4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
229 if (hrtimer_active(&rt_b->rt_period_timer))
232 spin_lock(&rt_b->rt_runtime_lock);
237 if (hrtimer_active(&rt_b->rt_period_timer))
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
271 static LIST_HEAD(task_groups);
273 /* task group related information */
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
279 #ifdef CONFIG_USER_SCHED
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
381 tg = __task_cred(p)->user->tg;
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
387 tg = &init_task_group;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
409 static int root_task_group_empty(void)
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
425 struct load_weight load;
426 unsigned long nr_running;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
486 /* Real-Time classes' related field in a runqueue: */
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
492 int curr; /* highest queued rt task prio */
494 int next; /* next highest */
499 unsigned long rt_nr_migratory;
501 struct plist_head pushable_tasks;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
532 cpumask_var_t online;
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
538 cpumask_var_t rto_mask;
541 struct cpupri cpupri;
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 unsigned int sched_mc_preferred_wakeup_cpu;
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
557 static struct root_domain def_root_domain;
562 * This is the main, per-CPU runqueue data structure.
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
605 unsigned long nr_uninterruptible;
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
616 struct root_domain *rd;
617 struct sched_domain *sd;
619 unsigned char idle_at_tick;
620 /* For active balancing */
623 /* cpu of this runqueue: */
627 unsigned long avg_load_per_task;
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
633 #ifdef CONFIG_SCHED_HRTICK
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
638 struct hrtimer hrtick_timer;
641 #ifdef CONFIG_SCHEDSTATS
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
660 unsigned int bkl_count;
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 static inline int cpu_of(struct rq *rq)
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 static inline void update_rq_clock(struct rq *rq)
697 rq->clock = sched_clock_cpu(cpu_of(rq));
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
706 # define const_debug static const
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
716 int runqueue_is_locked(void)
719 struct rq *rq = cpu_rq(cpu);
722 ret = spin_is_locked(&rq->lock);
728 * Debugging: various feature bits
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
735 #include "sched_features.h"
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
760 static int sched_feat_show(struct seq_file *m, void *v)
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
767 seq_printf(m, "%s ", sched_feat_names[i]);
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
786 if (copy_from_user(&buf, ubuf, cnt))
791 if (strncmp(buf, "NO_", 3) == 0) {
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 sysctl_sched_features &= ~(1UL << i);
803 sysctl_sched_features |= (1UL << i);
808 if (!sched_feat_names[i])
816 static int sched_feat_open(struct inode *inode, struct file *filp)
818 return single_open(filp, sched_feat_show, NULL);
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
826 .release = single_release,
829 static __init int sched_init_debug(void)
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 late_initcall(sched_init_debug);
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
849 * ratelimit for updating the group shares.
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
859 unsigned int sysctl_sched_shares_thresh = 4;
862 * period over which we measure -rt task cpu usage in us.
865 unsigned int sysctl_sched_rt_period = 1000000;
867 static __read_mostly int scheduler_running;
870 * part of the period that we allow rt tasks to run in us.
873 int sysctl_sched_rt_runtime = 950000;
875 static inline u64 global_rt_period(void)
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880 static inline u64 global_rt_runtime(void)
882 if (sysctl_sched_rt_runtime < 0)
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
895 static inline int task_current(struct rq *rq, struct task_struct *p)
897 return rq->curr == p;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 spin_unlock_irq(&rq->lock);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
932 return task_current(rq, p);
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
949 spin_unlock(&rq->lock);
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
982 spin_unlock(&rq->lock);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
997 local_irq_save(*flags);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1006 void task_rq_unlock_wait(struct task_struct *p)
1008 struct rq *rq = task_rq(p);
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1017 spin_unlock(&rq->lock);
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1034 local_irq_disable();
1036 spin_lock(&rq->lock);
1041 #ifdef CONFIG_SCHED_HRTICK
1043 * Use HR-timers to deliver accurate preemption points.
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1055 * - enabled by features
1056 * - hrtimer is actually high res
1058 static inline int hrtick_enabled(struct rq *rq)
1060 if (!sched_feat(HRTICK))
1062 if (!cpu_active(cpu_of(rq)))
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067 static void hrtick_clear(struct rq *rq)
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1088 return HRTIMER_NORESTART;
1093 * called from hardirq (IPI) context
1095 static void __hrtick_start(void *arg)
1097 struct rq *rq = arg;
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 hrtimer_set_expires(timer, time);
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 int cpu = (int)(long)hcpu;
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1144 static __init void init_hrtick(void)
1146 hotcpu_notifier(hotplug_hrtick, 0);
1150 * Called to set the hrtick timer state.
1152 * called with rq->lock held and irqs disabled
1154 static void hrtick_start(struct rq *rq, u64 delay)
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SMP */
1165 static void init_rq_hrtick(struct rq *rq)
1168 rq->hrtick_csd_pending = 0;
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1183 static inline void init_rq_hrtick(struct rq *rq)
1187 static inline void init_hrtick(void)
1190 #endif /* CONFIG_SCHED_HRTICK */
1193 * resched_task - mark a task 'to be rescheduled now'.
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205 static void resched_task(struct task_struct *p)
1209 assert_spin_locked(&task_rq(p)->lock);
1211 if (test_tsk_need_resched(p))
1214 set_tsk_need_resched(p);
1217 if (cpu == smp_processor_id())
1220 /* NEED_RESCHED must be visible before we test polling */
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1226 static void resched_cpu(int cpu)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1277 #endif /* CONFIG_NO_HZ */
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1290 # define WMULT_CONST (1UL << 32)
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1421 #ifdef CONFIG_CGROUP_CPUACCT
1422 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1424 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1427 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1429 update_load_add(&rq->load, load);
1432 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1434 update_load_sub(&rq->load, load);
1437 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1438 typedef int (*tg_visitor)(struct task_group *, void *);
1441 * Iterate the full tree, calling @down when first entering a node and @up when
1442 * leaving it for the final time.
1444 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1446 struct task_group *parent, *child;
1450 parent = &root_task_group;
1452 ret = (*down)(parent, data);
1455 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 ret = (*up)(parent, data);
1467 parent = parent->parent;
1476 static int tg_nop(struct task_group *tg, void *data)
1483 static unsigned long source_load(int cpu, int type);
1484 static unsigned long target_load(int cpu, int type);
1485 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1487 static unsigned long cpu_avg_load_per_task(int cpu)
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1493 rq->avg_load_per_task = rq->load.weight / nr_running;
1495 rq->avg_load_per_task = 0;
1497 return rq->avg_load_per_task;
1500 #ifdef CONFIG_FAIR_GROUP_SCHED
1502 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1505 * Calculate and set the cpu's group shares.
1508 update_group_shares_cpu(struct task_group *tg, int cpu,
1509 unsigned long sd_shares, unsigned long sd_rq_weight)
1511 unsigned long shares;
1512 unsigned long rq_weight;
1517 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1520 * \Sum shares * rq_weight
1521 * shares = -----------------------
1525 shares = (sd_shares * rq_weight) / sd_rq_weight;
1526 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1528 if (abs(shares - tg->se[cpu]->load.weight) >
1529 sysctl_sched_shares_thresh) {
1530 struct rq *rq = cpu_rq(cpu);
1531 unsigned long flags;
1533 spin_lock_irqsave(&rq->lock, flags);
1534 tg->cfs_rq[cpu]->shares = shares;
1536 __set_se_shares(tg->se[cpu], shares);
1537 spin_unlock_irqrestore(&rq->lock, flags);
1542 * Re-compute the task group their per cpu shares over the given domain.
1543 * This needs to be done in a bottom-up fashion because the rq weight of a
1544 * parent group depends on the shares of its child groups.
1546 static int tg_shares_up(struct task_group *tg, void *data)
1548 unsigned long weight, rq_weight = 0;
1549 unsigned long shares = 0;
1550 struct sched_domain *sd = data;
1553 for_each_cpu(i, sched_domain_span(sd)) {
1555 * If there are currently no tasks on the cpu pretend there
1556 * is one of average load so that when a new task gets to
1557 * run here it will not get delayed by group starvation.
1559 weight = tg->cfs_rq[i]->load.weight;
1561 weight = NICE_0_LOAD;
1563 tg->cfs_rq[i]->rq_weight = weight;
1564 rq_weight += weight;
1565 shares += tg->cfs_rq[i]->shares;
1568 if ((!shares && rq_weight) || shares > tg->shares)
1569 shares = tg->shares;
1571 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1572 shares = tg->shares;
1574 for_each_cpu(i, sched_domain_span(sd))
1575 update_group_shares_cpu(tg, i, shares, rq_weight);
1581 * Compute the cpu's hierarchical load factor for each task group.
1582 * This needs to be done in a top-down fashion because the load of a child
1583 * group is a fraction of its parents load.
1585 static int tg_load_down(struct task_group *tg, void *data)
1588 long cpu = (long)data;
1591 load = cpu_rq(cpu)->load.weight;
1593 load = tg->parent->cfs_rq[cpu]->h_load;
1594 load *= tg->cfs_rq[cpu]->shares;
1595 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1598 tg->cfs_rq[cpu]->h_load = load;
1603 static void update_shares(struct sched_domain *sd)
1605 u64 now = cpu_clock(raw_smp_processor_id());
1606 s64 elapsed = now - sd->last_update;
1608 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1609 sd->last_update = now;
1610 walk_tg_tree(tg_nop, tg_shares_up, sd);
1614 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1616 spin_unlock(&rq->lock);
1618 spin_lock(&rq->lock);
1621 static void update_h_load(long cpu)
1623 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1628 static inline void update_shares(struct sched_domain *sd)
1632 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1638 #ifdef CONFIG_PREEMPT
1641 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1642 * way at the expense of forcing extra atomic operations in all
1643 * invocations. This assures that the double_lock is acquired using the
1644 * same underlying policy as the spinlock_t on this architecture, which
1645 * reduces latency compared to the unfair variant below. However, it
1646 * also adds more overhead and therefore may reduce throughput.
1648 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1649 __releases(this_rq->lock)
1650 __acquires(busiest->lock)
1651 __acquires(this_rq->lock)
1653 spin_unlock(&this_rq->lock);
1654 double_rq_lock(this_rq, busiest);
1661 * Unfair double_lock_balance: Optimizes throughput at the expense of
1662 * latency by eliminating extra atomic operations when the locks are
1663 * already in proper order on entry. This favors lower cpu-ids and will
1664 * grant the double lock to lower cpus over higher ids under contention,
1665 * regardless of entry order into the function.
1667 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1668 __releases(this_rq->lock)
1669 __acquires(busiest->lock)
1670 __acquires(this_rq->lock)
1674 if (unlikely(!spin_trylock(&busiest->lock))) {
1675 if (busiest < this_rq) {
1676 spin_unlock(&this_rq->lock);
1677 spin_lock(&busiest->lock);
1678 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1681 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1686 #endif /* CONFIG_PREEMPT */
1689 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1691 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1693 if (unlikely(!irqs_disabled())) {
1694 /* printk() doesn't work good under rq->lock */
1695 spin_unlock(&this_rq->lock);
1699 return _double_lock_balance(this_rq, busiest);
1702 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(busiest->lock)
1705 spin_unlock(&busiest->lock);
1706 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1710 #ifdef CONFIG_FAIR_GROUP_SCHED
1711 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1714 cfs_rq->shares = shares;
1719 #include "sched_stats.h"
1720 #include "sched_idletask.c"
1721 #include "sched_fair.c"
1722 #include "sched_rt.c"
1723 #ifdef CONFIG_SCHED_DEBUG
1724 # include "sched_debug.c"
1727 #define sched_class_highest (&rt_sched_class)
1728 #define for_each_class(class) \
1729 for (class = sched_class_highest; class; class = class->next)
1731 static void inc_nr_running(struct rq *rq)
1736 static void dec_nr_running(struct rq *rq)
1741 static void set_load_weight(struct task_struct *p)
1743 if (task_has_rt_policy(p)) {
1744 p->se.load.weight = prio_to_weight[0] * 2;
1745 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1750 * SCHED_IDLE tasks get minimal weight:
1752 if (p->policy == SCHED_IDLE) {
1753 p->se.load.weight = WEIGHT_IDLEPRIO;
1754 p->se.load.inv_weight = WMULT_IDLEPRIO;
1758 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1759 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1762 static void update_avg(u64 *avg, u64 sample)
1764 s64 diff = sample - *avg;
1768 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1771 p->se.start_runtime = p->se.sum_exec_runtime;
1773 sched_info_queued(p);
1774 p->sched_class->enqueue_task(rq, p, wakeup);
1778 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1781 if (p->se.last_wakeup) {
1782 update_avg(&p->se.avg_overlap,
1783 p->se.sum_exec_runtime - p->se.last_wakeup);
1784 p->se.last_wakeup = 0;
1786 update_avg(&p->se.avg_wakeup,
1787 sysctl_sched_wakeup_granularity);
1791 sched_info_dequeued(p);
1792 p->sched_class->dequeue_task(rq, p, sleep);
1797 * __normal_prio - return the priority that is based on the static prio
1799 static inline int __normal_prio(struct task_struct *p)
1801 return p->static_prio;
1805 * Calculate the expected normal priority: i.e. priority
1806 * without taking RT-inheritance into account. Might be
1807 * boosted by interactivity modifiers. Changes upon fork,
1808 * setprio syscalls, and whenever the interactivity
1809 * estimator recalculates.
1811 static inline int normal_prio(struct task_struct *p)
1815 if (task_has_rt_policy(p))
1816 prio = MAX_RT_PRIO-1 - p->rt_priority;
1818 prio = __normal_prio(p);
1823 * Calculate the current priority, i.e. the priority
1824 * taken into account by the scheduler. This value might
1825 * be boosted by RT tasks, or might be boosted by
1826 * interactivity modifiers. Will be RT if the task got
1827 * RT-boosted. If not then it returns p->normal_prio.
1829 static int effective_prio(struct task_struct *p)
1831 p->normal_prio = normal_prio(p);
1833 * If we are RT tasks or we were boosted to RT priority,
1834 * keep the priority unchanged. Otherwise, update priority
1835 * to the normal priority:
1837 if (!rt_prio(p->prio))
1838 return p->normal_prio;
1843 * activate_task - move a task to the runqueue.
1845 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1847 if (task_contributes_to_load(p))
1848 rq->nr_uninterruptible--;
1850 enqueue_task(rq, p, wakeup);
1855 * deactivate_task - remove a task from the runqueue.
1857 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible++;
1862 dequeue_task(rq, p, sleep);
1867 * task_curr - is this task currently executing on a CPU?
1868 * @p: the task in question.
1870 inline int task_curr(const struct task_struct *p)
1872 return cpu_curr(task_cpu(p)) == p;
1875 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1877 set_task_rq(p, cpu);
1880 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1881 * successfuly executed on another CPU. We must ensure that updates of
1882 * per-task data have been completed by this moment.
1885 task_thread_info(p)->cpu = cpu;
1889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1890 const struct sched_class *prev_class,
1891 int oldprio, int running)
1893 if (prev_class != p->sched_class) {
1894 if (prev_class->switched_from)
1895 prev_class->switched_from(rq, p, running);
1896 p->sched_class->switched_to(rq, p, running);
1898 p->sched_class->prio_changed(rq, p, oldprio, running);
1903 /* Used instead of source_load when we know the type == 0 */
1904 static unsigned long weighted_cpuload(const int cpu)
1906 return cpu_rq(cpu)->load.weight;
1910 * Is this task likely cache-hot:
1913 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1918 * Buddy candidates are cache hot:
1920 if (sched_feat(CACHE_HOT_BUDDY) &&
1921 (&p->se == cfs_rq_of(&p->se)->next ||
1922 &p->se == cfs_rq_of(&p->se)->last))
1925 if (p->sched_class != &fair_sched_class)
1928 if (sysctl_sched_migration_cost == -1)
1930 if (sysctl_sched_migration_cost == 0)
1933 delta = now - p->se.exec_start;
1935 return delta < (s64)sysctl_sched_migration_cost;
1939 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1941 int old_cpu = task_cpu(p);
1942 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1943 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1944 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1947 clock_offset = old_rq->clock - new_rq->clock;
1949 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1951 #ifdef CONFIG_SCHEDSTATS
1952 if (p->se.wait_start)
1953 p->se.wait_start -= clock_offset;
1954 if (p->se.sleep_start)
1955 p->se.sleep_start -= clock_offset;
1956 if (p->se.block_start)
1957 p->se.block_start -= clock_offset;
1958 if (old_cpu != new_cpu) {
1959 schedstat_inc(p, se.nr_migrations);
1960 if (task_hot(p, old_rq->clock, NULL))
1961 schedstat_inc(p, se.nr_forced2_migrations);
1964 p->se.vruntime -= old_cfsrq->min_vruntime -
1965 new_cfsrq->min_vruntime;
1967 __set_task_cpu(p, new_cpu);
1970 struct migration_req {
1971 struct list_head list;
1973 struct task_struct *task;
1976 struct completion done;
1980 * The task's runqueue lock must be held.
1981 * Returns true if you have to wait for migration thread.
1984 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1986 struct rq *rq = task_rq(p);
1989 * If the task is not on a runqueue (and not running), then
1990 * it is sufficient to simply update the task's cpu field.
1992 if (!p->se.on_rq && !task_running(rq, p)) {
1993 set_task_cpu(p, dest_cpu);
1997 init_completion(&req->done);
1999 req->dest_cpu = dest_cpu;
2000 list_add(&req->list, &rq->migration_queue);
2006 * wait_task_inactive - wait for a thread to unschedule.
2008 * If @match_state is nonzero, it's the @p->state value just checked and
2009 * not expected to change. If it changes, i.e. @p might have woken up,
2010 * then return zero. When we succeed in waiting for @p to be off its CPU,
2011 * we return a positive number (its total switch count). If a second call
2012 * a short while later returns the same number, the caller can be sure that
2013 * @p has remained unscheduled the whole time.
2015 * The caller must ensure that the task *will* unschedule sometime soon,
2016 * else this function might spin for a *long* time. This function can't
2017 * be called with interrupts off, or it may introduce deadlock with
2018 * smp_call_function() if an IPI is sent by the same process we are
2019 * waiting to become inactive.
2021 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2023 unsigned long flags;
2030 * We do the initial early heuristics without holding
2031 * any task-queue locks at all. We'll only try to get
2032 * the runqueue lock when things look like they will
2038 * If the task is actively running on another CPU
2039 * still, just relax and busy-wait without holding
2042 * NOTE! Since we don't hold any locks, it's not
2043 * even sure that "rq" stays as the right runqueue!
2044 * But we don't care, since "task_running()" will
2045 * return false if the runqueue has changed and p
2046 * is actually now running somewhere else!
2048 while (task_running(rq, p)) {
2049 if (match_state && unlikely(p->state != match_state))
2055 * Ok, time to look more closely! We need the rq
2056 * lock now, to be *sure*. If we're wrong, we'll
2057 * just go back and repeat.
2059 rq = task_rq_lock(p, &flags);
2060 trace_sched_wait_task(rq, p);
2061 running = task_running(rq, p);
2062 on_rq = p->se.on_rq;
2064 if (!match_state || p->state == match_state)
2065 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2066 task_rq_unlock(rq, &flags);
2069 * If it changed from the expected state, bail out now.
2071 if (unlikely(!ncsw))
2075 * Was it really running after all now that we
2076 * checked with the proper locks actually held?
2078 * Oops. Go back and try again..
2080 if (unlikely(running)) {
2086 * It's not enough that it's not actively running,
2087 * it must be off the runqueue _entirely_, and not
2090 * So if it was still runnable (but just not actively
2091 * running right now), it's preempted, and we should
2092 * yield - it could be a while.
2094 if (unlikely(on_rq)) {
2095 schedule_timeout_uninterruptible(1);
2100 * Ahh, all good. It wasn't running, and it wasn't
2101 * runnable, which means that it will never become
2102 * running in the future either. We're all done!
2111 * kick_process - kick a running thread to enter/exit the kernel
2112 * @p: the to-be-kicked thread
2114 * Cause a process which is running on another CPU to enter
2115 * kernel-mode, without any delay. (to get signals handled.)
2117 * NOTE: this function doesnt have to take the runqueue lock,
2118 * because all it wants to ensure is that the remote task enters
2119 * the kernel. If the IPI races and the task has been migrated
2120 * to another CPU then no harm is done and the purpose has been
2123 void kick_process(struct task_struct *p)
2129 if ((cpu != smp_processor_id()) && task_curr(p))
2130 smp_send_reschedule(cpu);
2135 * Return a low guess at the load of a migration-source cpu weighted
2136 * according to the scheduling class and "nice" value.
2138 * We want to under-estimate the load of migration sources, to
2139 * balance conservatively.
2141 static unsigned long source_load(int cpu, int type)
2143 struct rq *rq = cpu_rq(cpu);
2144 unsigned long total = weighted_cpuload(cpu);
2146 if (type == 0 || !sched_feat(LB_BIAS))
2149 return min(rq->cpu_load[type-1], total);
2153 * Return a high guess at the load of a migration-target cpu weighted
2154 * according to the scheduling class and "nice" value.
2156 static unsigned long target_load(int cpu, int type)
2158 struct rq *rq = cpu_rq(cpu);
2159 unsigned long total = weighted_cpuload(cpu);
2161 if (type == 0 || !sched_feat(LB_BIAS))
2164 return max(rq->cpu_load[type-1], total);
2168 * find_idlest_group finds and returns the least busy CPU group within the
2171 static struct sched_group *
2172 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2174 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2175 unsigned long min_load = ULONG_MAX, this_load = 0;
2176 int load_idx = sd->forkexec_idx;
2177 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2180 unsigned long load, avg_load;
2184 /* Skip over this group if it has no CPUs allowed */
2185 if (!cpumask_intersects(sched_group_cpus(group),
2189 local_group = cpumask_test_cpu(this_cpu,
2190 sched_group_cpus(group));
2192 /* Tally up the load of all CPUs in the group */
2195 for_each_cpu(i, sched_group_cpus(group)) {
2196 /* Bias balancing toward cpus of our domain */
2198 load = source_load(i, load_idx);
2200 load = target_load(i, load_idx);
2205 /* Adjust by relative CPU power of the group */
2206 avg_load = sg_div_cpu_power(group,
2207 avg_load * SCHED_LOAD_SCALE);
2210 this_load = avg_load;
2212 } else if (avg_load < min_load) {
2213 min_load = avg_load;
2216 } while (group = group->next, group != sd->groups);
2218 if (!idlest || 100*this_load < imbalance*min_load)
2224 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2227 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2229 unsigned long load, min_load = ULONG_MAX;
2233 /* Traverse only the allowed CPUs */
2234 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2235 load = weighted_cpuload(i);
2237 if (load < min_load || (load == min_load && i == this_cpu)) {
2247 * sched_balance_self: balance the current task (running on cpu) in domains
2248 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2251 * Balance, ie. select the least loaded group.
2253 * Returns the target CPU number, or the same CPU if no balancing is needed.
2255 * preempt must be disabled.
2257 static int sched_balance_self(int cpu, int flag)
2259 struct task_struct *t = current;
2260 struct sched_domain *tmp, *sd = NULL;
2262 for_each_domain(cpu, tmp) {
2264 * If power savings logic is enabled for a domain, stop there.
2266 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2268 if (tmp->flags & flag)
2276 struct sched_group *group;
2277 int new_cpu, weight;
2279 if (!(sd->flags & flag)) {
2284 group = find_idlest_group(sd, t, cpu);
2290 new_cpu = find_idlest_cpu(group, t, cpu);
2291 if (new_cpu == -1 || new_cpu == cpu) {
2292 /* Now try balancing at a lower domain level of cpu */
2297 /* Now try balancing at a lower domain level of new_cpu */
2299 weight = cpumask_weight(sched_domain_span(sd));
2301 for_each_domain(cpu, tmp) {
2302 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2304 if (tmp->flags & flag)
2307 /* while loop will break here if sd == NULL */
2313 #endif /* CONFIG_SMP */
2316 * try_to_wake_up - wake up a thread
2317 * @p: the to-be-woken-up thread
2318 * @state: the mask of task states that can be woken
2319 * @sync: do a synchronous wakeup?
2321 * Put it on the run-queue if it's not already there. The "current"
2322 * thread is always on the run-queue (except when the actual
2323 * re-schedule is in progress), and as such you're allowed to do
2324 * the simpler "current->state = TASK_RUNNING" to mark yourself
2325 * runnable without the overhead of this.
2327 * returns failure only if the task is already active.
