t lock;
400
401         /*
402          * nr_running and cpu_load should be in the same cacheline because
403          * remote CPUs use both these fields when doing load calculation.
404          */
405         unsigned int nr_running;
406         #define CPU_LOAD_IDX_MAX 5
407         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
408         unsigned long last_load_update_tick;
409 #ifdef CONFIG_NO_HZ_COMMON
410         u64 nohz_stamp;
411         unsigned long nohz_flags;
412 #endif
413         int skip_clock_update;
414
415         /* capture load from *all* tasks on this cpu: */
416         struct load_weight load;
417         unsigned long nr_load_updates;
418         u64 nr_switches;
419
420         struct cfs_rq cfs;
421         struct rt_rq rt;
422
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424         /* list of leaf cfs_rq on this cpu: */
425         struct list_head leaf_cfs_rq_list;
426 #ifdef CONFIG_SMP
427         unsigned long h_load_throttle;
428 #endif /* CONFIG_SMP */
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 #ifdef CONFIG_RT_GROUP_SCHED
432         struct list_head leaf_rt_rq_list;
433 #endif
434
435         /*
436          * This is part of a global counter where only the total sum
437          * over all CPUs matters. A task can increase this counter on
438          * one CPU and if it got migrated afterwards it may decrease
439          * it on another CPU. Always updated under the runqueue lock:
440          */
441         unsigned long nr_uninterruptible;
442
443         struct task_struct *curr, *idle, *stop;
444         unsigned long next_balance;
445         struct mm_struct *prev_mm;
446
447         u64 clock;
448         u64 clock_task;
449
450         atomic_t nr_iowait;
451
452 #ifdef CONFIG_SMP
453         struct root_domain *rd;
454         struct sched_domain *sd;
455
456         unsigned long cpu_power;
457
458         unsigned char idle_balance;
459         /* For active balancing */
460         int post_schedule;
461         int active_balance;
462         int push_cpu;
463         struct cpu_stop_work active_balance_work;
464         /* cpu of this runqueue: */
465         int cpu;
466         int online;
467
468         struct list_head cfs_tasks;
469
470         u64 rt_avg;
471         u64 age_stamp;
472         u64 idle_stamp;
473         u64 avg_idle;
474 #endif
475
476 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
477         u64 prev_irq_time;
478 #endif
479 #ifdef CONFIG_PARAVIRT
480         u64 prev_steal_time;
481 #endif
482 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
483         u64 prev_steal_time_rq;
484 #endif
485
486         /* calc_load related fields */
487         unsigned long calc_load_update;
488         long calc_load_active;
489
490 #ifdef CONFIG_SCHED_HRTICK
491 #ifdef CONFIG_SMP
492         int hrtick_csd_pending;
493         struct call_single_data hrtick_csd;
494 #endif
495         struct hrtimer hrtick_timer;
496 #endif
497
498 #ifdef CONFIG_SCHEDSTATS
499         /* latency stats */
500         struct sched_info rq_sched_info;
501         unsigned long long rq_cpu_time;
502         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
503
504         /* sys_sched_yield() stats */
505         unsigned int yld_count;
506
507         /* schedule() stats */
508         unsigned int sched_count;
509         unsigned int sched_goidle;
510
511         /* try_to_wake_up() stats */
512         unsigned int ttwu_count;
513         unsigned int ttwu_local;
514 #endif
515
516 #ifdef CONFIG_SMP
517         struct llist_head wake_list;
518 #endif
519
520         struct sched_avg avg;
521 };
522
523 static inline int cpu_of(struct rq *rq)
524 {
525 #ifdef CONFIG_SMP
526         return rq->cpu;
527 #else
528         return 0;
529 #endif
530 }
531
532 DECLARE_PER_CPU(struct rq, runqueues);
533
534 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
535 #define this_rq()               (&__get_cpu_var(runqueues))
536 #define task_rq(p)              cpu_rq(task_cpu(p))
537 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
538 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
539
540 #ifdef CONFIG_SMP
541
542 #define rcu_dereference_check_sched_domain(p) \
543         rcu_dereference_check((p), \
544                               lockdep_is_held(&sched_domains_mutex))
545
546 /*
547  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
548  * See detach_destroy_domains: synchronize_sched for details.
