]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched.c
[PATCH] sched: account rt tasks in prio_bias()
[karo-tx-linux.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666         rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671         rq->prio_bias -= MAX_PRIO - prio;
672 }
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int prio)
675 {
676 }
677
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
679 {
680 }
681 #endif
682
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 {
685         rq->nr_running++;
686         if (rt_task(p))
687                 inc_prio_bias(rq, p->prio);
688         else
689                 inc_prio_bias(rq, p->static_prio);
690 }
691
692 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
693 {
694         rq->nr_running--;
695         if (rt_task(p))
696                 dec_prio_bias(rq, p->prio);
697         else
698                 dec_prio_bias(rq, p->static_prio);
699 }
700
701 /*
702  * __activate_task - move a task to the runqueue.
703  */
704 static inline void __activate_task(task_t *p, runqueue_t *rq)
705 {
706         enqueue_task(p, rq->active);
707         inc_nr_running(p, rq);
708 }
709
710 /*
711  * __activate_idle_task - move idle task to the _front_ of runqueue.
712  */
713 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
714 {
715         enqueue_task_head(p, rq->active);
716         inc_nr_running(p, rq);
717 }
718
719 static int recalc_task_prio(task_t *p, unsigned long long now)
720 {
721         /* Caller must always ensure 'now >= p->timestamp' */
722         unsigned long long __sleep_time = now - p->timestamp;
723         unsigned long sleep_time;
724
725         if (__sleep_time > NS_MAX_SLEEP_AVG)
726                 sleep_time = NS_MAX_SLEEP_AVG;
727         else
728                 sleep_time = (unsigned long)__sleep_time;
729
730         if (likely(sleep_time > 0)) {
731                 /*
732                  * User tasks that sleep a long time are categorised as
733                  * idle and will get just interactive status to stay active &
734                  * prevent them suddenly becoming cpu hogs and starving
735                  * other processes.
736                  */
737                 if (p->mm && p->activated != -1 &&
738                         sleep_time > INTERACTIVE_SLEEP(p)) {
739                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
740                                                 DEF_TIMESLICE);
741                 } else {
742                         /*
743                          * The lower the sleep avg a task has the more
744                          * rapidly it will rise with sleep time.
745                          */
746                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
747
748                         /*
749                          * Tasks waking from uninterruptible sleep are
750                          * limited in their sleep_avg rise as they
751                          * are likely to be waiting on I/O
752                          */
753                         if (p->activated == -1 && p->mm) {
754                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
755                                         sleep_time = 0;
756                                 else if (p->sleep_avg + sleep_time >=
757                                                 INTERACTIVE_SLEEP(p)) {
758                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
759                                         sleep_time = 0;
760                                 }
761                         }
762
763                         /*
764                          * This code gives a bonus to interactive tasks.
765                          *
766                          * The boost works by updating the 'average sleep time'
767                          * value here, based on ->timestamp. The more time a
768                          * task spends sleeping, the higher the average gets -
769                          * and the higher the priority boost gets as well.
770                          */
771                         p->sleep_avg += sleep_time;
772
773                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
775                 }
776         }
777
778         return effective_prio(p);
779 }
780
781 /*
782  * activate_task - move a task to the runqueue and do priority recalculation
783  *
784  * Update all the scheduling statistics stuff. (sleep average
785  * calculation, priority modifiers, etc.)
786  */
787 static void activate_task(task_t *p, runqueue_t *rq, int local)
788 {
789         unsigned long long now;
790
791         now = sched_clock();
792 #ifdef CONFIG_SMP
793         if (!local) {
794                 /* Compensate for drifting sched_clock */
795                 runqueue_t *this_rq = this_rq();
796                 now = (now - this_rq->timestamp_last_tick)
797                         + rq->timestamp_last_tick;
798         }
799 #endif
800
801         p->prio = recalc_task_prio(p, now);
802
803         /*
804          * This checks to make sure it's not an uninterruptible task
805          * that is now waking up.
806          */
807         if (!p->activated) {
808                 /*
809                  * Tasks which were woken up by interrupts (ie. hw events)
810                  * are most likely of interactive nature. So we give them
811                  * the credit of extending their sleep time to the period
812                  * of time they spend on the runqueue, waiting for execution
813                  * on a CPU, first time around:
814                  */
815                 if (in_interrupt())
816                         p->activated = 2;
817                 else {
818                         /*
819                          * Normal first-time wakeups get a credit too for
820                          * on-runqueue time, but it will be weighted down:
821                          */
822                         p->activated = 1;
823                 }
824         }
825         p->timestamp = now;
826
827         __activate_task(p, rq);
828 }
829
830 /*
831  * deactivate_task - remove a task from the runqueue.
832  */
833 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
834 {
835         dec_nr_running(p, rq);
836         dequeue_task(p, p->array);
837         p->array = NULL;
838 }
839
840 /*
841  * resched_task - mark a task 'to be rescheduled now'.
842  *
843  * On UP this means the setting of the need_resched flag, on SMP it
844  * might also involve a cross-CPU call to trigger the scheduler on
845  * the target CPU.
846  */
847 #ifdef CONFIG_SMP
848 static void resched_task(task_t *p)
849 {
850         int need_resched, nrpolling;
851
852         assert_spin_locked(&task_rq(p)->lock);
853
854         /* minimise the chance of sending an interrupt to poll_idle() */
855         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
858
859         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860                 smp_send_reschedule(task_cpu(p));
861 }
862 #else
863 static inline void resched_task(task_t *p)
864 {
865         set_tsk_need_resched(p);
866 }
867 #endif
868
869 /**
870  * task_curr - is this task currently executing on a CPU?
871  * @p: the task in question.
872  */
873 inline int task_curr(const task_t *p)
874 {
875         return cpu_curr(task_cpu(p)) == p;
876 }
877
878 #ifdef CONFIG_SMP
879 typedef struct {
880         struct list_head list;
881
882         task_t *task;
883         int dest_cpu;
884
885         struct completion done;
886 } migration_req_t;
887
888 /*
889  * The task's runqueue lock must be held.
890  * Returns true if you have to wait for migration thread.
891  */
892 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
893 {
894         runqueue_t *rq = task_rq(p);
895
896         /*
897          * If the task is not on a runqueue (and not running), then
898          * it is sufficient to simply update the task's cpu field.
899          */
900         if (!p->array && !task_running(rq, p)) {
901                 set_task_cpu(p, dest_cpu);
902                 return 0;
903         }
904
905         init_completion(&req->done);
906         req->task = p;
907         req->dest_cpu = dest_cpu;
908         list_add(&req->list, &rq->migration_queue);
909         return 1;
910 }
911
912 /*
913  * wait_task_inactive - wait for a thread to unschedule.
914  *
915  * The caller must ensure that the task *will* unschedule sometime soon,
916  * else this function might spin for a *long* time. This function can't
917  * be called with interrupts off, or it may introduce deadlock with
918  * smp_call_function() if an IPI is sent by the same process we are
919  * waiting to become inactive.
920  */
921 void wait_task_inactive(task_t *p)
922 {
923         unsigned long flags;
924         runqueue_t *rq;
925         int preempted;
926
927 repeat:
928         rq = task_rq_lock(p, &flags);
929         /* Must be off runqueue entirely, not preempted. */
930         if (unlikely(p->array || task_running(rq, p))) {
931                 /* If it's preempted, we yield.  It could be a while. */
932                 preempted = !task_running(rq, p);
933                 task_rq_unlock(rq, &flags);
934                 cpu_relax();
935                 if (preempted)
936                         yield();
937                 goto repeat;
938         }
939         task_rq_unlock(rq, &flags);
940 }
941
942 /***
943  * kick_process - kick a running thread to enter/exit the kernel
944  * @p: the to-be-kicked thread
945  *
946  * Cause a process which is running on another CPU to enter
947  * kernel-mode, without any delay. (to get signals handled.)
948  *
949  * NOTE: this function doesnt have to take the runqueue lock,
950  * because all it wants to ensure is that the remote task enters
951  * the kernel. If the IPI races and the task has been migrated
952  * to another CPU then no harm is done and the purpose has been
953  * achieved as well.
954  */
955 void kick_process(task_t *p)
956 {
957         int cpu;
958
959         preempt_disable();
960         cpu = task_cpu(p);
961         if ((cpu != smp_processor_id()) && task_curr(p))
962                 smp_send_reschedule(cpu);
963         preempt_enable();
964 }
965
966 /*
967  * Return a low guess at the load of a migration-source cpu.
968  *
969  * We want to under-estimate the load of migration sources, to
970  * balance conservatively.
971  */
972 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
973 {
974         runqueue_t *rq = cpu_rq(cpu);
975         unsigned long cpu_load = rq->cpu_load[type-1],
976                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
977
978         if (idle == NOT_IDLE) {
979                 /*
980                  * If we are balancing busy runqueues the load is biased by
981                  * priority to create 'nice' support across cpus.
982                  */
983                 cpu_load *= rq->prio_bias;
984                 load_now *= rq->prio_bias;
985         }
986
987         if (type == 0)
988                 return load_now;
989
990         return min(cpu_load, load_now);
991 }
992
993 static inline unsigned long source_load(int cpu, int type)
994 {
995         return __source_load(cpu, type, NOT_IDLE);
996 }
997
998 /*
999  * Return a high guess at the load of a migration-target cpu
1000  */
1001 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1002 {
1003         runqueue_t *rq = cpu_rq(cpu);
1004         unsigned long cpu_load = rq->cpu_load[type-1],
1005                 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1006
1007         if (type == 0)
1008                 return load_now;
1009
1010         if (idle == NOT_IDLE) {
1011                 cpu_load *= rq->prio_bias;
1012                 load_now *= rq->prio_bias;
1013         }
1014         return max(cpu_load, load_now);
1015 }
1016
1017 static inline unsigned long target_load(int cpu, int type)
1018 {
1019         return __target_load(cpu, type, NOT_IDLE);
1020 }
1021
1022 /*
1023  * find_idlest_group finds and returns the least busy CPU group within the
1024  * domain.
1025  */
1026 static struct sched_group *
1027 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1028 {
1029         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1030         unsigned long min_load = ULONG_MAX, this_load = 0;
1031         int load_idx = sd->forkexec_idx;
1032         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1033
1034         do {
1035                 unsigned long load, avg_load;
1036                 int local_group;
1037                 int i;
1038
1039                 /* Skip over this group if it has no CPUs allowed */
1040                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1041                         goto nextgroup;
1042
1043                 local_group = cpu_isset(this_cpu, group->cpumask);
1044
1045                 /* Tally up the load of all CPUs in the group */
1046                 avg_load = 0;
1047
1048                 for_each_cpu_mask(i, group->cpumask) {
1049                         /* Bias balancing toward cpus of our domain */
1050                         if (local_group)
1051                                 load = source_load(i, load_idx);
1052                         else
1053                                 load = target_load(i, load_idx);
1054
1055                         avg_load += load;
1056                 }
1057
1058                 /* Adjust by relative CPU power of the group */
1059                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1060
1061                 if (local_group) {
1062                         this_load = avg_load;
1063                         this = group;
1064                 } else if (avg_load < min_load) {
1065                         min_load = avg_load;
1066                         idlest = group;
1067                 }
1068 nextgroup:
1069                 group = group->next;
1070         } while (group != sd->groups);
1071
1072         if (!idlest || 100*this_load < imbalance*min_load)
1073                 return NULL;
1074         return idlest;
1075 }
1076
1077 /*
1078  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1079  */
1080 static int
1081 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1082 {
1083         cpumask_t tmp;
1084         unsigned long load, min_load = ULONG_MAX;
1085         int idlest = -1;
1086         int i;
1087
1088         /* Traverse only the allowed CPUs */
1089         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1090
1091         for_each_cpu_mask(i, tmp) {
1092                 load = source_load(i, 0);
1093
1094                 if (load < min_load || (load == min_load && i == this_cpu)) {
1095                         min_load = load;
1096                         idlest = i;
1097                 }
1098         }
1099
1100         return idlest;
1101 }
1102
1103 /*
1104  * sched_balance_self: balance the current task (running on cpu) in domains
1105  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1106  * SD_BALANCE_EXEC.
1107  *
1108  * Balance, ie. select the least loaded group.
1109  *
1110  * Returns the target CPU number, or the same CPU if no balancing is needed.
1111  *
1112  * preempt must be disabled.
1113  */
1114 static int sched_balance_self(int cpu, int flag)
1115 {
1116         struct task_struct *t = current;
1117         struct sched_domain *tmp, *sd = NULL;
1118
1119         for_each_domain(cpu, tmp)
1120                 if (tmp->flags & flag)
1121                         sd = tmp;
1122
1123         while (sd) {
1124                 cpumask_t span;
1125                 struct sched_group *group;
1126                 int new_cpu;
1127                 int weight;
1128
1129                 span = sd->span;
1130                 group = find_idlest_group(sd, t, cpu);
1131                 if (!group)
1132                         goto nextlevel;
1133
1134                 new_cpu = find_idlest_cpu(group, t, cpu);
1135                 if (new_cpu == -1 || new_cpu == cpu)
1136                         goto nextlevel;
1137
1138                 /* Now try balancing at a lower domain level */
1139                 cpu = new_cpu;
1140 nextlevel:
1141                 sd = NULL;
1142                 weight = cpus_weight(span);
1143                 for_each_domain(cpu, tmp) {
1144                         if (weight <= cpus_weight(tmp->span))
1145                                 break;
1146                         if (tmp->flags & flag)
1147                                 sd = tmp;
1148                 }
1149                 /* while loop will break here if sd == NULL */
1150         }
1151
1152         return cpu;
1153 }
1154
1155 #endif /* CONFIG_SMP */
1156
1157 /*
1158  * wake_idle() will wake a task on an idle cpu if task->cpu is
1159  * not idle and an idle cpu is available.  The span of cpus to
1160  * search starts with cpus closest then further out as needed,
1161  * so we always favor a closer, idle cpu.
1162  *
1163  * Returns the CPU we should wake onto.
1164  */
1165 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1166 static int wake_idle(int cpu, task_t *p)
1167 {
1168         cpumask_t tmp;
1169         struct sched_domain *sd;
1170         int i;
1171
1172         if (idle_cpu(cpu))
1173                 return cpu;
1174
1175         for_each_domain(cpu, sd) {
1176                 if (sd->flags & SD_WAKE_IDLE) {
1177                         cpus_and(tmp, sd->span, p->cpus_allowed);
1178                         for_each_cpu_mask(i, tmp) {
1179                                 if (idle_cpu(i))
1180                                         return i;
1181                         }
1182                 }
1183                 else
1184                         break;
1185         }
1186         return cpu;
1187 }
1188 #else
1189 static inline int wake_idle(int cpu, task_t *p)
1190 {
1191         return cpu;
1192 }
1193 #endif
1194
1195 /***
1196  * try_to_wake_up - wake up a thread
1197  * @p: the to-be-woken-up thread
1198  * @state: the mask of task states that can be woken
1199  * @sync: do a synchronous wakeup?
1200  *
1201  * Put it on the run-queue if it's not already there. The "current"
1202  * thread is always on the run-queue (except when the actual
1203  * re-schedule is in progress), and as such you're allowed to do
1204  * the simpler "current->state = TASK_RUNNING" to mark yourself
1205  * runnable without the overhead of this.
1206  *
1207  * returns failure only if the task is already active.
1208  */
1209 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1210 {
1211         int cpu, this_cpu, success = 0;
1212         unsigned long flags;
1213         long old_state;
1214         runqueue_t *rq;
1215 #ifdef CONFIG_SMP
1216         unsigned long load, this_load;
1217         struct sched_domain *sd, *this_sd = NULL;
1218         int new_cpu;
1219 #endif
1220
1221         rq = task_rq_lock(p, &flags);
1222         old_state = p->state;
1223         if (!(old_state & state))
1224                 goto out;
1225
1226         if (p->array)
1227                 goto out_running;
1228
1229         cpu = task_cpu(p);
1230         this_cpu = smp_processor_id();
1231
1232 #ifdef CONFIG_SMP
1233         if (unlikely(task_running(rq, p)))
1234                 goto out_activate;
1235
1236         new_cpu = cpu;
1237
1238         schedstat_inc(rq, ttwu_cnt);
1239         if (cpu == this_cpu) {
1240                 schedstat_inc(rq, ttwu_local);
1241                 goto out_set_cpu;
1242         }
1243
1244         for_each_domain(this_cpu, sd) {
1245                 if (cpu_isset(cpu, sd->span)) {
1246                         schedstat_inc(sd, ttwu_wake_remote);
1247                         this_sd = sd;
1248                         break;
1249                 }
1250         }
1251
1252         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1253                 goto out_set_cpu;
1254
1255         /*
1256          * Check for affine wakeup and passive balancing possibilities.
1257          */
1258         if (this_sd) {
1259                 int idx = this_sd->wake_idx;
1260                 unsigned int imbalance;
1261
1262                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1263
1264                 load = source_load(cpu, idx);
1265                 this_load = target_load(this_cpu, idx);
1266
1267                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1268
1269                 if (this_sd->flags & SD_WAKE_AFFINE) {
1270                         unsigned long tl = this_load;
1271                         /*
1272                          * If sync wakeup then subtract the (maximum possible)
1273                          * effect of the currently running task from the load
1274                          * of the current CPU:
1275                          */
1276                         if (sync)
1277                                 tl -= SCHED_LOAD_SCALE;
1278
1279                         if ((tl <= load &&
1280                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1281                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1282                                 /*
1283                                  * This domain has SD_WAKE_AFFINE and
1284                                  * p is cache cold in this domain, and
1285                                  * there is no bad imbalance.
1286                                  */
1287                                 schedstat_inc(this_sd, ttwu_move_affine);
1288                                 goto out_set_cpu;
1289                         }
1290                 }
1291
1292                 /*
1293                  * Start passive balancing when half the imbalance_pct
1294                  * limit is reached.
1295                  */
1296                 if (this_sd->flags & SD_WAKE_BALANCE) {
1297                         if (imbalance*this_load <= 100*load) {
1298                                 schedstat_inc(this_sd, ttwu_move_balance);
1299                                 goto out_set_cpu;
1300                         }
1301                 }
1302         }
1303
1304         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1305 out_set_cpu:
1306         new_cpu = wake_idle(new_cpu, p);
1307         if (new_cpu != cpu) {
1308                 set_task_cpu(p, new_cpu);
1309                 task_rq_unlock(rq, &flags);
1310                 /* might preempt at this point */
1311                 rq = task_rq_lock(p, &flags);
1312                 old_state = p->state;
1313                 if (!(old_state & state))
1314                         goto out;
1315                 if (p->array)
1316                         goto out_running;
1317
1318                 this_cpu = smp_processor_id();
1319                 cpu = task_cpu(p);
1320         }
1321
1322 out_activate:
1323 #endif /* CONFIG_SMP */
1324         if (old_state == TASK_UNINTERRUPTIBLE) {
1325                 rq->nr_uninterruptible--;
1326                 /*
1327                  * Tasks on involuntary sleep don't earn
1328                  * sleep_avg beyond just interactive state.
1329                  */
1330                 p->activated = -1;
1331         }
1332
1333         /*
1334          * Tasks that have marked their sleep as noninteractive get
1335          * woken up without updating their sleep average. (i.e. their
1336          * sleep is handled in a priority-neutral manner, no priority
1337          * boost and no penalty.)