2329 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2331 int cpu, orig_cpu, this_cpu, success = 0;
2332 unsigned long flags;
2336 if (!sched_feat(SYNC_WAKEUPS))
2340 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2341 struct sched_domain *sd;
2343 this_cpu = raw_smp_processor_id();
2346 for_each_domain(this_cpu, sd) {
2347 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2356 rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 old_state = p->state;
2359 if (!(old_state & state))
2367 this_cpu = smp_processor_id();
2370 if (unlikely(task_running(rq, p)))
2373 cpu = p->sched_class->select_task_rq(p, sync);
2374 if (cpu != orig_cpu) {
2375 set_task_cpu(p, cpu);
2376 task_rq_unlock(rq, &flags);
2377 /* might preempt at this point */
2378 rq = task_rq_lock(p, &flags);
2379 old_state = p->state;
2380 if (!(old_state & state))
2385 this_cpu = smp_processor_id();
2389 #ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq, ttwu_count);
2391 if (cpu == this_cpu)
2392 schedstat_inc(rq, ttwu_local);
2394 struct sched_domain *sd;
2395 for_each_domain(this_cpu, sd) {
2396 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2397 schedstat_inc(sd, ttwu_wake_remote);
2402 #endif /* CONFIG_SCHEDSTATS */
2405 #endif /* CONFIG_SMP */
2406 schedstat_inc(p, se.nr_wakeups);
2408 schedstat_inc(p, se.nr_wakeups_sync);
2409 if (orig_cpu != cpu)
2410 schedstat_inc(p, se.nr_wakeups_migrate);
2411 if (cpu == this_cpu)
2412 schedstat_inc(p, se.nr_wakeups_local);
2414 schedstat_inc(p, se.nr_wakeups_remote);
2415 activate_task(rq, p, 1);
2419 * Only attribute actual wakeups done by this task.
2421 if (!in_interrupt()) {
2422 struct sched_entity *se = ¤t->se;
2423 u64 sample = se->sum_exec_runtime;
2425 if (se->last_wakeup)
2426 sample -= se->last_wakeup;
2428 sample -= se->start_runtime;
2429 update_avg(&se->avg_wakeup, sample);
2431 se->last_wakeup = se->sum_exec_runtime;
2435 trace_sched_wakeup(rq, p, success);
2436 check_preempt_curr(rq, p, sync);
2438 p->state = TASK_RUNNING;
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2444 task_rq_unlock(rq, &flags);
2449 int wake_up_process(struct task_struct *p)
2451 return try_to_wake_up(p, TASK_ALL, 0);
2453 EXPORT_SYMBOL(wake_up_process);
2455 int wake_up_state(struct task_struct *p, unsigned int state)
2457 return try_to_wake_up(p, state, 0);
2461 * Perform scheduler related setup for a newly forked process p.
2462 * p is forked by current.
2464 * __sched_fork() is basic setup used by init_idle() too:
2466 static void __sched_fork(struct task_struct *p)
2468 p->se.exec_start = 0;
2469 p->se.sum_exec_runtime = 0;
2470 p->se.prev_sum_exec_runtime = 0;
2471 p->se.last_wakeup = 0;
2472 p->se.avg_overlap = 0;
2473 p->se.start_runtime = 0;
2474 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2476 #ifdef CONFIG_SCHEDSTATS
2477 p->se.wait_start = 0;
2478 p->se.sum_sleep_runtime = 0;
2479 p->se.sleep_start = 0;
2480 p->se.block_start = 0;
2481 p->se.sleep_max = 0;
2482 p->se.block_max = 0;
2484 p->se.slice_max = 0;
2488 INIT_LIST_HEAD(&p->rt.run_list);
2490 INIT_LIST_HEAD(&p->se.group_node);
2492 #ifdef CONFIG_PREEMPT_NOTIFIERS
2493 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497 * We mark the process as running here, but have not actually
2498 * inserted it onto the runqueue yet. This guarantees that
2499 * nobody will actually run it, and a signal or other external
2500 * event cannot wake it up and insert it on the runqueue either.
2502 p->state = TASK_RUNNING;
2506 * fork()/clone()-time setup:
2508 void sched_fork(struct task_struct *p, int clone_flags)
2510 int cpu = get_cpu();
2515 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2517 set_task_cpu(p, cpu);
2520 * Make sure we do not leak PI boosting priority to the child:
2522 p->prio = current->normal_prio;
2523 if (!rt_prio(p->prio))
2524 p->sched_class = &fair_sched_class;
2526 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2527 if (likely(sched_info_on()))
2528 memset(&p->sched_info, 0, sizeof(p->sched_info));
2530 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2533 #ifdef CONFIG_PREEMPT
2534 /* Want to start with kernel preemption disabled. */
2535 task_thread_info(p)->preempt_count = 1;
2537 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2543 * wake_up_new_task - wake up a newly created task for the first time.
2545 * This function will do some initial scheduler statistics housekeeping
2546 * that must be done for every newly created context, then puts the task
2547 * on the runqueue and wakes it.
2549 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2551 unsigned long flags;
2554 rq = task_rq_lock(p, &flags);
2555 BUG_ON(p->state != TASK_RUNNING);
2556 update_rq_clock(rq);
2558 p->prio = effective_prio(p);
2560 if (!p->sched_class->task_new || !current->se.on_rq) {
2561 activate_task(rq, p, 0);
2564 * Let the scheduling class do new task startup
2565 * management (if any):
2567 p->sched_class->task_new(rq, p);
2570 trace_sched_wakeup_new(rq, p, 1);
2571 check_preempt_curr(rq, p, 0);
2573 if (p->sched_class->task_wake_up)
2574 p->sched_class->task_wake_up(rq, p);
2576 task_rq_unlock(rq, &flags);
2579 #ifdef CONFIG_PREEMPT_NOTIFIERS
2582 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2583 * @notifier: notifier struct to register
2585 void preempt_notifier_register(struct preempt_notifier *notifier)
2587 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2589 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2592 * preempt_notifier_unregister - no longer interested in preemption notifications
2593 * @notifier: notifier struct to unregister
2595 * This is safe to call from within a preemption notifier.
2597 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2599 hlist_del(¬ifier->link);
2601 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2603 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2613 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2614 struct task_struct *next)
2616 struct preempt_notifier *notifier;
2617 struct hlist_node *node;
2619 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2620 notifier->ops->sched_out(notifier, next);
2623 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2625 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2630 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2631 struct task_struct *next)
2635 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2638 * prepare_task_switch - prepare to switch tasks
2639 * @rq: the runqueue preparing to switch
2640 * @prev: the current task that is being switched out
2641 * @next: the task we are going to switch to.
2643 * This is called with the rq lock held and interrupts off. It must
2644 * be paired with a subsequent finish_task_switch after the context
2647 * prepare_task_switch sets up locking and calls architecture specific
2651 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2652 struct task_struct *next)
2654 fire_sched_out_preempt_notifiers(prev, next);
2655 prepare_lock_switch(rq, next);
2656 prepare_arch_switch(next);
2660 * finish_task_switch - clean up after a task-switch
2661 * @rq: runqueue associated with task-switch
2662 * @prev: the thread we just switched away from.
2664 * finish_task_switch must be called after the context switch, paired
2665 * with a prepare_task_switch call before the context switch.
2666 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2667 * and do any other architecture-specific cleanup actions.
2669 * Note that we may have delayed dropping an mm in context_switch(). If
2670 * so, we finish that here outside of the runqueue lock. (Doing it
2671 * with the lock held can cause deadlocks; see schedule() for
2674 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2675 __releases(rq->lock)
2677 struct mm_struct *mm = rq->prev_mm;
2680 int post_schedule = 0;
2682 if (current->sched_class->needs_post_schedule)
2683 post_schedule = current->sched_class->needs_post_schedule(rq);
2689 * A task struct has one reference for the use as "current".
2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2691 * schedule one last time. The schedule call will never return, and
2692 * the scheduled task must drop that reference.
2693 * The test for TASK_DEAD must occur while the runqueue locks are
2694 * still held, otherwise prev could be scheduled on another cpu, die
2695 * there before we look at prev->state, and then the reference would
2697 * Manfred Spraul <manfred@colorfullife.com>
2699 prev_state = prev->state;
2700 finish_arch_switch(prev);
2701 finish_lock_switch(rq, prev);
2704 current->sched_class->post_schedule(rq);
2707 fire_sched_in_preempt_notifiers(current);
2710 if (unlikely(prev_state == TASK_DEAD)) {
2712 * Remove function-return probe instances associated with this
2713 * task and put them back on the free list.
2715 kprobe_flush_task(prev);
2716 put_task_struct(prev);
2721 * schedule_tail - first thing a freshly forked thread must call.
2722 * @prev: the thread we just switched away from.
2724 asmlinkage void schedule_tail(struct task_struct *prev)
2725 __releases(rq->lock)
2727 struct rq *rq = this_rq();
2729 finish_task_switch(rq, prev);
2730 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2731 /* In this case, finish_task_switch does not reenable preemption */
2734 if (current->set_child_tid)
2735 put_user(task_pid_vnr(current), current->set_child_tid);
2739 * context_switch - switch to the new MM and the new
2740 * thread's register state.
2743 context_switch(struct rq *rq, struct task_struct *prev,
2744 struct task_struct *next)
2746 struct mm_struct *mm, *oldmm;
2748 prepare_task_switch(rq, prev, next);
2749 trace_sched_switch(rq, prev, next);
2751 oldmm = prev->active_mm;
2753 * For paravirt, this is coupled with an exit in switch_to to
2754 * combine the page table reload and the switch backend into
2757 arch_enter_lazy_cpu_mode();
2759 if (unlikely(!mm)) {
2760 next->active_mm = oldmm;
2761 atomic_inc(&oldmm->mm_count);
2762 enter_lazy_tlb(oldmm, next);
2764 switch_mm(oldmm, mm, next);
2766 if (unlikely(!prev->mm)) {
2767 prev->active_mm = NULL;
2768 rq->prev_mm = oldmm;
2771 * Since the runqueue lock will be released by the next
2772 * task (which is an invalid locking op but in the case
2773 * of the scheduler it's an obvious special-case), so we
2774 * do an early lockdep release here:
2776 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2777 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2780 /* Here we just switch the register state and the stack. */
2781 switch_to(prev, next, prev);
2785 * this_rq must be evaluated again because prev may have moved
2786 * CPUs since it called schedule(), thus the 'rq' on its stack
2787 * frame will be invalid.
2789 finish_task_switch(this_rq(), prev);
2793 * nr_running, nr_uninterruptible and nr_context_switches:
2795 * externally visible scheduler statistics: current number of runnable
2796 * threads, current number of uninterruptible-sleeping threads, total
2797 * number of context switches performed since bootup.
2799 unsigned long nr_running(void)
2801 unsigned long i, sum = 0;
2803 for_each_online_cpu(i)
2804 sum += cpu_rq(i)->nr_running;
2809 unsigned long nr_uninterruptible(void)
2811 unsigned long i, sum = 0;
2813 for_each_possible_cpu(i)
2814 sum += cpu_rq(i)->nr_uninterruptible;
2817 * Since we read the counters lockless, it might be slightly
2818 * inaccurate. Do not allow it to go below zero though:
2820 if (unlikely((long)sum < 0))
2826 unsigned long long nr_context_switches(void)
2829 unsigned long long sum = 0;
2831 for_each_possible_cpu(i)
2832 sum += cpu_rq(i)->nr_switches;
2837 unsigned long nr_iowait(void)
2839 unsigned long i, sum = 0;
2841 for_each_possible_cpu(i)
2842 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2847 unsigned long nr_active(void)
2849 unsigned long i, running = 0, uninterruptible = 0;
2851 for_each_online_cpu(i) {
2852 running += cpu_rq(i)->nr_running;
2853 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2856 if (unlikely((long)uninterruptible < 0))
2857 uninterruptible = 0;
2859 return running + uninterruptible;
2863 * Update rq->cpu_load[] statistics. This function is usually called every
2864 * scheduler tick (TICK_NSEC).
2866 static void update_cpu_load(struct rq *this_rq)
2868 unsigned long this_load = this_rq->load.weight;
2871 this_rq->nr_load_updates++;
2873 /* Update our load: */
2874 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2875 unsigned long old_load, new_load;
2877 /* scale is effectively 1 << i now, and >> i divides by scale */
2879 old_load = this_rq->cpu_load[i];
2880 new_load = this_load;
2882 * Round up the averaging division if load is increasing. This
2883 * prevents us from getting stuck on 9 if the load is 10, for
2886 if (new_load > old_load)
2887 new_load += scale-1;
2888 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2895 * double_rq_lock - safely lock two runqueues
2897 * Note this does not disable interrupts like task_rq_lock,
2898 * you need to do so manually before calling.
2900 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2901 __acquires(rq1->lock)
2902 __acquires(rq2->lock)
2904 BUG_ON(!irqs_disabled());
2906 spin_lock(&rq1->lock);
2907 __acquire(rq2->lock); /* Fake it out ;) */
2910 spin_lock(&rq1->lock);
2911 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2913 spin_lock(&rq2->lock);
2914 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2917 update_rq_clock(rq1);
2918 update_rq_clock(rq2);
2922 * double_rq_unlock - safely unlock two runqueues
2924 * Note this does not restore interrupts like task_rq_unlock,
2925 * you need to do so manually after calling.
2927 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2928 __releases(rq1->lock)
2929 __releases(rq2->lock)
2931 spin_unlock(&rq1->lock);
2933 spin_unlock(&rq2->lock);
2935 __release(rq2->lock);
2939 * If dest_cpu is allowed for this process, migrate the task to it.
2940 * This is accomplished by forcing the cpu_allowed mask to only
2941 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2942 * the cpu_allowed mask is restored.
2944 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2946 struct migration_req req;
2947 unsigned long flags;
2950 rq = task_rq_lock(p, &flags);
2951 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2952 || unlikely(!cpu_active(dest_cpu)))
2955 /* force the process onto the specified CPU */
2956 if (migrate_task(p, dest_cpu, &req)) {
2957 /* Need to wait for migration thread (might exit: take ref). */
2958 struct task_struct *mt = rq->migration_thread;
2960 get_task_struct(mt);
2961 task_rq_unlock(rq, &flags);
2962 wake_up_process(mt);
2963 put_task_struct(mt);
2964 wait_for_completion(&req.done);
2969 task_rq_unlock(rq, &flags);
2973 * sched_exec - execve() is a valuable balancing opportunity, because at
2974 * this point the task has the smallest effective memory and cache footprint.
2976 void sched_exec(void)
2978 int new_cpu, this_cpu = get_cpu();
2979 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2981 if (new_cpu != this_cpu)
2982 sched_migrate_task(current, new_cpu);
2986 * pull_task - move a task from a remote runqueue to the local runqueue.
2987 * Both runqueues must be locked.
2989 static void pull_task(struct rq *src_rq, struct task_struct *p,
2990 struct rq *this_rq, int this_cpu)
2992 deactivate_task(src_rq, p, 0);
2993 set_task_cpu(p, this_cpu);
2994 activate_task(this_rq, p, 0);
2996 * Note that idle threads have a prio of MAX_PRIO, for this test
2997 * to be always true for them.
2999 check_preempt_curr(this_rq, p, 0);
3003 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3006 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3007 struct sched_domain *sd, enum cpu_idle_type idle,
3010 int tsk_cache_hot = 0;
3012 * We do not migrate tasks that are:
3013 * 1) running (obviously), or
3014 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3015 * 3) are cache-hot on their current CPU.
3017 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3018 schedstat_inc(p, se.nr_failed_migrations_affine);
3023 if (task_running(rq, p)) {
3024 schedstat_inc(p, se.nr_failed_migrations_running);
3029 * Aggressive migration if:
3030 * 1) task is cache cold, or
3031 * 2) too many balance attempts have failed.
3034 tsk_cache_hot = task_hot(p, rq->clock, sd);
3035 if (!tsk_cache_hot ||
3036 sd->nr_balance_failed > sd->cache_nice_tries) {
3037 #ifdef CONFIG_SCHEDSTATS
3038 if (tsk_cache_hot) {
3039 schedstat_inc(sd, lb_hot_gained[idle]);
3040 schedstat_inc(p, se.nr_forced_migrations);
3046 if (tsk_cache_hot) {
3047 schedstat_inc(p, se.nr_failed_migrations_hot);
3053 static unsigned long
3054 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3055 unsigned long max_load_move, struct sched_domain *sd,
3056 enum cpu_idle_type idle, int *all_pinned,
3057 int *this_best_prio, struct rq_iterator *iterator)
3059 int loops = 0, pulled = 0, pinned = 0;
3060 struct task_struct *p;
3061 long rem_load_move = max_load_move;
3063 if (max_load_move == 0)
3069 * Start the load-balancing iterator:
3071 p = iterator->start(iterator->arg);
3073 if (!p || loops++ > sysctl_sched_nr_migrate)
3076 if ((p->se.load.weight >> 1) > rem_load_move ||
3077 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3078 p = iterator->next(iterator->arg);
3082 pull_task(busiest, p, this_rq, this_cpu);
3084 rem_load_move -= p->se.load.weight;
3086 #ifdef CONFIG_PREEMPT
3088 * NEWIDLE balancing is a source of latency, so preemptible kernels
3089 * will stop after the first task is pulled to minimize the critical
3092 if (idle == CPU_NEWLY_IDLE)
3097 * We only want to steal up to the prescribed amount of weighted load.
3099 if (rem_load_move > 0) {
3100 if (p->prio < *this_best_prio)
3101 *this_best_prio = p->prio;
3102 p = iterator->next(iterator->arg);
3107 * Right now, this is one of only two places pull_task() is called,
3108 * so we can safely collect pull_task() stats here rather than
3109 * inside pull_task().
3111 schedstat_add(sd, lb_gained[idle], pulled);
3114 *all_pinned = pinned;
3116 return max_load_move - rem_load_move;
3120 * move_tasks tries to move up to max_load_move weighted load from busiest to
3121 * this_rq, as part of a balancing operation within domain "sd".
3122 * Returns 1 if successful and 0 otherwise.
3124 * Called with both runqueues locked.
3126 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3127 unsigned long max_load_move,
3128 struct sched_domain *sd, enum cpu_idle_type idle,
3131 const struct sched_class *class = sched_class_highest;
3132 unsigned long total_load_moved = 0;
3133 int this_best_prio = this_rq->curr->prio;
3137 class->load_balance(this_rq, this_cpu, busiest,
3138 max_load_move - total_load_moved,
3139 sd, idle, all_pinned, &this_best_prio);
3140 class = class->next;
3142 #ifdef CONFIG_PREEMPT
3144 * NEWIDLE balancing is a source of latency, so preemptible
3145 * kernels will stop after the first task is pulled to minimize
3146 * the critical section.
3148 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3151 } while (class && max_load_move > total_load_moved);
3153 return total_load_moved > 0;
3157 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3158 struct sched_domain *sd, enum cpu_idle_type idle,
3159 struct rq_iterator *iterator)
3161 struct task_struct *p = iterator->start(iterator->arg);
3165 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3166 pull_task(busiest, p, this_rq, this_cpu);
3168 * Right now, this is only the second place pull_task()
3169 * is called, so we can safely collect pull_task()
3170 * stats here rather than inside pull_task().
3172 schedstat_inc(sd, lb_gained[idle]);
3176 p = iterator->next(iterator->arg);
3183 * move_one_task tries to move exactly one task from busiest to this_rq, as
3184 * part of active balancing operations within "domain".
3185 * Returns 1 if successful and 0 otherwise.
3187 * Called with both runqueues locked.
3189 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3190 struct sched_domain *sd, enum cpu_idle_type idle)
3192 const struct sched_class *class;
3194 for (class = sched_class_highest; class; class = class->next)
3195 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3200 /********** Helpers for find_busiest_group ************************/
3202 * sd_lb_stats - Structure to store the statistics of a sched_domain
3203 * during load balancing.
3205 struct sd_lb_stats {
3206 struct sched_group *busiest; /* Busiest group in this sd */
3207 struct sched_group *this; /* Local group in this sd */
3208 unsigned long total_load; /* Total load of all groups in sd */
3209 unsigned long total_pwr; /* Total power of all groups in sd */
3210 unsigned long avg_load; /* Average load across all groups in sd */
3212 /** Statistics of this group */
3213 unsigned long this_load;
3214 unsigned long this_load_per_task;
3215 unsigned long this_nr_running;
3217 /* Statistics of the busiest group */
3218 unsigned long max_load;
3219 unsigned long busiest_load_per_task;
3220 unsigned long busiest_nr_running;
3222 int group_imb; /* Is there imbalance in this sd */
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 int power_savings_balance; /* Is powersave balance needed for this sd */
3225 struct sched_group *group_min; /* Least loaded group in sd */
3226 struct sched_group *group_leader; /* Group which relieves group_min */
3227 unsigned long min_load_per_task; /* load_per_task in group_min */
3228 unsigned long leader_nr_running; /* Nr running of group_leader */
3229 unsigned long min_nr_running; /* Nr running of group_min */
3234 * sg_lb_stats - stats of a sched_group required for load_balancing
3236 struct sg_lb_stats {
3237 unsigned long avg_load; /*Avg load across the CPUs of the group */
3238 unsigned long group_load; /* Total load over the CPUs of the group */
3239 unsigned long sum_nr_running; /* Nr tasks running in the group */
3240 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3241 unsigned long group_capacity;
3242 int group_imb; /* Is there an imbalance in the group ? */
3246 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3247 * @group: The group whose first cpu is to be returned.
3249 static inline unsigned int group_first_cpu(struct sched_group *group)
3251 return cpumask_first(sched_group_cpus(group));
3255 * get_sd_load_idx - Obtain the load index for a given sched domain.
3256 * @sd: The sched_domain whose load_idx is to be obtained.
3257 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3259 static inline int get_sd_load_idx(struct sched_domain *sd,
3260 enum cpu_idle_type idle)
3266 load_idx = sd->busy_idx;
3269 case CPU_NEWLY_IDLE:
3270 load_idx = sd->newidle_idx;
3273 load_idx = sd->idle_idx;
3281 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3283 * init_sd_power_savings_stats - Initialize power savings statistics for
3284 * the given sched_domain, during load balancing.
3286 * @sd: Sched domain whose power-savings statistics are to be initialized.
3287 * @sds: Variable containing the statistics for sd.
3288 * @idle: Idle status of the CPU at which we're performing load-balancing.
3290 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3291 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3294 * Busy processors will not participate in power savings
3297 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3298 sds->power_savings_balance = 0;
3300 sds->power_savings_balance = 1;
3301 sds->min_nr_running = ULONG_MAX;
3302 sds->leader_nr_running = 0;
3307 * update_sd_power_savings_stats - Update the power saving stats for a
3308 * sched_domain while performing load balancing.
3310 * @group: sched_group belonging to the sched_domain under consideration.
3311 * @sds: Variable containing the statistics of the sched_domain
3312 * @local_group: Does group contain the CPU for which we're performing
3314 * @sgs: Variable containing the statistics of the group.
3316 static inline void update_sd_power_savings_stats(struct sched_group *group,
3317 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3320 if (!sds->power_savings_balance)
3324 * If the local group is idle or completely loaded
3325 * no need to do power savings balance at this domain
3327 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3328 !sds->this_nr_running))
3329 sds->power_savings_balance = 0;
3332 * If a group is already running at full capacity or idle,
3333 * don't include that group in power savings calculations
3335 if (!sds->power_savings_balance ||
3336 sgs->sum_nr_running >= sgs->group_capacity ||
3337 !sgs->sum_nr_running)
3341 * Calculate the group which has the least non-idle load.
3342 * This is the group from where we need to pick up the load
3345 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3346 (sgs->sum_nr_running == sds->min_nr_running &&
3347 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3348 sds->group_min = group;
3349 sds->min_nr_running = sgs->sum_nr_running;
3350 sds->min_load_per_task = sgs->sum_weighted_load /
3351 sgs->sum_nr_running;
3355 * Calculate the group which is almost near its
3356 * capacity but still has some space to pick up some load
3357 * from other group and save more power
3359 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3362 if (sgs->sum_nr_running > sds->leader_nr_running ||
3363 (sgs->sum_nr_running == sds->leader_nr_running &&
3364 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3365 sds->group_leader = group;
3366 sds->leader_nr_running = sgs->sum_nr_running;
3371 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3372 * @sds: Variable containing the statistics of the sched_domain
3373 * under consideration.
3374 * @this_cpu: Cpu at which we're currently performing load-balancing.
3375 * @imbalance: Variable to store the imbalance.