549  *
550  * The domain tree of any CPU may only be accessed from within
551  * preempt-disabled sections.
552  */
553 #define for_each_domain(cpu, __sd) \
554         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
555                         __sd; __sd = __sd->parent)
556
557 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
558
559 /**
560  * highest_flag_domain - Return highest sched_domain containing flag.
561  * @cpu:        The cpu whose highest level of sched domain is to
562  *              be returned.
563  * @flag:       The flag to check for the highest sched_domain
564  *              for the given cpu.
565  *
566  * Returns the highest sched_domain of a cpu which contains the given flag.
567  */
568 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
569 {
570         struct sched_domain *sd, *hsd = NULL;
571
572         for_each_domain(cpu, sd) {
573                 if (!(sd->flags & flag))
574                         break;
575                 hsd = sd;
576         }
577
578         return hsd;
579 }
580
581 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
582 DECLARE_PER_CPU(int, sd_llc_id);
583
584 struct sched_group_power {
585         atomic_t ref;
586         /*
587          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
588          * single CPU.
589          */
590         unsigned int power, power_orig;
591         unsigned long next_update;
592         /*
593          * Number of busy cpus in this group.
594          */
595         atomic_t nr_busy_cpus;
596
597         unsigned long cpumask[0]; /* iteration mask */
598 };
599
600 struct sched_group {
601         struct sched_group *next;       /* Must be a circular list */
602         atomic_t ref;
603
604         unsigned int group_weight;
605         struct sched_group_power *sgp;
606
607         /*
608          * The CPUs this group covers.
609          *
610          * NOTE: this field is variable length. (Allocated dynamically
611          * by attaching extra space to the end of the structure,
612          * depending on how many CPUs the kernel has booted up with)
613          */
614         unsigned long cpumask[0];
615 };
616
617 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
618 {
619         return to_cpumask(sg->cpumask);
620 }
621
622 /*
623  * cpumask masking which cpus in the group are allowed to iterate up the domain
624  * tree.
625  */
626 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
627 {
628         return to_cpumask(sg->sgp->cpumask);
629 }
630
631 /**
632  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
633  * @group: The group whose first cpu is to be returned.
634  */
635 static inline unsigned int group_first_cpu(struct sched_group *group)
636 {
637         return cpumask_first(sched_group_cpus(group));
638 }
639
640 extern int group_balance_cpu(struct sched_group *sg);
641
642 #endif /* CONFIG_SMP */
643
644 #include "stats.h"
645 #include "auto_group.h"
646
647 #ifdef CONFIG_CGROUP_SCHED
648
649 /*
650  * Return the group to which this tasks belongs.
651  *
652  * We cannot use task_subsys_state() and friends because the cgroup
653  * subsystem changes that value before the cgroup_subsys::attach() method
654  * is called, therefore we cannot pin it and might observe the wrong value.
655  *
656  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
657  * core changes this before calling sched_move_task().
658  *
659  * Instead we use a 'copy' which is updated from sched_move_task() while
660  * holding both task_struct::pi_lock and rq::lock.
661  */
662 static inline struct task_group *task_group(struct task_struct *p)
663 {
664         return p->sched_task_group;
665 }
666
667 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
668 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
669 {
670 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
671         struct task_group *tg = task_group(p);
672 #endif
673
674 #ifdef CONFIG_FAIR_GROUP_SCHED
675         p->se.cfs_rq = tg->cfs_rq[cpu];
676         p->se.parent = tg->se[cpu];
677 #endif
678
679 #ifdef CONFIG_RT_GROUP_SCHED
680         p->rt.rt_rq  = tg->rt_rq[cpu];
681         p->rt.parent = tg->rt_se[cpu];
682 #endif
683 }
684
685 #else /* CONFIG_CGROUP_SCHED */
686
687 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
688 static inline struct task_group *task_group(struct task_struct *p)
689 {
690         return NULL;
691 }
692
693 #endif /* CONFIG_CGROUP_SCHED */
694
695 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
696 {
697         set_task_rq(p, cpu);
698 #ifdef CONFIG_SMP
699         /*
700          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
701          * successfuly executed on another CPU. We must ensure that updates of
702          * per-task data have been completed by this moment.