1338          */
1339         if (old_state & TASK_NONINTERACTIVE)
1340                 __activate_task(p, rq);
1341         else
1342                 activate_task(p, rq, cpu == this_cpu);
1343         /*
1344          * Sync wakeups (i.e. those types of wakeups where the waker
1345          * has indicated that it will leave the CPU in short order)
1346          * don't trigger a preemption, if the woken up task will run on
1347          * this cpu. (in this case the 'I will reschedule' promise of
1348          * the waker guarantees that the freshly woken up task is going
1349          * to be considered on this CPU.)
1350          */
1351         if (!sync || cpu != this_cpu) {
1352                 if (TASK_PREEMPTS_CURR(p, rq))
1353                         resched_task(rq->curr);
1354         }
1355         success = 1;
1356
1357 out_running:
1358         p->state = TASK_RUNNING;
1359 out:
1360         task_rq_unlock(rq, &flags);
1361
1362         return success;
1363 }
1364
1365 int fastcall wake_up_process(task_t *p)
1366 {
1367         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1368                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1369 }
1370
1371 EXPORT_SYMBOL(wake_up_process);
1372
1373 int fastcall wake_up_state(task_t *p, unsigned int state)
1374 {
1375         return try_to_wake_up(p, state, 0);
1376 }
1377
1378 /*
1379  * Perform scheduler related setup for a newly forked process p.
1380  * p is forked by current.
1381  */
1382 void fastcall sched_fork(task_t *p, int clone_flags)
1383 {
1384         int cpu = get_cpu();
1385
1386 #ifdef CONFIG_SMP
1387         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1388 #endif
1389         set_task_cpu(p, cpu);
1390
1391         /*
1392          * We mark the process as running here, but have not actually
1393          * inserted it onto the runqueue yet. This guarantees that
1394          * nobody will actually run it, and a signal or other external
1395          * event cannot wake it up and insert it on the runqueue either.
1396          */
1397         p->state = TASK_RUNNING;
1398         INIT_LIST_HEAD(&p->run_list);
1399         p->array = NULL;
1400 #ifdef CONFIG_SCHEDSTATS
1401         memset(&p->sched_info, 0, sizeof(p->sched_info));
1402 #endif
1403 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1404         p->oncpu = 0;
1405 #endif
1406 #ifdef CONFIG_PREEMPT
1407         /* Want to start with kernel preemption disabled. */
1408         p->thread_info->preempt_count = 1;
1409 #endif
1410         /*
1411          * Share the timeslice between parent and child, thus the
1412          * total amount of pending timeslices in the system doesn't change,
1413          * resulting in more scheduling fairness.
1414          */
1415         local_irq_disable();
1416         p->time_slice = (current->time_slice + 1) >> 1;
1417         /*
1418          * The remainder of the first timeslice might be recovered by
1419          * the parent if the child exits early enough.
1420          */
1421         p->first_time_slice = 1;
1422         current->time_slice >>= 1;
1423         p->timestamp = sched_clock();
1424         if (unlikely(!current->time_slice)) {
1425                 /*
1426                  * This case is rare, it happens when the parent has only
1427                  * a single jiffy left from its timeslice. Taking the
1428                  * runqueue lock is not a problem.
1429                  */
1430                 current->time_slice = 1;
1431                 scheduler_tick();
1432         }
1433         local_irq_enable();
1434         put_cpu();
1435 }
1436
1437 /*
1438  * wake_up_new_task - wake up a newly created task for the first time.
1439  *
1440  * This function will do some initial scheduler statistics housekeeping
1441  * that must be done for every newly created context, then puts the task
1442  * on the runqueue and wakes it.
1443  */
1444 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1445 {
1446         unsigned long flags;
1447         int this_cpu, cpu;
1448         runqueue_t *rq, *this_rq;
1449
1450         rq = task_rq_lock(p, &flags);
1451         BUG_ON(p->state != TASK_RUNNING);
1452         this_cpu = smp_processor_id();
1453         cpu = task_cpu(p);
1454
1455         /*
1456          * We decrease the sleep average of forking parents
1457          * and children as well, to keep max-interactive tasks
1458          * from forking tasks that are max-interactive. The parent
1459          * (current) is done further down, under its lock.
1460          */
1461         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1462                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1463
1464         p->prio = effective_prio(p);
1465
1466         if (likely(cpu == this_cpu)) {
1467                 if (!(clone_flags & CLONE_VM)) {
1468                         /*
1469                          * The VM isn't cloned, so we're in a good position to
1470                          * do child-runs-first in anticipation of an exec. This
1471                          * usually avoids a lot of COW overhead.
1472                          */
1473                         if (unlikely(!current->array))
1474                                 __activate_task(p, rq);
1475                         else {
1476                                 p->prio = current->prio;
1477                                 list_add_tail(&p->run_list, &current->run_list);
1478                                 p->array = current->array;
1479                                 p->array->nr_active++;
1480                                 inc_nr_running(p, rq);
1481                         }
1482                         set_need_resched();
1483                 } else
1484                         /* Run child last */
1485                         __activate_task(p, rq);
1486                 /*
1487                  * We skip the following code due to cpu == this_cpu
1488                  *
1489                  *   task_rq_unlock(rq, &flags);
1490                  *   this_rq = task_rq_lock(current, &flags);
1491                  */
1492                 this_rq = rq;
1493         } else {
1494                 this_rq = cpu_rq(this_cpu);
1495
1496                 /*
1497                  * Not the local CPU - must adjust timestamp. This should
1498                  * get optimised away in the !CONFIG_SMP case.
1499                  */
1500                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1501                                         + rq->timestamp_last_tick;
1502                 __activate_task(p, rq);
1503                 if (TASK_PREEMPTS_CURR(p, rq))
1504                         resched_task(rq->curr);
1505
1506                 /*
1507                  * Parent and child are on different CPUs, now get the
1508                  * parent runqueue to update the parent's ->sleep_avg:
1509                  */
1510                 task_rq_unlock(rq, &flags);
1511                 this_rq = task_rq_lock(current, &flags);
1512         }
1513         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1514                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1515         task_rq_unlock(this_rq, &flags);
1516 }
1517
1518 /*
1519  * Potentially available exiting-child timeslices are
1520  * retrieved here - this way the parent does not get
1521  * penalized for creating too many threads.
1522  *
1523  * (this cannot be used to 'generate' timeslices
1524  * artificially, because any timeslice recovered here
1525  * was given away by the parent in the first place.)
1526  */
1527 void fastcall sched_exit(task_t *p)
1528 {
1529         unsigned long flags;
1530         runqueue_t *rq;
1531
1532         /*
1533          * If the child was a (relative-) CPU hog then decrease
1534          * the sleep_avg of the parent as well.
1535          */
1536         rq = task_rq_lock(p->parent, &flags);
1537         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1538                 p->parent->time_slice += p->time_slice;
1539                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1540                         p->parent->time_slice = task_timeslice(p);
1541         }
1542         if (p->sleep_avg < p->parent->sleep_avg)
1543                 p->parent->sleep_avg = p->parent->sleep_avg /
1544                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1545                 (EXIT_WEIGHT + 1);
1546         task_rq_unlock(rq, &flags);
1547 }
1548
1549 /**
1550  * prepare_task_switch - prepare to switch tasks
1551  * @rq: the runqueue preparing to switch
1552  * @next: the task we are going to switch to.
1553  *
1554  * This is called with the rq lock held and interrupts off. It must
1555  * be paired with a subsequent finish_task_switch after the context
1556  * switch.
1557  *
1558  * prepare_task_switch sets up locking and calls architecture specific
1559  * hooks.
1560  */
1561 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1562 {
1563         prepare_lock_switch(rq, next);
1564         prepare_arch_switch(next);
1565 }
1566
1567 /**
1568  * finish_task_switch - clean up after a task-switch
1569  * @rq: runqueue associated with task-switch
1570  * @prev: the thread we just switched away from.
1571  *
1572  * finish_task_switch must be called after the context switch, paired
1573  * with a prepare_task_switch call before the context switch.
1574  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1575  * and do any other architecture-specific cleanup actions.
1576  *
1577  * Note that we may have delayed dropping an mm in context_switch(). If
1578  * so, we finish that here outside of the runqueue lock.  (Doing it
1579  * with the lock held can cause deadlocks; see schedule() for
1580  * details.)
1581  */
1582 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1583         __releases(rq->lock)
1584 {
1585         struct mm_struct *mm = rq->prev_mm;
1586         unsigned long prev_task_flags;
1587
1588         rq->prev_mm = NULL;
1589
1590         /*
1591          * A task struct has one reference for the use as "current".
1592          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1593          * calls schedule one last time. The schedule call will never return,
1594          * and the scheduled task must drop that reference.
1595          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1596          * still held, otherwise prev could be scheduled on another cpu, die
1597          * there before we look at prev->state, and then the reference would
1598          * be dropped twice.
1599          *              Manfred Spraul <manfred@colorfullife.com>
1600          */
1601         prev_task_flags = prev->flags;
1602         finish_arch_switch(prev);
1603         finish_lock_switch(rq, prev);
1604         if (mm)
1605                 mmdrop(mm);
1606         if (unlikely(prev_task_flags & PF_DEAD))
1607                 put_task_struct(prev);
1608 }
1609
1610 /**
1611  * schedule_tail - first thing a freshly forked thread must call.
1612  * @prev: the thread we just switched away from.
1613  */
1614 asmlinkage void schedule_tail(task_t *prev)
1615         __releases(rq->lock)
1616 {
1617         runqueue_t *rq = this_rq();
1618         finish_task_switch(rq, prev);
1619 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1620         /* In this case, finish_task_switch does not reenable preemption */
1621         preempt_enable();
1622 #endif
1623         if (current->set_child_tid)
1624                 put_user(current->pid, current->set_child_tid);
1625 }
1626
1627 /*
1628  * context_switch - switch to the new MM and the new
1629  * thread's register state.
1630  */
1631 static inline
1632 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1633 {
1634         struct mm_struct *mm = next->mm;
1635         struct mm_struct *oldmm = prev->active_mm;
1636
1637         if (unlikely(!mm)) {
1638                 next->active_mm = oldmm;
1639                 atomic_inc(&oldmm->mm_count);
1640                 enter_lazy_tlb(oldmm, next);
1641         } else
1642                 switch_mm(oldmm, mm, next);
1643
1644         if (unlikely(!prev->mm)) {
1645                 prev->active_mm = NULL;
1646                 WARN_ON(rq->prev_mm);
1647                 rq->prev_mm = oldmm;
1648         }
1649
1650         /* Here we just switch the register state and the stack. */
1651         switch_to(prev, next, prev);
1652
1653         return prev;
1654 }
1655
1656 /*
1657  * nr_running, nr_uninterruptible and nr_context_switches:
1658  *
1659  * externally visible scheduler statistics: current number of runnable
1660  * threads, current number of uninterruptible-sleeping threads, total
1661  * number of context switches performed since bootup.
1662  */
1663 unsigned long nr_running(void)
1664 {
1665         unsigned long i, sum = 0;
1666
1667         for_each_online_cpu(i)
1668                 sum += cpu_rq(i)->nr_running;
1669
1670         return sum;
1671 }
1672
1673 unsigned long nr_uninterruptible(void)
1674 {
1675         unsigned long i, sum = 0;
1676
1677         for_each_cpu(i)
1678                 sum += cpu_rq(i)->nr_uninterruptible;
1679
1680         /*
1681          * Since we read the counters lockless, it might be slightly
1682          * inaccurate. Do not allow it to go below zero though:
1683          */
1684         if (unlikely((long)sum < 0))
1685                 sum = 0;
1686
1687         return sum;
1688 }
1689
1690 unsigned long long nr_context_switches(void)
1691 {
1692         unsigned long long i, sum = 0;
1693
1694         for_each_cpu(i)
1695                 sum += cpu_rq(i)->nr_switches;
1696
1697         return sum;
1698 }
1699
1700 unsigned long nr_iowait(void)
1701 {
1702         unsigned long i, sum = 0;
1703
1704         for_each_cpu(i)
1705                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1706
1707         return sum;
1708 }
1709
1710 #ifdef CONFIG_SMP
1711
1712 /*
1713  * double_rq_lock - safely lock two runqueues
1714  *
1715  * Note this does not disable interrupts like task_rq_lock,
1716  * you need to do so manually before calling.
1717  */
1718 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1719         __acquires(rq1->lock)
1720         __acquires(rq2->lock)
1721 {
1722         if (rq1 == rq2) {
1723                 spin_lock(&rq1->lock);
1724                 __acquire(rq2->lock);   /* Fake it out ;) */
1725         } else {
1726                 if (rq1 < rq2) {
1727                         spin_lock(&rq1->lock);
1728                         spin_lock(&rq2->lock);
1729                 } else {
1730                         spin_lock(&rq2->lock);
1731                         spin_lock(&rq1->lock);
1732                 }
1733         }
1734 }
1735
1736 /*
1737  * double_rq_unlock - safely unlock two runqueues
1738  *
1739  * Note this does not restore interrupts like task_rq_unlock,
1740  * you need to do so manually after calling.
1741  */
1742 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1743         __releases(rq1->lock)
1744         __releases(rq2->lock)
1745 {
1746         spin_unlock(&rq1->lock);
1747         if (rq1 != rq2)
1748                 spin_unlock(&rq2->lock);
1749         else
1750                 __release(rq2->lock);
1751 }
1752
1753 /*
1754  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755  */
1756 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1757         __releases(this_rq->lock)
1758         __acquires(busiest->lock)
1759         __acquires(this_rq->lock)
1760 {
1761         if (unlikely(!spin_trylock(&busiest->lock))) {
1762                 if (busiest < this_rq) {
1763                         spin_unlock(&this_rq->lock);
1764                         spin_lock(&busiest->lock);
1765                         spin_lock(&this_rq->lock);
1766                 } else
1767                         spin_lock(&busiest->lock);
1768         }
1769 }
1770
1771 /*
1772  * If dest_cpu is allowed for this process, migrate the task to it.
1773  * This is accomplished by forcing the cpu_allowed mask to only
1774  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1775  * the cpu_allowed mask is restored.
1776  */
1777 static void sched_migrate_task(task_t *p, int dest_cpu)
1778 {
1779         migration_req_t req;
1780         runqueue_t *rq;
1781         unsigned long flags;
1782
1783         rq = task_rq_lock(p, &flags);
1784         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1785             || unlikely(cpu_is_offline(dest_cpu)))
1786                 goto out;
1787
1788         /* force the process onto the specified CPU */
1789         if (migrate_task(p, dest_cpu, &req)) {
1790                 /* Need to wait for migration thread (might exit: take ref). */
1791                 struct task_struct *mt = rq->migration_thread;
1792                 get_task_struct(mt);
1793                 task_rq_unlock(rq, &flags);
1794                 wake_up_process(mt);
1795                 put_task_struct(mt);
1796                 wait_for_completion(&req.done);
1797                 return;
1798         }
1799 out:
1800         task_rq_unlock(rq, &flags);
1801 }
1802
1803 /*
1804  * sched_exec - execve() is a valuable balancing opportunity, because at
1805  * this point the task has the smallest effective memory and cache footprint.
1806  */
1807 void sched_exec(void)
1808 {
1809         int new_cpu, this_cpu = get_cpu();
1810         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1811         put_cpu();
1812         if (new_cpu != this_cpu)
1813                 sched_migrate_task(current, new_cpu);
1814 }
1815
1816 /*
1817  * pull_task - move a task from a remote runqueue to the local runqueue.
1818  * Both runqueues must be locked.
1819  */
1820 static inline
1821 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1822                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1823 {
1824         dequeue_task(p, src_array);
1825         dec_nr_running(p, src_rq);
1826         set_task_cpu(p, this_cpu);
1827         inc_nr_running(p, this_rq);
1828         enqueue_task(p, this_array);
1829         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1830                                 + this_rq->timestamp_last_tick;
1831         /*
1832          * Note that idle threads have a prio of MAX_PRIO, for this test
1833          * to be always true for them.
1834          */
1835         if (TASK_PREEMPTS_CURR(p, this_rq))
1836                 resched_task(this_rq->curr);
1837 }
1838
1839 /*
1840  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1841  */
1842 static inline
1843 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1844                      struct sched_domain *sd, enum idle_type idle,
1845                      int *all_pinned)
1846 {
1847         /*
1848          * We do not migrate tasks that are:
1849          * 1) running (obviously), or
1850          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1851          * 3) are cache-hot on their current CPU.
1852          */
1853         if (!cpu_isset(this_cpu, p->cpus_allowed))
1854                 return 0;
1855         *all_pinned = 0;
1856
1857         if (task_running(rq, p))
1858                 return 0;
1859
1860         /*
1861          * Aggressive migration if:
1862          * 1) task is cache cold, or
1863          * 2) too many balance attempts have failed.
1864          */
1865
1866         if (sd->nr_balance_failed > sd->cache_nice_tries)
1867                 return 1;
1868
1869         if (task_hot(p, rq->timestamp_last_tick, sd))
1870                 return 0;
1871         return 1;
1872 }
1873
1874 /*
1875  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1876  * as part of a balancing operation within "domain". Returns the number of
1877  * tasks moved.
1878  *
1879  * Called with both runqueues locked.
1880  */
1881 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1882                       unsigned long max_nr_move, struct sched_domain *sd,
1883                       enum idle_type idle, int *all_pinned)
1884 {
1885         prio_array_t *array, *dst_array;
1886         struct list_head *head, *curr;
1887         int idx, pulled = 0, pinned = 0;
1888         task_t *tmp;
1889
1890         if (max_nr_move == 0)
1891                 goto out;
1892
1893         pinned = 1;
1894
1895         /*
1896          * We first consider expired tasks. Those will likely not be
1897          * executed in the near future, and they are most likely to
1898          * be cache-cold, thus switching CPUs has the least effect
1899          * on them.
1900          */
1901         if (busiest->expired->nr_active) {
1902                 array = busiest->expired;
1903                 dst_array = this_rq->expired;
1904         } else {
1905                 array = busiest->active;
1906                 dst_array = this_rq->active;
1907         }
1908
1909 new_array:
1910         /* Start searching at priority 0: */
1911         idx = 0;
1912 skip_bitmap:
1913         if (!idx)
1914                 idx = sched_find_first_bit(array->bitmap);
1915         else
1916                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1917         if (idx >= MAX_PRIO) {
1918                 if (array == busiest->expired && busiest->active->nr_active) {
1919                         array = busiest->active;
1920                         dst_array = this_rq->active;
1921                         goto new_array;
1922                 }
1923                 goto out;
1924         }
1925
1926         head = array->queue + idx;
1927         curr = head->prev;
1928 skip_queue:
1929         tmp = list_entry(curr, task_t, run_list);
1930
1931         curr = curr->prev;
1932
1933         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1934                 if (curr != head)
1935                         goto skip_queue;
1936                 idx++;
1937                 goto skip_bitmap;
1938         }
1939
1940 #ifdef CONFIG_SCHEDSTATS
1941         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1942                 schedstat_inc(sd, lb_hot_gained[idle]);
1943 #endif
1944
1945         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1946         pulled++;
1947
1948         /* We only want to steal up to the prescribed number of tasks. */
1949         if (pulled < max_nr_move) {
1950                 if (curr != head)
1951                         goto skip_queue;
1952                 idx++;
1953                 goto skip_bitmap;
1954         }
1955 out:
1956         /*
1957          * Right now, this is the only place pull_task() is called,
1958          * so we can safely collect pull_task() stats here rather than
1959          * inside pull_task().
1960          */
1961         schedstat_add(sd, lb_gained[idle], pulled);
1962
1963         if (all_pinned)
1964                 *all_pinned = pinned;
1965         return pulled;
1966 }
1967
1968 /*
1969  * find_busiest_group finds and returns the busiest CPU group within the
1970  * domain. It calculates and returns the number of tasks which should be
1971  * moved to restore balance via the imbalance parameter.