3378 * Check if we have potential to perform some power-savings balance.
3379 * If yes, set the busiest group to be the least loaded group in the
3380 * sched_domain, so that it's CPUs can be put to idle.
3382 * Returns 1 if there is potential to perform power-savings balance.
3385 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3386 int this_cpu, unsigned long *imbalance)
3388 if (!sds->power_savings_balance)
3391 if (sds->this != sds->group_leader ||
3392 sds->group_leader == sds->group_min)
3395 *imbalance = sds->min_load_per_task;
3396 sds->busiest = sds->group_min;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 group_first_cpu(sds->group_leader);
3406 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3407 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3408 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3413 static inline void update_sd_power_savings_stats(struct sched_group *group,
3414 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3419 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3420 int this_cpu, unsigned long *imbalance)
3424 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3428 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3429 * @group: sched_group whose statistics are to be updated.
3430 * @this_cpu: Cpu for which load balance is currently performed.
3431 * @idle: Idle status of this_cpu
3432 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3433 * @sd_idle: Idle status of the sched_domain containing group.
3434 * @local_group: Does group contain this_cpu.
3435 * @cpus: Set of cpus considered for load balancing.
3436 * @balance: Should we balance.
3437 * @sgs: variable to hold the statistics for this group.
3439 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3440 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3441 int local_group, const struct cpumask *cpus,
3442 int *balance, struct sg_lb_stats *sgs)
3444 unsigned long load, max_cpu_load, min_cpu_load;
3446 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3447 unsigned long sum_avg_load_per_task;
3448 unsigned long avg_load_per_task;
3451 balance_cpu = group_first_cpu(group);
3453 /* Tally up the load of all CPUs in the group */
3454 sum_avg_load_per_task = avg_load_per_task = 0;
3456 min_cpu_load = ~0UL;
3458 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3459 struct rq *rq = cpu_rq(i);
3461 if (*sd_idle && rq->nr_running)
3464 /* Bias balancing toward cpus of our domain */
3466 if (idle_cpu(i) && !first_idle_cpu) {
3471 load = target_load(i, load_idx);
3473 load = source_load(i, load_idx);
3474 if (load > max_cpu_load)
3475 max_cpu_load = load;
3476 if (min_cpu_load > load)
3477 min_cpu_load = load;
3480 sgs->group_load += load;
3481 sgs->sum_nr_running += rq->nr_running;
3482 sgs->sum_weighted_load += weighted_cpuload(i);
3484 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3488 * First idle cpu or the first cpu(busiest) in this sched group
3489 * is eligible for doing load balancing at this and above
3490 * domains. In the newly idle case, we will allow all the cpu's
3491 * to do the newly idle load balance.
3493 if (idle != CPU_NEWLY_IDLE && local_group &&
3494 balance_cpu != this_cpu && balance) {
3499 /* Adjust by relative CPU power of the group */
3500 sgs->avg_load = sg_div_cpu_power(group,
3501 sgs->group_load * SCHED_LOAD_SCALE);
3505 * Consider the group unbalanced when the imbalance is larger
3506 * than the average weight of two tasks.
3508 * APZ: with cgroup the avg task weight can vary wildly and
3509 * might not be a suitable number - should we keep a
3510 * normalized nr_running number somewhere that negates
3513 avg_load_per_task = sg_div_cpu_power(group,
3514 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3516 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3519 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3524 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3525 * @sd: sched_domain whose statistics are to be updated.
3526 * @this_cpu: Cpu for which load balance is currently performed.
3527 * @idle: Idle status of this_cpu
3528 * @sd_idle: Idle status of the sched_domain containing group.
3529 * @cpus: Set of cpus considered for load balancing.
3530 * @balance: Should we balance.
3531 * @sds: variable to hold the statistics for this sched_domain.
3533 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3534 enum cpu_idle_type idle, int *sd_idle,
3535 const struct cpumask *cpus, int *balance,
3536 struct sd_lb_stats *sds)
3538 struct sched_group *group = sd->groups;
3539 struct sg_lb_stats sgs;
3542 init_sd_power_savings_stats(sd, sds, idle);
3543 load_idx = get_sd_load_idx(sd, idle);
3548 local_group = cpumask_test_cpu(this_cpu,
3549 sched_group_cpus(group));
3550 memset(&sgs, 0, sizeof(sgs));
3551 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3552 local_group, cpus, balance, &sgs);
3554 if (local_group && balance && !(*balance))
3557 sds->total_load += sgs.group_load;
3558 sds->total_pwr += group->__cpu_power;
3561 sds->this_load = sgs.avg_load;
3563 sds->this_nr_running = sgs.sum_nr_running;
3564 sds->this_load_per_task = sgs.sum_weighted_load;
3565 } else if (sgs.avg_load > sds->max_load &&
3566 (sgs.sum_nr_running > sgs.group_capacity ||
3568 sds->max_load = sgs.avg_load;
3569 sds->busiest = group;
3570 sds->busiest_nr_running = sgs.sum_nr_running;
3571 sds->busiest_load_per_task = sgs.sum_weighted_load;
3572 sds->group_imb = sgs.group_imb;
3575 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3576 group = group->next;
3577 } while (group != sd->groups);
3582 * fix_small_imbalance - Calculate the minor imbalance that exists
3583 * amongst the groups of a sched_domain, during
3585 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3586 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3587 * @imbalance: Variable to store the imbalance.
3589 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3590 int this_cpu, unsigned long *imbalance)
3592 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3593 unsigned int imbn = 2;
3595 if (sds->this_nr_running) {
3596 sds->this_load_per_task /= sds->this_nr_running;
3597 if (sds->busiest_load_per_task >
3598 sds->this_load_per_task)
3601 sds->this_load_per_task =
3602 cpu_avg_load_per_task(this_cpu);
3604 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3605 sds->busiest_load_per_task * imbn) {
3606 *imbalance = sds->busiest_load_per_task;
3611 * OK, we don't have enough imbalance to justify moving tasks,
3612 * however we may be able to increase total CPU power used by
3616 pwr_now += sds->busiest->__cpu_power *
3617 min(sds->busiest_load_per_task, sds->max_load);
3618 pwr_now += sds->this->__cpu_power *
3619 min(sds->this_load_per_task, sds->this_load);
3620 pwr_now /= SCHED_LOAD_SCALE;
3622 /* Amount of load we'd subtract */
3623 tmp = sg_div_cpu_power(sds->busiest,
3624 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3625 if (sds->max_load > tmp)
3626 pwr_move += sds->busiest->__cpu_power *
3627 min(sds->busiest_load_per_task, sds->max_load - tmp);
3629 /* Amount of load we'd add */
3630 if (sds->max_load * sds->busiest->__cpu_power <
3631 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3632 tmp = sg_div_cpu_power(sds->this,
3633 sds->max_load * sds->busiest->__cpu_power);
3635 tmp = sg_div_cpu_power(sds->this,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 pwr_move += sds->this->__cpu_power *
3638 min(sds->this_load_per_task, sds->this_load + tmp);
3639 pwr_move /= SCHED_LOAD_SCALE;
3641 /* Move if we gain throughput */
3642 if (pwr_move > pwr_now)
3643 *imbalance = sds->busiest_load_per_task;
3647 * calculate_imbalance - Calculate the amount of imbalance present within the
3648 * groups of a given sched_domain during load balance.
3649 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3650 * @this_cpu: Cpu for which currently load balance is being performed.
3651 * @imbalance: The variable to store the imbalance.
3653 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3654 unsigned long *imbalance)
3656 unsigned long max_pull;
3658 * In the presence of smp nice balancing, certain scenarios can have
3659 * max load less than avg load(as we skip the groups at or below
3660 * its cpu_power, while calculating max_load..)
3662 if (sds->max_load < sds->avg_load) {
3664 return fix_small_imbalance(sds, this_cpu, imbalance);
3667 /* Don't want to pull so many tasks that a group would go idle */
3668 max_pull = min(sds->max_load - sds->avg_load,
3669 sds->max_load - sds->busiest_load_per_task);
3671 /* How much load to actually move to equalise the imbalance */
3672 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3673 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3677 * if *imbalance is less than the average load per runnable task
3678 * there is no gaurantee that any tasks will be moved so we'll have
3679 * a think about bumping its value to force at least one task to be
3682 if (*imbalance < sds->busiest_load_per_task)
3683 return fix_small_imbalance(sds, this_cpu, imbalance);
3686 /******* find_busiest_group() helpers end here *********************/
3689 * find_busiest_group - Returns the busiest group within the sched_domain
3690 * if there is an imbalance. If there isn't an imbalance, and
3691 * the user has opted for power-savings, it returns a group whose
3692 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3693 * such a group exists.
3695 * Also calculates the amount of weighted load which should be moved
3696 * to restore balance.
3698 * @sd: The sched_domain whose busiest group is to be returned.
3699 * @this_cpu: The cpu for which load balancing is currently being performed.
3700 * @imbalance: Variable which stores amount of weighted load which should
3701 * be moved to restore balance/put a group to idle.
3702 * @idle: The idle status of this_cpu.
3703 * @sd_idle: The idleness of sd
3704 * @cpus: The set of CPUs under consideration for load-balancing.
3705 * @balance: Pointer to a variable indicating if this_cpu
3706 * is the appropriate cpu to perform load balancing at this_level.
3708 * Returns: - the busiest group if imbalance exists.
3709 * - If no imbalance and user has opted for power-savings balance,
3710 * return the least loaded group whose CPUs can be
3711 * put to idle by rebalancing its tasks onto our group.
3713 static struct sched_group *
3714 find_busiest_group(struct sched_domain *sd, int this_cpu,
3715 unsigned long *imbalance, enum cpu_idle_type idle,
3716 int *sd_idle, const struct cpumask *cpus, int *balance)
3718 struct sd_lb_stats sds;
3720 memset(&sds, 0, sizeof(sds));
3723 * Compute the various statistics relavent for load balancing at
3726 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3729 /* Cases where imbalance does not exist from POV of this_cpu */
3730 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3732 * 2) There is no busy sibling group to pull from.
3733 * 3) This group is the busiest group.
3734 * 4) This group is more busy than the avg busieness at this
3736 * 5) The imbalance is within the specified limit.
3737 * 6) Any rebalance would lead to ping-pong
3739 if (balance && !(*balance))
3742 if (!sds.busiest || sds.busiest_nr_running == 0)
3745 if (sds.this_load >= sds.max_load)
3748 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3750 if (sds.this_load >= sds.avg_load)
3753 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3756 sds.busiest_load_per_task /= sds.busiest_nr_running;
3758 sds.busiest_load_per_task =
3759 min(sds.busiest_load_per_task, sds.avg_load);
3762 * We're trying to get all the cpus to the average_load, so we don't
3763 * want to push ourselves above the average load, nor do we wish to
3764 * reduce the max loaded cpu below the average load, as either of these
3765 * actions would just result in more rebalancing later, and ping-pong
3766 * tasks around. Thus we look for the minimum possible imbalance.
3767 * Negative imbalances (*we* are more loaded than anyone else) will
3768 * be counted as no imbalance for these purposes -- we can't fix that
3769 * by pulling tasks to us. Be careful of negative numbers as they'll
3770 * appear as very large values with unsigned longs.
3772 if (sds.max_load <= sds.busiest_load_per_task)
3775 /* Looks like there is an imbalance. Compute it */
3776 calculate_imbalance(&sds, this_cpu, imbalance);
3781 * There is no obvious imbalance. But check if we can do some balancing
3784 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3792 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3795 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3796 unsigned long imbalance, const struct cpumask *cpus)
3798 struct rq *busiest = NULL, *rq;
3799 unsigned long max_load = 0;
3802 for_each_cpu(i, sched_group_cpus(group)) {
3805 if (!cpumask_test_cpu(i, cpus))
3809 wl = weighted_cpuload(i);
3811 if (rq->nr_running == 1 && wl > imbalance)
3814 if (wl > max_load) {
3824 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3825 * so long as it is large enough.
3827 #define MAX_PINNED_INTERVAL 512
3829 /* Working cpumask for load_balance and load_balance_newidle. */
3830 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3833 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3834 * tasks if there is an imbalance.
3836 static int load_balance(int this_cpu, struct rq *this_rq,
3837 struct sched_domain *sd, enum cpu_idle_type idle,
3840 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3841 struct sched_group *group;
3842 unsigned long imbalance;
3844 unsigned long flags;
3845 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3847 cpumask_setall(cpus);
3850 * When power savings policy is enabled for the parent domain, idle
3851 * sibling can pick up load irrespective of busy siblings. In this case,
3852 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3853 * portraying it as CPU_NOT_IDLE.
3855 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3856 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3859 schedstat_inc(sd, lb_count[idle]);
3863 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3870 schedstat_inc(sd, lb_nobusyg[idle]);
3874 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3876 schedstat_inc(sd, lb_nobusyq[idle]);
3880 BUG_ON(busiest == this_rq);
3882 schedstat_add(sd, lb_imbalance[idle], imbalance);
3885 if (busiest->nr_running > 1) {
3887 * Attempt to move tasks. If find_busiest_group has found
3888 * an imbalance but busiest->nr_running <= 1, the group is
3889 * still unbalanced. ld_moved simply stays zero, so it is
3890 * correctly treated as an imbalance.
3892 local_irq_save(flags);
3893 double_rq_lock(this_rq, busiest);
3894 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3895 imbalance, sd, idle, &all_pinned);
3896 double_rq_unlock(this_rq, busiest);
3897 local_irq_restore(flags);
3900 * some other cpu did the load balance for us.
3902 if (ld_moved && this_cpu != smp_processor_id())
3903 resched_cpu(this_cpu);
3905 /* All tasks on this runqueue were pinned by CPU affinity */
3906 if (unlikely(all_pinned)) {
3907 cpumask_clear_cpu(cpu_of(busiest), cpus);
3908 if (!cpumask_empty(cpus))
3915 schedstat_inc(sd, lb_failed[idle]);
3916 sd->nr_balance_failed++;
3918 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3920 spin_lock_irqsave(&busiest->lock, flags);
3922 /* don't kick the migration_thread, if the curr
3923 * task on busiest cpu can't be moved to this_cpu
3925 if (!cpumask_test_cpu(this_cpu,
3926 &busiest->curr->cpus_allowed)) {
3927 spin_unlock_irqrestore(&busiest->lock, flags);
3929 goto out_one_pinned;
3932 if (!busiest->active_balance) {
3933 busiest->active_balance = 1;
3934 busiest->push_cpu = this_cpu;
3937 spin_unlock_irqrestore(&busiest->lock, flags);
3939 wake_up_process(busiest->migration_thread);
3942 * We've kicked active balancing, reset the failure
3945 sd->nr_balance_failed = sd->cache_nice_tries+1;
3948 sd->nr_balance_failed = 0;
3950 if (likely(!active_balance)) {
3951 /* We were unbalanced, so reset the balancing interval */
3952 sd->balance_interval = sd->min_interval;
3955 * If we've begun active balancing, start to back off. This
3956 * case may not be covered by the all_pinned logic if there
3957 * is only 1 task on the busy runqueue (because we don't call
3960 if (sd->balance_interval < sd->max_interval)
3961 sd->balance_interval *= 2;
3964 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3965 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3971 schedstat_inc(sd, lb_balanced[idle]);
3973 sd->nr_balance_failed = 0;
3976 /* tune up the balancing interval */
3977 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3978 (sd->balance_interval < sd->max_interval))
3979 sd->balance_interval *= 2;
3981 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3982 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3993 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3994 * tasks if there is an imbalance.
3996 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3997 * this_rq is locked.
4000 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4002 struct sched_group *group;
4003 struct rq *busiest = NULL;
4004 unsigned long imbalance;
4008 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4010 cpumask_setall(cpus);
4013 * When power savings policy is enabled for the parent domain, idle
4014 * sibling can pick up load irrespective of busy siblings. In this case,
4015 * let the state of idle sibling percolate up as IDLE, instead of
4016 * portraying it as CPU_NOT_IDLE.
4018 if (sd->flags & SD_SHARE_CPUPOWER &&
4019 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4022 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4024 update_shares_locked(this_rq, sd);
4025 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4026 &sd_idle, cpus, NULL);
4028 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4032 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4034 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4038 BUG_ON(busiest == this_rq);
4040 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4043 if (busiest->nr_running > 1) {
4044 /* Attempt to move tasks */
4045 double_lock_balance(this_rq, busiest);
4046 /* this_rq->clock is already updated */
4047 update_rq_clock(busiest);
4048 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4049 imbalance, sd, CPU_NEWLY_IDLE,
4051 double_unlock_balance(this_rq, busiest);
4053 if (unlikely(all_pinned)) {
4054 cpumask_clear_cpu(cpu_of(busiest), cpus);
4055 if (!cpumask_empty(cpus))
4061 int active_balance = 0;
4063 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4064 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4065 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4068 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4071 if (sd->nr_balance_failed++ < 2)
4075 * The only task running in a non-idle cpu can be moved to this
4076 * cpu in an attempt to completely freeup the other CPU
4077 * package. The same method used to move task in load_balance()
4078 * have been extended for load_balance_newidle() to speedup
4079 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4081 * The package power saving logic comes from
4082 * find_busiest_group(). If there are no imbalance, then
4083 * f_b_g() will return NULL. However when sched_mc={1,2} then
4084 * f_b_g() will select a group from which a running task may be
4085 * pulled to this cpu in order to make the other package idle.
4086 * If there is no opportunity to make a package idle and if
4087 * there are no imbalance, then f_b_g() will return NULL and no
4088 * action will be taken in load_balance_newidle().
4090 * Under normal task pull operation due to imbalance, there
4091 * will be more than one task in the source run queue and
4092 * move_tasks() will succeed. ld_moved will be true and this
4093 * active balance code will not be triggered.
4096 /* Lock busiest in correct order while this_rq is held */
4097 double_lock_balance(this_rq, busiest);
4100 * don't kick the migration_thread, if the curr
4101 * task on busiest cpu can't be moved to this_cpu
4103 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4104 double_unlock_balance(this_rq, busiest);
4109 if (!busiest->active_balance) {
4110 busiest->active_balance = 1;
4111 busiest->push_cpu = this_cpu;
4115 double_unlock_balance(this_rq, busiest);
4117 * Should not call ttwu while holding a rq->lock
4119 spin_unlock(&this_rq->lock);
4121 wake_up_process(busiest->migration_thread);
4122 spin_lock(&this_rq->lock);
4125 sd->nr_balance_failed = 0;
4127 update_shares_locked(this_rq, sd);
4131 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4132 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4133 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4135 sd->nr_balance_failed = 0;
4141 * idle_balance is called by schedule() if this_cpu is about to become
4142 * idle. Attempts to pull tasks from other CPUs.
4144 static void idle_balance(int this_cpu, struct rq *this_rq)
4146 struct sched_domain *sd;
4147 int pulled_task = 0;
4148 unsigned long next_balance = jiffies + HZ;
4150 for_each_domain(this_cpu, sd) {
4151 unsigned long interval;
4153 if (!(sd->flags & SD_LOAD_BALANCE))
4156 if (sd->flags & SD_BALANCE_NEWIDLE)
4157 /* If we've pulled tasks over stop searching: */
4158 pulled_task = load_balance_newidle(this_cpu, this_rq,
4161 interval = msecs_to_jiffies(sd->balance_interval);
4162 if (time_after(next_balance, sd->last_balance + interval))
4163 next_balance = sd->last_balance + interval;
4167 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4169 * We are going idle. next_balance may be set based on
4170 * a busy processor. So reset next_balance.
4172 this_rq->next_balance = next_balance;
4177 * active_load_balance is run by migration threads. It pushes running tasks
4178 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4179 * running on each physical CPU where possible, and avoids physical /
4180 * logical imbalances.
4182 * Called with busiest_rq locked.
4184 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4186 int target_cpu = busiest_rq->push_cpu;
4187 struct sched_domain *sd;
4188 struct rq *target_rq;
4190 /* Is there any task to move? */
4191 if (busiest_rq->nr_running <= 1)
4194 target_rq = cpu_rq(target_cpu);
4197 * This condition is "impossible", if it occurs
4198 * we need to fix it. Originally reported by
4199 * Bjorn Helgaas on a 128-cpu setup.
4201 BUG_ON(busiest_rq == target_rq);
4203 /* move a task from busiest_rq to target_rq */
4204 double_lock_balance(busiest_rq, target_rq);
4205 update_rq_clock(busiest_rq);
4206 update_rq_clock(target_rq);
4208 /* Search for an sd spanning us and the target CPU. */
4209 for_each_domain(target_cpu, sd) {
4210 if ((sd->flags & SD_LOAD_BALANCE) &&
4211 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4216 schedstat_inc(sd, alb_count);
4218 if (move_one_task(target_rq, target_cpu, busiest_rq,
4220 schedstat_inc(sd, alb_pushed);
4222 schedstat_inc(sd, alb_failed);
4224 double_unlock_balance(busiest_rq, target_rq);
4229 atomic_t load_balancer;
4230 cpumask_var_t cpu_mask;
4231 } nohz ____cacheline_aligned = {
4232 .load_balancer = ATOMIC_INIT(-1),
4236 * This routine will try to nominate the ilb (idle load balancing)
4237 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4238 * load balancing on behalf of all those cpus. If all the cpus in the system
4239 * go into this tickless mode, then there will be no ilb owner (as there is
4240 * no need for one) and all the cpus will sleep till the next wakeup event
4243 * For the ilb owner, tick is not stopped. And this tick will be used
4244 * for idle load balancing. ilb owner will still be part of
4247 * While stopping the tick, this cpu will become the ilb owner if there
4248 * is no other owner. And will be the owner till that cpu becomes busy
4249 * or if all cpus in the system stop their ticks at which point
4250 * there is no need for ilb owner.
4252 * When the ilb owner becomes busy, it nominates another owner, during the
4253 * next busy scheduler_tick()
4255 int select_nohz_load_balancer(int stop_tick)
4257 int cpu = smp_processor_id();
4260 cpu_rq(cpu)->in_nohz_recently = 1;
4262 if (!cpu_active(cpu)) {
4263 if (atomic_read(&nohz.load_balancer) != cpu)
4267 * If we are going offline and still the leader,
4270 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4276 cpumask_set_cpu(cpu, nohz.cpu_mask);
4278 /* time for ilb owner also to sleep */
4279 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4280 if (atomic_read(&nohz.load_balancer) == cpu)
4281 atomic_set(&nohz.load_balancer, -1);
4285 if (atomic_read(&nohz.load_balancer) == -1) {
4286 /* make me the ilb owner */
4287 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4289 } else if (atomic_read(&nohz.load_balancer) == cpu)
4292 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4295 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4297 if (atomic_read(&nohz.load_balancer) == cpu)
4298 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4305 static DEFINE_SPINLOCK(balancing);
4308 * It checks each scheduling domain to see if it is due to be balanced,
4309 * and initiates a balancing operation if so.
4311 * Balancing parameters are set up in arch_init_sched_domains.
4313 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4316 struct rq *rq = cpu_rq(cpu);
4317 unsigned long interval;
4318 struct sched_domain *sd;
4319 /* Earliest time when we have to do rebalance again */
4320 unsigned long next_balance = jiffies + 60*HZ;
4321 int update_next_balance = 0;
4324 for_each_domain(cpu, sd) {
4325 if (!(sd->flags & SD_LOAD_BALANCE))
4328 interval = sd->balance_interval;
4329 if (idle != CPU_IDLE)
4330 interval *= sd->busy_factor;
4332 /* scale ms to jiffies */
4333 interval = msecs_to_jiffies(interval);
4334 if (unlikely(!interval))
4336 if (interval > HZ*NR_CPUS/10)
4337 interval = HZ*NR_CPUS/10;
4339 need_serialize = sd->flags & SD_SERIALIZE;
4341 if (need_serialize) {
4342 if (!spin_trylock(&balancing))
4346 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4347 if (load_balance(cpu, rq, sd, idle, &balance)) {
4349 * We've pulled tasks over so either we're no
4350 * longer idle, or one of our SMT siblings is
4353 idle = CPU_NOT_IDLE;
4355 sd->last_balance = jiffies;
4358 spin_unlock(&balancing);
4360 if (time_after(next_balance, sd->last_balance + interval)) {
4361 next_balance = sd->last_balance + interval;
4362 update_next_balance = 1;
4366 * Stop the load balance at this level. There is another
4367 * CPU in our sched group which is doing load balancing more
4375 * next_balance will be updated only when there is a need.