703          */
704         smp_wmb();
705         task_thread_info(p)->cpu = cpu;
706 #endif
707 }
708
709 /*
710  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
711  */
712 #ifdef CONFIG_SCHED_DEBUG
713 # include <linux/static_key.h>
714 # define const_debug __read_mostly
715 #else
716 # define const_debug const
717 #endif
718
719 extern const_debug unsigned int sysctl_sched_features;
720
721 #define SCHED_FEAT(name, enabled)       \
722         __SCHED_FEAT_##name ,
723
724 enum {
725 #include "features.h"
726         __SCHED_FEAT_NR,
727 };
728
729 #undef SCHED_FEAT
730
731 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
732 static __always_inline bool static_branch__true(struct static_key *key)
733 {
734         return static_key_true(key); /* Not out of line branch. */
735 }
736
737 static __always_inline bool static_branch__false(struct static_key *key)
738 {
739         return static_key_false(key); /* Out of line branch. */
740 }
741
742 #define SCHED_FEAT(name, enabled)                                       \
743 static __always_inline bool static_branch_##name(struct static_key *key) \
744 {                                                                       \
745         return static_branch__##enabled(key);                           \
746 }
747
748 #include "features.h"
749
750 #undef SCHED_FEAT
751
752 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
753 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
754 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
755 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
756 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
757
758 #ifdef CONFIG_NUMA_BALANCING
759 #define sched_feat_numa(x) sched_feat(x)
760 #ifdef CONFIG_SCHED_DEBUG
761 #define numabalancing_enabled sched_feat_numa(NUMA)
762 #else
763 extern bool numabalancing_enabled;
764 #endif /* CONFIG_SCHED_DEBUG */
765 #else
766 #define sched_feat_numa(x) (0)
767 #define numabalancing_enabled (0)
768 #endif /* CONFIG_NUMA_BALANCING */
769
770 static inline u64 global_rt_period(void)
771 {
772         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
773 }
774
775 static inline u64 global_rt_runtime(void)
776 {
777         if (sysctl_sched_rt_runtime < 0)
778                 return RUNTIME_INF;
779
780         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
781 }
782
783
784
785 static inline int task_current(struct rq *rq, struct task_struct *p)
786 {
787         return rq->curr == p;
788 }
789
790 static inline int task_running(struct rq *rq, struct task_struct *p)
791 {
792 #ifdef CONFIG_SMP
793         return p->on_cpu;
794 #else
795         return task_current(rq, p);
796 #endif
797 }
798
799
800 #ifndef prepare_arch_switch
801 # define prepare_arch_switch(next)      do { } while (0)
802 #endif
803 #ifndef finish_arch_switch
804 # define finish_arch_switch(prev)       do { } while (0)
805 #endif
806 #ifndef finish_arch_post_lock_switch
807 # define finish_arch_post_lock_switch() do { } while (0)
808 #endif
809
810 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
811 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
812 {
813 #ifdef CONFIG_SMP
814         /*
815          * We can optimise this out completely for !SMP, because the
816          * SMP rebalancing from interrupt is the only thing that cares
817          * here.
818          */
819         next->on_cpu = 1;
820 #endif
821 }
822
823 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
824 {
825 #ifdef CONFIG_SMP
826         /*
827          * After ->on_cpu is cleared, the task can be moved to a different CPU.
828          * We must ensure this doesn't happen until the switch is completely
829          * finished.