1972  */
1973 static struct sched_group *
1974 find_busiest_group(struct sched_domain *sd, int this_cpu,
1975                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1976 {
1977         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1978         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1979         unsigned long max_pull;
1980         int load_idx;
1981
1982         max_load = this_load = total_load = total_pwr = 0;
1983         if (idle == NOT_IDLE)
1984                 load_idx = sd->busy_idx;
1985         else if (idle == NEWLY_IDLE)
1986                 load_idx = sd->newidle_idx;
1987         else
1988                 load_idx = sd->idle_idx;
1989
1990         do {
1991                 unsigned long load;
1992                 int local_group;
1993                 int i;
1994
1995                 local_group = cpu_isset(this_cpu, group->cpumask);
1996
1997                 /* Tally up the load of all CPUs in the group */
1998                 avg_load = 0;
1999
2000                 for_each_cpu_mask(i, group->cpumask) {
2001                         if (*sd_idle && !idle_cpu(i))
2002                                 *sd_idle = 0;
2003
2004                         /* Bias balancing toward cpus of our domain */
2005                         if (local_group)
2006                                 load = __target_load(i, load_idx, idle);
2007                         else
2008                                 load = __source_load(i, load_idx, idle);
2009
2010                         avg_load += load;
2011                 }
2012
2013                 total_load += avg_load;
2014                 total_pwr += group->cpu_power;
2015
2016                 /* Adjust by relative CPU power of the group */
2017                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2018
2019                 if (local_group) {
2020                         this_load = avg_load;
2021                         this = group;
2022                 } else if (avg_load > max_load) {
2023                         max_load = avg_load;
2024                         busiest = group;
2025                 }
2026                 group = group->next;
2027         } while (group != sd->groups);
2028
2029         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2030                 goto out_balanced;
2031
2032         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2033
2034         if (this_load >= avg_load ||
2035                         100*max_load <= sd->imbalance_pct*this_load)
2036                 goto out_balanced;
2037
2038         /*
2039          * We're trying to get all the cpus to the average_load, so we don't
2040          * want to push ourselves above the average load, nor do we wish to
2041          * reduce the max loaded cpu below the average load, as either of these
2042          * actions would just result in more rebalancing later, and ping-pong
2043          * tasks around. Thus we look for the minimum possible imbalance.
2044          * Negative imbalances (*we* are more loaded than anyone else) will
2045          * be counted as no imbalance for these purposes -- we can't fix that
2046          * by pulling tasks to us.  Be careful of negative numbers as they'll
2047          * appear as very large values with unsigned longs.
2048          */
2049
2050         /* Don't want to pull so many tasks that a group would go idle */
2051         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2052
2053         /* How much load to actually move to equalise the imbalance */
2054         *imbalance = min(max_pull * busiest->cpu_power,
2055                                 (avg_load - this_load) * this->cpu_power)
2056                         / SCHED_LOAD_SCALE;
2057
2058         if (*imbalance < SCHED_LOAD_SCALE) {
2059                 unsigned long pwr_now = 0, pwr_move = 0;
2060                 unsigned long tmp;
2061
2062                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2063                         *imbalance = 1;
2064                         return busiest;
2065                 }
2066
2067                 /*
2068                  * OK, we don't have enough imbalance to justify moving tasks,
2069                  * however we may be able to increase total CPU power used by
2070                  * moving them.
2071                  */
2072
2073                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2074                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2075                 pwr_now /= SCHED_LOAD_SCALE;
2076
2077                 /* Amount of load we'd subtract */
2078                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2079                 if (max_load > tmp)
2080                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2081                                                         max_load - tmp);
2082
2083                 /* Amount of load we'd add */
2084                 if (max_load*busiest->cpu_power <
2085                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2086                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2087                 else
2088                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2089                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2090                 pwr_move /= SCHED_LOAD_SCALE;
2091
2092                 /* Move if we gain throughput */
2093                 if (pwr_move <= pwr_now)
2094                         goto out_balanced;
2095
2096                 *imbalance = 1;
2097                 return busiest;
2098         }
2099
2100         /* Get rid of the scaling factor, rounding down as we divide */
2101         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2102         return busiest;
2103
2104 out_balanced:
2105
2106         *imbalance = 0;
2107         return NULL;
2108 }
2109
2110 /*
2111  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2112  */
2113 static runqueue_t *find_busiest_queue(struct sched_group *group,
2114         enum idle_type idle)
2115 {
2116         unsigned long load, max_load = 0;
2117         runqueue_t *busiest = NULL;
2118         int i;
2119
2120         for_each_cpu_mask(i, group->cpumask) {
2121                 load = __source_load(i, 0, idle);
2122
2123                 if (load > max_load) {
2124                         max_load = load;
2125                         busiest = cpu_rq(i);
2126                 }
2127         }
2128
2129         return busiest;
2130 }
2131
2132 /*
2133  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2134  * so long as it is large enough.
2135  */
2136 #define MAX_PINNED_INTERVAL     512
2137
2138 /*
2139  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2140  * tasks if there is an imbalance.
2141  *
2142  * Called with this_rq unlocked.
2143  */
2144 static int load_balance(int this_cpu, runqueue_t *this_rq,
2145                         struct sched_domain *sd, enum idle_type idle)
2146 {
2147         struct sched_group *group;
2148         runqueue_t *busiest;
2149         unsigned long imbalance;
2150         int nr_moved, all_pinned = 0;
2151         int active_balance = 0;
2152         int sd_idle = 0;
2153
2154         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2155                 sd_idle = 1;
2156
2157         schedstat_inc(sd, lb_cnt[idle]);
2158
2159         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2160         if (!group) {
2161                 schedstat_inc(sd, lb_nobusyg[idle]);
2162                 goto out_balanced;
2163         }
2164
2165         busiest = find_busiest_queue(group, idle);
2166         if (!busiest) {
2167                 schedstat_inc(sd, lb_nobusyq[idle]);
2168                 goto out_balanced;
2169         }
2170
2171         BUG_ON(busiest == this_rq);
2172
2173         schedstat_add(sd, lb_imbalance[idle], imbalance);
2174
2175         nr_moved = 0;
2176         if (busiest->nr_running > 1) {
2177                 /*
2178                  * Attempt to move tasks. If find_busiest_group has found
2179                  * an imbalance but busiest->nr_running <= 1, the group is
2180                  * still unbalanced. nr_moved simply stays zero, so it is
2181                  * correctly treated as an imbalance.
2182                  */
2183                 double_rq_lock(this_rq, busiest);
2184                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2185                                         imbalance, sd, idle, &all_pinned);
2186                 double_rq_unlock(this_rq, busiest);
2187
2188                 /* All tasks on this runqueue were pinned by CPU affinity */
2189                 if (unlikely(all_pinned))
2190                         goto out_balanced;
2191         }
2192
2193         if (!nr_moved) {
2194                 schedstat_inc(sd, lb_failed[idle]);
2195                 sd->nr_balance_failed++;
2196
2197                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2198
2199                         spin_lock(&busiest->lock);
2200
2201                         /* don't kick the migration_thread, if the curr
2202                          * task on busiest cpu can't be moved to this_cpu
2203                          */
2204                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2205                                 spin_unlock(&busiest->lock);
2206                                 all_pinned = 1;
2207                                 goto out_one_pinned;
2208                         }
2209
2210                         if (!busiest->active_balance) {
2211                                 busiest->active_balance = 1;
2212                                 busiest->push_cpu = this_cpu;
2213                                 active_balance = 1;
2214                         }
2215                         spin_unlock(&busiest->lock);
2216                         if (active_balance)
2217                                 wake_up_process(busiest->migration_thread);
2218
2219                         /*
2220                          * We've kicked active balancing, reset the failure
2221                          * counter.
2222                          */
2223                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2224                 }
2225         } else
2226                 sd->nr_balance_failed = 0;
2227
2228         if (likely(!active_balance)) {
2229                 /* We were unbalanced, so reset the balancing interval */
2230                 sd->balance_interval = sd->min_interval;
2231         } else {
2232                 /*
2233                  * If we've begun active balancing, start to back off. This
2234                  * case may not be covered by the all_pinned logic if there
2235                  * is only 1 task on the busy runqueue (because we don't call
2236                  * move_tasks).
2237                  */
2238                 if (sd->balance_interval < sd->max_interval)
2239                         sd->balance_interval *= 2;
2240         }
2241
2242         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2243                 return -1;
2244         return nr_moved;
2245
2246 out_balanced:
2247         schedstat_inc(sd, lb_balanced[idle]);
2248
2249         sd->nr_balance_failed = 0;
2250
2251 out_one_pinned:
2252         /* tune up the balancing interval */
2253         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2254                         (sd->balance_interval < sd->max_interval))
2255                 sd->balance_interval *= 2;
2256
2257         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2258                 return -1;
2259         return 0;
2260 }
2261
2262 /*
2263  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2264  * tasks if there is an imbalance.
2265  *
2266  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2267  * this_rq is locked.
2268  */
2269 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2270                                 struct sched_domain *sd)
2271 {
2272         struct sched_group *group;
2273         runqueue_t *busiest = NULL;
2274         unsigned long imbalance;
2275         int nr_moved = 0;
2276         int sd_idle = 0;
2277
2278         if (sd->flags & SD_SHARE_CPUPOWER)
2279                 sd_idle = 1;
2280
2281         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2282         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2283         if (!group) {
2284                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2285                 goto out_balanced;
2286         }
2287
2288         busiest = find_busiest_queue(group, NEWLY_IDLE);
2289         if (!busiest) {
2290                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2291                 goto out_balanced;
2292         }
2293
2294         BUG_ON(busiest == this_rq);
2295
2296         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2297
2298         nr_moved = 0;
2299         if (busiest->nr_running > 1) {
2300                 /* Attempt to move tasks */
2301                 double_lock_balance(this_rq, busiest);
2302                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2303                                         imbalance, sd, NEWLY_IDLE, NULL);
2304                 spin_unlock(&busiest->lock);
2305         }
2306
2307         if (!nr_moved) {
2308                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2309                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2310                         return -1;
2311         } else
2312                 sd->nr_balance_failed = 0;
2313
2314         return nr_moved;
2315
2316 out_balanced:
2317         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2318         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2319                 return -1;
2320         sd->nr_balance_failed = 0;
2321         return 0;
2322 }
2323
2324 /*
2325  * idle_balance is called by schedule() if this_cpu is about to become
2326  * idle. Attempts to pull tasks from other CPUs.
2327  */
2328 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2329 {
2330         struct sched_domain *sd;
2331
2332         for_each_domain(this_cpu, sd) {
2333                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2334                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2335                                 /* We've pulled tasks over so stop searching */
2336                                 break;
2337                         }
2338                 }
2339         }
2340 }
2341
2342 /*
2343  * active_load_balance is run by migration threads. It pushes running tasks
2344  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2345  * running on each physical CPU where possible, and avoids physical /
2346  * logical imbalances.
2347  *
2348  * Called with busiest_rq locked.
2349  */
2350 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2351 {
2352         struct sched_domain *sd;
2353         runqueue_t *target_rq;
2354         int target_cpu = busiest_rq->push_cpu;
2355
2356         if (busiest_rq->nr_running <= 1)
2357                 /* no task to move */
2358                 return;
2359
2360         target_rq = cpu_rq(target_cpu);
2361
2362         /*
2363          * This condition is "impossible", if it occurs
2364          * we need to fix it.  Originally reported by
2365          * Bjorn Helgaas on a 128-cpu setup.
2366          */
2367         BUG_ON(busiest_rq == target_rq);
2368
2369         /* move a task from busiest_rq to target_rq */
2370         double_lock_balance(busiest_rq, target_rq);
2371
2372         /* Search for an sd spanning us and the target CPU. */
2373         for_each_domain(target_cpu, sd)
2374                 if ((sd->flags & SD_LOAD_BALANCE) &&
2375                         cpu_isset(busiest_cpu, sd->span))
2376                                 break;
2377
2378         if (unlikely(sd == NULL))
2379                 goto out;
2380
2381         schedstat_inc(sd, alb_cnt);
2382
2383         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2384                 schedstat_inc(sd, alb_pushed);
2385         else
2386                 schedstat_inc(sd, alb_failed);
2387 out:
2388         spin_unlock(&target_rq->lock);
2389 }
2390
2391 /*
2392  * rebalance_tick will get called every timer tick, on every CPU.
2393  *
2394  * It checks each scheduling domain to see if it is due to be balanced,
2395  * and initiates a balancing operation if so.
2396  *
2397  * Balancing parameters are set up in arch_init_sched_domains.
2398  */
2399
2400 /* Don't have all balancing operations going off at once */
2401 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2402
2403 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2404                            enum idle_type idle)
2405 {
2406         unsigned long old_load, this_load;
2407         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2408         struct sched_domain *sd;
2409         int i;
2410
2411         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2412         /* Update our load */
2413         for (i = 0; i < 3; i++) {
2414                 unsigned long new_load = this_load;
2415                 int scale = 1 << i;
2416                 old_load = this_rq->cpu_load[i];
2417                 /*
2418                  * Round up the averaging division if load is increasing. This
2419                  * prevents us from getting stuck on 9 if the load is 10, for
2420                  * example.
2421                  */
2422                 if (new_load > old_load)
2423                         new_load += scale-1;
2424                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2425         }
2426
2427         for_each_domain(this_cpu, sd) {
2428                 unsigned long interval;
2429
2430                 if (!(sd->flags & SD_LOAD_BALANCE))
2431                         continue;
2432
2433                 interval = sd->balance_interval;
2434                 if (idle != SCHED_IDLE)
2435                         interval *= sd->busy_factor;
2436
2437                 /* scale ms to jiffies */
2438                 interval = msecs_to_jiffies(interval);
2439                 if (unlikely(!interval))
2440                         interval = 1;
2441
2442                 if (j - sd->last_balance >= interval) {
2443                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2444                                 /*
2445                                  * We've pulled tasks over so either we're no
2446                                  * longer idle, or one of our SMT siblings is
2447                                  * not idle.
2448                                  */
2449                                 idle = NOT_IDLE;
2450                         }
2451                         sd->last_balance += interval;
2452                 }
2453         }
2454 }
2455 #else
2456 /*
2457  * on UP we do not need to balance between CPUs:
2458  */
2459 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2460 {
2461 }
2462 static inline void idle_balance(int cpu, runqueue_t *rq)
2463 {
2464 }
2465 #endif
2466
2467 static inline int wake_priority_sleeper(runqueue_t *rq)
2468 {
2469         int ret = 0;
2470 #ifdef CONFIG_SCHED_SMT
2471         spin_lock(&rq->lock);
2472         /*
2473          * If an SMT sibling task has been put to sleep for priority
2474          * reasons reschedule the idle task to see if it can now run.
2475          */
2476         if (rq->nr_running) {
2477                 resched_task(rq->idle);
2478                 ret = 1;
2479         }
2480         spin_unlock(&rq->lock);
2481 #endif
2482         return ret;
2483 }
2484
2485 DEFINE_PER_CPU(struct kernel_stat, kstat);
2486
2487 EXPORT_PER_CPU_SYMBOL(kstat);
2488
2489 /*
2490  * This is called on clock ticks and on context switches.
2491  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2492  */
2493 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2494                                     unsigned long long now)
2495 {
2496         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2497         p->sched_time += now - last;
2498 }
2499
2500 /*
2501  * Return current->sched_time plus any more ns on the sched_clock
2502  * that have not yet been banked.
2503  */
2504 unsigned long long current_sched_time(const task_t *tsk)
2505 {
2506         unsigned long long ns;
2507         unsigned long flags;
2508         local_irq_save(flags);
2509         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2510         ns = tsk->sched_time + (sched_clock() - ns);
2511         local_irq_restore(flags);
2512         return ns;
2513 }
2514
2515 /*
2516  * We place interactive tasks back into the active array, if possible.
2517  *
2518  * To guarantee that this does not starve expired tasks we ignore the
2519  * interactivity of a task if the first expired task had to wait more
2520  * than a 'reasonable' amount of time. This deadline timeout is
2521  * load-dependent, as the frequency of array switched decreases with
2522  * increasing number of running tasks. We also ignore the interactivity
2523  * if a better static_prio task has expired:
2524  */
2525 #define EXPIRED_STARVING(rq) \
2526         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2527                 (jiffies - (rq)->expired_timestamp >= \
2528                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2529                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2530
2531 /*
2532  * Account user cpu time to a process.
2533  * @p: the process that the cpu time gets accounted to
2534  * @hardirq_offset: the offset to subtract from hardirq_count()
2535  * @cputime: the cpu time spent in user space since the last update
2536  */
2537 void account_user_time(struct task_struct *p, cputime_t cputime)
2538 {
2539         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2540         cputime64_t tmp;
2541
2542         p->utime = cputime_add(p->utime, cputime);
2543
2544         /* Add user time to cpustat. */
2545         tmp = cputime_to_cputime64(cputime);
2546         if (TASK_NICE(p) > 0)
2547                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2548         else
2549                 cpustat->user = cputime64_add(cpustat->user, tmp);
2550 }
2551
2552 /*
2553  * Account system cpu time to a process.
2554  * @p: the process that the cpu time gets accounted to
2555  * @hardirq_offset: the offset to subtract from hardirq_count()
2556  * @cputime: the cpu time spent in kernel space since the last update
2557  */
2558 void account_system_time(struct task_struct *p, int hardirq_offset,
2559                          cputime_t cputime)
2560 {
2561         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2562         runqueue_t *rq = this_rq();
2563         cputime64_t tmp;
2564
2565         p->stime = cputime_add(p->stime, cputime);
2566
2567         /* Add system time to cpustat. */
2568         tmp = cputime_to_cputime64(cputime);
2569         if (hardirq_count() - hardirq_offset)
2570                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2571         else if (softirq_count())
2572                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2573         else if (p != rq->idle)
2574                 cpustat->system = cputime64_add(cpustat->system, tmp);
2575         else if (atomic_read(&rq->nr_iowait) > 0)
2576                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2577         else
2578                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2579         /* Account for system time used */
2580         acct_update_integrals(p);
2581 }
2582
2583 /*
2584  * Account for involuntary wait time.
2585  * @p: the process from which the cpu time has been stolen
2586  * @steal: the cpu time spent in involuntary wait
2587  */
2588 void account_steal_time(struct task_struct *p, cputime_t steal)
2589 {
2590         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2591         cputime64_t tmp = cputime_to_cputime64(steal);
2592         runqueue_t *rq = this_rq();
2593
2594         if (p == rq->idle) {
2595                 p->stime = cputime_add(p->stime, steal);
2596                 if (atomic_read(&rq->nr_iowait) > 0)
2597                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2598                 else
2599                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2600         } else
2601                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2602 }
2603
2604 /*
2605  * This function gets called by the timer code, with HZ frequency.
2606  * We call it with interrupts disabled.
2607  *
2608  * It also gets called by the fork code, when changing the parent's
2609  * timeslices.