4376 * When the cpu is attached to null domain for ex, it will not be
4379 if (likely(update_next_balance))
4380 rq->next_balance = next_balance;
4384 * run_rebalance_domains is triggered when needed from the scheduler tick.
4385 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4386 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4388 static void run_rebalance_domains(struct softirq_action *h)
4390 int this_cpu = smp_processor_id();
4391 struct rq *this_rq = cpu_rq(this_cpu);
4392 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4393 CPU_IDLE : CPU_NOT_IDLE;
4395 rebalance_domains(this_cpu, idle);
4399 * If this cpu is the owner for idle load balancing, then do the
4400 * balancing on behalf of the other idle cpus whose ticks are
4403 if (this_rq->idle_at_tick &&
4404 atomic_read(&nohz.load_balancer) == this_cpu) {
4408 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4409 if (balance_cpu == this_cpu)
4413 * If this cpu gets work to do, stop the load balancing
4414 * work being done for other cpus. Next load
4415 * balancing owner will pick it up.
4420 rebalance_domains(balance_cpu, CPU_IDLE);
4422 rq = cpu_rq(balance_cpu);
4423 if (time_after(this_rq->next_balance, rq->next_balance))
4424 this_rq->next_balance = rq->next_balance;
4430 static inline int on_null_domain(int cpu)
4432 return !rcu_dereference(cpu_rq(cpu)->sd);
4436 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4438 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4439 * idle load balancing owner or decide to stop the periodic load balancing,
4440 * if the whole system is idle.
4442 static inline void trigger_load_balance(struct rq *rq, int cpu)
4446 * If we were in the nohz mode recently and busy at the current
4447 * scheduler tick, then check if we need to nominate new idle
4450 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4451 rq->in_nohz_recently = 0;
4453 if (atomic_read(&nohz.load_balancer) == cpu) {
4454 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4455 atomic_set(&nohz.load_balancer, -1);
4458 if (atomic_read(&nohz.load_balancer) == -1) {
4460 * simple selection for now: Nominate the
4461 * first cpu in the nohz list to be the next
4464 * TBD: Traverse the sched domains and nominate
4465 * the nearest cpu in the nohz.cpu_mask.
4467 int ilb = cpumask_first(nohz.cpu_mask);
4469 if (ilb < nr_cpu_ids)
4475 * If this cpu is idle and doing idle load balancing for all the
4476 * cpus with ticks stopped, is it time for that to stop?
4478 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4479 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4485 * If this cpu is idle and the idle load balancing is done by
4486 * someone else, then no need raise the SCHED_SOFTIRQ
4488 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4489 cpumask_test_cpu(cpu, nohz.cpu_mask))
4492 /* Don't need to rebalance while attached to NULL domain */
4493 if (time_after_eq(jiffies, rq->next_balance) &&
4494 likely(!on_null_domain(cpu)))
4495 raise_softirq(SCHED_SOFTIRQ);
4498 #else /* CONFIG_SMP */
4501 * on UP we do not need to balance between CPUs:
4503 static inline void idle_balance(int cpu, struct rq *rq)
4509 DEFINE_PER_CPU(struct kernel_stat, kstat);
4511 EXPORT_PER_CPU_SYMBOL(kstat);
4514 * Return any ns on the sched_clock that have not yet been banked in
4515 * @p in case that task is currently running.
4517 unsigned long long task_delta_exec(struct task_struct *p)
4519 unsigned long flags;
4523 rq = task_rq_lock(p, &flags);
4525 if (task_current(rq, p)) {
4528 update_rq_clock(rq);
4529 delta_exec = rq->clock - p->se.exec_start;
4530 if ((s64)delta_exec > 0)
4534 task_rq_unlock(rq, &flags);
4540 * Account user cpu time to a process.
4541 * @p: the process that the cpu time gets accounted to
4542 * @cputime: the cpu time spent in user space since the last update
4543 * @cputime_scaled: cputime scaled by cpu frequency
4545 void account_user_time(struct task_struct *p, cputime_t cputime,
4546 cputime_t cputime_scaled)
4548 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4551 /* Add user time to process. */
4552 p->utime = cputime_add(p->utime, cputime);
4553 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4554 account_group_user_time(p, cputime);
4556 /* Add user time to cpustat. */
4557 tmp = cputime_to_cputime64(cputime);
4558 if (TASK_NICE(p) > 0)
4559 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4561 cpustat->user = cputime64_add(cpustat->user, tmp);
4562 /* Account for user time used */
4563 acct_update_integrals(p);
4567 * Account guest cpu time to a process.
4568 * @p: the process that the cpu time gets accounted to
4569 * @cputime: the cpu time spent in virtual machine since the last update
4570 * @cputime_scaled: cputime scaled by cpu frequency
4572 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4573 cputime_t cputime_scaled)
4576 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4578 tmp = cputime_to_cputime64(cputime);
4580 /* Add guest time to process. */
4581 p->utime = cputime_add(p->utime, cputime);
4582 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4583 account_group_user_time(p, cputime);
4584 p->gtime = cputime_add(p->gtime, cputime);
4586 /* Add guest time to cpustat. */
4587 cpustat->user = cputime64_add(cpustat->user, tmp);
4588 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4592 * Account system cpu time to a process.
4593 * @p: the process that the cpu time gets accounted to
4594 * @hardirq_offset: the offset to subtract from hardirq_count()
4595 * @cputime: the cpu time spent in kernel space since the last update
4596 * @cputime_scaled: cputime scaled by cpu frequency
4598 void account_system_time(struct task_struct *p, int hardirq_offset,
4599 cputime_t cputime, cputime_t cputime_scaled)
4601 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4604 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4605 account_guest_time(p, cputime, cputime_scaled);
4609 /* Add system time to process. */
4610 p->stime = cputime_add(p->stime, cputime);
4611 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4612 account_group_system_time(p, cputime);
4614 /* Add system time to cpustat. */
4615 tmp = cputime_to_cputime64(cputime);
4616 if (hardirq_count() - hardirq_offset)
4617 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4618 else if (softirq_count())
4619 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4621 cpustat->system = cputime64_add(cpustat->system, tmp);
4623 /* Account for system time used */
4624 acct_update_integrals(p);
4628 * Account for involuntary wait time.
4629 * @steal: the cpu time spent in involuntary wait
4631 void account_steal_time(cputime_t cputime)
4633 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4634 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4636 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4640 * Account for idle time.
4641 * @cputime: the cpu time spent in idle wait
4643 void account_idle_time(cputime_t cputime)
4645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4646 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4647 struct rq *rq = this_rq();
4649 if (atomic_read(&rq->nr_iowait) > 0)
4650 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4652 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4655 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4658 * Account a single tick of cpu time.
4659 * @p: the process that the cpu time gets accounted to
4660 * @user_tick: indicates if the tick is a user or a system tick
4662 void account_process_tick(struct task_struct *p, int user_tick)
4664 cputime_t one_jiffy = jiffies_to_cputime(1);
4665 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4666 struct rq *rq = this_rq();
4669 account_user_time(p, one_jiffy, one_jiffy_scaled);
4670 else if (p != rq->idle)
4671 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4674 account_idle_time(one_jiffy);
4678 * Account multiple ticks of steal time.
4679 * @p: the process from which the cpu time has been stolen
4680 * @ticks: number of stolen ticks
4682 void account_steal_ticks(unsigned long ticks)
4684 account_steal_time(jiffies_to_cputime(ticks));
4688 * Account multiple ticks of idle time.
4689 * @ticks: number of stolen ticks
4691 void account_idle_ticks(unsigned long ticks)
4693 account_idle_time(jiffies_to_cputime(ticks));
4699 * Use precise platform statistics if available:
4701 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4702 cputime_t task_utime(struct task_struct *p)
4707 cputime_t task_stime(struct task_struct *p)
4712 cputime_t task_utime(struct task_struct *p)
4714 clock_t utime = cputime_to_clock_t(p->utime),
4715 total = utime + cputime_to_clock_t(p->stime);
4719 * Use CFS's precise accounting:
4721 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4725 do_div(temp, total);
4727 utime = (clock_t)temp;
4729 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4730 return p->prev_utime;
4733 cputime_t task_stime(struct task_struct *p)
4738 * Use CFS's precise accounting. (we subtract utime from
4739 * the total, to make sure the total observed by userspace
4740 * grows monotonically - apps rely on that):
4742 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4743 cputime_to_clock_t(task_utime(p));
4746 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4748 return p->prev_stime;
4752 inline cputime_t task_gtime(struct task_struct *p)
4758 * This function gets called by the timer code, with HZ frequency.
4759 * We call it with interrupts disabled.
4761 * It also gets called by the fork code, when changing the parent's
4764 void scheduler_tick(void)
4766 int cpu = smp_processor_id();
4767 struct rq *rq = cpu_rq(cpu);
4768 struct task_struct *curr = rq->curr;
4772 spin_lock(&rq->lock);
4773 update_rq_clock(rq);
4774 update_cpu_load(rq);
4775 curr->sched_class->task_tick(rq, curr, 0);
4776 spin_unlock(&rq->lock);
4779 rq->idle_at_tick = idle_cpu(cpu);
4780 trigger_load_balance(rq, cpu);
4784 unsigned long get_parent_ip(unsigned long addr)
4786 if (in_lock_functions(addr)) {
4787 addr = CALLER_ADDR2;
4788 if (in_lock_functions(addr))
4789 addr = CALLER_ADDR3;
4794 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4795 defined(CONFIG_PREEMPT_TRACER))
4797 void __kprobes add_preempt_count(int val)
4799 #ifdef CONFIG_DEBUG_PREEMPT
4803 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4806 preempt_count() += val;
4807 #ifdef CONFIG_DEBUG_PREEMPT
4809 * Spinlock count overflowing soon?
4811 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4814 if (preempt_count() == val)
4815 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4817 EXPORT_SYMBOL(add_preempt_count);
4819 void __kprobes sub_preempt_count(int val)
4821 #ifdef CONFIG_DEBUG_PREEMPT
4825 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4828 * Is the spinlock portion underflowing?
4830 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4831 !(preempt_count() & PREEMPT_MASK)))
4835 if (preempt_count() == val)
4836 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4837 preempt_count() -= val;
4839 EXPORT_SYMBOL(sub_preempt_count);
4844 * Print scheduling while atomic bug:
4846 static noinline void __schedule_bug(struct task_struct *prev)
4848 struct pt_regs *regs = get_irq_regs();
4850 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4851 prev->comm, prev->pid, preempt_count());
4853 debug_show_held_locks(prev);
4855 if (irqs_disabled())
4856 print_irqtrace_events(prev);
4865 * Various schedule()-time debugging checks and statistics:
4867 static inline void schedule_debug(struct task_struct *prev)
4870 * Test if we are atomic. Since do_exit() needs to call into
4871 * schedule() atomically, we ignore that path for now.
4872 * Otherwise, whine if we are scheduling when we should not be.
4874 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4875 __schedule_bug(prev);
4877 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4879 schedstat_inc(this_rq(), sched_count);
4880 #ifdef CONFIG_SCHEDSTATS
4881 if (unlikely(prev->lock_depth >= 0)) {
4882 schedstat_inc(this_rq(), bkl_count);
4883 schedstat_inc(prev, sched_info.bkl_count);
4888 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4890 if (prev->state == TASK_RUNNING) {
4891 u64 runtime = prev->se.sum_exec_runtime;
4893 runtime -= prev->se.prev_sum_exec_runtime;
4894 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4897 * In order to avoid avg_overlap growing stale when we are
4898 * indeed overlapping and hence not getting put to sleep, grow
4899 * the avg_overlap on preemption.
4901 * We use the average preemption runtime because that
4902 * correlates to the amount of cache footprint a task can
4905 update_avg(&prev->se.avg_overlap, runtime);
4907 prev->sched_class->put_prev_task(rq, prev);
4911 * Pick up the highest-prio task:
4913 static inline struct task_struct *
4914 pick_next_task(struct rq *rq)
4916 const struct sched_class *class;
4917 struct task_struct *p;
4920 * Optimization: we know that if all tasks are in
4921 * the fair class we can call that function directly:
4923 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4924 p = fair_sched_class.pick_next_task(rq);
4929 class = sched_class_highest;
4931 p = class->pick_next_task(rq);
4935 * Will never be NULL as the idle class always
4936 * returns a non-NULL p:
4938 class = class->next;
4943 * schedule() is the main scheduler function.
4945 asmlinkage void __sched __schedule(void)
4947 struct task_struct *prev, *next;
4948 unsigned long *switch_count;
4952 cpu = smp_processor_id();
4956 switch_count = &prev->nivcsw;
4958 release_kernel_lock(prev);
4959 need_resched_nonpreemptible:
4961 schedule_debug(prev);
4963 if (sched_feat(HRTICK))
4966 spin_lock_irq(&rq->lock);
4967 update_rq_clock(rq);
4968 clear_tsk_need_resched(prev);
4970 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4971 if (unlikely(signal_pending_state(prev->state, prev)))
4972 prev->state = TASK_RUNNING;
4974 deactivate_task(rq, prev, 1);
4975 switch_count = &prev->nvcsw;
4979 if (prev->sched_class->pre_schedule)
4980 prev->sched_class->pre_schedule(rq, prev);
4983 if (unlikely(!rq->nr_running))
4984 idle_balance(cpu, rq);
4986 put_prev_task(rq, prev);
4987 next = pick_next_task(rq);
4989 if (likely(prev != next)) {
4990 sched_info_switch(prev, next);
4996 context_switch(rq, prev, next); /* unlocks the rq */
4998 * the context switch might have flipped the stack from under
4999 * us, hence refresh the local variables.
5001 cpu = smp_processor_id();
5004 spin_unlock_irq(&rq->lock);
5006 if (unlikely(reacquire_kernel_lock(current) < 0))
5007 goto need_resched_nonpreemptible;
5010 asmlinkage void __sched schedule(void)
5015 preempt_enable_no_resched();
5016 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5019 EXPORT_SYMBOL(schedule);
5023 * Look out! "owner" is an entirely speculative pointer
5024 * access and not reliable.
5026 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5031 if (!sched_feat(OWNER_SPIN))
5034 #ifdef CONFIG_DEBUG_PAGEALLOC
5036 * Need to access the cpu field knowing that
5037 * DEBUG_PAGEALLOC could have unmapped it if
5038 * the mutex owner just released it and exited.
5040 if (probe_kernel_address(&owner->cpu, cpu))
5047 * Even if the access succeeded (likely case),
5048 * the cpu field may no longer be valid.
5050 if (cpu >= nr_cpumask_bits)
5054 * We need to validate that we can do a
5055 * get_cpu() and that we have the percpu area.
5057 if (!cpu_online(cpu))
5064 * Owner changed, break to re-assess state.
5066 if (lock->owner != owner)
5070 * Is that owner really running on that cpu?
5072 if (task_thread_info(rq->curr) != owner || need_resched())
5082 #ifdef CONFIG_PREEMPT
5084 * this is the entry point to schedule() from in-kernel preemption
5085 * off of preempt_enable. Kernel preemptions off return from interrupt
5086 * occur there and call schedule directly.
5088 asmlinkage void __sched preempt_schedule(void)
5090 struct thread_info *ti = current_thread_info();
5093 * If there is a non-zero preempt_count or interrupts are disabled,
5094 * we do not want to preempt the current task. Just return..
5096 if (likely(ti->preempt_count || irqs_disabled()))
5100 add_preempt_count(PREEMPT_ACTIVE);
5102 sub_preempt_count(PREEMPT_ACTIVE);
5105 * Check again in case we missed a preemption opportunity
5106 * between schedule and now.
5109 } while (need_resched());
5111 EXPORT_SYMBOL(preempt_schedule);
5114 * this is the entry point to schedule() from kernel preemption
5115 * off of irq context.
5116 * Note, that this is called and return with irqs disabled. This will
5117 * protect us against recursive calling from irq.
5119 asmlinkage void __sched preempt_schedule_irq(void)
5121 struct thread_info *ti = current_thread_info();
5123 /* Catch callers which need to be fixed */
5124 BUG_ON(ti->preempt_count || !irqs_disabled());
5127 add_preempt_count(PREEMPT_ACTIVE);
5130 local_irq_disable();
5131 sub_preempt_count(PREEMPT_ACTIVE);
5134 * Check again in case we missed a preemption opportunity
5135 * between schedule and now.
5138 } while (need_resched());
5141 #endif /* CONFIG_PREEMPT */
5143 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5146 return try_to_wake_up(curr->private, mode, sync);
5148 EXPORT_SYMBOL(default_wake_function);
5151 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5152 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5153 * number) then we wake all the non-exclusive tasks and one exclusive task.
5155 * There are circumstances in which we can try to wake a task which has already
5156 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5157 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5159 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5160 int nr_exclusive, int sync, void *key)
5162 wait_queue_t *curr, *next;
5164 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5165 unsigned flags = curr->flags;
5167 if (curr->func(curr, mode, sync, key) &&
5168 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5174 * __wake_up - wake up threads blocked on a waitqueue.
5176 * @mode: which threads
5177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5178 * @key: is directly passed to the wakeup function
5180 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5181 int nr_exclusive, void *key)
5183 unsigned long flags;
5185 spin_lock_irqsave(&q->lock, flags);
5186 __wake_up_common(q, mode, nr_exclusive, 0, key);
5187 spin_unlock_irqrestore(&q->lock, flags);
5189 EXPORT_SYMBOL(__wake_up);
5192 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5194 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5196 __wake_up_common(q, mode, 1, 0, NULL);
5199 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5201 __wake_up_common(q, mode, 1, 0, key);
5205 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5207 * @mode: which threads
5208 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5209 * @key: opaque value to be passed to wakeup targets
5211 * The sync wakeup differs that the waker knows that it will schedule
5212 * away soon, so while the target thread will be woken up, it will not
5213 * be migrated to another CPU - ie. the two threads are 'synchronized'
5214 * with each other. This can prevent needless bouncing between CPUs.
5216 * On UP it can prevent extra preemption.
5218 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5219 int nr_exclusive, void *key)
5221 unsigned long flags;
5227 if (unlikely(!nr_exclusive))
5230 spin_lock_irqsave(&q->lock, flags);
5231 __wake_up_common(q, mode, nr_exclusive, sync, key);
5232 spin_unlock_irqrestore(&q->lock, flags);
5234 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5237 * __wake_up_sync - see __wake_up_sync_key()
5239 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5241 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5243 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5246 * complete: - signals a single thread waiting on this completion
5247 * @x: holds the state of this particular completion
5249 * This will wake up a single thread waiting on this completion. Threads will be
5250 * awakened in the same order in which they were queued.
5252 * See also complete_all(), wait_for_completion() and related routines.
5254 void complete(struct completion *x)
5256 unsigned long flags;
5258 spin_lock_irqsave(&x->wait.lock, flags);
5260 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5261 spin_unlock_irqrestore(&x->wait.lock, flags);
5263 EXPORT_SYMBOL(complete);
5266 * complete_all: - signals all threads waiting on this completion
5267 * @x: holds the state of this particular completion
5269 * This will wake up all threads waiting on this particular completion event.
5271 void complete_all(struct completion *x)
5273 unsigned long flags;
5275 spin_lock_irqsave(&x->wait.lock, flags);
5276 x->done += UINT_MAX/2;
5277 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5278 spin_unlock_irqrestore(&x->wait.lock, flags);
5280 EXPORT_SYMBOL(complete_all);
5282 static inline long __sched
5283 do_wait_for_common(struct completion *x, long timeout, int state)
5286 DECLARE_WAITQUEUE(wait, current);
5288 wait.flags |= WQ_FLAG_EXCLUSIVE;
5289 __add_wait_queue_tail(&x->wait, &wait);
5291 if (signal_pending_state(state, current)) {
5292 timeout = -ERESTARTSYS;
5295 __set_current_state(state);
5296 spin_unlock_irq(&x->wait.lock);
5297 timeout = schedule_timeout(timeout);
5298 spin_lock_irq(&x->wait.lock);
5299 } while (!x->done && timeout);
5300 __remove_wait_queue(&x->wait, &wait);
5305 return timeout ?: 1;
5309 wait_for_common(struct completion *x, long timeout, int state)
5313 spin_lock_irq(&x->wait.lock);
5314 timeout = do_wait_for_common(x, timeout, state);
5315 spin_unlock_irq(&x->wait.lock);
5320 * wait_for_completion: - waits for completion of a task
5321 * @x: holds the state of this particular completion
5323 * This waits to be signaled for completion of a specific task. It is NOT
5324 * interruptible and there is no timeout.
5326 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5327 * and interrupt capability. Also see complete().
5329 void __sched wait_for_completion(struct completion *x)
5331 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5333 EXPORT_SYMBOL(wait_for_completion);
5336 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5337 * @x: holds the state of this particular completion
5338 * @timeout: timeout value in jiffies
5340 * This waits for either a completion of a specific task to be signaled or for a
5341 * specified timeout to expire. The timeout is in jiffies. It is not
5344 unsigned long __sched
5345 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5347 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5349 EXPORT_SYMBOL(wait_for_completion_timeout);
5352 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5353 * @x: holds the state of this particular completion
5355 * This waits for completion of a specific task to be signaled. It is
5358 int __sched wait_for_completion_interruptible(struct completion *x)
5360 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5361 if (t == -ERESTARTSYS)
5365 EXPORT_SYMBOL(wait_for_completion_interruptible);
5368 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5369 * @x: holds the state of this particular completion
5370 * @timeout: timeout value in jiffies
5372 * This waits for either a completion of a specific task to be signaled or for a
5373 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5375 unsigned long __sched
5376 wait_for_completion_interruptible_timeout(struct completion *x,
5377 unsigned long timeout)
5379 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5381 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5384 * wait_for_completion_killable: - waits for completion of a task (killable)
5385 * @x: holds the state of this particular completion
5387 * This waits to be signaled for completion of a specific task. It can be
5388 * interrupted by a kill signal.
5390 int __sched wait_for_completion_killable(struct completion *x)
5392 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5393 if (t == -ERESTARTSYS)
5397 EXPORT_SYMBOL(wait_for_completion_killable);
5400 * try_wait_for_completion - try to decrement a completion without blocking
5401 * @x: completion structure
5403 * Returns: 0 if a decrement cannot be done without blocking
5404 * 1 if a decrement succeeded.
5406 * If a completion is being used as a counting completion,
5407 * attempt to decrement the counter without blocking. This
5408 * enables us to avoid waiting if the resource the completion
5409 * is protecting is not available.
5411 bool try_wait_for_completion(struct completion *x)
5415 spin_lock_irq(&x->wait.lock);
5420 spin_unlock_irq(&x->wait.lock);
5423 EXPORT_SYMBOL(try_wait_for_completion);
5426 * completion_done - Test to see if a completion has any waiters
5427 * @x: completion structure
5429 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5430 * 1 if there are no waiters.
5433 bool completion_done(struct completion *x)
5437 spin_lock_irq(&x->wait.lock);
5440 spin_unlock_irq(&x->wait.lock);
5443 EXPORT_SYMBOL(completion_done);
5446 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5448 unsigned long flags;
5451 init_waitqueue_entry(&wait, current);
5453 __set_current_state(state);
5455 spin_lock_irqsave(&q->lock, flags);
5456 __add_wait_queue(q, &wait);
5457 spin_unlock(&q->lock);
5458 timeout = schedule_timeout(timeout);
5459 spin_lock_irq(&q->lock);
5460 __remove_wait_queue(q, &wait);
5461 spin_unlock_irqrestore(&q->lock, flags);
5466 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5468 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5470 EXPORT_SYMBOL(interruptible_sleep_on);
5473 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5475 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5477 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5479 void __sched sleep_on(wait_queue_head_t *q)
5481 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5483 EXPORT_SYMBOL(sleep_on);
5485 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5487 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5489 EXPORT_SYMBOL(sleep_on_timeout);
5491 #ifdef CONFIG_RT_MUTEXES
5494 * rt_mutex_setprio - set the current priority of a task
5496 * @prio: prio value (kernel-internal form)
5498 * This function changes the 'effective' priority of a task. It does
5499 * not touch ->normal_prio like __setscheduler().
5501 * Used by the rt_mutex code to implement priority inheritance logic.