830          */
831         smp_wmb();
832         prev->on_cpu = 0;
833 #endif
834 #ifdef CONFIG_DEBUG_SPINLOCK
835         /* this is a valid case when another task releases the spinlock */
836         rq->lock.owner = current;
837 #endif
838         /*
839          * If we are tracking spinlock dependencies then we have to
840          * fix up the runqueue lock - which gets 'carried over' from
841          * prev into current:
842          */
843         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
844
845         raw_spin_unlock_irq(&rq->lock);
846 }
847
848 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
849 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
850 {
851 #ifdef CONFIG_SMP
852         /*
853          * We can optimise this out completely for !SMP, because the
854          * SMP rebalancing from interrupt is the only thing that cares
855          * here.
856          */
857         next->on_cpu = 1;
858 #endif
859         raw_spin_unlock(&rq->lock);
860 }
861
862 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
863 {
864 #ifdef CONFIG_SMP
865         /*
866          * After ->on_cpu is cleared, the task can be moved to a different CPU.
867          * We must ensure this doesn't happen until the switch is completely
868          * finished.
869          */
870         smp_wmb();
871         prev->on_cpu = 0;
872 #endif
873         local_irq_enable();
874 }
875 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
876
877 /*
878  * wake flags
879  */
880 #define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
881 #define WF_FORK         0x02            /* child wakeup after fork */
882 #define WF_MIGRATED     0x4             /* internal use, task got migrated */
883
884 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
885 {
886         lw->weight += inc;
887         lw->inv_weight = 0;
888 }
889
890 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
891 {
892         lw->weight -= dec;
893         lw->inv_weight = 0;
894 }
895
896 static inline void update_load_set(struct load_weight *lw, unsigned long w)
897 {
898         lw->weight = w;
899         lw->inv_weight = 0;
900 }
901
902 /*
903  * To aid in avoiding the subversion of "niceness" due to uneven distribution
904  * of tasks with abnormal "nice" values across CPUs the contribution that
905  * each task makes to its run queue's load is weighted according to its
906  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
907  * scaled version of the new time slice allocation that they receive on time
908  * slice expiry etc.
909  */
910
911 #define WEIGHT_IDLEPRIO                3
912 #define WMULT_IDLEPRIO         1431655765
913
914 /*
915  * Nice levels are multiplicative, with a gentle 10% change for every
916  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
917  * nice 1, it will get ~10% less CPU time than another CPU-bound task
918  * that remained on nice 0.
919  *
920  * The "10% effect" is relative and cumulative: from _any_ nice level,
921  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
922  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
923  * If a task goes up by ~10% and another task goes down by ~10% then
924  * the relative distance between them is ~25%.)
925  */
926 static const int prio_to_weight[40] = {
927  /* -20 */     88761,     71755,     56483,     46273,     36291,
928  /* -15 */     29154,     23254,     18705,     14949,     11916,
929  /* -10 */      9548,      7620,      6100,      4904,      3906,
930  /*  -5 */      3121,      2501,      1991,      1586,      1277,
931  /*   0 */      1024,       820,       655,       526,       423,
932  /*   5 */       335,       272,       215,       172,       137,
933  /*  10 */       110,        87,        70,        56,        45,
934  /*  15 */        36,        29,        23,        18,        15,
935 };
936
937 /*
938  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
939  *
940  * In cases where the weight does not change often, we can use the
941  * precalculated inverse to speed up arithmetics by turning divisions
942  * into multiplications:
943  */
944 static const u32 prio_to_wmult[40] = {
945  /* -20 */     48388,     59856,     76040,     92818,    118348,
946  /* -15 */    147320,    184698,    229616,    287308,    360437,
947  /* -10 */    449829,    563644,    704093,    875809,   1099582,
948  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
949  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
950  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
951  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
952  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
953 };