2610  */
2611 void scheduler_tick(void)
2612 {
2613         int cpu = smp_processor_id();
2614         runqueue_t *rq = this_rq();
2615         task_t *p = current;
2616         unsigned long long now = sched_clock();
2617
2618         update_cpu_clock(p, rq, now);
2619
2620         rq->timestamp_last_tick = now;
2621
2622         if (p == rq->idle) {
2623                 if (wake_priority_sleeper(rq))
2624                         goto out;
2625                 rebalance_tick(cpu, rq, SCHED_IDLE);
2626                 return;
2627         }
2628
2629         /* Task might have expired already, but not scheduled off yet */
2630         if (p->array != rq->active) {
2631                 set_tsk_need_resched(p);
2632                 goto out;
2633         }
2634         spin_lock(&rq->lock);
2635         /*
2636          * The task was running during this tick - update the
2637          * time slice counter. Note: we do not update a thread's
2638          * priority until it either goes to sleep or uses up its
2639          * timeslice. This makes it possible for interactive tasks
2640          * to use up their timeslices at their highest priority levels.
2641          */
2642         if (rt_task(p)) {
2643                 /*
2644                  * RR tasks need a special form of timeslice management.
2645                  * FIFO tasks have no timeslices.
2646                  */
2647                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2648                         p->time_slice = task_timeslice(p);
2649                         p->first_time_slice = 0;
2650                         set_tsk_need_resched(p);
2651
2652                         /* put it at the end of the queue: */
2653                         requeue_task(p, rq->active);
2654                 }
2655                 goto out_unlock;
2656         }
2657         if (!--p->time_slice) {
2658                 dequeue_task(p, rq->active);
2659                 set_tsk_need_resched(p);
2660                 p->prio = effective_prio(p);
2661                 p->time_slice = task_timeslice(p);
2662                 p->first_time_slice = 0;
2663
2664                 if (!rq->expired_timestamp)
2665                         rq->expired_timestamp = jiffies;
2666                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2667                         enqueue_task(p, rq->expired);
2668                         if (p->static_prio < rq->best_expired_prio)
2669                                 rq->best_expired_prio = p->static_prio;
2670                 } else
2671                         enqueue_task(p, rq->active);
2672         } else {
2673                 /*
2674                  * Prevent a too long timeslice allowing a task to monopolize
2675                  * the CPU. We do this by splitting up the timeslice into
2676                  * smaller pieces.
2677                  *
2678                  * Note: this does not mean the task's timeslices expire or
2679                  * get lost in any way, they just might be preempted by
2680                  * another task of equal priority. (one with higher
2681                  * priority would have preempted this task already.) We
2682                  * requeue this task to the end of the list on this priority
2683                  * level, which is in essence a round-robin of tasks with
2684                  * equal priority.
2685                  *
2686                  * This only applies to tasks in the interactive
2687                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2688                  */
2689                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2690                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2691                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2692                         (p->array == rq->active)) {
2693
2694                         requeue_task(p, rq->active);
2695                         set_tsk_need_resched(p);
2696                 }
2697         }
2698 out_unlock:
2699         spin_unlock(&rq->lock);
2700 out:
2701         rebalance_tick(cpu, rq, NOT_IDLE);
2702 }
2703
2704 #ifdef CONFIG_SCHED_SMT
2705 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2706 {
2707         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2708         if (rq->curr == rq->idle && rq->nr_running)
2709                 resched_task(rq->idle);
2710 }
2711
2712 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2713 {
2714         struct sched_domain *tmp, *sd = NULL;
2715         cpumask_t sibling_map;
2716         int i;
2717
2718         for_each_domain(this_cpu, tmp)
2719                 if (tmp->flags & SD_SHARE_CPUPOWER)
2720                         sd = tmp;
2721
2722         if (!sd)
2723                 return;
2724
2725         /*
2726          * Unlock the current runqueue because we have to lock in
2727          * CPU order to avoid deadlocks. Caller knows that we might
2728          * unlock. We keep IRQs disabled.
2729          */
2730         spin_unlock(&this_rq->lock);
2731
2732         sibling_map = sd->span;
2733
2734         for_each_cpu_mask(i, sibling_map)
2735                 spin_lock(&cpu_rq(i)->lock);
2736         /*
2737          * We clear this CPU from the mask. This both simplifies the
2738          * inner loop and keps this_rq locked when we exit:
2739          */
2740         cpu_clear(this_cpu, sibling_map);
2741
2742         for_each_cpu_mask(i, sibling_map) {
2743                 runqueue_t *smt_rq = cpu_rq(i);
2744
2745                 wakeup_busy_runqueue(smt_rq);
2746         }
2747
2748         for_each_cpu_mask(i, sibling_map)
2749                 spin_unlock(&cpu_rq(i)->lock);
2750         /*
2751          * We exit with this_cpu's rq still held and IRQs
2752          * still disabled:
2753          */
2754 }
2755
2756 /*
2757  * number of 'lost' timeslices this task wont be able to fully
2758  * utilize, if another task runs on a sibling. This models the
2759  * slowdown effect of other tasks running on siblings:
2760  */
2761 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2762 {
2763         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2764 }
2765
2766 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2767 {
2768         struct sched_domain *tmp, *sd = NULL;
2769         cpumask_t sibling_map;
2770         prio_array_t *array;
2771         int ret = 0, i;
2772         task_t *p;
2773
2774         for_each_domain(this_cpu, tmp)
2775                 if (tmp->flags & SD_SHARE_CPUPOWER)
2776                         sd = tmp;
2777
2778         if (!sd)
2779                 return 0;
2780
2781         /*
2782          * The same locking rules and details apply as for
2783          * wake_sleeping_dependent():
2784          */
2785         spin_unlock(&this_rq->lock);
2786         sibling_map = sd->span;
2787         for_each_cpu_mask(i, sibling_map)
2788                 spin_lock(&cpu_rq(i)->lock);
2789         cpu_clear(this_cpu, sibling_map);
2790
2791         /*
2792          * Establish next task to be run - it might have gone away because
2793          * we released the runqueue lock above:
2794          */
2795         if (!this_rq->nr_running)
2796                 goto out_unlock;
2797         array = this_rq->active;
2798         if (!array->nr_active)
2799                 array = this_rq->expired;
2800         BUG_ON(!array->nr_active);
2801
2802         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2803                 task_t, run_list);
2804
2805         for_each_cpu_mask(i, sibling_map) {
2806                 runqueue_t *smt_rq = cpu_rq(i);
2807                 task_t *smt_curr = smt_rq->curr;
2808
2809                 /* Kernel threads do not participate in dependent sleeping */
2810                 if (!p->mm || !smt_curr->mm || rt_task(p))
2811                         goto check_smt_task;
2812
2813                 /*
2814                  * If a user task with lower static priority than the
2815                  * running task on the SMT sibling is trying to schedule,
2816                  * delay it till there is proportionately less timeslice
2817                  * left of the sibling task to prevent a lower priority
2818                  * task from using an unfair proportion of the
2819                  * physical cpu's resources. -ck
2820                  */
2821                 if (rt_task(smt_curr)) {
2822                         /*
2823                          * With real time tasks we run non-rt tasks only
2824                          * per_cpu_gain% of the time.
2825                          */
2826                         if ((jiffies % DEF_TIMESLICE) >
2827                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2828                                         ret = 1;
2829                 } else
2830                         if (smt_curr->static_prio < p->static_prio &&
2831                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2832                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2833                                         ret = 1;
2834
2835 check_smt_task:
2836                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2837                         rt_task(smt_curr))
2838                                 continue;
2839                 if (!p->mm) {
2840                         wakeup_busy_runqueue(smt_rq);
2841                         continue;
2842                 }
2843
2844                 /*
2845                  * Reschedule a lower priority task on the SMT sibling for
2846                  * it to be put to sleep, or wake it up if it has been put to
2847                  * sleep for priority reasons to see if it should run now.
2848                  */
2849                 if (rt_task(p)) {
2850                         if ((jiffies % DEF_TIMESLICE) >
2851                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2852                                         resched_task(smt_curr);
2853                 } else {
2854                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2855                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2856                                         resched_task(smt_curr);
2857                         else
2858                                 wakeup_busy_runqueue(smt_rq);
2859                 }
2860         }
2861 out_unlock:
2862         for_each_cpu_mask(i, sibling_map)
2863                 spin_unlock(&cpu_rq(i)->lock);
2864         return ret;
2865 }
2866 #else
2867 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2868 {
2869 }
2870
2871 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2872 {
2873         return 0;
2874 }
2875 #endif
2876
2877 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2878
2879 void fastcall add_preempt_count(int val)
2880 {
2881         /*
2882          * Underflow?
2883          */
2884         BUG_ON((preempt_count() < 0));
2885         preempt_count() += val;
2886         /*
2887          * Spinlock count overflowing soon?
2888          */
2889         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2890 }
2891 EXPORT_SYMBOL(add_preempt_count);
2892
2893 void fastcall sub_preempt_count(int val)
2894 {
2895         /*
2896          * Underflow?
2897          */
2898         BUG_ON(val > preempt_count());
2899         /*
2900          * Is the spinlock portion underflowing?
2901          */
2902         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2903         preempt_count() -= val;
2904 }
2905 EXPORT_SYMBOL(sub_preempt_count);
2906
2907 #endif
2908
2909 /*
2910  * schedule() is the main scheduler function.
2911  */
2912 asmlinkage void __sched schedule(void)
2913 {
2914         long *switch_count;
2915         task_t *prev, *next;
2916         runqueue_t *rq;
2917         prio_array_t *array;
2918         struct list_head *queue;
2919         unsigned long long now;
2920         unsigned long run_time;
2921         int cpu, idx, new_prio;
2922
2923         /*
2924          * Test if we are atomic.  Since do_exit() needs to call into
2925          * schedule() atomically, we ignore that path for now.
2926          * Otherwise, whine if we are scheduling when we should not be.
2927          */
2928         if (likely(!current->exit_state)) {
2929                 if (unlikely(in_atomic())) {
2930                         printk(KERN_ERR "scheduling while atomic: "
2931                                 "%s/0x%08x/%d\n",
2932                                 current->comm, preempt_count(), current->pid);
2933                         dump_stack();
2934                 }
2935         }
2936         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2937
2938 need_resched:
2939         preempt_disable();
2940         prev = current;
2941         release_kernel_lock(prev);
2942 need_resched_nonpreemptible:
2943         rq = this_rq();
2944
2945         /*
2946          * The idle thread is not allowed to schedule!
2947          * Remove this check after it has been exercised a bit.
2948          */
2949         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2950                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2951                 dump_stack();
2952         }
2953
2954         schedstat_inc(rq, sched_cnt);
2955         now = sched_clock();
2956         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2957                 run_time = now - prev->timestamp;
2958                 if (unlikely((long long)(now - prev->timestamp) < 0))
2959                         run_time = 0;
2960         } else
2961                 run_time = NS_MAX_SLEEP_AVG;
2962
2963         /*
2964          * Tasks charged proportionately less run_time at high sleep_avg to
2965          * delay them losing their interactive status
2966          */
2967         run_time /= (CURRENT_BONUS(prev) ? : 1);
2968
2969         spin_lock_irq(&rq->lock);
2970
2971         if (unlikely(prev->flags & PF_DEAD))
2972                 prev->state = EXIT_DEAD;
2973
2974         switch_count = &prev->nivcsw;
2975         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2976                 switch_count = &prev->nvcsw;
2977                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2978                                 unlikely(signal_pending(prev))))
2979                         prev->state = TASK_RUNNING;
2980                 else {
2981                         if (prev->state == TASK_UNINTERRUPTIBLE)
2982                                 rq->nr_uninterruptible++;
2983                         deactivate_task(prev, rq);
2984                 }
2985         }
2986
2987         cpu = smp_processor_id();
2988         if (unlikely(!rq->nr_running)) {
2989 go_idle:
2990                 idle_balance(cpu, rq);
2991                 if (!rq->nr_running) {
2992                         next = rq->idle;
2993                         rq->expired_timestamp = 0;
2994                         wake_sleeping_dependent(cpu, rq);
2995                         /*
2996                          * wake_sleeping_dependent() might have released
2997                          * the runqueue, so break out if we got new
2998                          * tasks meanwhile:
2999                          */
3000                         if (!rq->nr_running)
3001                                 goto switch_tasks;
3002                 }
3003         } else {
3004                 if (dependent_sleeper(cpu, rq)) {
3005                         next = rq->idle;
3006                         goto switch_tasks;
3007                 }
3008                 /*
3009                  * dependent_sleeper() releases and reacquires the runqueue
3010                  * lock, hence go into the idle loop if the rq went
3011                  * empty meanwhile:
3012                  */
3013                 if (unlikely(!rq->nr_running))
3014                         goto go_idle;
3015         }
3016
3017         array = rq->active;
3018         if (unlikely(!array->nr_active)) {
3019                 /*
3020                  * Switch the active and expired arrays.
3021                  */
3022                 schedstat_inc(rq, sched_switch);
3023                 rq->active = rq->expired;
3024                 rq->expired = array;
3025                 array = rq->active;
3026                 rq->expired_timestamp = 0;
3027                 rq->best_expired_prio = MAX_PRIO;
3028         }
3029
3030         idx = sched_find_first_bit(array->bitmap);
3031         queue = array->queue + idx;
3032         next = list_entry(queue->next, task_t, run_list);
3033
3034         if (!rt_task(next) && next->activated > 0) {
3035                 unsigned long long delta = now - next->timestamp;
3036                 if (unlikely((long long)(now - next->timestamp) < 0))
3037                         delta = 0;
3038
3039                 if (next->activated == 1)
3040                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3041
3042                 array = next->array;
3043                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3044
3045                 if (unlikely(next->prio != new_prio)) {
3046                         dequeue_task(next, array);
3047                         next->prio = new_prio;
3048                         enqueue_task(next, array);
3049                 } else
3050                         requeue_task(next, array);
3051         }
3052         next->activated = 0;
3053 switch_tasks:
3054         if (next == rq->idle)
3055                 schedstat_inc(rq, sched_goidle);
3056         prefetch(next);
3057         prefetch_stack(next);
3058         clear_tsk_need_resched(prev);
3059         rcu_qsctr_inc(task_cpu(prev));
3060
3061         update_cpu_clock(prev, rq, now);
3062
3063         prev->sleep_avg -= run_time;
3064         if ((long)prev->sleep_avg <= 0)
3065                 prev->sleep_avg = 0;
3066         prev->timestamp = prev->last_ran = now;
3067
3068         sched_info_switch(prev, next);
3069         if (likely(prev != next)) {
3070                 next->timestamp = now;
3071                 rq->nr_switches++;
3072                 rq->curr = next;
3073                 ++*switch_count;
3074
3075                 prepare_task_switch(rq, next);
3076                 prev = context_switch(rq, prev, next);
3077                 barrier();
3078                 /*
3079                  * this_rq must be evaluated again because prev may have moved
3080                  * CPUs since it called schedule(), thus the 'rq' on its stack
3081                  * frame will be invalid.
3082                  */
3083                 finish_task_switch(this_rq(), prev);
3084         } else
3085                 spin_unlock_irq(&rq->lock);
3086
3087         prev = current;
3088         if (unlikely(reacquire_kernel_lock(prev) < 0))
3089                 goto need_resched_nonpreemptible;
3090         preempt_enable_no_resched();
3091         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3092                 goto need_resched;
3093 }
3094
3095 EXPORT_SYMBOL(schedule);
3096
3097 #ifdef CONFIG_PREEMPT
3098 /*
3099  * this is is the entry point to schedule() from in-kernel preemption
3100  * off of preempt_enable.  Kernel preemptions off return from interrupt
3101  * occur there and call schedule directly.
3102  */
3103 asmlinkage void __sched preempt_schedule(void)
3104 {
3105         struct thread_info *ti = current_thread_info();
3106 #ifdef CONFIG_PREEMPT_BKL
3107         struct task_struct *task = current;
3108         int saved_lock_depth;
3109 #endif
3110         /*
3111          * If there is a non-zero preempt_count or interrupts are disabled,
3112          * we do not want to preempt the current task.  Just return..
3113          */
3114         if (unlikely(ti->preempt_count || irqs_disabled()))
3115                 return;
3116
3117 need_resched:
3118         add_preempt_count(PREEMPT_ACTIVE);
3119         /*
3120          * We keep the big kernel semaphore locked, but we
3121          * clear ->lock_depth so that schedule() doesnt
3122          * auto-release the semaphore:
3123          */
3124 #ifdef CONFIG_PREEMPT_BKL
3125         saved_lock_depth = task->lock_depth;
3126         task->lock_depth = -1;
3127 #endif
3128         schedule();
3129 #ifdef CONFIG_PREEMPT_BKL
3130         task->lock_depth = saved_lock_depth;
3131 #endif
3132         sub_preempt_count(PREEMPT_ACTIVE);
3133
3134         /* we could miss a preemption opportunity between schedule and now */
3135         barrier();
3136         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3137                 goto need_resched;
3138 }
3139
3140 EXPORT_SYMBOL(preempt_schedule);
3141
3142 /*
3143  * this is is the entry point to schedule() from kernel preemption
3144  * off of irq context.
3145  * Note, that this is called and return with irqs disabled. This will
3146  * protect us against recursive calling from irq.
3147  */
3148 asmlinkage void __sched preempt_schedule_irq(void)
3149 {
3150         struct thread_info *ti = current_thread_info();
3151 #ifdef CONFIG_PREEMPT_BKL
3152         struct task_struct *task = current;
3153         int saved_lock_depth;
3154 #endif
3155         /* Catch callers which need to be fixed*/
3156         BUG_ON(ti->preempt_count || !irqs_disabled());
3157
3158 need_resched:
3159         add_preempt_count(PREEMPT_ACTIVE);
3160         /*
3161          * We keep the big kernel semaphore locked, but we
3162          * clear ->lock_depth so that schedule() doesnt
3163          * auto-release the semaphore:
3164          */
3165 #ifdef CONFIG_PREEMPT_BKL
3166         saved_lock_depth = task->lock_depth;
3167         task->lock_depth = -1;
3168 #endif
3169         local_irq_enable();
3170         schedule();
3171         local_irq_disable();
3172 #ifdef CONFIG_PREEMPT_BKL
3173         task->lock_depth = saved_lock_depth;
3174 #endif
3175         sub_preempt_count(PREEMPT_ACTIVE);
3176
3177         /* we could miss a preemption opportunity between schedule and now */
3178         barrier();
3179         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3180                 goto need_resched;
3181 }
3182
3183 #endif /* CONFIG_PREEMPT */
3184
3185 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3186                           void *key)
3187 {
3188         task_t *p = curr->private;
3189         return try_to_wake_up(p, mode, sync);
3190 }
3191
3192 EXPORT_SYMBOL(default_wake_function);
3193
3194 /*
3195  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3196  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3197  * number) then we wake all the non-exclusive tasks and one exclusive task.
3198  *
3199  * There are circumstances in which we can try to wake a task which has already
3200  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3201  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3202  */
3203 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3204                              int nr_exclusive, int sync, void *key)
3205 {
3206         struct list_head *tmp, *next;
3207
3208         list_for_each_safe(tmp, next, &q->task_list) {
3209                 wait_queue_t *curr;
3210                 unsigned flags;
3211                 curr = list_entry(tmp, wait_queue_t, task_list);
3212                 flags = curr->flags;
3213                 if (curr->func(curr, mode, sync, key) &&
3214                     (flags & WQ_FLAG_EXCLUSIVE) &&
3215                     !--nr_exclusive)
3216                         break;
3217         }
3218 }
3219
3220 /**
3221  * __wake_up - wake up threads blocked on a waitqueue.