5503 void rt_mutex_setprio(struct task_struct *p, int prio)
5505 unsigned long flags;
5506 int oldprio, on_rq, running;
5508 const struct sched_class *prev_class = p->sched_class;
5510 BUG_ON(prio < 0 || prio > MAX_PRIO);
5512 rq = task_rq_lock(p, &flags);
5513 update_rq_clock(rq);
5516 on_rq = p->se.on_rq;
5517 running = task_current(rq, p);
5519 dequeue_task(rq, p, 0);
5521 p->sched_class->put_prev_task(rq, p);
5524 p->sched_class = &rt_sched_class;
5526 p->sched_class = &fair_sched_class;
5531 p->sched_class->set_curr_task(rq);
5533 enqueue_task(rq, p, 0);
5535 check_class_changed(rq, p, prev_class, oldprio, running);
5537 task_rq_unlock(rq, &flags);
5542 void set_user_nice(struct task_struct *p, long nice)
5544 int old_prio, delta, on_rq;
5545 unsigned long flags;
5548 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5551 * We have to be careful, if called from sys_setpriority(),
5552 * the task might be in the middle of scheduling on another CPU.
5554 rq = task_rq_lock(p, &flags);
5555 update_rq_clock(rq);
5557 * The RT priorities are set via sched_setscheduler(), but we still
5558 * allow the 'normal' nice value to be set - but as expected
5559 * it wont have any effect on scheduling until the task is
5560 * SCHED_FIFO/SCHED_RR:
5562 if (task_has_rt_policy(p)) {
5563 p->static_prio = NICE_TO_PRIO(nice);
5566 on_rq = p->se.on_rq;
5568 dequeue_task(rq, p, 0);
5570 p->static_prio = NICE_TO_PRIO(nice);
5573 p->prio = effective_prio(p);
5574 delta = p->prio - old_prio;
5577 enqueue_task(rq, p, 0);
5579 * If the task increased its priority or is running and
5580 * lowered its priority, then reschedule its CPU:
5582 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5583 resched_task(rq->curr);
5586 task_rq_unlock(rq, &flags);
5588 EXPORT_SYMBOL(set_user_nice);
5591 * can_nice - check if a task can reduce its nice value
5595 int can_nice(const struct task_struct *p, const int nice)
5597 /* convert nice value [19,-20] to rlimit style value [1,40] */
5598 int nice_rlim = 20 - nice;
5600 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5601 capable(CAP_SYS_NICE));
5604 #ifdef __ARCH_WANT_SYS_NICE
5607 * sys_nice - change the priority of the current process.
5608 * @increment: priority increment
5610 * sys_setpriority is a more generic, but much slower function that
5611 * does similar things.
5613 SYSCALL_DEFINE1(nice, int, increment)
5618 * Setpriority might change our priority at the same moment.
5619 * We don't have to worry. Conceptually one call occurs first
5620 * and we have a single winner.
5622 if (increment < -40)
5627 nice = TASK_NICE(current) + increment;
5633 if (increment < 0 && !can_nice(current, nice))
5636 retval = security_task_setnice(current, nice);
5640 set_user_nice(current, nice);
5647 * task_prio - return the priority value of a given task.
5648 * @p: the task in question.
5650 * This is the priority value as seen by users in /proc.
5651 * RT tasks are offset by -200. Normal tasks are centered
5652 * around 0, value goes from -16 to +15.
5654 int task_prio(const struct task_struct *p)
5656 return p->prio - MAX_RT_PRIO;
5660 * task_nice - return the nice value of a given task.
5661 * @p: the task in question.
5663 int task_nice(const struct task_struct *p)
5665 return TASK_NICE(p);
5667 EXPORT_SYMBOL(task_nice);
5670 * idle_cpu - is a given cpu idle currently?
5671 * @cpu: the processor in question.
5673 int idle_cpu(int cpu)
5675 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5679 * idle_task - return the idle task for a given cpu.
5680 * @cpu: the processor in question.
5682 struct task_struct *idle_task(int cpu)
5684 return cpu_rq(cpu)->idle;
5688 * find_process_by_pid - find a process with a matching PID value.
5689 * @pid: the pid in question.
5691 static struct task_struct *find_process_by_pid(pid_t pid)
5693 return pid ? find_task_by_vpid(pid) : current;
5696 /* Actually do priority change: must hold rq lock. */
5698 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5700 BUG_ON(p->se.on_rq);
5703 switch (p->policy) {
5707 p->sched_class = &fair_sched_class;
5711 p->sched_class = &rt_sched_class;
5715 p->rt_priority = prio;
5716 p->normal_prio = normal_prio(p);
5717 /* we are holding p->pi_lock already */
5718 p->prio = rt_mutex_getprio(p);
5723 * check the target process has a UID that matches the current process's
5725 static bool check_same_owner(struct task_struct *p)
5727 const struct cred *cred = current_cred(), *pcred;
5731 pcred = __task_cred(p);
5732 match = (cred->euid == pcred->euid ||
5733 cred->euid == pcred->uid);
5738 static int __sched_setscheduler(struct task_struct *p, int policy,
5739 struct sched_param *param, bool user)
5741 int retval, oldprio, oldpolicy = -1, on_rq, running;
5742 unsigned long flags;
5743 const struct sched_class *prev_class = p->sched_class;
5746 /* may grab non-irq protected spin_locks */
5747 BUG_ON(in_interrupt());
5749 /* double check policy once rq lock held */
5751 policy = oldpolicy = p->policy;
5752 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5753 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5754 policy != SCHED_IDLE)
5757 * Valid priorities for SCHED_FIFO and SCHED_RR are
5758 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5759 * SCHED_BATCH and SCHED_IDLE is 0.
5761 if (param->sched_priority < 0 ||
5762 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5763 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5765 if (rt_policy(policy) != (param->sched_priority != 0))
5769 * Allow unprivileged RT tasks to decrease priority:
5771 if (user && !capable(CAP_SYS_NICE)) {
5772 if (rt_policy(policy)) {
5773 unsigned long rlim_rtprio;
5775 if (!lock_task_sighand(p, &flags))
5777 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5778 unlock_task_sighand(p, &flags);
5780 /* can't set/change the rt policy */
5781 if (policy != p->policy && !rlim_rtprio)
5784 /* can't increase priority */
5785 if (param->sched_priority > p->rt_priority &&
5786 param->sched_priority > rlim_rtprio)
5790 * Like positive nice levels, dont allow tasks to
5791 * move out of SCHED_IDLE either:
5793 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5796 /* can't change other user's priorities */
5797 if (!check_same_owner(p))
5802 #ifdef CONFIG_RT_GROUP_SCHED
5804 * Do not allow realtime tasks into groups that have no runtime
5807 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5808 task_group(p)->rt_bandwidth.rt_runtime == 0)
5812 retval = security_task_setscheduler(p, policy, param);
5818 * make sure no PI-waiters arrive (or leave) while we are
5819 * changing the priority of the task:
5821 spin_lock_irqsave(&p->pi_lock, flags);
5823 * To be able to change p->policy safely, the apropriate
5824 * runqueue lock must be held.
5826 rq = __task_rq_lock(p);
5827 /* recheck policy now with rq lock held */
5828 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5829 policy = oldpolicy = -1;
5830 __task_rq_unlock(rq);
5831 spin_unlock_irqrestore(&p->pi_lock, flags);
5834 update_rq_clock(rq);
5835 on_rq = p->se.on_rq;
5836 running = task_current(rq, p);
5838 deactivate_task(rq, p, 0);
5840 p->sched_class->put_prev_task(rq, p);
5843 __setscheduler(rq, p, policy, param->sched_priority);
5846 p->sched_class->set_curr_task(rq);
5848 activate_task(rq, p, 0);
5850 check_class_changed(rq, p, prev_class, oldprio, running);
5852 __task_rq_unlock(rq);
5853 spin_unlock_irqrestore(&p->pi_lock, flags);
5855 rt_mutex_adjust_pi(p);
5861 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5862 * @p: the task in question.
5863 * @policy: new policy.
5864 * @param: structure containing the new RT priority.
5866 * NOTE that the task may be already dead.
5868 int sched_setscheduler(struct task_struct *p, int policy,
5869 struct sched_param *param)
5871 return __sched_setscheduler(p, policy, param, true);
5873 EXPORT_SYMBOL_GPL(sched_setscheduler);
5876 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5877 * @p: the task in question.
5878 * @policy: new policy.
5879 * @param: structure containing the new RT priority.
5881 * Just like sched_setscheduler, only don't bother checking if the
5882 * current context has permission. For example, this is needed in
5883 * stop_machine(): we create temporary high priority worker threads,
5884 * but our caller might not have that capability.
5886 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5887 struct sched_param *param)
5889 return __sched_setscheduler(p, policy, param, false);
5893 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5895 struct sched_param lparam;
5896 struct task_struct *p;
5899 if (!param || pid < 0)
5901 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5906 p = find_process_by_pid(pid);
5908 retval = sched_setscheduler(p, policy, &lparam);
5915 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5916 * @pid: the pid in question.
5917 * @policy: new policy.
5918 * @param: structure containing the new RT priority.
5920 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5921 struct sched_param __user *, param)
5923 /* negative values for policy are not valid */
5927 return do_sched_setscheduler(pid, policy, param);
5931 * sys_sched_setparam - set/change the RT priority of a thread
5932 * @pid: the pid in question.
5933 * @param: structure containing the new RT priority.
5935 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5937 return do_sched_setscheduler(pid, -1, param);
5941 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5942 * @pid: the pid in question.
5944 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5946 struct task_struct *p;
5953 read_lock(&tasklist_lock);
5954 p = find_process_by_pid(pid);
5956 retval = security_task_getscheduler(p);
5960 read_unlock(&tasklist_lock);
5965 * sys_sched_getscheduler - get the RT priority of a thread
5966 * @pid: the pid in question.
5967 * @param: structure containing the RT priority.
5969 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5971 struct sched_param lp;
5972 struct task_struct *p;
5975 if (!param || pid < 0)
5978 read_lock(&tasklist_lock);
5979 p = find_process_by_pid(pid);
5984 retval = security_task_getscheduler(p);
5988 lp.sched_priority = p->rt_priority;
5989 read_unlock(&tasklist_lock);
5992 * This one might sleep, we cannot do it with a spinlock held ...
5994 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5999 read_unlock(&tasklist_lock);
6003 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6005 cpumask_var_t cpus_allowed, new_mask;
6006 struct task_struct *p;
6010 read_lock(&tasklist_lock);
6012 p = find_process_by_pid(pid);
6014 read_unlock(&tasklist_lock);
6020 * It is not safe to call set_cpus_allowed with the
6021 * tasklist_lock held. We will bump the task_struct's
6022 * usage count and then drop tasklist_lock.
6025 read_unlock(&tasklist_lock);
6027 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6031 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6033 goto out_free_cpus_allowed;
6036 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6039 retval = security_task_setscheduler(p, 0, NULL);
6043 cpuset_cpus_allowed(p, cpus_allowed);
6044 cpumask_and(new_mask, in_mask, cpus_allowed);
6046 retval = set_cpus_allowed_ptr(p, new_mask);
6049 cpuset_cpus_allowed(p, cpus_allowed);
6050 if (!cpumask_subset(new_mask, cpus_allowed)) {
6052 * We must have raced with a concurrent cpuset
6053 * update. Just reset the cpus_allowed to the
6054 * cpuset's cpus_allowed
6056 cpumask_copy(new_mask, cpus_allowed);
6061 free_cpumask_var(new_mask);
6062 out_free_cpus_allowed:
6063 free_cpumask_var(cpus_allowed);
6070 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6071 struct cpumask *new_mask)
6073 if (len < cpumask_size())
6074 cpumask_clear(new_mask);
6075 else if (len > cpumask_size())
6076 len = cpumask_size();
6078 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6082 * sys_sched_setaffinity - set the cpu affinity of a process
6083 * @pid: pid of the process
6084 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6085 * @user_mask_ptr: user-space pointer to the new cpu mask
6087 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6088 unsigned long __user *, user_mask_ptr)
6090 cpumask_var_t new_mask;
6093 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6096 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6098 retval = sched_setaffinity(pid, new_mask);
6099 free_cpumask_var(new_mask);
6103 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6105 struct task_struct *p;
6109 read_lock(&tasklist_lock);
6112 p = find_process_by_pid(pid);
6116 retval = security_task_getscheduler(p);
6120 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6123 read_unlock(&tasklist_lock);
6130 * sys_sched_getaffinity - get the cpu affinity of a process
6131 * @pid: pid of the process
6132 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6133 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6135 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6136 unsigned long __user *, user_mask_ptr)
6141 if (len < cpumask_size())
6144 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6147 ret = sched_getaffinity(pid, mask);
6149 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6152 ret = cpumask_size();
6154 free_cpumask_var(mask);
6160 * sys_sched_yield - yield the current processor to other threads.
6162 * This function yields the current CPU to other tasks. If there are no
6163 * other threads running on this CPU then this function will return.
6165 SYSCALL_DEFINE0(sched_yield)
6167 struct rq *rq = this_rq_lock();
6169 schedstat_inc(rq, yld_count);
6170 current->sched_class->yield_task(rq);
6173 * Since we are going to call schedule() anyway, there's
6174 * no need to preempt or enable interrupts:
6176 __release(rq->lock);
6177 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6178 _raw_spin_unlock(&rq->lock);
6179 preempt_enable_no_resched();
6186 static void __cond_resched(void)
6188 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6189 __might_sleep(__FILE__, __LINE__);
6192 * The BKS might be reacquired before we have dropped
6193 * PREEMPT_ACTIVE, which could trigger a second
6194 * cond_resched() call.
6197 add_preempt_count(PREEMPT_ACTIVE);
6199 sub_preempt_count(PREEMPT_ACTIVE);
6200 } while (need_resched());
6203 int __sched _cond_resched(void)
6205 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6206 system_state == SYSTEM_RUNNING) {
6212 EXPORT_SYMBOL(_cond_resched);
6215 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6216 * call schedule, and on return reacquire the lock.
6218 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6219 * operations here to prevent schedule() from being called twice (once via
6220 * spin_unlock(), once by hand).
6222 int cond_resched_lock(spinlock_t *lock)
6224 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6227 if (spin_needbreak(lock) || resched) {
6229 if (resched && need_resched())
6238 EXPORT_SYMBOL(cond_resched_lock);
6240 int __sched cond_resched_softirq(void)
6242 BUG_ON(!in_softirq());
6244 if (need_resched() && system_state == SYSTEM_RUNNING) {
6252 EXPORT_SYMBOL(cond_resched_softirq);
6255 * yield - yield the current processor to other threads.
6257 * This is a shortcut for kernel-space yielding - it marks the
6258 * thread runnable and calls sys_sched_yield().
6260 void __sched yield(void)
6262 set_current_state(TASK_RUNNING);
6265 EXPORT_SYMBOL(yield);
6268 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6269 * that process accounting knows that this is a task in IO wait state.
6271 * But don't do that if it is a deliberate, throttling IO wait (this task
6272 * has set its backing_dev_info: the queue against which it should throttle)
6274 void __sched io_schedule(void)
6276 struct rq *rq = &__raw_get_cpu_var(runqueues);
6278 delayacct_blkio_start();
6279 atomic_inc(&rq->nr_iowait);
6281 atomic_dec(&rq->nr_iowait);
6282 delayacct_blkio_end();
6284 EXPORT_SYMBOL(io_schedule);
6286 long __sched io_schedule_timeout(long timeout)
6288 struct rq *rq = &__raw_get_cpu_var(runqueues);
6291 delayacct_blkio_start();
6292 atomic_inc(&rq->nr_iowait);
6293 ret = schedule_timeout(timeout);
6294 atomic_dec(&rq->nr_iowait);
6295 delayacct_blkio_end();
6300 * sys_sched_get_priority_max - return maximum RT priority.
6301 * @policy: scheduling class.
6303 * this syscall returns the maximum rt_priority that can be used
6304 * by a given scheduling class.
6306 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6313 ret = MAX_USER_RT_PRIO-1;
6325 * sys_sched_get_priority_min - return minimum RT priority.
6326 * @policy: scheduling class.
6328 * this syscall returns the minimum rt_priority that can be used
6329 * by a given scheduling class.
6331 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6349 * sys_sched_rr_get_interval - return the default timeslice of a process.
6350 * @pid: pid of the process.
6351 * @interval: userspace pointer to the timeslice value.
6353 * this syscall writes the default timeslice value of a given process
6354 * into the user-space timespec buffer. A value of '0' means infinity.
6356 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6357 struct timespec __user *, interval)
6359 struct task_struct *p;
6360 unsigned int time_slice;
6368 read_lock(&tasklist_lock);
6369 p = find_process_by_pid(pid);
6373 retval = security_task_getscheduler(p);
6378 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6379 * tasks that are on an otherwise idle runqueue:
6382 if (p->policy == SCHED_RR) {
6383 time_slice = DEF_TIMESLICE;
6384 } else if (p->policy != SCHED_FIFO) {
6385 struct sched_entity *se = &p->se;
6386 unsigned long flags;
6389 rq = task_rq_lock(p, &flags);
6390 if (rq->cfs.load.weight)
6391 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6392 task_rq_unlock(rq, &flags);
6394 read_unlock(&tasklist_lock);
6395 jiffies_to_timespec(time_slice, &t);
6396 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6400 read_unlock(&tasklist_lock);
6404 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6406 void sched_show_task(struct task_struct *p)
6408 unsigned long free = 0;
6411 state = p->state ? __ffs(p->state) + 1 : 0;
6412 printk(KERN_INFO "%-13.13s %c", p->comm,
6413 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6414 #if BITS_PER_LONG == 32
6415 if (state == TASK_RUNNING)
6416 printk(KERN_CONT " running ");
6418 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6420 if (state == TASK_RUNNING)
6421 printk(KERN_CONT " running task ");
6423 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6425 #ifdef CONFIG_DEBUG_STACK_USAGE
6426 free = stack_not_used(p);
6428 printk(KERN_CONT "%5lu %5d %6d\n", free,
6429 task_pid_nr(p), task_pid_nr(p->real_parent));
6431 show_stack(p, NULL);
6434 void show_state_filter(unsigned long state_filter)
6436 struct task_struct *g, *p;
6438 #if BITS_PER_LONG == 32
6440 " task PC stack pid father\n");
6443 " task PC stack pid father\n");
6445 read_lock(&tasklist_lock);
6446 do_each_thread(g, p) {
6448 * reset the NMI-timeout, listing all files on a slow
6449 * console might take alot of time:
6451 touch_nmi_watchdog();
6452 if (!state_filter || (p->state & state_filter))
6454 } while_each_thread(g, p);
6456 touch_all_softlockup_watchdogs();
6458 #ifdef CONFIG_SCHED_DEBUG
6459 sysrq_sched_debug_show();
6461 read_unlock(&tasklist_lock);
6463 * Only show locks if all tasks are dumped:
6465 if (state_filter == -1)
6466 debug_show_all_locks();
6469 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6471 idle->sched_class = &idle_sched_class;
6475 * init_idle - set up an idle thread for a given CPU
6476 * @idle: task in question
6477 * @cpu: cpu the idle task belongs to
6479 * NOTE: this function does not set the idle thread's NEED_RESCHED
6480 * flag, to make booting more robust.
6482 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6484 struct rq *rq = cpu_rq(cpu);
6485 unsigned long flags;
6487 spin_lock_irqsave(&rq->lock, flags);
6490 idle->se.exec_start = sched_clock();
6492 idle->prio = idle->normal_prio = MAX_PRIO;
6493 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6494 __set_task_cpu(idle, cpu);
6496 rq->curr = rq->idle = idle;
6497 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6500 spin_unlock_irqrestore(&rq->lock, flags);
6502 /* Set the preempt count _outside_ the spinlocks! */
6503 #if defined(CONFIG_PREEMPT)
6504 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6506 task_thread_info(idle)->preempt_count = 0;
6509 * The idle tasks have their own, simple scheduling class:
6511 idle->sched_class = &idle_sched_class;
6512 ftrace_graph_init_task(idle);
6516 * In a system that switches off the HZ timer nohz_cpu_mask
6517 * indicates which cpus entered this state. This is used
6518 * in the rcu update to wait only for active cpus. For system
6519 * which do not switch off the HZ timer nohz_cpu_mask should
6520 * always be CPU_BITS_NONE.
6522 cpumask_var_t nohz_cpu_mask;
6525 * Increase the granularity value when there are more CPUs,
6526 * because with more CPUs the 'effective latency' as visible
6527 * to users decreases. But the relationship is not linear,
6528 * so pick a second-best guess by going with the log2 of the
6531 * This idea comes from the SD scheduler of Con Kolivas:
6533 static inline void sched_init_granularity(void)
6535 unsigned int factor = 1 + ilog2(num_online_cpus());
6536 const unsigned long limit = 200000000;
6538 sysctl_sched_min_granularity *= factor;
6539 if (sysctl_sched_min_granularity > limit)
6540 sysctl_sched_min_granularity = limit;
6542 sysctl_sched_latency *= factor;
6543 if (sysctl_sched_latency > limit)
6544 sysctl_sched_latency = limit;
6546 sysctl_sched_wakeup_granularity *= factor;
6548 sysctl_sched_shares_ratelimit *= factor;
6553 * This is how migration works:
6555 * 1) we queue a struct migration_req structure in the source CPU's
6556 * runqueue and wake up that CPU's migration thread.
6557 * 2) we down() the locked semaphore => thread blocks.
6558 * 3) migration thread wakes up (implicitly it forces the migrated
6559 * thread off the CPU)
6560 * 4) it gets the migration request and checks whether the migrated
6561 * task is still in the wrong runqueue.
6562 * 5) if it's in the wrong runqueue then the migration thread removes
6563 * it and puts it into the right queue.
6564 * 6) migration thread up()s the semaphore.
6565 * 7) we wake up and the migration is done.
6569 * Change a given task's CPU affinity. Migrate the thread to a
6570 * proper CPU and schedule it away if the CPU it's executing on
6571 * is removed from the allowed bitmask.
6573 * NOTE: the caller must have a valid reference to the task, the
6574 * task must not exit() & deallocate itself prematurely. The
6575 * call is not atomic; no spinlocks may be held.
6577 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6579 struct migration_req req;
6580 unsigned long flags;
6584 rq = task_rq_lock(p, &flags);
6585 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6590 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6591 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6596 if (p->sched_class->set_cpus_allowed)
6597 p->sched_class->set_cpus_allowed(p, new_mask);
6599 cpumask_copy(&p->cpus_allowed, new_mask);
6600 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6603 /* Can the task run on the task's current CPU? If so, we're done */
6604 if (cpumask_test_cpu(task_cpu(p), new_mask))
6607 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6608 /* Need help from migration thread: drop lock and wait. */
6609 task_rq_unlock(rq, &flags);
6610 wake_up_process(rq->migration_thread);
6611 wait_for_completion(&req.done);
6612 tlb_migrate_finish(p->mm);
6616 task_rq_unlock(rq, &flags);
6620 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6623 * Move (not current) task off this cpu, onto dest cpu. We're doing
6624 * this because either it can't run here any more (set_cpus_allowed()
6625 * away from this CPU, or CPU going down), or because we're
6626 * attempting to rebalance this task on exec (sched_exec).
6628 * So we race with normal scheduler movements, but that's OK, as long
6629 * as the task is no longer on this CPU.
6631 * Returns non-zero if task was successfully migrated.
6633 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6635 struct rq *rq_dest, *rq_src;
6638 if (unlikely(!cpu_active(dest_cpu)))
6641 rq_src = cpu_rq(src_cpu);
6642 rq_dest = cpu_rq(dest_cpu);
6644 double_rq_lock(rq_src, rq_dest);
6645 /* Already moved. */
6646 if (task_cpu(p) != src_cpu)
6648 /* Affinity changed (again). */
6649 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6652 on_rq = p->se.on_rq;
6654 deactivate_task(rq_src, p, 0);
6656 set_task_cpu(p, dest_cpu);
6658 activate_task(rq_dest, p, 0);
6659 check_preempt_curr(rq_dest, p, 0);
6664 double_rq_unlock(rq_src, rq_dest);
6669 * migration_thread - this is a highprio system thread that performs
6670 * thread migration by bumping thread off CPU then 'pushing' onto
6673 static int migration_thread(void *data)
6675 int cpu = (long)data;
6679 BUG_ON(rq->migration_thread != current);
6681 set_current_state(TASK_INTERRUPTIBLE);
6682 while (!kthread_should_stop()) {
6683 struct migration_req *req;
6684 struct list_head *head;
6686 spin_lock_irq(&rq->lock);
6688 if (cpu_is_offline(cpu)) {
6689 spin_unlock_irq(&rq->lock);
6693 if (rq->active_balance) {
6694 active_load_balance(rq, cpu);
6695 rq->active_balance = 0;
6698 head = &rq->migration_queue;
6700 if (list_empty(head)) {
6701 spin_unlock_irq(&rq->lock);
6703 set_current_state(TASK_INTERRUPTIBLE);
6706 req = list_entry(head->next, struct migration_req, list);
6707 list_del_init(head->next);
6709 spin_unlock(&rq->lock);
6710 __migrate_task(req->task, cpu, req->dest_cpu);
6713 complete(&req->done);
6715 __set_current_state(TASK_RUNNING);
6719 /* Wait for kthread_stop */
6720 set_current_state(TASK_INTERRUPTIBLE);
6721 while (!kthread_should_stop()) {
6723 set_current_state(TASK_INTERRUPTIBLE);
6725 __set_current_state(TASK_RUNNING);
6729 #ifdef CONFIG_HOTPLUG_CPU
6731 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6735 local_irq_disable();
6736 ret = __migrate_task(p, src_cpu, dest_cpu);
6742 * Figure out where task on dead CPU should go, use force if necessary.