954
955 #define ENQUEUE_WAKEUP          1
956 #define ENQUEUE_HEAD            2
957 #ifdef CONFIG_SMP
958 #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
959 #else
960 #define ENQUEUE_WAKING          0
961 #endif
962
963 #define DEQUEUE_SLEEP           1
964
965 struct sched_class {
966         const struct sched_class *next;
967
968         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
969         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
970         void (*yield_task) (struct rq *rq);
971         bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
972
973         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
974
975         struct task_struct * (*pick_next_task) (struct rq *rq);
976         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
977
978 #ifdef CONFIG_SMP
979         int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
980         void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
981
982         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
983         void (*post_schedule) (struct rq *this_rq);
984         void (*task_waking) (struct task_struct *task);
985         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
986
987         void (*set_cpus_allowed)(struct task_struct *p,
988                                  const struct cpumask *newmask);
989
990         void (*rq_online)(struct rq *rq);
991         void (*rq_offline)(struct rq *rq);
992 #endif
993
994         void (*set_curr_task) (struct rq *rq);
995         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
996         void (*task_fork) (struct task_struct *p);
997
998         void (*switched_from) (struct rq *this_rq, struct task_struct *task);
999         void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1000         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1001                              int oldprio);
1002
1003         unsigned int (*get_rr_interval) (struct rq *rq,
1004                                          struct task_struct *task);
1005
1006 #ifdef CONFIG_FAIR_GROUP_SCHED
1007         void (*task_move_group) (struct task_struct *p, int on_rq);
1008 #endif
1009 };
1010
1011 #define sched_class_highest (&stop_sched_class)
1012 #define for_each_class(class) \
1013    for (class = sched_class_highest; class; class = class->next)
1014
1015 extern const struct sched_class stop_sched_class;
1016 extern const struct sched_class rt_sched_class;
1017 extern const struct sched_class fair_sched_class;
1018 extern const struct sched_class idle_sched_class;
1019
1020
1021 #ifdef CONFIG_SMP
1022
1023 extern void update_group_power(struct sched_domain *sd, int cpu);
1024
1025 extern void trigger_load_balance(struct rq *rq, int cpu);
1026 extern void idle_balance(int this_cpu, struct rq *this_rq);
1027
1028 /*
1029  * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1030  * becomes useful in lb
1031  */
1032 #if defined(CONFIG_FAIR_GROUP_SCHED)
1033 extern void idle_enter_fair(struct rq *this_rq);
1034 extern void idle_exit_fair(struct rq *this_rq);
1035 #else
1036 static inline void idle_enter_fair(struct rq *this_rq) {}
1037 static inline void idle_exit_fair(struct rq *this_rq) {}
1038 #endif
1039
1040 #else   /* CONFIG_SMP */
1041
1042 static inline void idle_balance(int cpu, struct rq *rq)
1043 {
1044 }
1045
1046 #endif
1047
1048 extern void sysrq_sched_debug_show(void);
1049 extern void sched_init_granularity(void);
1050 extern void update_max_interval(void);
1051 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1052 extern void init_sched_rt_class(void);
1053 extern void init_sched_fair_class(void);
1054
1055 extern void resched_task(struct task_struct *p);
1056 extern void resched_cpu(int cpu);
1057
1058 extern struct rt_bandwidth def_rt_bandwidth;
1059 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1060
1061 extern void update_idle_cpu_load(struct rq *this_rq);
1062
1063 #ifdef CONFIG_PARAVIRT
1064 static inline u64 steal_ticks(u64 steal)
1065 {
1066         if (unlikely(steal > NSEC_PER_SEC))
1067                 return div_u64(steal, TICK_NSEC);
1068
1069         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1070 }
1071 #endif
1072
1073 static inline void inc_nr_running(struct rq *rq)
1074 {
1075         rq->nr_running++;
1076
1077 #ifdef CONFIG_NO_HZ_FULL
1078         if (rq->nr_running == 2) {
1079                 if (tick_nohz_full_cpu(rq->cpu)) {
1080                         /* Order rq->nr_running write against the IPI */
1081                         smp_wmb();
1082                         smp_send_reschedule(rq->cpu);
1083                 }
1084        }
1085 #endif
1086 }
1087
1088 static inline void dec_nr_running(struct rq *rq)