3222  * @q: the waitqueue
3223  * @mode: which threads
3224  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3225  * @key: is directly passed to the wakeup function
3226  */
3227 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3228                         int nr_exclusive, void *key)
3229 {
3230         unsigned long flags;
3231
3232         spin_lock_irqsave(&q->lock, flags);
3233         __wake_up_common(q, mode, nr_exclusive, 0, key);
3234         spin_unlock_irqrestore(&q->lock, flags);
3235 }
3236
3237 EXPORT_SYMBOL(__wake_up);
3238
3239 /*
3240  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3241  */
3242 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3243 {
3244         __wake_up_common(q, mode, 1, 0, NULL);
3245 }
3246
3247 /**
3248  * __wake_up_sync - wake up threads blocked on a waitqueue.
3249  * @q: the waitqueue
3250  * @mode: which threads
3251  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3252  *
3253  * The sync wakeup differs that the waker knows that it will schedule
3254  * away soon, so while the target thread will be woken up, it will not
3255  * be migrated to another CPU - ie. the two threads are 'synchronized'
3256  * with each other. This can prevent needless bouncing between CPUs.
3257  *
3258  * On UP it can prevent extra preemption.
3259  */
3260 void fastcall
3261 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3262 {
3263         unsigned long flags;
3264         int sync = 1;
3265
3266         if (unlikely(!q))
3267                 return;
3268
3269         if (unlikely(!nr_exclusive))
3270                 sync = 0;
3271
3272         spin_lock_irqsave(&q->lock, flags);
3273         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3274         spin_unlock_irqrestore(&q->lock, flags);
3275 }
3276 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3277
3278 void fastcall complete(struct completion *x)
3279 {
3280         unsigned long flags;
3281
3282         spin_lock_irqsave(&x->wait.lock, flags);
3283         x->done++;
3284         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3285                          1, 0, NULL);
3286         spin_unlock_irqrestore(&x->wait.lock, flags);
3287 }
3288 EXPORT_SYMBOL(complete);
3289
3290 void fastcall complete_all(struct completion *x)
3291 {
3292         unsigned long flags;
3293
3294         spin_lock_irqsave(&x->wait.lock, flags);
3295         x->done += UINT_MAX/2;
3296         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3297                          0, 0, NULL);
3298         spin_unlock_irqrestore(&x->wait.lock, flags);
3299 }
3300 EXPORT_SYMBOL(complete_all);
3301
3302 void fastcall __sched wait_for_completion(struct completion *x)
3303 {
3304         might_sleep();
3305         spin_lock_irq(&x->wait.lock);
3306         if (!x->done) {
3307                 DECLARE_WAITQUEUE(wait, current);
3308
3309                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3310                 __add_wait_queue_tail(&x->wait, &wait);
3311                 do {
3312                         __set_current_state(TASK_UNINTERRUPTIBLE);
3313                         spin_unlock_irq(&x->wait.lock);
3314                         schedule();
3315                         spin_lock_irq(&x->wait.lock);
3316                 } while (!x->done);
3317                 __remove_wait_queue(&x->wait, &wait);
3318         }
3319         x->done--;
3320         spin_unlock_irq(&x->wait.lock);
3321 }
3322 EXPORT_SYMBOL(wait_for_completion);
3323
3324 unsigned long fastcall __sched
3325 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3326 {
3327         might_sleep();
3328
3329         spin_lock_irq(&x->wait.lock);
3330         if (!x->done) {
3331                 DECLARE_WAITQUEUE(wait, current);
3332
3333                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3334                 __add_wait_queue_tail(&x->wait, &wait);
3335                 do {
3336                         __set_current_state(TASK_UNINTERRUPTIBLE);
3337                         spin_unlock_irq(&x->wait.lock);
3338                         timeout = schedule_timeout(timeout);
3339                         spin_lock_irq(&x->wait.lock);
3340                         if (!timeout) {
3341                                 __remove_wait_queue(&x->wait, &wait);
3342                                 goto out;
3343                         }
3344                 } while (!x->done);
3345                 __remove_wait_queue(&x->wait, &wait);
3346         }
3347         x->done--;
3348 out:
3349         spin_unlock_irq(&x->wait.lock);
3350         return timeout;
3351 }
3352 EXPORT_SYMBOL(wait_for_completion_timeout);
3353
3354 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3355 {
3356         int ret = 0;
3357
3358         might_sleep();
3359
3360         spin_lock_irq(&x->wait.lock);
3361         if (!x->done) {
3362                 DECLARE_WAITQUEUE(wait, current);
3363
3364                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365                 __add_wait_queue_tail(&x->wait, &wait);
3366                 do {
3367                         if (signal_pending(current)) {
3368                                 ret = -ERESTARTSYS;
3369                                 __remove_wait_queue(&x->wait, &wait);
3370                                 goto out;
3371                         }
3372                         __set_current_state(TASK_INTERRUPTIBLE);
3373                         spin_unlock_irq(&x->wait.lock);
3374                         schedule();
3375                         spin_lock_irq(&x->wait.lock);
3376                 } while (!x->done);
3377                 __remove_wait_queue(&x->wait, &wait);
3378         }
3379         x->done--;
3380 out:
3381         spin_unlock_irq(&x->wait.lock);
3382
3383         return ret;
3384 }
3385 EXPORT_SYMBOL(wait_for_completion_interruptible);
3386
3387 unsigned long fastcall __sched
3388 wait_for_completion_interruptible_timeout(struct completion *x,
3389                                           unsigned long timeout)
3390 {
3391         might_sleep();
3392
3393         spin_lock_irq(&x->wait.lock);
3394         if (!x->done) {
3395                 DECLARE_WAITQUEUE(wait, current);
3396
3397                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3398                 __add_wait_queue_tail(&x->wait, &wait);
3399                 do {
3400                         if (signal_pending(current)) {
3401                                 timeout = -ERESTARTSYS;
3402                                 __remove_wait_queue(&x->wait, &wait);
3403                                 goto out;
3404                         }
3405                         __set_current_state(TASK_INTERRUPTIBLE);
3406                         spin_unlock_irq(&x->wait.lock);
3407                         timeout = schedule_timeout(timeout);
3408                         spin_lock_irq(&x->wait.lock);
3409                         if (!timeout) {
3410                                 __remove_wait_queue(&x->wait, &wait);
3411                                 goto out;
3412                         }
3413                 } while (!x->done);
3414                 __remove_wait_queue(&x->wait, &wait);
3415         }
3416         x->done--;
3417 out:
3418         spin_unlock_irq(&x->wait.lock);
3419         return timeout;
3420 }
3421 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3422
3423
3424 #define SLEEP_ON_VAR                                    \
3425         unsigned long flags;                            \
3426         wait_queue_t wait;                              \
3427         init_waitqueue_entry(&wait, current);
3428
3429 #define SLEEP_ON_HEAD                                   \
3430         spin_lock_irqsave(&q->lock,flags);              \
3431         __add_wait_queue(q, &wait);                     \
3432         spin_unlock(&q->lock);
3433
3434 #define SLEEP_ON_TAIL                                   \
3435         spin_lock_irq(&q->lock);                        \
3436         __remove_wait_queue(q, &wait);                  \
3437         spin_unlock_irqrestore(&q->lock, flags);
3438
3439 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3440 {
3441         SLEEP_ON_VAR
3442
3443         current->state = TASK_INTERRUPTIBLE;
3444
3445         SLEEP_ON_HEAD
3446         schedule();
3447         SLEEP_ON_TAIL
3448 }
3449
3450 EXPORT_SYMBOL(interruptible_sleep_on);
3451
3452 long fastcall __sched
3453 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3454 {
3455         SLEEP_ON_VAR
3456
3457         current->state = TASK_INTERRUPTIBLE;
3458
3459         SLEEP_ON_HEAD
3460         timeout = schedule_timeout(timeout);
3461         SLEEP_ON_TAIL
3462
3463         return timeout;
3464 }
3465
3466 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3467
3468 void fastcall __sched sleep_on(wait_queue_head_t *q)
3469 {
3470         SLEEP_ON_VAR
3471
3472         current->state = TASK_UNINTERRUPTIBLE;
3473
3474         SLEEP_ON_HEAD
3475         schedule();
3476         SLEEP_ON_TAIL
3477 }
3478
3479 EXPORT_SYMBOL(sleep_on);
3480
3481 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3482 {
3483         SLEEP_ON_VAR
3484
3485         current->state = TASK_UNINTERRUPTIBLE;
3486
3487         SLEEP_ON_HEAD
3488         timeout = schedule_timeout(timeout);
3489         SLEEP_ON_TAIL
3490
3491         return timeout;
3492 }
3493
3494 EXPORT_SYMBOL(sleep_on_timeout);
3495
3496 void set_user_nice(task_t *p, long nice)
3497 {
3498         unsigned long flags;
3499         prio_array_t *array;
3500         runqueue_t *rq;
3501         int old_prio, new_prio, delta;
3502
3503         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3504                 return;
3505         /*
3506          * We have to be careful, if called from sys_setpriority(),
3507          * the task might be in the middle of scheduling on another CPU.
3508          */
3509         rq = task_rq_lock(p, &flags);
3510         /*
3511          * The RT priorities are set via sched_setscheduler(), but we still
3512          * allow the 'normal' nice value to be set - but as expected
3513          * it wont have any effect on scheduling until the task is
3514          * not SCHED_NORMAL:
3515          */
3516         if (rt_task(p)) {
3517                 p->static_prio = NICE_TO_PRIO(nice);
3518                 goto out_unlock;
3519         }
3520         array = p->array;
3521         if (array) {
3522                 dequeue_task(p, array);
3523                 dec_prio_bias(rq, p->static_prio);
3524         }
3525
3526         old_prio = p->prio;
3527         new_prio = NICE_TO_PRIO(nice);
3528         delta = new_prio - old_prio;
3529         p->static_prio = NICE_TO_PRIO(nice);
3530         p->prio += delta;
3531
3532         if (array) {
3533                 enqueue_task(p, array);
3534                 inc_prio_bias(rq, p->static_prio);
3535                 /*
3536                  * If the task increased its priority or is running and
3537                  * lowered its priority, then reschedule its CPU:
3538                  */
3539                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3540                         resched_task(rq->curr);
3541         }
3542 out_unlock:
3543         task_rq_unlock(rq, &flags);
3544 }
3545
3546 EXPORT_SYMBOL(set_user_nice);
3547
3548 /*
3549  * can_nice - check if a task can reduce its nice value
3550  * @p: task
3551  * @nice: nice value
3552  */
3553 int can_nice(const task_t *p, const int nice)
3554 {
3555         /* convert nice value [19,-20] to rlimit style value [1,40] */
3556         int nice_rlim = 20 - nice;
3557         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3558                 capable(CAP_SYS_NICE));
3559 }
3560
3561 #ifdef __ARCH_WANT_SYS_NICE
3562
3563 /*
3564  * sys_nice - change the priority of the current process.
3565  * @increment: priority increment
3566  *
3567  * sys_setpriority is a more generic, but much slower function that
3568  * does similar things.
3569  */
3570 asmlinkage long sys_nice(int increment)
3571 {
3572         int retval;
3573         long nice;
3574
3575         /*
3576          * Setpriority might change our priority at the same moment.
3577          * We don't have to worry. Conceptually one call occurs first
3578          * and we have a single winner.
3579          */
3580         if (increment < -40)
3581                 increment = -40;
3582         if (increment > 40)
3583                 increment = 40;
3584
3585         nice = PRIO_TO_NICE(current->static_prio) + increment;
3586         if (nice < -20)
3587                 nice = -20;
3588         if (nice > 19)
3589                 nice = 19;
3590
3591         if (increment < 0 && !can_nice(current, nice))
3592                 return -EPERM;
3593
3594         retval = security_task_setnice(current, nice);
3595         if (retval)
3596                 return retval;
3597
3598         set_user_nice(current, nice);
3599         return 0;
3600 }
3601
3602 #endif
3603
3604 /**
3605  * task_prio - return the priority value of a given task.
3606  * @p: the task in question.
3607  *
3608  * This is the priority value as seen by users in /proc.
3609  * RT tasks are offset by -200. Normal tasks are centered
3610  * around 0, value goes from -16 to +15.
3611  */
3612 int task_prio(const task_t *p)
3613 {
3614         return p->prio - MAX_RT_PRIO;
3615 }
3616
3617 /**
3618  * task_nice - return the nice value of a given task.
3619  * @p: the task in question.
3620  */
3621 int task_nice(const task_t *p)
3622 {
3623         return TASK_NICE(p);
3624 }
3625 EXPORT_SYMBOL_GPL(task_nice);
3626
3627 /**
3628  * idle_cpu - is a given cpu idle currently?
3629  * @cpu: the processor in question.
3630  */
3631 int idle_cpu(int cpu)
3632 {
3633         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3634 }
3635
3636 /**
3637  * idle_task - return the idle task for a given cpu.
3638  * @cpu: the processor in question.
3639  */
3640 task_t *idle_task(int cpu)
3641 {
3642         return cpu_rq(cpu)->idle;
3643 }
3644
3645 /**
3646  * find_process_by_pid - find a process with a matching PID value.
3647  * @pid: the pid in question.
3648  */
3649 static inline task_t *find_process_by_pid(pid_t pid)
3650 {
3651         return pid ? find_task_by_pid(pid) : current;
3652 }
3653
3654 /* Actually do priority change: must hold rq lock. */
3655 static void __setscheduler(struct task_struct *p, int policy, int prio)
3656 {
3657         BUG_ON(p->array);
3658         p->policy = policy;
3659         p->rt_priority = prio;
3660         if (policy != SCHED_NORMAL)
3661                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3662         else
3663                 p->prio = p->static_prio;
3664 }
3665
3666 /**
3667  * sched_setscheduler - change the scheduling policy and/or RT priority of
3668  * a thread.
3669  * @p: the task in question.
3670  * @policy: new policy.
3671  * @param: structure containing the new RT priority.
3672  */
3673 int sched_setscheduler(struct task_struct *p, int policy,
3674                        struct sched_param *param)
3675 {
3676         int retval;
3677         int oldprio, oldpolicy = -1;
3678         prio_array_t *array;
3679         unsigned long flags;
3680         runqueue_t *rq;
3681
3682 recheck:
3683         /* double check policy once rq lock held */
3684         if (policy < 0)
3685                 policy = oldpolicy = p->policy;
3686         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3687                                 policy != SCHED_NORMAL)
3688                         return -EINVAL;
3689         /*
3690          * Valid priorities for SCHED_FIFO and SCHED_RR are
3691          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3692          */
3693         if (param->sched_priority < 0 ||
3694             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3695             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3696                 return -EINVAL;
3697         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3698                 return -EINVAL;
3699
3700         /*
3701          * Allow unprivileged RT tasks to decrease priority:
3702          */
3703         if (!capable(CAP_SYS_NICE)) {
3704                 /* can't change policy */
3705                 if (policy != p->policy &&
3706                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3707                         return -EPERM;
3708                 /* can't increase priority */
3709                 if (policy != SCHED_NORMAL &&
3710                     param->sched_priority > p->rt_priority &&
3711                     param->sched_priority >
3712                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3713                         return -EPERM;
3714                 /* can't change other user's priorities */
3715                 if ((current->euid != p->euid) &&
3716                     (current->euid != p->uid))
3717                         return -EPERM;
3718         }
3719
3720         retval = security_task_setscheduler(p, policy, param);
3721         if (retval)
3722                 return retval;
3723         /*
3724          * To be able to change p->policy safely, the apropriate
3725          * runqueue lock must be held.
3726          */
3727         rq = task_rq_lock(p, &flags);
3728         /* recheck policy now with rq lock held */
3729         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3730                 policy = oldpolicy = -1;
3731                 task_rq_unlock(rq, &flags);
3732                 goto recheck;
3733         }
3734         array = p->array;
3735         if (array)
3736                 deactivate_task(p, rq);
3737         oldprio = p->prio;
3738         __setscheduler(p, policy, param->sched_priority);
3739         if (array) {
3740                 __activate_task(p, rq);
3741                 /*
3742                  * Reschedule if we are currently running on this runqueue and
3743                  * our priority decreased, or if we are not currently running on
3744                  * this runqueue and our priority is higher than the current's
3745                  */
3746                 if (task_running(rq, p)) {
3747                         if (p->prio > oldprio)
3748                                 resched_task(rq->curr);
3749                 } else if (TASK_PREEMPTS_CURR(p, rq))
3750                         resched_task(rq->curr);
3751         }
3752         task_rq_unlock(rq, &flags);
3753         return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(sched_setscheduler);
3756
3757 static int
3758 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3759 {
3760         int retval;
3761         struct sched_param lparam;
3762         struct task_struct *p;
3763
3764         if (!param || pid < 0)
3765                 return -EINVAL;
3766         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3767                 return -EFAULT;
3768         read_lock_irq(&tasklist_lock);
3769         p = find_process_by_pid(pid);
3770         if (!p) {
3771                 read_unlock_irq(&tasklist_lock);
3772                 return -ESRCH;
3773         }
3774         retval = sched_setscheduler(p, policy, &lparam);
3775         read_unlock_irq(&tasklist_lock);
3776         return retval;
3777 }
3778
3779 /**
3780  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3781  * @pid: the pid in question.
3782  * @policy: new policy.
3783  * @param: structure containing the new RT priority.
3784  */
3785 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3786                                        struct sched_param __user *param)
3787 {
3788         return do_sched_setscheduler(pid, policy, param);
3789 }
3790
3791 /**
3792  * sys_sched_setparam - set/change the RT priority of a thread
3793  * @pid: the pid in question.
3794  * @param: structure containing the new RT priority.
3795  */
3796 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3797 {
3798         return do_sched_setscheduler(pid, -1, param);
3799 }
3800
3801 /**
3802  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3803  * @pid: the pid in question.
3804  */
3805 asmlinkage long sys_sched_getscheduler(pid_t pid)
3806 {
3807         int retval = -EINVAL;
3808         task_t *p;
3809
3810         if (pid < 0)
3811                 goto out_nounlock;
3812
3813         retval = -ESRCH;
3814         read_lock(&tasklist_lock);
3815         p = find_process_by_pid(pid);
3816         if (p) {
3817                 retval = security_task_getscheduler(p);
3818                 if (!retval)
3819                         retval = p->policy;
3820         }
3821         read_unlock(&tasklist_lock);
3822
3823 out_nounlock:
3824         return retval;
3825 }
3826
3827 /**
3828  * sys_sched_getscheduler - get the RT priority of a thread
3829  * @pid: the pid in question.
3830  * @param: structure containing the RT priority.
3831  */
3832 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3833 {
3834         struct sched_param lp;
3835         int retval = -EINVAL;
3836         task_t *p;
3837
3838         if (!param || pid < 0)
3839                 goto out_nounlock;
3840
3841         read_lock(&tasklist_lock);
3842         p = find_process_by_pid(pid);
3843         retval = -ESRCH;
3844         if (!p)
3845                 goto out_unlock;
3846
3847         retval = security_task_getscheduler(p);
3848         if (retval)
3849                 goto out_unlock;
3850
3851         lp.sched_priority = p->rt_priority;
3852         read_unlock(&tasklist_lock);
3853
3854         /*
3855          * This one might sleep, we cannot do it with a spinlock held ...
3856          */
3857         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3858
3859 out_nounlock:
3860         return retval;
3861
3862 out_unlock:
3863         read_unlock(&tasklist_lock);
3864         return retval;
3865 }
3866
3867 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3868 {
3869         task_t *p;
3870         int retval;
3871         cpumask_t cpus_allowed;
3872
3873         lock_cpu_hotplug();
3874         read_lock(&tasklist_lock);
3875
3876         p = find_process_by_pid(pid);
3877         if (!p) {
3878                 read_unlock(&tasklist_lock);
3879                 unlock_cpu_hotplug();
3880                 return -ESRCH;
3881         }
3882
3883         /*
3884          * It is not safe to call set_cpus_allowed with the
3885          * tasklist_lock held.  We will bump the task_struct's
3886          * usage count and then drop tasklist_lock.