6744 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6747 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6750 /* Look for allowed, online CPU in same node. */
6751 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6752 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6755 /* Any allowed, online CPU? */
6756 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6757 if (dest_cpu < nr_cpu_ids)
6760 /* No more Mr. Nice Guy. */
6761 if (dest_cpu >= nr_cpu_ids) {
6762 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6763 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6766 * Don't tell them about moving exiting tasks or
6767 * kernel threads (both mm NULL), since they never
6770 if (p->mm && printk_ratelimit()) {
6771 printk(KERN_INFO "process %d (%s) no "
6772 "longer affine to cpu%d\n",
6773 task_pid_nr(p), p->comm, dead_cpu);
6778 /* It can have affinity changed while we were choosing. */
6779 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6784 * While a dead CPU has no uninterruptible tasks queued at this point,
6785 * it might still have a nonzero ->nr_uninterruptible counter, because
6786 * for performance reasons the counter is not stricly tracking tasks to
6787 * their home CPUs. So we just add the counter to another CPU's counter,
6788 * to keep the global sum constant after CPU-down:
6790 static void migrate_nr_uninterruptible(struct rq *rq_src)
6792 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6793 unsigned long flags;
6795 local_irq_save(flags);
6796 double_rq_lock(rq_src, rq_dest);
6797 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6798 rq_src->nr_uninterruptible = 0;
6799 double_rq_unlock(rq_src, rq_dest);
6800 local_irq_restore(flags);
6803 /* Run through task list and migrate tasks from the dead cpu. */
6804 static void migrate_live_tasks(int src_cpu)
6806 struct task_struct *p, *t;
6808 read_lock(&tasklist_lock);
6810 do_each_thread(t, p) {
6814 if (task_cpu(p) == src_cpu)
6815 move_task_off_dead_cpu(src_cpu, p);
6816 } while_each_thread(t, p);
6818 read_unlock(&tasklist_lock);
6822 * Schedules idle task to be the next runnable task on current CPU.
6823 * It does so by boosting its priority to highest possible.
6824 * Used by CPU offline code.
6826 void sched_idle_next(void)
6828 int this_cpu = smp_processor_id();
6829 struct rq *rq = cpu_rq(this_cpu);
6830 struct task_struct *p = rq->idle;
6831 unsigned long flags;
6833 /* cpu has to be offline */
6834 BUG_ON(cpu_online(this_cpu));
6837 * Strictly not necessary since rest of the CPUs are stopped by now
6838 * and interrupts disabled on the current cpu.
6840 spin_lock_irqsave(&rq->lock, flags);
6842 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6844 update_rq_clock(rq);
6845 activate_task(rq, p, 0);
6847 spin_unlock_irqrestore(&rq->lock, flags);
6851 * Ensures that the idle task is using init_mm right before its cpu goes
6854 void idle_task_exit(void)
6856 struct mm_struct *mm = current->active_mm;
6858 BUG_ON(cpu_online(smp_processor_id()));
6861 switch_mm(mm, &init_mm, current);
6865 /* called under rq->lock with disabled interrupts */
6866 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6868 struct rq *rq = cpu_rq(dead_cpu);
6870 /* Must be exiting, otherwise would be on tasklist. */
6871 BUG_ON(!p->exit_state);
6873 /* Cannot have done final schedule yet: would have vanished. */
6874 BUG_ON(p->state == TASK_DEAD);
6879 * Drop lock around migration; if someone else moves it,
6880 * that's OK. No task can be added to this CPU, so iteration is
6883 spin_unlock_irq(&rq->lock);
6884 move_task_off_dead_cpu(dead_cpu, p);
6885 spin_lock_irq(&rq->lock);
6890 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6891 static void migrate_dead_tasks(unsigned int dead_cpu)
6893 struct rq *rq = cpu_rq(dead_cpu);
6894 struct task_struct *next;
6897 if (!rq->nr_running)
6899 update_rq_clock(rq);
6900 next = pick_next_task(rq);
6903 next->sched_class->put_prev_task(rq, next);
6904 migrate_dead(dead_cpu, next);
6908 #endif /* CONFIG_HOTPLUG_CPU */
6910 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6912 static struct ctl_table sd_ctl_dir[] = {
6914 .procname = "sched_domain",
6920 static struct ctl_table sd_ctl_root[] = {
6922 .ctl_name = CTL_KERN,
6923 .procname = "kernel",
6925 .child = sd_ctl_dir,
6930 static struct ctl_table *sd_alloc_ctl_entry(int n)
6932 struct ctl_table *entry =
6933 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6938 static void sd_free_ctl_entry(struct ctl_table **tablep)
6940 struct ctl_table *entry;
6943 * In the intermediate directories, both the child directory and
6944 * procname are dynamically allocated and could fail but the mode
6945 * will always be set. In the lowest directory the names are
6946 * static strings and all have proc handlers.
6948 for (entry = *tablep; entry->mode; entry++) {
6950 sd_free_ctl_entry(&entry->child);
6951 if (entry->proc_handler == NULL)
6952 kfree(entry->procname);
6960 set_table_entry(struct ctl_table *entry,
6961 const char *procname, void *data, int maxlen,
6962 mode_t mode, proc_handler *proc_handler)
6964 entry->procname = procname;
6966 entry->maxlen = maxlen;
6968 entry->proc_handler = proc_handler;
6971 static struct ctl_table *
6972 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6974 struct ctl_table *table = sd_alloc_ctl_entry(13);
6979 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6980 sizeof(long), 0644, proc_doulongvec_minmax);
6981 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6982 sizeof(long), 0644, proc_doulongvec_minmax);
6983 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6984 sizeof(int), 0644, proc_dointvec_minmax);
6985 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6986 sizeof(int), 0644, proc_dointvec_minmax);
6987 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6988 sizeof(int), 0644, proc_dointvec_minmax);
6989 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6990 sizeof(int), 0644, proc_dointvec_minmax);
6991 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6992 sizeof(int), 0644, proc_dointvec_minmax);
6993 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6994 sizeof(int), 0644, proc_dointvec_minmax);
6995 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6996 sizeof(int), 0644, proc_dointvec_minmax);
6997 set_table_entry(&table[9], "cache_nice_tries",
6998 &sd->cache_nice_tries,
6999 sizeof(int), 0644, proc_dointvec_minmax);
7000 set_table_entry(&table[10], "flags", &sd->flags,
7001 sizeof(int), 0644, proc_dointvec_minmax);
7002 set_table_entry(&table[11], "name", sd->name,
7003 CORENAME_MAX_SIZE, 0444, proc_dostring);
7004 /* &table[12] is terminator */
7009 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7011 struct ctl_table *entry, *table;
7012 struct sched_domain *sd;
7013 int domain_num = 0, i;
7016 for_each_domain(cpu, sd)
7018 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7023 for_each_domain(cpu, sd) {
7024 snprintf(buf, 32, "domain%d", i);
7025 entry->procname = kstrdup(buf, GFP_KERNEL);
7027 entry->child = sd_alloc_ctl_domain_table(sd);
7034 static struct ctl_table_header *sd_sysctl_header;
7035 static void register_sched_domain_sysctl(void)
7037 int i, cpu_num = num_online_cpus();
7038 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7041 WARN_ON(sd_ctl_dir[0].child);
7042 sd_ctl_dir[0].child = entry;
7047 for_each_online_cpu(i) {
7048 snprintf(buf, 32, "cpu%d", i);
7049 entry->procname = kstrdup(buf, GFP_KERNEL);
7051 entry->child = sd_alloc_ctl_cpu_table(i);
7055 WARN_ON(sd_sysctl_header);
7056 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7059 /* may be called multiple times per register */
7060 static void unregister_sched_domain_sysctl(void)
7062 if (sd_sysctl_header)
7063 unregister_sysctl_table(sd_sysctl_header);
7064 sd_sysctl_header = NULL;
7065 if (sd_ctl_dir[0].child)
7066 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7069 static void register_sched_domain_sysctl(void)
7072 static void unregister_sched_domain_sysctl(void)
7077 static void set_rq_online(struct rq *rq)
7080 const struct sched_class *class;
7082 cpumask_set_cpu(rq->cpu, rq->rd->online);
7085 for_each_class(class) {
7086 if (class->rq_online)
7087 class->rq_online(rq);
7092 static void set_rq_offline(struct rq *rq)
7095 const struct sched_class *class;
7097 for_each_class(class) {
7098 if (class->rq_offline)
7099 class->rq_offline(rq);
7102 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7108 * migration_call - callback that gets triggered when a CPU is added.
7109 * Here we can start up the necessary migration thread for the new CPU.
7111 static int __cpuinit
7112 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7114 struct task_struct *p;
7115 int cpu = (long)hcpu;
7116 unsigned long flags;
7121 case CPU_UP_PREPARE:
7122 case CPU_UP_PREPARE_FROZEN:
7123 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7126 kthread_bind(p, cpu);
7127 /* Must be high prio: stop_machine expects to yield to it. */
7128 rq = task_rq_lock(p, &flags);
7129 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7130 task_rq_unlock(rq, &flags);
7131 cpu_rq(cpu)->migration_thread = p;
7135 case CPU_ONLINE_FROZEN:
7136 /* Strictly unnecessary, as first user will wake it. */
7137 wake_up_process(cpu_rq(cpu)->migration_thread);
7139 /* Update our root-domain */
7141 spin_lock_irqsave(&rq->lock, flags);
7143 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7147 spin_unlock_irqrestore(&rq->lock, flags);
7150 #ifdef CONFIG_HOTPLUG_CPU
7151 case CPU_UP_CANCELED:
7152 case CPU_UP_CANCELED_FROZEN:
7153 if (!cpu_rq(cpu)->migration_thread)
7155 /* Unbind it from offline cpu so it can run. Fall thru. */
7156 kthread_bind(cpu_rq(cpu)->migration_thread,
7157 cpumask_any(cpu_online_mask));
7158 kthread_stop(cpu_rq(cpu)->migration_thread);
7159 cpu_rq(cpu)->migration_thread = NULL;
7163 case CPU_DEAD_FROZEN:
7164 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7165 migrate_live_tasks(cpu);
7167 kthread_stop(rq->migration_thread);
7168 rq->migration_thread = NULL;
7169 /* Idle task back to normal (off runqueue, low prio) */
7170 spin_lock_irq(&rq->lock);
7171 update_rq_clock(rq);
7172 deactivate_task(rq, rq->idle, 0);
7173 rq->idle->static_prio = MAX_PRIO;
7174 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7175 rq->idle->sched_class = &idle_sched_class;
7176 migrate_dead_tasks(cpu);
7177 spin_unlock_irq(&rq->lock);
7179 migrate_nr_uninterruptible(rq);
7180 BUG_ON(rq->nr_running != 0);
7183 * No need to migrate the tasks: it was best-effort if
7184 * they didn't take sched_hotcpu_mutex. Just wake up
7187 spin_lock_irq(&rq->lock);
7188 while (!list_empty(&rq->migration_queue)) {
7189 struct migration_req *req;
7191 req = list_entry(rq->migration_queue.next,
7192 struct migration_req, list);
7193 list_del_init(&req->list);
7194 spin_unlock_irq(&rq->lock);
7195 complete(&req->done);
7196 spin_lock_irq(&rq->lock);
7198 spin_unlock_irq(&rq->lock);
7202 case CPU_DYING_FROZEN:
7203 /* Update our root-domain */
7205 spin_lock_irqsave(&rq->lock, flags);
7207 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7210 spin_unlock_irqrestore(&rq->lock, flags);
7217 /* Register at highest priority so that task migration (migrate_all_tasks)
7218 * happens before everything else.
7220 static struct notifier_block __cpuinitdata migration_notifier = {
7221 .notifier_call = migration_call,
7225 static int __init migration_init(void)
7227 void *cpu = (void *)(long)smp_processor_id();
7230 /* Start one for the boot CPU: */
7231 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7232 BUG_ON(err == NOTIFY_BAD);
7233 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7234 register_cpu_notifier(&migration_notifier);
7238 early_initcall(migration_init);
7243 #ifdef CONFIG_SCHED_DEBUG
7245 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7246 struct cpumask *groupmask)
7248 struct sched_group *group = sd->groups;
7251 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7252 cpumask_clear(groupmask);
7254 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7256 if (!(sd->flags & SD_LOAD_BALANCE)) {
7257 printk("does not load-balance\n");
7259 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7264 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7266 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7267 printk(KERN_ERR "ERROR: domain->span does not contain "
7270 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7271 printk(KERN_ERR "ERROR: domain->groups does not contain"
7275 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7279 printk(KERN_ERR "ERROR: group is NULL\n");
7283 if (!group->__cpu_power) {
7284 printk(KERN_CONT "\n");
7285 printk(KERN_ERR "ERROR: domain->cpu_power not "
7290 if (!cpumask_weight(sched_group_cpus(group))) {
7291 printk(KERN_CONT "\n");
7292 printk(KERN_ERR "ERROR: empty group\n");
7296 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7297 printk(KERN_CONT "\n");
7298 printk(KERN_ERR "ERROR: repeated CPUs\n");
7302 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7304 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7305 printk(KERN_CONT " %s", str);
7307 group = group->next;
7308 } while (group != sd->groups);
7309 printk(KERN_CONT "\n");
7311 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7312 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7315 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7316 printk(KERN_ERR "ERROR: parent span is not a superset "
7317 "of domain->span\n");
7321 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7323 cpumask_var_t groupmask;
7327 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7331 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7333 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7334 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7339 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7346 free_cpumask_var(groupmask);
7348 #else /* !CONFIG_SCHED_DEBUG */
7349 # define sched_domain_debug(sd, cpu) do { } while (0)
7350 #endif /* CONFIG_SCHED_DEBUG */
7352 static int sd_degenerate(struct sched_domain *sd)
7354 if (cpumask_weight(sched_domain_span(sd)) == 1)
7357 /* Following flags need at least 2 groups */
7358 if (sd->flags & (SD_LOAD_BALANCE |
7359 SD_BALANCE_NEWIDLE |
7363 SD_SHARE_PKG_RESOURCES)) {
7364 if (sd->groups != sd->groups->next)
7368 /* Following flags don't use groups */
7369 if (sd->flags & (SD_WAKE_IDLE |
7378 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7380 unsigned long cflags = sd->flags, pflags = parent->flags;
7382 if (sd_degenerate(parent))
7385 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7388 /* Does parent contain flags not in child? */
7389 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7390 if (cflags & SD_WAKE_AFFINE)
7391 pflags &= ~SD_WAKE_BALANCE;
7392 /* Flags needing groups don't count if only 1 group in parent */
7393 if (parent->groups == parent->groups->next) {
7394 pflags &= ~(SD_LOAD_BALANCE |
7395 SD_BALANCE_NEWIDLE |
7399 SD_SHARE_PKG_RESOURCES);
7400 if (nr_node_ids == 1)
7401 pflags &= ~SD_SERIALIZE;
7403 if (~cflags & pflags)
7409 static void free_rootdomain(struct root_domain *rd)
7411 cpupri_cleanup(&rd->cpupri);
7413 free_cpumask_var(rd->rto_mask);
7414 free_cpumask_var(rd->online);
7415 free_cpumask_var(rd->span);
7419 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7421 struct root_domain *old_rd = NULL;
7422 unsigned long flags;
7424 spin_lock_irqsave(&rq->lock, flags);
7429 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7432 cpumask_clear_cpu(rq->cpu, old_rd->span);
7435 * If we dont want to free the old_rt yet then
7436 * set old_rd to NULL to skip the freeing later
7439 if (!atomic_dec_and_test(&old_rd->refcount))
7443 atomic_inc(&rd->refcount);
7446 cpumask_set_cpu(rq->cpu, rd->span);
7447 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7450 spin_unlock_irqrestore(&rq->lock, flags);
7453 free_rootdomain(old_rd);
7456 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7458 memset(rd, 0, sizeof(*rd));
7461 alloc_bootmem_cpumask_var(&def_root_domain.span);
7462 alloc_bootmem_cpumask_var(&def_root_domain.online);
7463 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7464 cpupri_init(&rd->cpupri, true);
7468 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7470 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7472 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7475 if (cpupri_init(&rd->cpupri, false) != 0)
7480 free_cpumask_var(rd->rto_mask);
7482 free_cpumask_var(rd->online);
7484 free_cpumask_var(rd->span);
7489 static void init_defrootdomain(void)
7491 init_rootdomain(&def_root_domain, true);
7493 atomic_set(&def_root_domain.refcount, 1);
7496 static struct root_domain *alloc_rootdomain(void)
7498 struct root_domain *rd;
7500 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7504 if (init_rootdomain(rd, false) != 0) {
7513 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7514 * hold the hotplug lock.
7517 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7519 struct rq *rq = cpu_rq(cpu);
7520 struct sched_domain *tmp;
7522 /* Remove the sched domains which do not contribute to scheduling. */
7523 for (tmp = sd; tmp; ) {
7524 struct sched_domain *parent = tmp->parent;
7528 if (sd_parent_degenerate(tmp, parent)) {
7529 tmp->parent = parent->parent;
7531 parent->parent->child = tmp;
7536 if (sd && sd_degenerate(sd)) {
7542 sched_domain_debug(sd, cpu);
7544 rq_attach_root(rq, rd);
7545 rcu_assign_pointer(rq->sd, sd);
7548 /* cpus with isolated domains */
7549 static cpumask_var_t cpu_isolated_map;
7551 /* Setup the mask of cpus configured for isolated domains */
7552 static int __init isolated_cpu_setup(char *str)
7554 cpulist_parse(str, cpu_isolated_map);
7558 __setup("isolcpus=", isolated_cpu_setup);
7561 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7562 * to a function which identifies what group(along with sched group) a CPU
7563 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7564 * (due to the fact that we keep track of groups covered with a struct cpumask).
7566 * init_sched_build_groups will build a circular linked list of the groups
7567 * covered by the given span, and will set each group's ->cpumask correctly,
7568 * and ->cpu_power to 0.
7571 init_sched_build_groups(const struct cpumask *span,
7572 const struct cpumask *cpu_map,
7573 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7574 struct sched_group **sg,
7575 struct cpumask *tmpmask),
7576 struct cpumask *covered, struct cpumask *tmpmask)
7578 struct sched_group *first = NULL, *last = NULL;
7581 cpumask_clear(covered);
7583 for_each_cpu(i, span) {
7584 struct sched_group *sg;
7585 int group = group_fn(i, cpu_map, &sg, tmpmask);
7588 if (cpumask_test_cpu(i, covered))
7591 cpumask_clear(sched_group_cpus(sg));
7592 sg->__cpu_power = 0;
7594 for_each_cpu(j, span) {
7595 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7598 cpumask_set_cpu(j, covered);
7599 cpumask_set_cpu(j, sched_group_cpus(sg));
7610 #define SD_NODES_PER_DOMAIN 16
7615 * find_next_best_node - find the next node to include in a sched_domain
7616 * @node: node whose sched_domain we're building
7617 * @used_nodes: nodes already in the sched_domain
7619 * Find the next node to include in a given scheduling domain. Simply
7620 * finds the closest node not already in the @used_nodes map.
7622 * Should use nodemask_t.
7624 static int find_next_best_node(int node, nodemask_t *used_nodes)
7626 int i, n, val, min_val, best_node = 0;
7630 for (i = 0; i < nr_node_ids; i++) {
7631 /* Start at @node */
7632 n = (node + i) % nr_node_ids;
7634 if (!nr_cpus_node(n))
7637 /* Skip already used nodes */
7638 if (node_isset(n, *used_nodes))
7641 /* Simple min distance search */
7642 val = node_distance(node, n);
7644 if (val < min_val) {
7650 node_set(best_node, *used_nodes);
7655 * sched_domain_node_span - get a cpumask for a node's sched_domain
7656 * @node: node whose cpumask we're constructing
7657 * @span: resulting cpumask
7659 * Given a node, construct a good cpumask for its sched_domain to span. It
7660 * should be one that prevents unnecessary balancing, but also spreads tasks
7663 static void sched_domain_node_span(int node, struct cpumask *span)
7665 nodemask_t used_nodes;
7668 cpumask_clear(span);
7669 nodes_clear(used_nodes);
7671 cpumask_or(span, span, cpumask_of_node(node));
7672 node_set(node, used_nodes);
7674 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7675 int next_node = find_next_best_node(node, &used_nodes);
7677 cpumask_or(span, span, cpumask_of_node(next_node));
7680 #endif /* CONFIG_NUMA */
7682 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7685 * The cpus mask in sched_group and sched_domain hangs off the end.
7686 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7687 * for nr_cpu_ids < CONFIG_NR_CPUS.
7689 struct static_sched_group {
7690 struct sched_group sg;
7691 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7694 struct static_sched_domain {
7695 struct sched_domain sd;
7696 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7700 * SMT sched-domains:
7702 #ifdef CONFIG_SCHED_SMT
7703 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7704 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7707 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7708 struct sched_group **sg, struct cpumask *unused)
7711 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7714 #endif /* CONFIG_SCHED_SMT */
7717 * multi-core sched-domains:
7719 #ifdef CONFIG_SCHED_MC
7720 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7721 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7722 #endif /* CONFIG_SCHED_MC */
7724 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7726 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7727 struct sched_group **sg, struct cpumask *mask)
7731 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7732 group = cpumask_first(mask);
7734 *sg = &per_cpu(sched_group_core, group).sg;
7737 #elif defined(CONFIG_SCHED_MC)
7739 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7740 struct sched_group **sg, struct cpumask *unused)
7743 *sg = &per_cpu(sched_group_core, cpu).sg;
7748 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7749 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7752 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7753 struct sched_group **sg, struct cpumask *mask)
7756 #ifdef CONFIG_SCHED_MC
7757 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7758 group = cpumask_first(mask);
7759 #elif defined(CONFIG_SCHED_SMT)
7760 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7761 group = cpumask_first(mask);
7766 *sg = &per_cpu(sched_group_phys, group).sg;
7772 * The init_sched_build_groups can't handle what we want to do with node
7773 * groups, so roll our own. Now each node has its own list of groups which
7774 * gets dynamically allocated.
7776 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7777 static struct sched_group ***sched_group_nodes_bycpu;
7779 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7780 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7782 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7783 struct sched_group **sg,
7784 struct cpumask *nodemask)
7788 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7789 group = cpumask_first(nodemask);
7792 *sg = &per_cpu(sched_group_allnodes, group).sg;
7796 static void init_numa_sched_groups_power(struct sched_group *group_head)
7798 struct sched_group *sg = group_head;
7804 for_each_cpu(j, sched_group_cpus(sg)) {
7805 struct sched_domain *sd;
7807 sd = &per_cpu(phys_domains, j).sd;
7808 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7810 * Only add "power" once for each
7816 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7819 } while (sg != group_head);
7821 #endif /* CONFIG_NUMA */
7824 /* Free memory allocated for various sched_group structures */
7825 static void free_sched_groups(const struct cpumask *cpu_map,
7826 struct cpumask *nodemask)
7830 for_each_cpu(cpu, cpu_map) {
7831 struct sched_group **sched_group_nodes
7832 = sched_group_nodes_bycpu[cpu];
7834 if (!sched_group_nodes)
7837 for (i = 0; i < nr_node_ids; i++) {
7838 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7840 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7841 if (cpumask_empty(nodemask))
7851 if (oldsg != sched_group_nodes[i])
7854 kfree(sched_group_nodes);
7855 sched_group_nodes_bycpu[cpu] = NULL;
7858 #else /* !CONFIG_NUMA */
7859 static void free_sched_groups(const struct cpumask *cpu_map,
7860 struct cpumask *nodemask)
7863 #endif /* CONFIG_NUMA */
7866 * Initialize sched groups cpu_power.