1089 {
1090         rq->nr_running--;
1091 }
1092
1093 extern void update_rq_clock(struct rq *rq);
1094
1095 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1096 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1097
1098 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1099
1100 extern const_debug unsigned int sysctl_sched_time_avg;
1101 extern const_debug unsigned int sysctl_sched_nr_migrate;
1102 extern const_debug unsigned int sysctl_sched_migration_cost;
1103
1104 static inline u64 sched_avg_period(void)
1105 {
1106         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1107 }
1108
1109 #ifdef CONFIG_SCHED_HRTICK
1110
1111 /*
1112  * Use hrtick when:
1113  *  - enabled by features
1114  *  - hrtimer is actually high res
1115  */
1116 static inline int hrtick_enabled(struct rq *rq)
1117 {
1118         if (!sched_feat(HRTICK))
1119                 return 0;
1120         if (!cpu_active(cpu_of(rq)))
1121                 return 0;
1122         return hrtimer_is_hres_active(&rq->hrtick_timer);
1123 }
1124
1125 void hrtick_start(struct rq *rq, u64 delay);
1126
1127 #else
1128
1129 static inline int hrtick_enabled(struct rq *rq)
1130 {
1131         return 0;
1132 }
1133
1134 #endif /* CONFIG_SCHED_HRTICK */
1135
1136 #ifdef CONFIG_SMP
1137 extern void sched_avg_update(struct rq *rq);
1138 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1139 {
1140         rq->rt_avg += rt_delta;
1141         sched_avg_update(rq);
1142 }
1143 #else
1144 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1145 static inline void sched_avg_update(struct rq *rq) { }
1146 #endif
1147
1148 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1149
1150 #ifdef CONFIG_SMP
1151 #ifdef CONFIG_PREEMPT
1152
1153 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1154
1155 /*
1156  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1157  * way at the expense of forcing extra atomic operations in all
1158  * invocations.  This assures that the double_lock is acquired using the
1159  * same underlying policy as the spinlock_t on this architecture, which
1160  * reduces latency compared to the unfair variant below.  However, it
1161  * also adds more overhead and therefore may reduce throughput.
1162  */
1163 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1164         __releases(this_rq->lock)
1165         __acquires(busiest->lock)
1166         __acquires(this_rq->lock)
1167 {
1168         raw_spin_unlock(&this_rq->lock);
1169         double_rq_lock(this_rq, busiest);
1170
1171         return 1;
1172 }
1173
1174 #else
1175 /*
1176  * Unfair double_lock_balance: Optimizes throughput at the expense of
1177  * latency by eliminating extra atomic operations when the locks are
1178  * already in proper order on entry.  This favors lower cpu-ids and will
1179  * grant the double lock to lower cpus over higher ids under contention,
1180  * regardless of entry order into the function.
1181  */
1182 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1183         __releases(this_rq->lock)
1184         __acquires(busiest->lock)
1185         __acquires(this_rq->lock)
1186 {
1187         int ret = 0;
1188
1189         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1190                 if (busiest < this_rq) {
1191                         raw_spin_unlock(&this_rq->lock);
1192                         raw_spin_lock(&busiest->lock);
1193                         raw_spin_lock_nested(&this_rq->lock,
1194                                               SINGLE_DEPTH_NESTING);
1195                         ret = 1;
1196                 } else
1197                         raw_spin_lock_nested(&busiest->lock,
1198                                               SINGLE_DEPTH_NESTING);
1199         }
1200         return ret;
1201 }
1202
1203 #endif /* CONFIG_PREEMPT */
1204
1205 /*
1206  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1207  */
1208 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1209 {
1210         if (unlikely(!irqs_disabled())) {
1211                 /* printk() doesn't work good under rq->lock */
1212                 raw_spin_unlock(&this_rq->lock);
1213                 BUG_ON(1);
1214         }
1215
1216         return _double_lock_balance(this_rq, busiest);
1217 }
1218
1219 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1220         __releases(busiest->lock)
1221 {
1222         raw_spin_unlock(&busiest->lock);
1223         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1224 }
1225
1226 /*
1227  * double_rq_lock - safely lock two runqueues
1228  *
1229  * Note this does not disable interrupts like task_rq_lock,
1230  * you need to do so manually before calling.