3887          */
3888         get_task_struct(p);
3889         read_unlock(&tasklist_lock);
3890
3891         retval = -EPERM;
3892         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3893                         !capable(CAP_SYS_NICE))
3894                 goto out_unlock;
3895
3896         cpus_allowed = cpuset_cpus_allowed(p);
3897         cpus_and(new_mask, new_mask, cpus_allowed);
3898         retval = set_cpus_allowed(p, new_mask);
3899
3900 out_unlock:
3901         put_task_struct(p);
3902         unlock_cpu_hotplug();
3903         return retval;
3904 }
3905
3906 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3907                              cpumask_t *new_mask)
3908 {
3909         if (len < sizeof(cpumask_t)) {
3910                 memset(new_mask, 0, sizeof(cpumask_t));
3911         } else if (len > sizeof(cpumask_t)) {
3912                 len = sizeof(cpumask_t);
3913         }
3914         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3915 }
3916
3917 /**
3918  * sys_sched_setaffinity - set the cpu affinity of a process
3919  * @pid: pid of the process
3920  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3921  * @user_mask_ptr: user-space pointer to the new cpu mask
3922  */
3923 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3924                                       unsigned long __user *user_mask_ptr)
3925 {
3926         cpumask_t new_mask;
3927         int retval;
3928
3929         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3930         if (retval)
3931                 return retval;
3932
3933         return sched_setaffinity(pid, new_mask);
3934 }
3935
3936 /*
3937  * Represents all cpu's present in the system
3938  * In systems capable of hotplug, this map could dynamically grow
3939  * as new cpu's are detected in the system via any platform specific
3940  * method, such as ACPI for e.g.
3941  */
3942
3943 cpumask_t cpu_present_map;
3944 EXPORT_SYMBOL(cpu_present_map);
3945
3946 #ifndef CONFIG_SMP
3947 cpumask_t cpu_online_map = CPU_MASK_ALL;
3948 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3949 #endif
3950
3951 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3952 {
3953         int retval;
3954         task_t *p;
3955
3956         lock_cpu_hotplug();
3957         read_lock(&tasklist_lock);
3958
3959         retval = -ESRCH;
3960         p = find_process_by_pid(pid);
3961         if (!p)
3962                 goto out_unlock;
3963
3964         retval = 0;
3965         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3966
3967 out_unlock:
3968         read_unlock(&tasklist_lock);
3969         unlock_cpu_hotplug();
3970         if (retval)
3971                 return retval;
3972
3973         return 0;
3974 }
3975
3976 /**
3977  * sys_sched_getaffinity - get the cpu affinity of a process
3978  * @pid: pid of the process
3979  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3980  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3981  */
3982 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3983                                       unsigned long __user *user_mask_ptr)
3984 {
3985         int ret;
3986         cpumask_t mask;
3987
3988         if (len < sizeof(cpumask_t))
3989                 return -EINVAL;
3990
3991         ret = sched_getaffinity(pid, &mask);
3992         if (ret < 0)
3993                 return ret;
3994
3995         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3996                 return -EFAULT;
3997
3998         return sizeof(cpumask_t);
3999 }
4000
4001 /**
4002  * sys_sched_yield - yield the current processor to other threads.
4003  *
4004  * this function yields the current CPU by moving the calling thread
4005  * to the expired array. If there are no other threads running on this
4006  * CPU then this function will return.
4007  */
4008 asmlinkage long sys_sched_yield(void)
4009 {
4010         runqueue_t *rq = this_rq_lock();
4011         prio_array_t *array = current->array;
4012         prio_array_t *target = rq->expired;
4013
4014         schedstat_inc(rq, yld_cnt);
4015         /*
4016          * We implement yielding by moving the task into the expired
4017          * queue.
4018          *
4019          * (special rule: RT tasks will just roundrobin in the active
4020          *  array.)
4021          */
4022         if (rt_task(current))
4023                 target = rq->active;
4024
4025         if (array->nr_active == 1) {
4026                 schedstat_inc(rq, yld_act_empty);
4027                 if (!rq->expired->nr_active)
4028                         schedstat_inc(rq, yld_both_empty);
4029         } else if (!rq->expired->nr_active)
4030                 schedstat_inc(rq, yld_exp_empty);
4031
4032         if (array != target) {
4033                 dequeue_task(current, array);
4034                 enqueue_task(current, target);
4035         } else
4036                 /*
4037                  * requeue_task is cheaper so perform that if possible.
4038                  */
4039                 requeue_task(current, array);
4040
4041         /*
4042          * Since we are going to call schedule() anyway, there's
4043          * no need to preempt or enable interrupts:
4044          */
4045         __release(rq->lock);
4046         _raw_spin_unlock(&rq->lock);
4047         preempt_enable_no_resched();
4048
4049         schedule();
4050
4051         return 0;
4052 }
4053
4054 static inline void __cond_resched(void)
4055 {
4056         /*
4057          * The BKS might be reacquired before we have dropped
4058          * PREEMPT_ACTIVE, which could trigger a second
4059          * cond_resched() call.
4060          */
4061         if (unlikely(preempt_count()))
4062                 return;
4063         do {
4064                 add_preempt_count(PREEMPT_ACTIVE);
4065                 schedule();
4066                 sub_preempt_count(PREEMPT_ACTIVE);
4067         } while (need_resched());
4068 }
4069
4070 int __sched cond_resched(void)
4071 {
4072         if (need_resched()) {
4073                 __cond_resched();
4074                 return 1;
4075         }
4076         return 0;
4077 }
4078
4079 EXPORT_SYMBOL(cond_resched);
4080
4081 /*
4082  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4083  * call schedule, and on return reacquire the lock.
4084  *
4085  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4086  * operations here to prevent schedule() from being called twice (once via
4087  * spin_unlock(), once by hand).
4088  */
4089 int cond_resched_lock(spinlock_t *lock)
4090 {
4091         int ret = 0;
4092
4093         if (need_lockbreak(lock)) {
4094                 spin_unlock(lock);
4095                 cpu_relax();
4096                 ret = 1;
4097                 spin_lock(lock);
4098         }
4099         if (need_resched()) {
4100                 _raw_spin_unlock(lock);
4101                 preempt_enable_no_resched();
4102                 __cond_resched();
4103                 ret = 1;
4104                 spin_lock(lock);
4105         }
4106         return ret;
4107 }
4108
4109 EXPORT_SYMBOL(cond_resched_lock);
4110
4111 int __sched cond_resched_softirq(void)
4112 {
4113         BUG_ON(!in_softirq());
4114
4115         if (need_resched()) {
4116                 __local_bh_enable();
4117                 __cond_resched();
4118                 local_bh_disable();
4119                 return 1;
4120         }
4121         return 0;
4122 }
4123
4124 EXPORT_SYMBOL(cond_resched_softirq);
4125
4126
4127 /**
4128  * yield - yield the current processor to other threads.
4129  *
4130  * this is a shortcut for kernel-space yielding - it marks the
4131  * thread runnable and calls sys_sched_yield().
4132  */
4133 void __sched yield(void)
4134 {
4135         set_current_state(TASK_RUNNING);
4136         sys_sched_yield();
4137 }
4138
4139 EXPORT_SYMBOL(yield);
4140
4141 /*
4142  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4143  * that process accounting knows that this is a task in IO wait state.
4144  *
4145  * But don't do that if it is a deliberate, throttling IO wait (this task
4146  * has set its backing_dev_info: the queue against which it should throttle)
4147  */
4148 void __sched io_schedule(void)
4149 {
4150         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4151
4152         atomic_inc(&rq->nr_iowait);
4153         schedule();
4154         atomic_dec(&rq->nr_iowait);
4155 }
4156
4157 EXPORT_SYMBOL(io_schedule);
4158
4159 long __sched io_schedule_timeout(long timeout)
4160 {
4161         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4162         long ret;
4163
4164         atomic_inc(&rq->nr_iowait);
4165         ret = schedule_timeout(timeout);
4166         atomic_dec(&rq->nr_iowait);
4167         return ret;
4168 }
4169
4170 /**
4171  * sys_sched_get_priority_max - return maximum RT priority.
4172  * @policy: scheduling class.
4173  *
4174  * this syscall returns the maximum rt_priority that can be used
4175  * by a given scheduling class.
4176  */
4177 asmlinkage long sys_sched_get_priority_max(int policy)
4178 {
4179         int ret = -EINVAL;
4180
4181         switch (policy) {
4182         case SCHED_FIFO:
4183         case SCHED_RR:
4184                 ret = MAX_USER_RT_PRIO-1;
4185                 break;
4186         case SCHED_NORMAL:
4187                 ret = 0;
4188                 break;
4189         }
4190         return ret;
4191 }
4192
4193 /**
4194  * sys_sched_get_priority_min - return minimum RT priority.
4195  * @policy: scheduling class.
4196  *
4197  * this syscall returns the minimum rt_priority that can be used
4198  * by a given scheduling class.
4199  */
4200 asmlinkage long sys_sched_get_priority_min(int policy)
4201 {
4202         int ret = -EINVAL;
4203
4204         switch (policy) {
4205         case SCHED_FIFO:
4206         case SCHED_RR:
4207                 ret = 1;
4208                 break;
4209         case SCHED_NORMAL:
4210                 ret = 0;
4211         }
4212         return ret;
4213 }
4214
4215 /**
4216  * sys_sched_rr_get_interval - return the default timeslice of a process.
4217  * @pid: pid of the process.
4218  * @interval: userspace pointer to the timeslice value.
4219  *
4220  * this syscall writes the default timeslice value of a given process
4221  * into the user-space timespec buffer. A value of '0' means infinity.
4222  */
4223 asmlinkage
4224 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4225 {
4226         int retval = -EINVAL;
4227         struct timespec t;
4228         task_t *p;
4229
4230         if (pid < 0)
4231                 goto out_nounlock;
4232
4233         retval = -ESRCH;
4234         read_lock(&tasklist_lock);
4235         p = find_process_by_pid(pid);
4236         if (!p)
4237                 goto out_unlock;
4238
4239         retval = security_task_getscheduler(p);
4240         if (retval)
4241                 goto out_unlock;
4242
4243         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4244                                 0 : task_timeslice(p), &t);
4245         read_unlock(&tasklist_lock);
4246         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4247 out_nounlock:
4248         return retval;
4249 out_unlock:
4250         read_unlock(&tasklist_lock);
4251         return retval;
4252 }
4253
4254 static inline struct task_struct *eldest_child(struct task_struct *p)
4255 {
4256         if (list_empty(&p->children)) return NULL;
4257         return list_entry(p->children.next,struct task_struct,sibling);
4258 }
4259
4260 static inline struct task_struct *older_sibling(struct task_struct *p)
4261 {
4262         if (p->sibling.prev==&p->parent->children) return NULL;
4263         return list_entry(p->sibling.prev,struct task_struct,sibling);
4264 }
4265
4266 static inline struct task_struct *younger_sibling(struct task_struct *p)
4267 {
4268         if (p->sibling.next==&p->parent->children) return NULL;
4269         return list_entry(p->sibling.next,struct task_struct,sibling);
4270 }
4271
4272 static void show_task(task_t *p)
4273 {
4274         task_t *relative;
4275         unsigned state;
4276         unsigned long free = 0;
4277         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4278
4279         printk("%-13.13s ", p->comm);
4280         state = p->state ? __ffs(p->state) + 1 : 0;
4281         if (state < ARRAY_SIZE(stat_nam))
4282                 printk(stat_nam[state]);
4283         else
4284                 printk("?");
4285 #if (BITS_PER_LONG == 32)
4286         if (state == TASK_RUNNING)
4287                 printk(" running ");
4288         else
4289                 printk(" %08lX ", thread_saved_pc(p));
4290 #else
4291         if (state == TASK_RUNNING)
4292                 printk("  running task   ");
4293         else
4294                 printk(" %016lx ", thread_saved_pc(p));
4295 #endif
4296 #ifdef CONFIG_DEBUG_STACK_USAGE
4297         {
4298                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4299                 while (!*n)
4300                         n++;
4301                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4302         }
4303 #endif
4304         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4305         if ((relative = eldest_child(p)))
4306                 printk("%5d ", relative->pid);
4307         else
4308                 printk("      ");
4309         if ((relative = younger_sibling(p)))
4310                 printk("%7d", relative->pid);
4311         else
4312                 printk("       ");
4313         if ((relative = older_sibling(p)))
4314                 printk(" %5d", relative->pid);
4315         else
4316                 printk("      ");
4317         if (!p->mm)
4318                 printk(" (L-TLB)\n");
4319         else
4320                 printk(" (NOTLB)\n");
4321
4322         if (state != TASK_RUNNING)
4323                 show_stack(p, NULL);
4324 }
4325
4326 void show_state(void)
4327 {
4328         task_t *g, *p;
4329
4330 #if (BITS_PER_LONG == 32)
4331         printk("\n"
4332                "                                               sibling\n");
4333         printk("  task             PC      pid father child younger older\n");
4334 #else
4335         printk("\n"
4336                "                                                       sibling\n");
4337         printk("  task                 PC          pid father child younger older\n");
4338 #endif
4339         read_lock(&tasklist_lock);
4340         do_each_thread(g, p) {
4341                 /*
4342                  * reset the NMI-timeout, listing all files on a slow
4343                  * console might take alot of time:
4344                  */
4345                 touch_nmi_watchdog();
4346                 show_task(p);
4347         } while_each_thread(g, p);
4348
4349         read_unlock(&tasklist_lock);
4350 }
4351
4352 /**
4353  * init_idle - set up an idle thread for a given CPU
4354  * @idle: task in question
4355  * @cpu: cpu the idle task belongs to
4356  *
4357  * NOTE: this function does not set the idle thread's NEED_RESCHED
4358  * flag, to make booting more robust.
4359  */
4360 void __devinit init_idle(task_t *idle, int cpu)
4361 {
4362         runqueue_t *rq = cpu_rq(cpu);
4363         unsigned long flags;
4364
4365         idle->sleep_avg = 0;
4366         idle->array = NULL;
4367         idle->prio = MAX_PRIO;
4368         idle->state = TASK_RUNNING;
4369         idle->cpus_allowed = cpumask_of_cpu(cpu);
4370         set_task_cpu(idle, cpu);
4371
4372         spin_lock_irqsave(&rq->lock, flags);
4373         rq->curr = rq->idle = idle;
4374 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4375         idle->oncpu = 1;
4376 #endif
4377         spin_unlock_irqrestore(&rq->lock, flags);
4378
4379         /* Set the preempt count _outside_ the spinlocks! */
4380 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4381         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4382 #else
4383         idle->thread_info->preempt_count = 0;
4384 #endif
4385 }
4386
4387 /*
4388  * In a system that switches off the HZ timer nohz_cpu_mask
4389  * indicates which cpus entered this state. This is used
4390  * in the rcu update to wait only for active cpus. For system
4391  * which do not switch off the HZ timer nohz_cpu_mask should
4392  * always be CPU_MASK_NONE.
4393  */
4394 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4395
4396 #ifdef CONFIG_SMP
4397 /*
4398  * This is how migration works:
4399  *
4400  * 1) we queue a migration_req_t structure in the source CPU's
4401  *    runqueue and wake up that CPU's migration thread.
4402  * 2) we down() the locked semaphore => thread blocks.
4403  * 3) migration thread wakes up (implicitly it forces the migrated
4404  *    thread off the CPU)
4405  * 4) it gets the migration request and checks whether the migrated
4406  *    task is still in the wrong runqueue.
4407  * 5) if it's in the wrong runqueue then the migration thread removes
4408  *    it and puts it into the right queue.
4409  * 6) migration thread up()s the semaphore.
4410  * 7) we wake up and the migration is done.
4411  */
4412
4413 /*
4414  * Change a given task's CPU affinity. Migrate the thread to a
4415  * proper CPU and schedule it away if the CPU it's executing on
4416  * is removed from the allowed bitmask.
4417  *
4418  * NOTE: the caller must have a valid reference to the task, the
4419  * task must not exit() & deallocate itself prematurely.  The
4420  * call is not atomic; no spinlocks may be held.
4421  */
4422 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4423 {
4424         unsigned long flags;
4425         int ret = 0;
4426         migration_req_t req;
4427         runqueue_t *rq;
4428
4429         rq = task_rq_lock(p, &flags);
4430         if (!cpus_intersects(new_mask, cpu_online_map)) {
4431                 ret = -EINVAL;
4432                 goto out;
4433         }
4434
4435         p->cpus_allowed = new_mask;
4436         /* Can the task run on the task's current CPU? If so, we're done */
4437         if (cpu_isset(task_cpu(p), new_mask))
4438                 goto out;
4439
4440         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4441                 /* Need help from migration thread: drop lock and wait. */
4442                 task_rq_unlock(rq, &flags);
4443                 wake_up_process(rq->migration_thread);
4444                 wait_for_completion(&req.done);
4445                 tlb_migrate_finish(p->mm);
4446                 return 0;
4447         }
4448 out:
4449         task_rq_unlock(rq, &flags);
4450         return ret;
4451 }
4452
4453 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4454
4455 /*
4456  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4457  * this because either it can't run here any more (set_cpus_allowed()
4458  * away from this CPU, or CPU going down), or because we're
4459  * attempting to rebalance this task on exec (sched_exec).
4460  *
4461  * So we race with normal scheduler movements, but that's OK, as long
4462  * as the task is no longer on this CPU.
4463  */
4464 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4465 {
4466         runqueue_t *rq_dest, *rq_src;
4467
4468         if (unlikely(cpu_is_offline(dest_cpu)))
4469                 return;
4470
4471         rq_src = cpu_rq(src_cpu);
4472         rq_dest = cpu_rq(dest_cpu);
4473
4474         double_rq_lock(rq_src, rq_dest);
4475         /* Already moved. */
4476         if (task_cpu(p) != src_cpu)
4477                 goto out;
4478         /* Affinity changed (again). */
4479         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4480                 goto out;
4481
4482         set_task_cpu(p, dest_cpu);
4483         if (p->array) {
4484                 /*
4485                  * Sync timestamp with rq_dest's before activating.
4486                  * The same thing could be achieved by doing this step
4487                  * afterwards, and pretending it was a local activate.
4488                  * This way is cleaner and logically correct.
4489                  */
4490                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4491                                 + rq_dest->timestamp_last_tick;
4492                 deactivate_task(p, rq_src);
4493                 activate_task(p, rq_dest, 0);
4494                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4495                         resched_task(rq_dest->curr);
4496         }
4497
4498 out:
4499         double_rq_unlock(rq_src, rq_dest);
4500 }
4501
4502 /*
4503  * migration_thread - this is a highprio system thread that performs
4504  * thread migration by bumping thread off CPU then 'pushing' onto
4505  * another runqueue.
4506  */
4507 static int migration_thread(void *data)
4508 {
4509         runqueue_t *rq;
4510         int cpu = (long)data;
4511
4512         rq = cpu_rq(cpu);
4513         BUG_ON(rq->migration_thread != current);
4514
4515         set_current_state(TASK_INTERRUPTIBLE);
4516         while (!kthread_should_stop()) {
4517                 struct list_head *head;
4518                 migration_req_t *req;
4519
4520                 try_to_freeze();
4521
4522                 spin_lock_irq(&rq->lock);
4523
4524                 if (cpu_is_offline(cpu)) {
4525                         spin_unlock_irq(&rq->lock);
4526                         goto wait_to_die;
4527                 }
4528
4529                 if (rq->active_balance) {
4530                         active_load_balance(rq, cpu);
4531                         rq->active_balance = 0;
4532                 }
4533
4534                 head = &rq->migration_queue;
4535
4536                 if (list_empty(head)) {
4537                         spin_unlock_irq(&rq->lock);
4538                         schedule();
4539                         set_current_state(TASK_INTERRUPTIBLE);
4540                         continue;
4541                 }
4542                 req = list_entry(head->next, migration_req_t, list);
4543                 list_del_init(head->next);
4544
4545                 spin_unlock(&rq->lock);
4546                 __migrate_task(req->task, cpu, req->dest_cpu);
4547                 local_irq_enable();
4548
4549                 complete(&req->done);
4550         }
4551         __set_current_state(TASK_RUNNING);
4552         return 0;
4553
4554 wait_to_die:
4555         /* Wait for kthread_stop */
4556         set_current_state(TASK_INTERRUPTIBLE);
4557         while (!kthread_should_stop()) {
4558                 schedule();
4559                 set_current_state(TASK_INTERRUPTIBLE);
4560         }
4561         __set_current_state(TASK_RUNNING);
4562         return 0;
4563 }
4564
4565 #ifdef CONFIG_HOTPLUG_CPU
4566 /* Figure out where task on dead CPU should go, use force if neccessary. */
4567 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4568 {
4569         int dest_cpu;
4570         cpumask_t mask;
4571
4572         /* On same node? */
4573         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4574         cpus_and(mask, mask, tsk->cpus_allowed);
4575         dest_cpu = any_online_cpu(mask);
4576
4577         /* On any allowed CPU? */
4578         if (dest_cpu == NR_CPUS)
4579                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4580
4581         /* No more Mr. Nice Guy. */
4582         if (dest_cpu == NR_CPUS) {
4583                 cpus_setall(tsk->cpus_allowed);
4584                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4585
4586                 /*
4587                  * Don't tell them about moving exiting tasks or
4588                  * kernel threads (both mm NULL), since they never
4589                  * leave kernel.
4590                  */
4591                 if (tsk->mm && printk_ratelimit())
4592                         printk(KERN_INFO "process %d (%s) no "
4593                                "longer affine to cpu%d\n",
4594                                tsk->pid, tsk->comm, dead_cpu);
4595         }
4596         __migrate_task(tsk, dead_cpu, dest_cpu);
4597 }
4598
4599 /*
4600  * While a dead CPU has no uninterruptible tasks queued at this point,
4601  * it might still have a nonzero ->nr_uninterruptible counter, because
4602  * for performance reasons the counter is not stricly tracking tasks to
4603  * their home CPUs. So we just add the counter to another CPU's counter,
4604  * to keep the global sum constant after CPU-down:
4605  */
4606 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4607 {
4608         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4609         unsigned long flags;
4610
4611         local_irq_save(flags);
4612         double_rq_lock(rq_src, rq_dest);
4613         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4614         rq_src->nr_uninterruptible = 0;
4615         double_rq_unlock(rq_src, rq_dest);
4616         local_irq_restore(flags);
4617 }
4618
4619 /* Run through task list and migrate tasks from the dead cpu. */
4620 static void migrate_live_tasks(int src_cpu)
4621 {
4622         struct task_struct *tsk, *t;
4623
4624         write_lock_irq(&tasklist_lock);
4625
4626         do_each_thread(t, tsk) {
4627                 if (tsk == current)
4628                         continue;
4629
4630                 if (task_cpu(tsk) == src_cpu)
4631                         move_task_off_dead_cpu(src_cpu, tsk);
4632         } while_each_thread(t, tsk);
4633
4634         write_unlock_irq(&tasklist_lock);
4635 }
4636
4637 /* Schedules idle task to be the next runnable task on current CPU.
4638  * It does so by boosting its priority to highest possible and adding it to
4639  * the _front_ of runqueue. Used by CPU offline code.
4640  */
4641 void sched_idle_next(void)
4642 {
4643         int cpu = smp_processor_id();
4644         runqueue_t *rq = this_rq();
4645         struct task_struct *p = rq->idle;
4646         unsigned long flags;
4647
4648         /* cpu has to be offline */
4649         BUG_ON(cpu_online(cpu));
4650
4651         /* Strictly not necessary since rest of the CPUs are stopped by now
4652          * and interrupts disabled on current cpu.
4653          */
4654         spin_lock_irqsave(&rq->lock, flags);
4655
4656         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4657         /* Add idle task to _front_ of it's priority queue */
4658         __activate_idle_task(p, rq);
4659
4660         spin_unlock_irqrestore(&rq->lock, flags);
4661 }
4662
4663 /* Ensures that the idle task is using init_mm right before its cpu goes
4664  * offline.
4665  */
4666 void idle_task_exit(void)
4667 {
4668         struct mm_struct *mm = current->active_mm;
4669
4670         BUG_ON(cpu_online(smp_processor_id()));
4671
4672         if (mm != &init_mm)
4673                 switch_mm(mm, &init_mm, current);
4674         mmdrop(mm);
4675 }
4676
4677 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4678 {
4679         struct runqueue *rq = cpu_rq(dead_cpu);
4680
4681         /* Must be exiting, otherwise would be on tasklist. */
4682         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4683
4684         /* Cannot have done final schedule yet: would have vanished. */
4685         BUG_ON(tsk->flags & PF_DEAD);
4686
4687         get_task_struct(tsk);
4688
4689         /*
4690          * Drop lock around migration; if someone else moves it,
4691          * that's OK.  No task can be added to this CPU, so iteration is
4692          * fine.
4693          */
4694         spin_unlock_irq(&rq->lock);
4695         move_task_off_dead_cpu(dead_cpu, tsk);
4696         spin_lock_irq(&rq->lock);
4697
4698         put_task_struct(tsk);
4699 }
4700
4701 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4702 static void migrate_dead_tasks(unsigned int dead_cpu)
4703 {
4704         unsigned arr, i;
4705         struct runqueue *rq = cpu_rq(dead_cpu);
4706
4707         for (arr = 0; arr < 2; arr++) {
4708                 for (i = 0; i < MAX_PRIO; i++) {
4709                         struct list_head *list = &rq->arrays[arr].queue[i];
4710                         while (!list_empty(list))
4711                                 migrate_dead(dead_cpu,
4712                                              list_entry(list->next, task_t,
4713                                                         run_list));
4714                 }
4715         }
4716 }
4717 #endif /* CONFIG_HOTPLUG_CPU */
4718
4719 /*
4720  * migration_call - callback that gets triggered when a CPU is added.
4721  * Here we can start up the necessary migration thread for the new CPU.
4722  */
4723 static int migration_call(struct notifier_block *nfb, unsigned long action,
4724                           void *hcpu)
4725 {
4726         int cpu = (long)hcpu;
4727         struct task_struct *p;
4728         struct runqueue *rq;
4729         unsigned long flags;
4730
4731         switch (action) {
4732         case CPU_UP_PREPARE:
4733                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4734                 if (IS_ERR(p))
4735                         return NOTIFY_BAD;
4736                 p->flags |= PF_NOFREEZE;
4737                 kthread_bind(p, cpu);
4738                 /* Must be high prio: stop_machine expects to yield to it. */
4739                 rq = task_rq_lock(p, &flags);
4740                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4741                 task_rq_unlock(rq, &flags);
4742                 cpu_rq(cpu)->migration_thread = p;
4743                 break;
4744         case CPU_ONLINE:
4745                 /* Strictly unneccessary, as first user will wake it. */
4746                 wake_up_process(cpu_rq(cpu)->migration_thread);
4747                 break;
4748 #ifdef CONFIG_HOTPLUG_CPU
4749         case CPU_UP_CANCELED:
4750                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4751                 kthread_bind(cpu_rq(cpu)->migration_thread,
4752                              any_online_cpu(cpu_online_map));
4753                 kthread_stop(cpu_rq(cpu)->migration_thread);
4754                 cpu_rq(cpu)->migration_thread = NULL;
4755                 break;
4756         case CPU_DEAD:
4757                 migrate_live_tasks(cpu);
4758                 rq = cpu_rq(cpu);
4759                 kthread_stop(rq->migration_thread);
4760                 rq->migration_thread = NULL;
4761                 /* Idle task back to normal (off runqueue, low prio) */
4762                 rq = task_rq_lock(rq->idle, &flags);
4763                 deactivate_task(rq->idle, rq);
4764                 rq->idle->static_prio = MAX_PRIO;
4765                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4766                 migrate_dead_tasks(cpu);
4767                 task_rq_unlock(rq, &flags);
4768                 migrate_nr_uninterruptible(rq);
4769                 BUG_ON(rq->nr_running != 0);
4770
4771                 /* No need to migrate the tasks: it was best-effort if
4772                  * they didn't do lock_cpu_hotplug().  Just wake up
4773                  * the requestors. */
4774                 spin_lock_irq(&rq->lock);
4775                 while (!list_empty(&rq->migration_queue)) {
4776                         migration_req_t *req;
4777                         req = list_entry(rq->migration_queue.next,
4778                                          migration_req_t, list);
4779                         list_del_init(&req->list);
4780                         complete(&req->done);
4781                 }
4782                 spin_unlock_irq(&rq->lock);
4783                 break;
4784 #endif
4785         }
4786         return NOTIFY_OK;
4787 }
4788
4789 /* Register at highest priority so that task migration (migrate_all_tasks)
4790  * happens before everything else.
4791  */
4792 static struct notifier_block __devinitdata migration_notifier = {
4793         .notifier_call = migration_call,
4794         .priority = 10
4795 };
4796
4797 int __init migration_init(void)
4798 {
4799         void *cpu = (void *)(long)smp_processor_id();
4800         /* Start one for boot CPU. */
4801         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4802         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4803         register_cpu_notifier(&migration_notifier);
4804         return 0;
4805 }
4806 #endif
4807
4808 #ifdef CONFIG_SMP
4809 #undef SCHED_DOMAIN_DEBUG
4810 #ifdef SCHED_DOMAIN_DEBUG
4811 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4812 {
4813         int level = 0;
4814
4815         if (!sd) {
4816                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4817                 return;
4818         }
4819
4820         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4821
4822         do {
4823                 int i;
4824                 char str[NR_CPUS];
4825                 struct sched_group *group = sd->groups;
4826                 cpumask_t groupmask;
4827
4828                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4829                 cpus_clear(groupmask);
4830
4831                 printk(KERN_DEBUG);
4832                 for (i = 0; i < level + 1; i++)
4833                         printk(" ");
4834                 printk("domain %d: ", level);
4835
4836                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4837                         printk("does not load-balance\n");
4838                         if (sd->parent)
4839                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4840                         break;
4841                 }
4842
4843                 printk("span %s\n", str);
4844
4845                 if (!cpu_isset(cpu, sd->span))
4846                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4847                 if (!cpu_isset(cpu, group->cpumask))
4848                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4849
4850                 printk(KERN_DEBUG);
4851                 for (i = 0; i < level + 2; i++)
4852                         printk(" ");
4853                 printk("groups:");
4854                 do {
4855                         if (!group) {
4856                                 printk("\n");
4857                                 printk(KERN_ERR "ERROR: group is NULL\n");
4858                                 break;
4859                         }
4860
4861                         if (!group->cpu_power) {
4862                                 printk("\n");
4863                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4864                         }
4865
4866                         if (!cpus_weight(group->cpumask)) {
4867                                 printk("\n");
4868                                 printk(KERN_ERR "ERROR: empty group\n");
4869                         }
4870
4871                         if (cpus_intersects(groupmask, group->cpumask)) {
4872                                 printk("\n");
4873                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4874                         }
4875
4876                         cpus_or(groupmask, groupmask, group->cpumask);
4877
4878                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4879                         printk(" %s", str);
4880
4881                         group = group->next;
4882                 } while (group != sd->groups);
4883                 printk("\n");
4884
4885                 if (!cpus_equal(sd->span, groupmask))
4886                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4887
4888                 level++;
4889                 sd = sd->parent;
4890
4891                 if (sd) {
4892                         if (!cpus_subset(groupmask, sd->span))
4893                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4894                 }
4895
4896         } while (sd);
4897 }
4898 #else
4899 #define sched_domain_debug(sd, cpu) {}
4900 #endif
4901
4902 static int sd_degenerate(struct sched_domain *sd)
4903 {
4904         if (cpus_weight(sd->span) == 1)
4905                 return 1;
4906
4907         /* Following flags need at least 2 groups */
4908         if (sd->flags & (SD_LOAD_BALANCE |
4909                          SD_BALANCE_NEWIDLE |
4910                          SD_BALANCE_FORK |
4911                          SD_BALANCE_EXEC)) {
4912                 if (sd->groups != sd->groups->next)
4913                         return 0;
4914         }
4915
4916         /* Following flags don't use groups */
4917         if (sd->flags & (SD_WAKE_IDLE |
4918                          SD_WAKE_AFFINE |
4919                          SD_WAKE_BALANCE))
4920                 return 0;
4921
4922         return 1;
4923 }
4924
4925 static int sd_parent_degenerate(struct sched_domain *sd,
4926                                                 struct sched_domain *parent)
4927 {
4928         unsigned long cflags = sd->flags, pflags = parent->flags;
4929
4930         if (sd_degenerate(parent))
4931                 return 1;
4932
4933         if (!cpus_equal(sd->span, parent->span))
4934                 return 0;
4935
4936         /* Does parent contain flags not in child? */
4937         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4938         if (cflags & SD_WAKE_AFFINE)
4939                 pflags &= ~SD_WAKE_BALANCE;
4940         /* Flags needing groups don't count if only 1 group in parent */
4941         if (parent->groups == parent->groups->next) {
4942                 pflags &= ~(SD_LOAD_BALANCE |
4943                                 SD_BALANCE_NEWIDLE |
4944                                 SD_BALANCE_FORK |
4945                                 SD_BALANCE_EXEC);
4946         }
4947         if (~cflags & pflags)
4948                 return 0;
4949
4950         return 1;
4951 }
4952
4953 /*
4954  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4955  * hold the hotplug lock.
4956  */
4957 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4958 {
4959         runqueue_t *rq = cpu_rq(cpu);
4960         struct sched_domain *tmp;
4961
4962         /* Remove the sched domains which do not contribute to scheduling. */
4963         for (tmp = sd; tmp; tmp = tmp->parent) {
4964                 struct sched_domain *parent = tmp->parent;
4965                 if (!parent)
4966                         break;
4967                 if (sd_parent_degenerate(tmp, parent))
4968                         tmp->parent = parent->parent;
4969         }
4970
4971         if (sd && sd_degenerate(sd))
4972                 sd = sd->parent;
4973
4974         sched_domain_debug(sd, cpu);
4975
4976         rcu_assign_pointer(rq->sd, sd);
4977 }
4978
4979 /* cpus with isolated domains */
4980 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4981
4982 /* Setup the mask of cpus configured for isolated domains */
4983 static int __init isolated_cpu_setup(char *str)
4984 {
4985         int ints[NR_CPUS], i;
4986
4987         str = get_options(str, ARRAY_SIZE(ints), ints);
4988         cpus_clear(cpu_isolated_map);
4989         for (i = 1; i <= ints[0]; i++)
4990                 if (ints[i] < NR_CPUS)
4991                         cpu_set(ints[i], cpu_isolated_map);
4992         return 1;
4993 }
4994
4995 __setup ("isolcpus=", isolated_cpu_setup);
4996
4997 /*
4998  * init_sched_build_groups takes an array of groups, the cpumask we wish
4999  * to span, and a pointer to a function which identifies what group a CPU
5000  * belongs to. The return value of group_fn must be a valid index into the
5001  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5002  * keep track of groups covered with a cpumask_t).
5003  *
5004  * init_sched_build_groups will build a circular linked list of the groups
5005  * covered by the given span, and will set each group's ->cpumask correctly,
5006  * and ->cpu_power to 0.
5007  */
5008 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5009                                     int (*group_fn)(int cpu))
5010 {
5011         struct sched_group *first = NULL, *last = NULL;
5012         cpumask_t covered = CPU_MASK_NONE;
5013         int i;
5014
5015         for_each_cpu_mask(i, span) {
5016                 int group = group_fn(i);
5017                 struct sched_group *sg = &groups[group];
5018                 int j;
5019
5020                 if (cpu_isset(i, covered))
5021                         continue;
5022
5023                 sg->cpumask = CPU_MASK_NONE;
5024                 sg->cpu_power = 0;
5025
5026                 for_each_cpu_mask(j, span) {
5027                         if (group_fn(j) != group)
5028                                 continue;
5029
5030                         cpu_set(j, covered);
5031                         cpu_set(j, sg->cpumask);
5032                 }
5033                 if (!first)
5034                         first = sg;
5035                 if (last)
5036                         last->next = sg;
5037                 last = sg;
5038         }
5039         last->next = first;
5040 }
5041
5042 #define SD_NODES_PER_DOMAIN 16
5043
5044 #ifdef CONFIG_NUMA
5045 /**
5046  * find_next_best_node - find the next node to include in a sched_domain
5047  * @node: node whose sched_domain we're building
5048  * @used_nodes: nodes already in the sched_domain
5049  *
5050  * Find the next node to include in a given scheduling domain.  Simply
5051  * finds the closest node not already in the @used_nodes map.
5052  *
5053  * Should use nodemask_t.
5054  */
5055 static int find_next_best_node(int node, unsigned long *used_nodes)
5056 {
5057         int i, n, val, min_val, best_node = 0;
5058
5059         min_val = INT_MAX;
5060
5061         for (i = 0; i < MAX_NUMNODES; i++) {
5062                 /* Start at @node */
5063                 n = (node + i) % MAX_NUMNODES;
5064
5065                 if (!nr_cpus_node(n))
5066                         continue;
5067
5068                 /* Skip already used nodes */
5069                 if (test_bit(n, used_nodes))
5070                         continue;
5071
5072                 /* Simple min distance search */
5073                 val = node_distance(node, n);
5074
5075                 if (val < min_val) {
5076                         min_val = val;
5077                         best_node = n;
5078                 }
5079         }
5080
5081         set_bit(best_node, used_nodes);
5082         return best_node;
5083 }
5084
5085 /**
5086  * sched_domain_node_span - get a cpumask for a node's sched_domain
5087  * @node: node whose cpumask we're constructing
5088  * @size: number of nodes to include in this span
5089  *
5090  * Given a node, construct a good cpumask for its sched_domain to span.  It
5091  * should be one that prevents unnecessary balancing, but also spreads tasks
5092  * out optimally.
5093  */
5094 static cpumask_t sched_domain_node_span(int node)
5095 {
5096         int i;
5097         cpumask_t span, nodemask;
5098         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5099
5100         cpus_clear(span);
5101         bitmap_zero(used_nodes, MAX_NUMNODES);
5102
5103         nodemask = node_to_cpumask(node);
5104         cpus_or(span, span, nodemask);
5105         set_bit(node, used_nodes);
5106
5107         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5108                 int next_node = find_next_best_node(node, used_nodes);
5109                 nodemask = node_to_cpumask(next_node);
5110                 cpus_or(span, span, nodemask);
5111         }
5112
5113         return span;
5114 }
5115 #endif
5116
5117 /*
5118  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5119  * can switch it on easily if needed.
5120  */
5121 #ifdef CONFIG_SCHED_SMT
5122 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5123 static struct sched_group sched_group_cpus[NR_CPUS];
5124 static int cpu_to_cpu_group(int cpu)
5125 {
5126         return cpu;
5127 }
5128 #endif
5129
5130 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5131 static struct sched_group sched_group_phys[NR_CPUS];
5132 static int cpu_to_phys_group(int cpu)
5133 {
5134 #ifdef CONFIG_SCHED_SMT
5135         return first_cpu(cpu_sibling_map[cpu]);
5136 #else
5137         return cpu;
5138 #endif
5139 }
5140
5141 #ifdef CONFIG_NUMA
5142 /*
5143  * The init_sched_build_groups can't handle what we want to do with node
5144  * groups, so roll our own. Now each node has its own list of groups which
5145  * gets dynamically allocated.
5146  */
5147 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5148 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5149
5150 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5151 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5152
5153 static int cpu_to_allnodes_group(int cpu)
5154 {
5155         return cpu_to_node(cpu);
5156 }
5157 #endif
5158
5159 /*
5160  * Build sched domains for a given set of cpus and attach the sched domains
5161  * to the individual cpus
5162  */
5163 void build_sched_domains(const cpumask_t *cpu_map)
5164 {
5165         int i;
5166 #ifdef CONFIG_NUMA
5167         struct sched_group **sched_group_nodes = NULL;
5168         struct sched_group *sched_group_allnodes = NULL;
5169
5170         /*
5171          * Allocate the per-node list of sched groups
5172          */
5173         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5174                                            GFP_ATOMIC);
5175         if (!sched_group_nodes) {
5176                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5177                 return;
5178         }
5179         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5180 #endif
5181
5182         /*
5183          * Set up domains for cpus specified by the cpu_map.
5184          */
5185         for_each_cpu_mask(i, *cpu_map) {
5186                 int group;
5187                 struct sched_domain *sd = NULL, *p;
5188                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5189
5190                 cpus_and(nodemask, nodemask, *cpu_map);
5191
5192 #ifdef CONFIG_NUMA
5193                 if (cpus_weight(*cpu_map)
5194                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5195                         if (!sched_group_allnodes) {
5196                                 sched_group_allnodes
5197                                         = kmalloc(sizeof(struct sched_group)
5198                                                         * MAX_NUMNODES,
5199                                                   GFP_KERNEL);
5200                                 if (!sched_group_allnodes) {
5201                                         printk(KERN_WARNING
5202                                         "Can not alloc allnodes sched group\n");
5203                                         break;
5204                                 }
5205                                 sched_group_allnodes_bycpu[i]
5206                                                 = sched_group_allnodes;
5207                         }
5208                         sd = &per_cpu(allnodes_domains, i);
5209                         *sd = SD_ALLNODES_INIT;
5210                         sd->span = *cpu_map;
5211                         group = cpu_to_allnodes_group(i);
5212                         sd->groups = &sched_group_allnodes[group];
5213                         p = sd;
5214                 } else
5215                         p = NULL;
5216
5217                 sd = &per_cpu(node_domains, i);
5218                 *sd = SD_NODE_INIT;
5219                 sd->span = sched_domain_node_span(cpu_to_node(i));
5220                 sd->parent = p;
5221                 cpus_and(sd->span, sd->span, *cpu_map);
5222 #endif
5223
5224                 p = sd;
5225                 sd = &per_cpu(phys_domains, i);
5226                 group = cpu_to_phys_group(i);
5227                 *sd = SD_CPU_INIT;
5228                 sd->span = nodemask;
5229                 sd->parent = p;
5230                 sd->groups = &sched_group_phys[group];
5231
5232 #ifdef CONFIG_SCHED_SMT
5233                 p = sd;
5234                 sd = &per_cpu(cpu_domains, i);
5235                 group = cpu_to_cpu_group(i);
5236                 *sd = SD_SIBLING_INIT;
5237                 sd->span = cpu_sibling_map[i];
5238                 cpus_and(sd->span, sd->span, *cpu_map);
5239                 sd->parent = p;
5240                 sd->groups = &sched_group_cpus[group];
5241 #endif
5242         }
5243
5244 #ifdef CONFIG_SCHED_SMT
5245         /* Set up CPU (sibling) groups */
5246         for_each_cpu_mask(i, *cpu_map) {
5247                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5248                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5249                 if (i != first_cpu(this_sibling_map))
5250                         continue;
5251
5252                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5253                                                 &cpu_to_cpu_group);
5254         }
5255 #endif
5256
5257         /* Set up physical groups */
5258         for (i = 0; i < MAX_NUMNODES; i++) {
5259                 cpumask_t nodemask = node_to_cpumask(i);
5260
5261                 cpus_and(nodemask, nodemask, *cpu_map);
5262                 if (cpus_empty(nodemask))
5263                         continue;
5264
5265                 init_sched_build_groups(sched_group_phys, nodemask,
5266                                                 &cpu_to_phys_group);
5267         }
5268
5269 #ifdef CONFIG_NUMA
5270         /* Set up node groups */
5271         if (sched_group_allnodes)
5272                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5273                                         &cpu_to_allnodes_group);
5274
5275         for (i = 0; i < MAX_NUMNODES; i++) {
5276                 /* Set up node groups */
5277                 struct sched_group *sg, *prev;
5278                 cpumask_t nodemask = node_to_cpumask(i);
5279                 cpumask_t domainspan;
5280                 cpumask_t covered = CPU_MASK_NONE;
5281                 int j;
5282
5283                 cpus_and(nodemask, nodemask, *cpu_map);
5284                 if (cpus_empty(nodemask)) {
5285                         sched_group_nodes[i] = NULL;
5286                         continue;
5287                 }
5288
5289                 domainspan = sched_domain_node_span(i);
5290                 cpus_and(domainspan, domainspan, *cpu_map);
5291
5292                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5293                 sched_group_nodes[i] = sg;
5294                 for_each_cpu_mask(j, nodemask) {
5295                         struct sched_domain *sd;
5296                         sd = &per_cpu(node_domains, j);
5297                         sd->groups = sg;
5298                         if (sd->groups == NULL) {
5299                                 /* Turn off balancing if we have no groups */
5300                                 sd->flags = 0;
5301                         }
5302                 }
5303                 if (!sg) {
5304                         printk(KERN_WARNING
5305                         "Can not alloc domain group for node %d\n", i);
5306                         continue;
5307                 }
5308                 sg->cpu_power = 0;
5309                 sg->cpumask = nodemask;
5310                 cpus_or(covered, covered, nodemask);
5311                 prev = sg;
5312
5313                 for (j = 0; j < MAX_NUMNODES; j++) {
5314                         cpumask_t tmp, notcovered;
5315                         int n = (i + j) % MAX_NUMNODES;
5316
5317                         cpus_complement(notcovered, covered);
5318                         cpus_and(tmp, notcovered, *cpu_map);
5319                         cpus_and(tmp, tmp, domainspan);
5320                         if (cpus_empty(tmp))
5321                                 break;
5322
5323                         nodemask = node_to_cpumask(n);
5324                         cpus_and(tmp, tmp, nodemask);
5325                         if (cpus_empty(tmp))
5326                                 continue;
5327
5328                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5329                         if (!sg) {
5330                                 printk(KERN_WARNING
5331                                 "Can not alloc domain group for node %d\n", j);
5332                                 break;
5333                         }
5334                         sg->cpu_power = 0;
5335                         sg->cpumask = tmp;
5336                         cpus_or(covered, covered, tmp);
5337                         prev->next = sg;
5338                         prev = sg;
5339                 }
5340                 prev->next = sched_group_nodes[i];
5341         }
5342 #endif
5343
5344         /* Calculate CPU power for physical packages and nodes */
5345         for_each_cpu_mask(i, *cpu_map) {
5346                 int power;
5347                 struct sched_domain *sd;
5348 #ifdef CONFIG_SCHED_SMT
5349                 sd = &per_cpu(cpu_domains, i);
5350                 power = SCHED_LOAD_SCALE;
5351                 sd->groups->cpu_power = power;
5352 #endif
5353
5354                 sd = &per_cpu(phys_domains, i);
5355                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5356                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5357                 sd->groups->cpu_power = power;
5358
5359 #ifdef CONFIG_NUMA
5360                 sd = &per_cpu(allnodes_domains, i);
5361                 if (sd->groups) {
5362                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5363                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5364                         sd->groups->cpu_power = power;
5365                 }
5366 #endif
5367         }
5368
5369 #ifdef CONFIG_NUMA
5370         for (i = 0; i < MAX_NUMNODES; i++) {
5371                 struct sched_group *sg = sched_group_nodes[i];
5372                 int j;
5373
5374                 if (sg == NULL)
5375                         continue;
5376 next_sg:
5377                 for_each_cpu_mask(j, sg->cpumask) {
5378                         struct sched_domain *sd;
5379                         int power;
5380
5381                         sd = &per_cpu(phys_domains, j);
5382                         if (j != first_cpu(sd->groups->cpumask)) {
5383                                 /*
5384                                  * Only add "power" once for each
5385                                  * physical package.
5386                                  */
5387                                 continue;
5388                         }
5389                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5390                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5391
5392                         sg->cpu_power += power;
5393                 }
5394                 sg = sg->next;
5395                 if (sg != sched_group_nodes[i])
5396                         goto next_sg;
5397         }
5398 #endif
5399
5400         /* Attach the domains */
5401         for_each_cpu_mask(i, *cpu_map) {
5402                 struct sched_domain *sd;
5403 #ifdef CONFIG_SCHED_SMT
5404                 sd = &per_cpu(cpu_domains, i);
5405 #else
5406                 sd = &per_cpu(phys_domains, i);
5407 #endif
5408                 cpu_attach_domain(sd, i);
5409         }
5410 }
5411 /*
5412  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5413  */
5414 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5415 {
5416         cpumask_t cpu_default_map;
5417
5418         /*
5419          * Setup mask for cpus without special case scheduling requirements.
5420          * For now this just excludes isolated cpus, but could be used to
5421          * exclude other special cases in the future.
5422          */
5423         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5424
5425         build_sched_domains(&cpu_default_map);
5426 }
5427
5428 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5429 {
5430 #ifdef CONFIG_NUMA
5431         int i;
5432         int cpu;
5433
5434         for_each_cpu_mask(cpu, *cpu_map) {
5435                 struct sched_group *sched_group_allnodes
5436                         = sched_group_allnodes_bycpu[cpu];
5437                 struct sched_group **sched_group_nodes
5438                         = sched_group_nodes_bycpu[cpu];
5439
5440                 if (sched_group_allnodes) {
5441                         kfree(sched_group_allnodes);
5442                         sched_group_allnodes_bycpu[cpu] = NULL;
5443                 }
5444
5445                 if (!sched_group_nodes)
5446                         continue;
5447
5448                 for (i = 0; i < MAX_NUMNODES; i++) {
5449                         cpumask_t nodemask = node_to_cpumask(i);
5450                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5451
5452                         cpus_and(nodemask, nodemask, *cpu_map);
5453                         if (cpus_empty(nodemask))
5454                                 continue;
5455
5456                         if (sg == NULL)
5457                                 continue;
5458                         sg = sg->next;
5459 next_sg:
5460                         oldsg = sg;
5461                         sg = sg->next;
5462                         kfree(oldsg);
5463                         if (oldsg != sched_group_nodes[i])
5464                                 goto next_sg;
5465                 }
5466                 kfree(sched_group_nodes);
5467                 sched_group_nodes_bycpu[cpu] = NULL;
5468         }
5469 #endif
5470 }
5471
5472 /*
5473  * Detach sched domains from a group of cpus specified in cpu_map
5474  * These cpus will now be attached to the NULL domain
5475  */
5476 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5477 {
5478         int i;
5479
5480         for_each_cpu_mask(i, *cpu_map)
5481                 cpu_attach_domain(NULL, i);
5482         synchronize_sched();
5483         arch_destroy_sched_domains(cpu_map);
5484 }
5485
5486 /*
5487  * Partition sched domains as specified by the cpumasks below.
5488  * This attaches all cpus from the cpumasks to the NULL domain,
5489  * waits for a RCU quiescent period, recalculates sched
5490  * domain information and then attaches them back to the
5491  * correct sched domains
5492  * Call with hotplug lock held
5493  */
5494 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5495 {
5496         cpumask_t change_map;
5497
5498         cpus_and(*partition1, *partition1, cpu_online_map);
5499         cpus_and(*partition2, *partition2, cpu_online_map);
5500         cpus_or(change_map, *partition1, *partition2);
5501
5502         /* Detach sched domains from all of the affected cpus */
5503         detach_destroy_domains(&change_map);
5504         if (!cpus_empty(*partition1))
5505                 build_sched_domains(partition1);
5506         if (!cpus_empty(*partition2))
5507                 build_sched_domains(partition2);
5508 }
5509
5510 #ifdef CONFIG_HOTPLUG_CPU
5511 /*
5512  * Force a reinitialization of the sched domains hierarchy.  The domains
5513  * and groups cannot be updated in place without racing with the balancing
5514  * code, so we temporarily attach all running cpus to the NULL domain
5515  * which will prevent rebalancing while the sched domains are recalculated.
5516  */
5517 static int update_sched_domains(struct notifier_block *nfb,
5518                                 unsigned long action, void *hcpu)
5519 {
5520         switch (action) {
5521         case CPU_UP_PREPARE:
5522         case CPU_DOWN_PREPARE:
5523                 detach_destroy_domains(&cpu_online_map);
5524                 return NOTIFY_OK;
5525
5526         case CPU_UP_CANCELED:
5527         case CPU_DOWN_FAILED:
5528         case CPU_ONLINE:
5529         case CPU_DEAD:
5530                 /*
5531                  * Fall through and re-initialise the domains.
5532                  */
5533                 break;
5534         default:
5535                 return NOTIFY_DONE;
5536         }
5537
5538         /* The hotplug lock is already held by cpu_up/cpu_down */
5539         arch_init_sched_domains(&cpu_online_map);
5540
5541         return NOTIFY_OK;
5542 }
5543 #endif
5544
5545 void __init sched_init_smp(void)
5546 {
5547         lock_cpu_hotplug();
5548         arch_init_sched_domains(&cpu_online_map);
5549         unlock_cpu_hotplug();
5550         /* XXX: Theoretical race here - CPU may be hotplugged now */
5551         hotcpu_notifier(update_sched_domains, 0);
5552 }
5553 #else
5554 void __init sched_init_smp(void)
5555 {
5556 }
5557 #endif /* CONFIG_SMP */
5558
5559 int in_sched_functions(unsigned long addr)
5560 {
5561         /* Linker adds these: start and end of __sched functions */
5562         extern char __sched_text_start[], __sched_text_end[];
5563         return in_lock_functions(addr) ||
5564                 (addr >= (unsigned long)__sched_text_start
5565                 && addr < (unsigned long)__sched_text_end);
5566 }
5567
5568 void __init sched_init(void)
5569 {
5570         runqueue_t *rq;
5571         int i, j, k;
5572
5573         for (i = 0; i < NR_CPUS; i++) {
5574                 prio_array_t *array;
5575
5576                 rq = cpu_rq(i);
5577                 spin_lock_init(&rq->lock);
5578                 rq->nr_running = 0;
5579                 rq->active = rq->arrays;
5580                 rq->expired = rq->arrays + 1;
5581                 rq->best_expired_prio = MAX_PRIO;
5582
5583 #ifdef CONFIG_SMP
5584                 rq->sd = NULL;
5585                 for (j = 1; j < 3; j++)
5586                         rq->cpu_load[j] = 0;
5587                 rq->active_balance = 0;
5588                 rq->push_cpu = 0;
5589                 rq->migration_thread = NULL;
5590                 INIT_LIST_HEAD(&rq->migration_queue);
5591 #endif
5592                 atomic_set(&rq->nr_iowait, 0);
5593
5594                 for (j = 0; j < 2; j++) {
5595                         array = rq->arrays + j;
5596                         for (k = 0; k < MAX_PRIO; k++) {
5597                                 INIT_LIST_HEAD(array->queue + k);
5598                                 __clear_bit(k, array->bitmap);
5599                         }
5600                         // delimiter for bitsearch
5601                         __set_bit(MAX_PRIO, array->bitmap);
5602                 }
5603         }
5604
5605         /*
5606          * The boot idle thread does lazy MMU switching as well:
5607          */
5608         atomic_inc(&init_mm.mm_count);
5609         enter_lazy_tlb(&init_mm, current);
5610
5611         /*
5612          * Make us the idle thread. Technically, schedule() should not be
5613          * called from this thread, however somewhere below it might be,
5614          * but because we are the idle thread, we just pick up running again
5615          * when this runqueue becomes "idle".
5616          */
5617         init_idle(current, smp_processor_id());
5618 }
5619
5620 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5621 void __might_sleep(char *file, int line)
5622 {
5623 #if defined(in_atomic)
5624         static unsigned long prev_jiffy;        /* ratelimiting */
5625
5626         if ((in_atomic() || irqs_disabled()) &&
5627             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5628                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5629                         return;
5630                 prev_jiffy = jiffies;
5631                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5632                                 " context at %s:%d\n", file, line);
5633                 printk("in_atomic():%d, irqs_disabled():%d\n",
5634                         in_atomic(), irqs_disabled());
5635                 dump_stack();
5636         }
5637 #endif
5638 }
5639 EXPORT_SYMBOL(__might_sleep);
5640 #endif
5641
5642 #ifdef CONFIG_MAGIC_SYSRQ
5643 void normalize_rt_tasks(void)
5644 {
5645         struct task_struct *p;
5646         prio_array_t *array;
5647         unsigned long flags;
5648         runqueue_t *rq;
5649
5650         read_lock_irq(&tasklist_lock);
5651         for_each_process (p) {
5652                 if (!rt_task(p))
5653                         continue;
5654
5655                 rq = task_rq_lock(p, &flags);
5656
5657                 array = p->array;
5658                 if (array)
5659                         deactivate_task(p, task_rq(p));
5660                 __setscheduler(p, SCHED_NORMAL, 0);
5661                 if (array) {
5662                         __activate_task(p, task_rq(p));
5663                         resched_task(rq->curr);
5664                 }
5665
5666                 task_rq_unlock(rq, &flags);
5667         }
5668         read_unlock_irq(&tasklist_lock);
5669 }
5670
5671 #endif /* CONFIG_MAGIC_SYSRQ */
5672
5673 #ifdef CONFIG_IA64
5674 /*
5675  * These functions are only useful for the IA64 MCA handling.
5676  *
5677  * They can only be called when the whole system has been
5678  * stopped - every CPU needs to be quiescent, and no scheduling
5679  * activity can take place. Using them for anything else would
5680  * be a serious bug, and as a result, they aren't even visible
5681  * under any other configuration.
5682  */
5683
5684 /**
5685  * curr_task - return the current task for a given cpu.
5686  * @cpu: the processor in question.
5687  *
5688  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5689  */
5690 task_t *curr_task(int cpu)
5691 {
5692         return cpu_curr(cpu);
5693 }
5694
5695 /**
5696  * set_curr_task - set the current task for a given cpu.
5697  * @cpu: the processor in question.
5698  * @p: the task pointer to set.
5699  *
5700  * Description: This function must only be used when non-maskable interrupts
5701  * are serviced on a separate stack.  It allows the architecture to switch the
5702  * notion of the current task on a cpu in a non-blocking manner.  This function
5703  * must be called with all CPU's synchronized, and interrupts disabled, the
5704  * and caller must save the original value of the current task (see
5705  * curr_task() above) and restore that value before reenabling interrupts and
5706  * re-starting the system.
5707  *
5708  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5709  */
5710 void set_curr_task(int cpu, task_t *p)
5711 {
5712         cpu_curr(cpu) = p;
5713 }
5714
5715 #endif