7868 * cpu_power indicates the capacity of sched group, which is used while
7869 * distributing the load between different sched groups in a sched domain.
7870 * Typically cpu_power for all the groups in a sched domain will be same unless
7871 * there are asymmetries in the topology. If there are asymmetries, group
7872 * having more cpu_power will pickup more load compared to the group having
7875 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7876 * the maximum number of tasks a group can handle in the presence of other idle
7877 * or lightly loaded groups in the same sched domain.
7879 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7881 struct sched_domain *child;
7882 struct sched_group *group;
7884 WARN_ON(!sd || !sd->groups);
7886 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7891 sd->groups->__cpu_power = 0;
7894 * For perf policy, if the groups in child domain share resources
7895 * (for example cores sharing some portions of the cache hierarchy
7896 * or SMT), then set this domain groups cpu_power such that each group
7897 * can handle only one task, when there are other idle groups in the
7898 * same sched domain.
7900 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7902 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7903 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7908 * add cpu_power of each child group to this groups cpu_power
7910 group = child->groups;
7912 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7913 group = group->next;
7914 } while (group != child->groups);
7918 * Initializers for schedule domains
7919 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7922 #ifdef CONFIG_SCHED_DEBUG
7923 # define SD_INIT_NAME(sd, type) sd->name = #type
7925 # define SD_INIT_NAME(sd, type) do { } while (0)
7928 #define SD_INIT(sd, type) sd_init_##type(sd)
7930 #define SD_INIT_FUNC(type) \
7931 static noinline void sd_init_##type(struct sched_domain *sd) \
7933 memset(sd, 0, sizeof(*sd)); \
7934 *sd = SD_##type##_INIT; \
7935 sd->level = SD_LV_##type; \
7936 SD_INIT_NAME(sd, type); \
7941 SD_INIT_FUNC(ALLNODES)
7944 #ifdef CONFIG_SCHED_SMT
7945 SD_INIT_FUNC(SIBLING)
7947 #ifdef CONFIG_SCHED_MC
7951 static int default_relax_domain_level = -1;
7953 static int __init setup_relax_domain_level(char *str)
7957 val = simple_strtoul(str, NULL, 0);
7958 if (val < SD_LV_MAX)
7959 default_relax_domain_level = val;
7963 __setup("relax_domain_level=", setup_relax_domain_level);
7965 static void set_domain_attribute(struct sched_domain *sd,
7966 struct sched_domain_attr *attr)
7970 if (!attr || attr->relax_domain_level < 0) {
7971 if (default_relax_domain_level < 0)
7974 request = default_relax_domain_level;
7976 request = attr->relax_domain_level;
7977 if (request < sd->level) {
7978 /* turn off idle balance on this domain */
7979 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7981 /* turn on idle balance on this domain */
7982 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7987 * Build sched domains for a given set of cpus and attach the sched domains
7988 * to the individual cpus
7990 static int __build_sched_domains(const struct cpumask *cpu_map,
7991 struct sched_domain_attr *attr)
7993 int i, err = -ENOMEM;
7994 struct root_domain *rd;
7995 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7998 cpumask_var_t domainspan, covered, notcovered;
7999 struct sched_group **sched_group_nodes = NULL;
8000 int sd_allnodes = 0;
8002 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8004 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8005 goto free_domainspan;
8006 if (!alloc_cpumask_var(¬covered, GFP_KERNEL))
8010 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8011 goto free_notcovered;
8012 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8014 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8015 goto free_this_sibling_map;
8016 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8017 goto free_this_core_map;
8018 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8019 goto free_send_covered;
8023 * Allocate the per-node list of sched groups
8025 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8027 if (!sched_group_nodes) {
8028 printk(KERN_WARNING "Can not alloc sched group node list\n");
8033 rd = alloc_rootdomain();
8035 printk(KERN_WARNING "Cannot alloc root domain\n");
8036 goto free_sched_groups;
8040 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8044 * Set up domains for cpus specified by the cpu_map.
8046 for_each_cpu(i, cpu_map) {
8047 struct sched_domain *sd = NULL, *p;
8049 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8052 if (cpumask_weight(cpu_map) >
8053 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8054 sd = &per_cpu(allnodes_domains, i).sd;
8055 SD_INIT(sd, ALLNODES);
8056 set_domain_attribute(sd, attr);
8057 cpumask_copy(sched_domain_span(sd), cpu_map);
8058 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8064 sd = &per_cpu(node_domains, i).sd;
8066 set_domain_attribute(sd, attr);
8067 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8071 cpumask_and(sched_domain_span(sd),
8072 sched_domain_span(sd), cpu_map);
8076 sd = &per_cpu(phys_domains, i).sd;
8078 set_domain_attribute(sd, attr);
8079 cpumask_copy(sched_domain_span(sd), nodemask);
8083 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8085 #ifdef CONFIG_SCHED_MC
8087 sd = &per_cpu(core_domains, i).sd;
8089 set_domain_attribute(sd, attr);
8090 cpumask_and(sched_domain_span(sd), cpu_map,
8091 cpu_coregroup_mask(i));
8094 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8097 #ifdef CONFIG_SCHED_SMT
8099 sd = &per_cpu(cpu_domains, i).sd;
8100 SD_INIT(sd, SIBLING);
8101 set_domain_attribute(sd, attr);
8102 cpumask_and(sched_domain_span(sd),
8103 topology_thread_cpumask(i), cpu_map);
8106 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8110 #ifdef CONFIG_SCHED_SMT
8111 /* Set up CPU (sibling) groups */
8112 for_each_cpu(i, cpu_map) {
8113 cpumask_and(this_sibling_map,
8114 topology_thread_cpumask(i), cpu_map);
8115 if (i != cpumask_first(this_sibling_map))
8118 init_sched_build_groups(this_sibling_map, cpu_map,
8120 send_covered, tmpmask);
8124 #ifdef CONFIG_SCHED_MC
8125 /* Set up multi-core groups */
8126 for_each_cpu(i, cpu_map) {
8127 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8128 if (i != cpumask_first(this_core_map))
8131 init_sched_build_groups(this_core_map, cpu_map,
8133 send_covered, tmpmask);
8137 /* Set up physical groups */
8138 for (i = 0; i < nr_node_ids; i++) {
8139 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8140 if (cpumask_empty(nodemask))
8143 init_sched_build_groups(nodemask, cpu_map,
8145 send_covered, tmpmask);
8149 /* Set up node groups */
8151 init_sched_build_groups(cpu_map, cpu_map,
8152 &cpu_to_allnodes_group,
8153 send_covered, tmpmask);
8156 for (i = 0; i < nr_node_ids; i++) {
8157 /* Set up node groups */
8158 struct sched_group *sg, *prev;
8161 cpumask_clear(covered);
8162 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8163 if (cpumask_empty(nodemask)) {
8164 sched_group_nodes[i] = NULL;
8168 sched_domain_node_span(i, domainspan);
8169 cpumask_and(domainspan, domainspan, cpu_map);
8171 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8174 printk(KERN_WARNING "Can not alloc domain group for "
8178 sched_group_nodes[i] = sg;
8179 for_each_cpu(j, nodemask) {
8180 struct sched_domain *sd;
8182 sd = &per_cpu(node_domains, j).sd;
8185 sg->__cpu_power = 0;
8186 cpumask_copy(sched_group_cpus(sg), nodemask);
8188 cpumask_or(covered, covered, nodemask);
8191 for (j = 0; j < nr_node_ids; j++) {
8192 int n = (i + j) % nr_node_ids;
8194 cpumask_complement(notcovered, covered);
8195 cpumask_and(tmpmask, notcovered, cpu_map);
8196 cpumask_and(tmpmask, tmpmask, domainspan);
8197 if (cpumask_empty(tmpmask))
8200 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8201 if (cpumask_empty(tmpmask))
8204 sg = kmalloc_node(sizeof(struct sched_group) +
8209 "Can not alloc domain group for node %d\n", j);
8212 sg->__cpu_power = 0;
8213 cpumask_copy(sched_group_cpus(sg), tmpmask);
8214 sg->next = prev->next;
8215 cpumask_or(covered, covered, tmpmask);
8222 /* Calculate CPU power for physical packages and nodes */
8223 #ifdef CONFIG_SCHED_SMT
8224 for_each_cpu(i, cpu_map) {
8225 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8227 init_sched_groups_power(i, sd);
8230 #ifdef CONFIG_SCHED_MC
8231 for_each_cpu(i, cpu_map) {
8232 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8234 init_sched_groups_power(i, sd);
8238 for_each_cpu(i, cpu_map) {
8239 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8241 init_sched_groups_power(i, sd);
8245 for (i = 0; i < nr_node_ids; i++)
8246 init_numa_sched_groups_power(sched_group_nodes[i]);
8249 struct sched_group *sg;
8251 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8253 init_numa_sched_groups_power(sg);
8257 /* Attach the domains */
8258 for_each_cpu(i, cpu_map) {
8259 struct sched_domain *sd;
8260 #ifdef CONFIG_SCHED_SMT
8261 sd = &per_cpu(cpu_domains, i).sd;
8262 #elif defined(CONFIG_SCHED_MC)
8263 sd = &per_cpu(core_domains, i).sd;
8265 sd = &per_cpu(phys_domains, i).sd;
8267 cpu_attach_domain(sd, rd, i);
8273 free_cpumask_var(tmpmask);
8275 free_cpumask_var(send_covered);
8277 free_cpumask_var(this_core_map);
8278 free_this_sibling_map:
8279 free_cpumask_var(this_sibling_map);
8281 free_cpumask_var(nodemask);
8284 free_cpumask_var(notcovered);
8286 free_cpumask_var(covered);
8288 free_cpumask_var(domainspan);
8295 kfree(sched_group_nodes);
8301 free_sched_groups(cpu_map, tmpmask);
8302 free_rootdomain(rd);
8307 static int build_sched_domains(const struct cpumask *cpu_map)
8309 return __build_sched_domains(cpu_map, NULL);
8312 static struct cpumask *doms_cur; /* current sched domains */
8313 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8314 static struct sched_domain_attr *dattr_cur;
8315 /* attribues of custom domains in 'doms_cur' */
8318 * Special case: If a kmalloc of a doms_cur partition (array of
8319 * cpumask) fails, then fallback to a single sched domain,
8320 * as determined by the single cpumask fallback_doms.
8322 static cpumask_var_t fallback_doms;
8325 * arch_update_cpu_topology lets virtualized architectures update the
8326 * cpu core maps. It is supposed to return 1 if the topology changed
8327 * or 0 if it stayed the same.
8329 int __attribute__((weak)) arch_update_cpu_topology(void)
8335 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8336 * For now this just excludes isolated cpus, but could be used to
8337 * exclude other special cases in the future.
8339 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8343 arch_update_cpu_topology();
8345 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8347 doms_cur = fallback_doms;
8348 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8350 err = build_sched_domains(doms_cur);
8351 register_sched_domain_sysctl();
8356 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8357 struct cpumask *tmpmask)
8359 free_sched_groups(cpu_map, tmpmask);
8363 * Detach sched domains from a group of cpus specified in cpu_map
8364 * These cpus will now be attached to the NULL domain
8366 static void detach_destroy_domains(const struct cpumask *cpu_map)
8368 /* Save because hotplug lock held. */
8369 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8372 for_each_cpu(i, cpu_map)
8373 cpu_attach_domain(NULL, &def_root_domain, i);
8374 synchronize_sched();
8375 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8378 /* handle null as "default" */
8379 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8380 struct sched_domain_attr *new, int idx_new)
8382 struct sched_domain_attr tmp;
8389 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8390 new ? (new + idx_new) : &tmp,
8391 sizeof(struct sched_domain_attr));
8395 * Partition sched domains as specified by the 'ndoms_new'
8396 * cpumasks in the array doms_new[] of cpumasks. This compares
8397 * doms_new[] to the current sched domain partitioning, doms_cur[].
8398 * It destroys each deleted domain and builds each new domain.
8400 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8401 * The masks don't intersect (don't overlap.) We should setup one
8402 * sched domain for each mask. CPUs not in any of the cpumasks will
8403 * not be load balanced. If the same cpumask appears both in the
8404 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8407 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8408 * ownership of it and will kfree it when done with it. If the caller
8409 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8410 * ndoms_new == 1, and partition_sched_domains() will fallback to
8411 * the single partition 'fallback_doms', it also forces the domains
8414 * If doms_new == NULL it will be replaced with cpu_online_mask.
8415 * ndoms_new == 0 is a special case for destroying existing domains,
8416 * and it will not create the default domain.
8418 * Call with hotplug lock held
8420 /* FIXME: Change to struct cpumask *doms_new[] */
8421 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8422 struct sched_domain_attr *dattr_new)
8427 mutex_lock(&sched_domains_mutex);
8429 /* always unregister in case we don't destroy any domains */
8430 unregister_sched_domain_sysctl();
8432 /* Let architecture update cpu core mappings. */
8433 new_topology = arch_update_cpu_topology();
8435 n = doms_new ? ndoms_new : 0;
8437 /* Destroy deleted domains */
8438 for (i = 0; i < ndoms_cur; i++) {
8439 for (j = 0; j < n && !new_topology; j++) {
8440 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8441 && dattrs_equal(dattr_cur, i, dattr_new, j))
8444 /* no match - a current sched domain not in new doms_new[] */
8445 detach_destroy_domains(doms_cur + i);
8450 if (doms_new == NULL) {
8452 doms_new = fallback_doms;
8453 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8454 WARN_ON_ONCE(dattr_new);
8457 /* Build new domains */
8458 for (i = 0; i < ndoms_new; i++) {
8459 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8460 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8461 && dattrs_equal(dattr_new, i, dattr_cur, j))
8464 /* no match - add a new doms_new */
8465 __build_sched_domains(doms_new + i,
8466 dattr_new ? dattr_new + i : NULL);
8471 /* Remember the new sched domains */
8472 if (doms_cur != fallback_doms)
8474 kfree(dattr_cur); /* kfree(NULL) is safe */
8475 doms_cur = doms_new;
8476 dattr_cur = dattr_new;
8477 ndoms_cur = ndoms_new;
8479 register_sched_domain_sysctl();
8481 mutex_unlock(&sched_domains_mutex);
8484 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8485 static void arch_reinit_sched_domains(void)
8489 /* Destroy domains first to force the rebuild */
8490 partition_sched_domains(0, NULL, NULL);
8492 rebuild_sched_domains();
8496 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8498 unsigned int level = 0;
8500 if (sscanf(buf, "%u", &level) != 1)
8504 * level is always be positive so don't check for
8505 * level < POWERSAVINGS_BALANCE_NONE which is 0
8506 * What happens on 0 or 1 byte write,
8507 * need to check for count as well?
8510 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8514 sched_smt_power_savings = level;
8516 sched_mc_power_savings = level;
8518 arch_reinit_sched_domains();
8523 #ifdef CONFIG_SCHED_MC
8524 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8527 return sprintf(page, "%u\n", sched_mc_power_savings);
8529 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8530 const char *buf, size_t count)
8532 return sched_power_savings_store(buf, count, 0);
8534 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8535 sched_mc_power_savings_show,
8536 sched_mc_power_savings_store);
8539 #ifdef CONFIG_SCHED_SMT
8540 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8543 return sprintf(page, "%u\n", sched_smt_power_savings);
8545 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8546 const char *buf, size_t count)
8548 return sched_power_savings_store(buf, count, 1);
8550 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8551 sched_smt_power_savings_show,
8552 sched_smt_power_savings_store);
8555 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8559 #ifdef CONFIG_SCHED_SMT
8561 err = sysfs_create_file(&cls->kset.kobj,
8562 &attr_sched_smt_power_savings.attr);
8564 #ifdef CONFIG_SCHED_MC
8565 if (!err && mc_capable())
8566 err = sysfs_create_file(&cls->kset.kobj,
8567 &attr_sched_mc_power_savings.attr);
8571 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8573 #ifndef CONFIG_CPUSETS
8575 * Add online and remove offline CPUs from the scheduler domains.
8576 * When cpusets are enabled they take over this function.
8578 static int update_sched_domains(struct notifier_block *nfb,
8579 unsigned long action, void *hcpu)
8583 case CPU_ONLINE_FROZEN:
8585 case CPU_DEAD_FROZEN:
8586 partition_sched_domains(1, NULL, NULL);
8595 static int update_runtime(struct notifier_block *nfb,
8596 unsigned long action, void *hcpu)
8598 int cpu = (int)(long)hcpu;
8601 case CPU_DOWN_PREPARE:
8602 case CPU_DOWN_PREPARE_FROZEN:
8603 disable_runtime(cpu_rq(cpu));
8606 case CPU_DOWN_FAILED:
8607 case CPU_DOWN_FAILED_FROZEN:
8609 case CPU_ONLINE_FROZEN:
8610 enable_runtime(cpu_rq(cpu));
8618 void __init sched_init_smp(void)
8620 cpumask_var_t non_isolated_cpus;
8622 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8624 #if defined(CONFIG_NUMA)
8625 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8627 BUG_ON(sched_group_nodes_bycpu == NULL);
8630 mutex_lock(&sched_domains_mutex);
8631 arch_init_sched_domains(cpu_online_mask);
8632 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8633 if (cpumask_empty(non_isolated_cpus))
8634 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8635 mutex_unlock(&sched_domains_mutex);
8638 #ifndef CONFIG_CPUSETS
8639 /* XXX: Theoretical race here - CPU may be hotplugged now */
8640 hotcpu_notifier(update_sched_domains, 0);
8643 /* RT runtime code needs to handle some hotplug events */
8644 hotcpu_notifier(update_runtime, 0);
8648 /* Move init over to a non-isolated CPU */
8649 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8651 sched_init_granularity();
8652 free_cpumask_var(non_isolated_cpus);
8654 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8655 init_sched_rt_class();
8658 void __init sched_init_smp(void)
8660 sched_init_granularity();
8662 #endif /* CONFIG_SMP */
8664 int in_sched_functions(unsigned long addr)
8666 return in_lock_functions(addr) ||
8667 (addr >= (unsigned long)__sched_text_start
8668 && addr < (unsigned long)__sched_text_end);
8671 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8673 cfs_rq->tasks_timeline = RB_ROOT;
8674 INIT_LIST_HEAD(&cfs_rq->tasks);
8675 #ifdef CONFIG_FAIR_GROUP_SCHED
8678 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8681 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8683 struct rt_prio_array *array;
8686 array = &rt_rq->active;
8687 for (i = 0; i < MAX_RT_PRIO; i++) {
8688 INIT_LIST_HEAD(array->queue + i);
8689 __clear_bit(i, array->bitmap);
8691 /* delimiter for bitsearch: */
8692 __set_bit(MAX_RT_PRIO, array->bitmap);
8694 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8695 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8697 rt_rq->highest_prio.next = MAX_RT_PRIO;
8701 rt_rq->rt_nr_migratory = 0;
8702 rt_rq->overloaded = 0;
8703 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8707 rt_rq->rt_throttled = 0;
8708 rt_rq->rt_runtime = 0;
8709 spin_lock_init(&rt_rq->rt_runtime_lock);
8711 #ifdef CONFIG_RT_GROUP_SCHED
8712 rt_rq->rt_nr_boosted = 0;
8717 #ifdef CONFIG_FAIR_GROUP_SCHED
8718 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8719 struct sched_entity *se, int cpu, int add,
8720 struct sched_entity *parent)
8722 struct rq *rq = cpu_rq(cpu);
8723 tg->cfs_rq[cpu] = cfs_rq;
8724 init_cfs_rq(cfs_rq, rq);
8727 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8730 /* se could be NULL for init_task_group */
8735 se->cfs_rq = &rq->cfs;
8737 se->cfs_rq = parent->my_q;
8740 se->load.weight = tg->shares;
8741 se->load.inv_weight = 0;
8742 se->parent = parent;
8746 #ifdef CONFIG_RT_GROUP_SCHED
8747 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8748 struct sched_rt_entity *rt_se, int cpu, int add,
8749 struct sched_rt_entity *parent)
8751 struct rq *rq = cpu_rq(cpu);
8753 tg->rt_rq[cpu] = rt_rq;
8754 init_rt_rq(rt_rq, rq);
8756 rt_rq->rt_se = rt_se;
8757 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8759 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8761 tg->rt_se[cpu] = rt_se;
8766 rt_se->rt_rq = &rq->rt;
8768 rt_se->rt_rq = parent->my_q;
8770 rt_se->my_q = rt_rq;
8771 rt_se->parent = parent;
8772 INIT_LIST_HEAD(&rt_se->run_list);
8776 void __init sched_init(void)
8779 unsigned long alloc_size = 0, ptr;
8781 #ifdef CONFIG_FAIR_GROUP_SCHED
8782 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8784 #ifdef CONFIG_RT_GROUP_SCHED
8785 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8787 #ifdef CONFIG_USER_SCHED
8790 #ifdef CONFIG_CPUMASK_OFFSTACK
8791 alloc_size += num_possible_cpus() * cpumask_size();
8794 * As sched_init() is called before page_alloc is setup,
8795 * we use alloc_bootmem().
8798 ptr = (unsigned long)alloc_bootmem(alloc_size);
8800 #ifdef CONFIG_FAIR_GROUP_SCHED
8801 init_task_group.se = (struct sched_entity **)ptr;
8802 ptr += nr_cpu_ids * sizeof(void **);
8804 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8805 ptr += nr_cpu_ids * sizeof(void **);
8807 #ifdef CONFIG_USER_SCHED
8808 root_task_group.se = (struct sched_entity **)ptr;
8809 ptr += nr_cpu_ids * sizeof(void **);
8811 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8812 ptr += nr_cpu_ids * sizeof(void **);
8813 #endif /* CONFIG_USER_SCHED */
8814 #endif /* CONFIG_FAIR_GROUP_SCHED */
8815 #ifdef CONFIG_RT_GROUP_SCHED
8816 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8817 ptr += nr_cpu_ids * sizeof(void **);
8819 init_task_group.rt_rq = (struct rt_rq **)ptr;
8820 ptr += nr_cpu_ids * sizeof(void **);
8822 #ifdef CONFIG_USER_SCHED
8823 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8824 ptr += nr_cpu_ids * sizeof(void **);
8826 root_task_group.rt_rq = (struct rt_rq **)ptr;
8827 ptr += nr_cpu_ids * sizeof(void **);
8828 #endif /* CONFIG_USER_SCHED */
8829 #endif /* CONFIG_RT_GROUP_SCHED */
8830 #ifdef CONFIG_CPUMASK_OFFSTACK
8831 for_each_possible_cpu(i) {
8832 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8833 ptr += cpumask_size();
8835 #endif /* CONFIG_CPUMASK_OFFSTACK */
8839 init_defrootdomain();
8842 init_rt_bandwidth(&def_rt_bandwidth,
8843 global_rt_period(), global_rt_runtime());
8845 #ifdef CONFIG_RT_GROUP_SCHED
8846 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8847 global_rt_period(), global_rt_runtime());
8848 #ifdef CONFIG_USER_SCHED
8849 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8850 global_rt_period(), RUNTIME_INF);
8851 #endif /* CONFIG_USER_SCHED */
8852 #endif /* CONFIG_RT_GROUP_SCHED */
8854 #ifdef CONFIG_GROUP_SCHED
8855 list_add(&init_task_group.list, &task_groups);
8856 INIT_LIST_HEAD(&init_task_group.children);
8858 #ifdef CONFIG_USER_SCHED
8859 INIT_LIST_HEAD(&root_task_group.children);
8860 init_task_group.parent = &root_task_group;
8861 list_add(&init_task_group.siblings, &root_task_group.children);
8862 #endif /* CONFIG_USER_SCHED */
8863 #endif /* CONFIG_GROUP_SCHED */
8865 for_each_possible_cpu(i) {
8869 spin_lock_init(&rq->lock);
8871 init_cfs_rq(&rq->cfs, rq);
8872 init_rt_rq(&rq->rt, rq);
8873 #ifdef CONFIG_FAIR_GROUP_SCHED
8874 init_task_group.shares = init_task_group_load;
8875 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8876 #ifdef CONFIG_CGROUP_SCHED
8878 * How much cpu bandwidth does init_task_group get?
8880 * In case of task-groups formed thr' the cgroup filesystem, it
8881 * gets 100% of the cpu resources in the system. This overall
8882 * system cpu resource is divided among the tasks of
8883 * init_task_group and its child task-groups in a fair manner,
8884 * based on each entity's (task or task-group's) weight
8885 * (se->load.weight).
8887 * In other words, if init_task_group has 10 tasks of weight
8888 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8889 * then A0's share of the cpu resource is:
8891 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8893 * We achieve this by letting init_task_group's tasks sit
8894 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8896 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8897 #elif defined CONFIG_USER_SCHED
8898 root_task_group.shares = NICE_0_LOAD;
8899 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8901 * In case of task-groups formed thr' the user id of tasks,
8902 * init_task_group represents tasks belonging to root user.
8903 * Hence it forms a sibling of all subsequent groups formed.
8904 * In this case, init_task_group gets only a fraction of overall
8905 * system cpu resource, based on the weight assigned to root
8906 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8907 * by letting tasks of init_task_group sit in a separate cfs_rq
8908 * (init_cfs_rq) and having one entity represent this group of
8909 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8911 init_tg_cfs_entry(&init_task_group,
8912 &per_cpu(init_cfs_rq, i),
8913 &per_cpu(init_sched_entity, i), i, 1,
8914 root_task_group.se[i]);
8917 #endif /* CONFIG_FAIR_GROUP_SCHED */
8919 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8920 #ifdef CONFIG_RT_GROUP_SCHED
8921 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8922 #ifdef CONFIG_CGROUP_SCHED
8923 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8924 #elif defined CONFIG_USER_SCHED
8925 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8926 init_tg_rt_entry(&init_task_group,
8927 &per_cpu(init_rt_rq, i),
8928 &per_cpu(init_sched_rt_entity, i), i, 1,
8929 root_task_group.rt_se[i]);
8933 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8934 rq->cpu_load[j] = 0;
8938 rq->active_balance = 0;
8939 rq->next_balance = jiffies;
8943 rq->migration_thread = NULL;
8944 INIT_LIST_HEAD(&rq->migration_queue);
8945 rq_attach_root(rq, &def_root_domain);
8948 atomic_set(&rq->nr_iowait, 0);
8951 set_load_weight(&init_task);
8953 #ifdef CONFIG_PREEMPT_NOTIFIERS
8954 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8958 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8961 #ifdef CONFIG_RT_MUTEXES
8962 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8966 * The boot idle thread does lazy MMU switching as well:
8968 atomic_inc(&init_mm.mm_count);
8969 enter_lazy_tlb(&init_mm, current);
8972 * Make us the idle thread. Technically, schedule() should not be
8973 * called from this thread, however somewhere below it might be,
8974 * but because we are the idle thread, we just pick up running again
8975 * when this runqueue becomes "idle".
8977 init_idle(current, smp_processor_id());
8979 * During early bootup we pretend to be a normal task:
8981 current->sched_class = &fair_sched_class;
8983 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8984 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8987 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8989 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8992 scheduler_running = 1;
8995 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8996 void __might_sleep(char *file, int line)
8999 static unsigned long prev_jiffy; /* ratelimiting */
9001 if ((!in_atomic() && !irqs_disabled()) ||
9002 system_state != SYSTEM_RUNNING || oops_in_progress)
9004 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9006 prev_jiffy = jiffies;
9009 "BUG: sleeping function called from invalid context at %s:%d\n",
9012 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9013 in_atomic(), irqs_disabled(),
9014 current->pid, current->comm);
9016 debug_show_held_locks(current);
9017 if (irqs_disabled())
9018 print_irqtrace_events(current);
9022 EXPORT_SYMBOL(__might_sleep);
9025 #ifdef CONFIG_MAGIC_SYSRQ
9026 static void normalize_task(struct rq *rq, struct task_struct *p)
9030 update_rq_clock(rq);
9031 on_rq = p->se.on_rq;
9033 deactivate_task(rq, p, 0);
9034 __setscheduler(rq, p, SCHED_NORMAL, 0);
9036 activate_task(rq, p, 0);
9037 resched_task(rq->curr);
9041 void normalize_rt_tasks(void)
9043 struct task_struct *g, *p;
9044 unsigned long flags;
9047 read_lock_irqsave(&tasklist_lock, flags);
9048 do_each_thread(g, p) {
9050 * Only normalize user tasks:
9055 p->se.exec_start = 0;
9056 #ifdef CONFIG_SCHEDSTATS
9057 p->se.wait_start = 0;
9058 p->se.sleep_start = 0;
9059 p->se.block_start = 0;
9064 * Renice negative nice level userspace
9067 if (TASK_NICE(p) < 0 && p->mm)
9068 set_user_nice(p, 0);
9072 spin_lock(&p->pi_lock);
9073 rq = __task_rq_lock(p);
9075 normalize_task(rq, p);
9077 __task_rq_unlock(rq);
9078 spin_unlock(&p->pi_lock);
9079 } while_each_thread(g, p);
9081 read_unlock_irqrestore(&tasklist_lock, flags);
9084 #endif /* CONFIG_MAGIC_SYSRQ */
9088 * These functions are only useful for the IA64 MCA handling.
9090 * They can only be called when the whole system has been
9091 * stopped - every CPU needs to be quiescent, and no scheduling
9092 * activity can take place. Using them for anything else would
9093 * be a serious bug, and as a result, they aren't even visible
9094 * under any other configuration.
9098 * curr_task - return the current task for a given cpu.
9099 * @cpu: the processor in question.
9101 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9103 struct task_struct *curr_task(int cpu)
9105 return cpu_curr(cpu);
9109 * set_curr_task - set the current task for a given cpu.
9110 * @cpu: the processor in question.
9111 * @p: the task pointer to set.
9113 * Description: This function must only be used when non-maskable interrupts
9114 * are serviced on a separate stack. It allows the architecture to switch the
9115 * notion of the current task on a cpu in a non-blocking manner. This function
9116 * must be called with all CPU's synchronized, and interrupts disabled, the
9117 * and caller must save the original value of the current task (see
9118 * curr_task() above) and restore that value before reenabling interrupts and
9119 * re-starting the system.
9121 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9123 void set_curr_task(int cpu, struct task_struct *p)
9130 #ifdef CONFIG_FAIR_GROUP_SCHED
9131 static void free_fair_sched_group(struct task_group *tg)
9135 for_each_possible_cpu(i) {
9137 kfree(tg->cfs_rq[i]);
9147 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9149 struct cfs_rq *cfs_rq;
9150 struct sched_entity *se;
9154 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9157 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9161 tg->shares = NICE_0_LOAD;
9163 for_each_possible_cpu(i) {
9166 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9167 GFP_KERNEL, cpu_to_node(i));
9171 se = kzalloc_node(sizeof(struct sched_entity),
9172 GFP_KERNEL, cpu_to_node(i));
9176 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9185 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9187 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9188 &cpu_rq(cpu)->leaf_cfs_rq_list);
9191 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9193 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9195 #else /* !CONFG_FAIR_GROUP_SCHED */
9196 static inline void free_fair_sched_group(struct task_group *tg)
9201 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9206 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9210 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9213 #endif /* CONFIG_FAIR_GROUP_SCHED */
9215 #ifdef CONFIG_RT_GROUP_SCHED
9216 static void free_rt_sched_group(struct task_group *tg)
9220 destroy_rt_bandwidth(&tg->rt_bandwidth);
9222 for_each_possible_cpu(i) {
9224 kfree(tg->rt_rq[i]);
9226 kfree(tg->rt_se[i]);
9234 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9236 struct rt_rq *rt_rq;
9237 struct sched_rt_entity *rt_se;
9241 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9244 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9248 init_rt_bandwidth(&tg->rt_bandwidth,
9249 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9251 for_each_possible_cpu(i) {
9254 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9255 GFP_KERNEL, cpu_to_node(i));
9259 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9260 GFP_KERNEL, cpu_to_node(i));
9264 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9273 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9275 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9276 &cpu_rq(cpu)->leaf_rt_rq_list);
9279 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9281 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9283 #else /* !CONFIG_RT_GROUP_SCHED */
9284 static inline void free_rt_sched_group(struct task_group *tg)
9289 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9294 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9298 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9301 #endif /* CONFIG_RT_GROUP_SCHED */
9303 #ifdef CONFIG_GROUP_SCHED
9304 static void free_sched_group(struct task_group *tg)
9306 free_fair_sched_group(tg);
9307 free_rt_sched_group(tg);
9311 /* allocate runqueue etc for a new task group */
9312 struct task_group *sched_create_group(struct task_group *parent)
9314 struct task_group *tg;
9315 unsigned long flags;
9318 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9320 return ERR_PTR(-ENOMEM);
9322 if (!alloc_fair_sched_group(tg, parent))
9325 if (!alloc_rt_sched_group(tg, parent))
9328 spin_lock_irqsave(&task_group_lock, flags);
9329 for_each_possible_cpu(i) {
9330 register_fair_sched_group(tg, i);
9331 register_rt_sched_group(tg, i);
9333 list_add_rcu(&tg->list, &task_groups);
9335 WARN_ON(!parent); /* root should already exist */
9337 tg->parent = parent;
9338 INIT_LIST_HEAD(&tg->children);
9339 list_add_rcu(&tg->siblings, &parent->children);
9340 spin_unlock_irqrestore(&task_group_lock, flags);
9345 free_sched_group(tg);
9346 return ERR_PTR(-ENOMEM);
9349 /* rcu callback to free various structures associated with a task group */
9350 static void free_sched_group_rcu(struct rcu_head *rhp)
9352 /* now it should be safe to free those cfs_rqs */
9353 free_sched_group(container_of(rhp, struct task_group, rcu));
9356 /* Destroy runqueue etc associated with a task group */
9357 void sched_destroy_group(struct task_group *tg)
9359 unsigned long flags;
9362 spin_lock_irqsave(&task_group_lock, flags);
9363 for_each_possible_cpu(i) {
9364 unregister_fair_sched_group(tg, i);
9365 unregister_rt_sched_group(tg, i);
9367 list_del_rcu(&tg->list);
9368 list_del_rcu(&tg->siblings);
9369 spin_unlock_irqrestore(&task_group_lock, flags);
9371 /* wait for possible concurrent references to cfs_rqs complete */
9372 call_rcu(&tg->rcu, free_sched_group_rcu);
9375 /* change task's runqueue when it moves between groups.
9376 * The caller of this function should have put the task in its new group
9377 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9378 * reflect its new group.
9380 void sched_move_task(struct task_struct *tsk)
9383 unsigned long flags;
9386 rq = task_rq_lock(tsk, &flags);
9388 update_rq_clock(rq);
9390 running = task_current(rq, tsk);
9391 on_rq = tsk->se.on_rq;
9394 dequeue_task(rq, tsk, 0);
9395 if (unlikely(running))
9396 tsk->sched_class->put_prev_task(rq, tsk);
9398 set_task_rq(tsk, task_cpu(tsk));
9400 #ifdef CONFIG_FAIR_GROUP_SCHED
9401 if (tsk->sched_class->moved_group)
9402 tsk->sched_class->moved_group(tsk);
9405 if (unlikely(running))
9406 tsk->sched_class->set_curr_task(rq);
9408 enqueue_task(rq, tsk, 0);
9410 task_rq_unlock(rq, &flags);
9412 #endif /* CONFIG_GROUP_SCHED */
9414 #ifdef CONFIG_FAIR_GROUP_SCHED
9415 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9417 struct cfs_rq *cfs_rq = se->cfs_rq;
9422 dequeue_entity(cfs_rq, se, 0);
9424 se->load.weight = shares;
9425 se->load.inv_weight = 0;
9428 enqueue_entity(cfs_rq, se, 0);
9431 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9433 struct cfs_rq *cfs_rq = se->cfs_rq;
9434 struct rq *rq = cfs_rq->rq;
9435 unsigned long flags;
9437 spin_lock_irqsave(&rq->lock, flags);
9438 __set_se_shares(se, shares);
9439 spin_unlock_irqrestore(&rq->lock, flags);
9442 static DEFINE_MUTEX(shares_mutex);
9444 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9447 unsigned long flags;
9450 * We can't change the weight of the root cgroup.
9455 if (shares < MIN_SHARES)
9456 shares = MIN_SHARES;
9457 else if (shares > MAX_SHARES)
9458 shares = MAX_SHARES;
9460 mutex_lock(&shares_mutex);
9461 if (tg->shares == shares)
9464 spin_lock_irqsave(&task_group_lock, flags);
9465 for_each_possible_cpu(i)
9466 unregister_fair_sched_group(tg, i);
9467 list_del_rcu(&tg->siblings);
9468 spin_unlock_irqrestore(&task_group_lock, flags);
9470 /* wait for any ongoing reference to this group to finish */
9471 synchronize_sched();
9474 * Now we are free to modify the group's share on each cpu
9475 * w/o tripping rebalance_share or load_balance_fair.
9477 tg->shares = shares;
9478 for_each_possible_cpu(i) {
9482 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9483 set_se_shares(tg->se[i], shares);
9487 * Enable load balance activity on this group, by inserting it back on
9488 * each cpu's rq->leaf_cfs_rq_list.
9490 spin_lock_irqsave(&task_group_lock, flags);
9491 for_each_possible_cpu(i)
9492 register_fair_sched_group(tg, i);
9493 list_add_rcu(&tg->siblings, &tg->parent->children);
9494 spin_unlock_irqrestore(&task_group_lock, flags);
9496 mutex_unlock(&shares_mutex);
9500 unsigned long sched_group_shares(struct task_group *tg)
9506 #ifdef CONFIG_RT_GROUP_SCHED
9508 * Ensure that the real time constraints are schedulable.
9510 static DEFINE_MUTEX(rt_constraints_mutex);
9512 static unsigned long to_ratio(u64 period, u64 runtime)
9514 if (runtime == RUNTIME_INF)
9517 return div64_u64(runtime << 20, period);
9520 /* Must be called with tasklist_lock held */
9521 static inline int tg_has_rt_tasks(struct task_group *tg)
9523 struct task_struct *g, *p;
9525 do_each_thread(g, p) {
9526 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9528 } while_each_thread(g, p);
9533 struct rt_schedulable_data {
9534 struct task_group *tg;
9539 static int tg_schedulable(struct task_group *tg, void *data)
9541 struct rt_schedulable_data *d = data;
9542 struct task_group *child;
9543 unsigned long total, sum = 0;
9544 u64 period, runtime;
9546 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9547 runtime = tg->rt_bandwidth.rt_runtime;
9550 period = d->rt_period;
9551 runtime = d->rt_runtime;
9554 #ifdef CONFIG_USER_SCHED
9555 if (tg == &root_task_group) {
9556 period = global_rt_period();
9557 runtime = global_rt_runtime();
9562 * Cannot have more runtime than the period.
9564 if (runtime > period && runtime != RUNTIME_INF)
9568 * Ensure we don't starve existing RT tasks.
9570 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9573 total = to_ratio(period, runtime);
9576 * Nobody can have more than the global setting allows.
9578 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9582 * The sum of our children's runtime should not exceed our own.
9584 list_for_each_entry_rcu(child, &tg->children, siblings) {
9585 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9586 runtime = child->rt_bandwidth.rt_runtime;
9588 if (child == d->tg) {
9589 period = d->rt_period;
9590 runtime = d->rt_runtime;
9593 sum += to_ratio(period, runtime);
9602 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9604 struct rt_schedulable_data data = {
9606 .rt_period = period,
9607 .rt_runtime = runtime,
9610 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9613 static int tg_set_bandwidth(struct task_group *tg,
9614 u64 rt_period, u64 rt_runtime)
9618 mutex_lock(&rt_constraints_mutex);
9619 read_lock(&tasklist_lock);
9620 err = __rt_schedulable(tg, rt_period, rt_runtime);
9624 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9625 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9626 tg->rt_bandwidth.rt_runtime = rt_runtime;
9628 for_each_possible_cpu(i) {
9629 struct rt_rq *rt_rq = tg->rt_rq[i];
9631 spin_lock(&rt_rq->rt_runtime_lock);
9632 rt_rq->rt_runtime = rt_runtime;
9633 spin_unlock(&rt_rq->rt_runtime_lock);
9635 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9637 read_unlock(&tasklist_lock);
9638 mutex_unlock(&rt_constraints_mutex);
9643 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9645 u64 rt_runtime, rt_period;
9647 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9648 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9649 if (rt_runtime_us < 0)
9650 rt_runtime = RUNTIME_INF;
9652 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9655 long sched_group_rt_runtime(struct task_group *tg)
9659 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9662 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9663 do_div(rt_runtime_us, NSEC_PER_USEC);
9664 return rt_runtime_us;
9667 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9669 u64 rt_runtime, rt_period;
9671 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9672 rt_runtime = tg->rt_bandwidth.rt_runtime;
9677 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9680 long sched_group_rt_period(struct task_group *tg)
9684 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9685 do_div(rt_period_us, NSEC_PER_USEC);
9686 return rt_period_us;
9689 static int sched_rt_global_constraints(void)
9691 u64 runtime, period;
9694 if (sysctl_sched_rt_period <= 0)
9697 runtime = global_rt_runtime();
9698 period = global_rt_period();
9701 * Sanity check on the sysctl variables.
9703 if (runtime > period && runtime != RUNTIME_INF)
9706 mutex_lock(&rt_constraints_mutex);
9707 read_lock(&tasklist_lock);
9708 ret = __rt_schedulable(NULL, 0, 0);
9709 read_unlock(&tasklist_lock);
9710 mutex_unlock(&rt_constraints_mutex);
9715 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9717 /* Don't accept realtime tasks when there is no way for them to run */
9718 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9724 #else /* !CONFIG_RT_GROUP_SCHED */
9725 static int sched_rt_global_constraints(void)
9727 unsigned long flags;
9730 if (sysctl_sched_rt_period <= 0)
9733 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9734 for_each_possible_cpu(i) {
9735 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9737 spin_lock(&rt_rq->rt_runtime_lock);
9738 rt_rq->rt_runtime = global_rt_runtime();
9739 spin_unlock(&rt_rq->rt_runtime_lock);
9741 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9745 #endif /* CONFIG_RT_GROUP_SCHED */
9747 int sched_rt_handler(struct ctl_table *table, int write,
9748 struct file *filp, void __user *buffer, size_t *lenp,
9752 int old_period, old_runtime;
9753 static DEFINE_MUTEX(mutex);
9756 old_period = sysctl_sched_rt_period;
9757 old_runtime = sysctl_sched_rt_runtime;
9759 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9761 if (!ret && write) {
9762 ret = sched_rt_global_constraints();
9764 sysctl_sched_rt_period = old_period;
9765 sysctl_sched_rt_runtime = old_runtime;
9767 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9768 def_rt_bandwidth.rt_period =
9769 ns_to_ktime(global_rt_period());
9772 mutex_unlock(&mutex);
9777 #ifdef CONFIG_CGROUP_SCHED
9779 /* return corresponding task_group object of a cgroup */
9780 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9782 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9783 struct task_group, css);
9786 static struct cgroup_subsys_state *
9787 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9789 struct task_group *tg, *parent;
9791 if (!cgrp->parent) {
9792 /* This is early initialization for the top cgroup */
9793 return &init_task_group.css;
9796 parent = cgroup_tg(cgrp->parent);
9797 tg = sched_create_group(parent);
9799 return ERR_PTR(-ENOMEM);
9805 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9807 struct task_group *tg = cgroup_tg(cgrp);
9809 sched_destroy_group(tg);
9813 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9814 struct task_struct *tsk)
9816 #ifdef CONFIG_RT_GROUP_SCHED
9817 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9820 /* We don't support RT-tasks being in separate groups */
9821 if (tsk->sched_class != &fair_sched_class)
9829 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9830 struct cgroup *old_cont, struct task_struct *tsk)
9832 sched_move_task(tsk);
9835 #ifdef CONFIG_FAIR_GROUP_SCHED
9836 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9839 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9842 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9844 struct task_group *tg = cgroup_tg(cgrp);
9846 return (u64) tg->shares;
9848 #endif /* CONFIG_FAIR_GROUP_SCHED */
9850 #ifdef CONFIG_RT_GROUP_SCHED
9851 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9854 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9857 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9859 return sched_group_rt_runtime(cgroup_tg(cgrp));
9862 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9865 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9868 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9870 return sched_group_rt_period(cgroup_tg(cgrp));
9872 #endif /* CONFIG_RT_GROUP_SCHED */
9874 static struct cftype cpu_files[] = {
9875 #ifdef CONFIG_FAIR_GROUP_SCHED
9878 .read_u64 = cpu_shares_read_u64,
9879 .write_u64 = cpu_shares_write_u64,
9882 #ifdef CONFIG_RT_GROUP_SCHED
9884 .name = "rt_runtime_us",
9885 .read_s64 = cpu_rt_runtime_read,
9886 .write_s64 = cpu_rt_runtime_write,
9889 .name = "rt_period_us",
9890 .read_u64 = cpu_rt_period_read_uint,
9891 .write_u64 = cpu_rt_period_write_uint,
9896 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9898 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9901 struct cgroup_subsys cpu_cgroup_subsys = {
9903 .create = cpu_cgroup_create,
9904 .destroy = cpu_cgroup_destroy,
9905 .can_attach = cpu_cgroup_can_attach,
9906 .attach = cpu_cgroup_attach,
9907 .populate = cpu_cgroup_populate,
9908 .subsys_id = cpu_cgroup_subsys_id,
9912 #endif /* CONFIG_CGROUP_SCHED */
9914 #ifdef CONFIG_CGROUP_CPUACCT
9917 * CPU accounting code for task groups.
9919 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9920 * (balbir@in.ibm.com).
9923 /* track cpu usage of a group of tasks and its child groups */
9925 struct cgroup_subsys_state css;
9926 /* cpuusage holds pointer to a u64-type object on every cpu */
9928 struct cpuacct *parent;
9931 struct cgroup_subsys cpuacct_subsys;
9933 /* return cpu accounting group corresponding to this container */
9934 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9936 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9937 struct cpuacct, css);
9940 /* return cpu accounting group to which this task belongs */
9941 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9943 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9944 struct cpuacct, css);
9947 /* create a new cpu accounting group */
9948 static struct cgroup_subsys_state *cpuacct_create(
9949 struct cgroup_subsys *ss, struct cgroup *cgrp)
9951 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9954 return ERR_PTR(-ENOMEM);
9956 ca->cpuusage = alloc_percpu(u64);
9957 if (!ca->cpuusage) {
9959 return ERR_PTR(-ENOMEM);
9963 ca->parent = cgroup_ca(cgrp->parent);
9968 /* destroy an existing cpu accounting group */
9970 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9972 struct cpuacct *ca = cgroup_ca(cgrp);
9974 free_percpu(ca->cpuusage);
9978 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9980 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9983 #ifndef CONFIG_64BIT
9985 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9987 spin_lock_irq(&cpu_rq(cpu)->lock);
9989 spin_unlock_irq(&cpu_rq(cpu)->lock);
9997 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9999 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10001 #ifndef CONFIG_64BIT
10003 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10005 spin_lock_irq(&cpu_rq(cpu)->lock);
10007 spin_unlock_irq(&cpu_rq(cpu)->lock);
10013 /* return total cpu usage (in nanoseconds) of a group */
10014 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10016 struct cpuacct *ca = cgroup_ca(cgrp);
10017 u64 totalcpuusage = 0;
10020 for_each_present_cpu(i)
10021 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10023 return totalcpuusage;
10026 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10029 struct cpuacct *ca = cgroup_ca(cgrp);
10038 for_each_present_cpu(i)
10039 cpuacct_cpuusage_write(ca, i, 0);
10045 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10046 struct seq_file *m)
10048 struct cpuacct *ca = cgroup_ca(cgroup);
10052 for_each_present_cpu(i) {
10053 percpu = cpuacct_cpuusage_read(ca, i);
10054 seq_printf(m, "%llu ", (unsigned long long) percpu);
10056 seq_printf(m, "\n");
10060 static struct cftype files[] = {
10063 .read_u64 = cpuusage_read,
10064 .write_u64 = cpuusage_write,
10067 .name = "usage_percpu",
10068 .read_seq_string = cpuacct_percpu_seq_read,
10073 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10075 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10079 * charge this task's execution time to its accounting group.
10081 * called with rq->lock held.
10083 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10085 struct cpuacct *ca;
10088 if (unlikely(!cpuacct_subsys.active))
10091 cpu = task_cpu(tsk);
10094 for (; ca; ca = ca->parent) {
10095 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10096 *cpuusage += cputime;
10100 struct cgroup_subsys cpuacct_subsys = {
10102 .create = cpuacct_create,
10103 .destroy = cpuacct_destroy,
10104 .populate = cpuacct_populate,
10105 .subsys_id = cpuacct_subsys_id,
10107 #endif /* CONFIG_CGROUP_CPUACCT */