1231  */
1232 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1233         __acquires(rq1->lock)
1234         __acquires(rq2->lock)
1235 {
1236         BUG_ON(!irqs_disabled());
1237         if (rq1 == rq2) {
1238                 raw_spin_lock(&rq1->lock);
1239                 __acquire(rq2->lock);   /* Fake it out ;) */
1240         } else {
1241                 if (rq1 < rq2) {
1242                         raw_spin_lock(&rq1->lock);
1243                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1244                 } else {
1245                         raw_spin_lock(&rq2->lock);
1246                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1247                 }
1248         }
1249 }
1250
1251 /*
1252  * double_rq_unlock - safely unlock two runqueues
1253  *
1254  * Note this does not restore interrupts like task_rq_unlock,
1255  * you need to do so manually after calling.
1256  */
1257 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1258         __releases(rq1->lock)
1259         __releases(rq2->lock)
1260 {
1261         raw_spin_unlock(&rq1->lock);
1262         if (rq1 != rq2)
1263                 raw_spin_unlock(&rq2->lock);
1264         else
1265                 __release(rq2->lock);
1266 }
1267
1268 #else /* CONFIG_SMP */
1269
1270 /*
1271  * double_rq_lock - safely lock two runqueues
1272  *
1273  * Note this does not disable interrupts like task_rq_lock,
1274  * you need to do so manually before calling.
1275  */
1276 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1277         __acquires(rq1->lock)
1278         __acquires(rq2->lock)
1279 {
1280         BUG_ON(!irqs_disabled());
1281         BUG_ON(rq1 != rq2);
1282         raw_spin_lock(&rq1->lock);
1283         __acquire(rq2->lock);   /* Fake it out ;) */
1284 }
1285
1286 /*
1287  * double_rq_unlock - safely unlock two runqueues
1288  *
1289  * Note this does not restore interrupts like task_rq_unlock,
1290  * you need to do so manually after calling.
1291  */
1292 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1293         __releases(rq1->lock)
1294         __releases(rq2->lock)
1295 {
1296         BUG_ON(rq1 != rq2);
1297         raw_spin_unlock(&rq1->lock);
1298         __release(rq2->lock);
1299 }
1300
1301 #endif
1302
1303 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1304 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1305 extern void print_cfs_stats(struct seq_file *m, int cpu);
1306 extern void print_rt_stats(struct seq_file *m, int cpu);
1307
1308 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1309 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1310
1311 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1312
1313 #ifdef CONFIG_NO_HZ_COMMON
1314 enum rq_nohz_flag_bits {
1315         NOHZ_TICK_STOPPED,
1316         NOHZ_BALANCE_KICK,
1317 };
1318
1319 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1320 #endif
1321
1322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1323
1324 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1325 DECLARE_PER_CPU(u64, cpu_softirq_time);
1326
1327 #ifndef CONFIG_64BIT
1328 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1329
1330 static inline void irq_time_write_begin(void)
1331 {
1332         __this_cpu_inc(irq_time_seq.sequence);
1333         smp_wmb();
1334 }
1335
1336 static inline void irq_time_write_end(void)
1337 {
1338         smp_wmb();
1339         __this_cpu_inc(irq_time_seq.sequence);
1340 }
1341
1342 static inline u64 irq_time_read(int cpu)
1343 {
1344         u64 irq_time;
1345         unsigned seq;
1346
1347         do {
1348                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1349                 irq_time = per_cpu(cpu_softirq_time, cpu) +
1350                            per_cpu(cpu_hardirq_time, cpu);
1351         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1352
1353         return irq_time;
1354 }
1355 #else /* CONFIG_64BIT */
1356 static inline void irq_time_write_begin(void)
1357 {
1358 }
1359
1360 static inline void irq_time_write_end(void)
1361 {
1362 }
1363
1364 static inline u64 irq_time_read(int cpu)
1365 {
1366         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1367 }
1368 #endif /* CONFIG_64BIT */
1369 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */