]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched.c
[PATCH] sched: less newidle locking
[karo-tx-linux.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t *p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 /* Skip over this group if it has no CPUs allowed */
970                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971                         goto nextgroup;
972
973                 local_group = cpu_isset(this_cpu, group->cpumask);
974
975                 /* Tally up the load of all CPUs in the group */
976                 avg_load = 0;
977
978                 for_each_cpu_mask(i, group->cpumask) {
979                         /* Bias balancing toward cpus of our domain */
980                         if (local_group)
981                                 load = source_load(i, load_idx);
982                         else
983                                 load = target_load(i, load_idx);
984
985                         avg_load += load;
986                 }
987
988                 /* Adjust by relative CPU power of the group */
989                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991                 if (local_group) {
992                         this_load = avg_load;
993                         this = group;
994                 } else if (avg_load < min_load) {
995                         min_load = avg_load;
996                         idlest = group;
997                 }
998 nextgroup:
999                 group = group->next;
1000         } while (group != sd->groups);
1001
1002         if (!idlest || 100*this_load < imbalance*min_load)
1003                 return NULL;
1004         return idlest;
1005 }
1006
1007 /*
1008  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009  */
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1012 {
1013         cpumask_t tmp;
1014         unsigned long load, min_load = ULONG_MAX;
1015         int idlest = -1;
1016         int i;
1017
1018         /* Traverse only the allowed CPUs */
1019         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021         for_each_cpu_mask(i, tmp) {
1022                 load = source_load(i, 0);
1023
1024                 if (load < min_load || (load == min_load && i == this_cpu)) {
1025                         min_load = load;
1026                         idlest = i;
1027                 }
1028         }
1029
1030         return idlest;
1031 }
1032
1033 /*
1034  * sched_balance_self: balance the current task (running on cpu) in domains
1035  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036  * SD_BALANCE_EXEC.
1037  *
1038  * Balance, ie. select the least loaded group.
1039  *
1040  * Returns the target CPU number, or the same CPU if no balancing is needed.
1041  *
1042  * preempt must be disabled.
1043  */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046         struct task_struct *t = current;
1047         struct sched_domain *tmp, *sd = NULL;
1048
1049         for_each_domain(cpu, tmp)
1050                 if (tmp->flags & flag)
1051                         sd = tmp;
1052
1053         while (sd) {
1054                 cpumask_t span;
1055                 struct sched_group *group;
1056                 int new_cpu;
1057                 int weight;
1058
1059                 span = sd->span;
1060                 group = find_idlest_group(sd, t, cpu);
1061                 if (!group)
1062                         goto nextlevel;
1063
1064                 new_cpu = find_idlest_cpu(group, t, cpu);
1065                 if (new_cpu == -1 || new_cpu == cpu)
1066                         goto nextlevel;
1067
1068                 /* Now try balancing at a lower domain level */
1069                 cpu = new_cpu;
1070 nextlevel:
1071                 sd = NULL;
1072                 weight = cpus_weight(span);
1073                 for_each_domain(cpu, tmp) {
1074                         if (weight <= cpus_weight(tmp->span))
1075                                 break;
1076                         if (tmp->flags & flag)
1077                                 sd = tmp;
1078                 }
1079                 /* while loop will break here if sd == NULL */
1080         }
1081
1082         return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088  * wake_idle() will wake a task on an idle cpu if task->cpu is
1089  * not idle and an idle cpu is available.  The span of cpus to
1090  * search starts with cpus closest then further out as needed,
1091  * so we always favor a closer, idle cpu.
1092  *
1093  * Returns the CPU we should wake onto.
1094  */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098         cpumask_t tmp;
1099         struct sched_domain *sd;
1100         int i;
1101
1102         if (idle_cpu(cpu))
1103                 return cpu;
1104
1105         for_each_domain(cpu, sd) {
1106                 if (sd->flags & SD_WAKE_IDLE) {
1107                         cpus_and(tmp, sd->span, p->cpus_allowed);
1108                         for_each_cpu_mask(i, tmp) {
1109                                 if (idle_cpu(i))
1110                                         return i;
1111                         }
1112                 }
1113                 else
1114                         break;
1115         }
1116         return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121         return cpu;
1122 }
1123 #endif
1124
1125 /***
1126  * try_to_wake_up - wake up a thread
1127  * @p: the to-be-woken-up thread
1128  * @state: the mask of task states that can be woken
1129  * @sync: do a synchronous wakeup?
1130  *
1131  * Put it on the run-queue if it's not already there. The "current"
1132  * thread is always on the run-queue (except when the actual
1133  * re-schedule is in progress), and as such you're allowed to do
1134  * the simpler "current->state = TASK_RUNNING" to mark yourself
1135  * runnable without the overhead of this.
1136  *
1137  * returns failure only if the task is already active.
1138  */
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1140 {
1141         int cpu, this_cpu, success = 0;
1142         unsigned long flags;
1143         long old_state;
1144         runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146         unsigned long load, this_load;
1147         struct sched_domain *sd, *this_sd = NULL;
1148         int new_cpu;
1149 #endif
1150
1151         rq = task_rq_lock(p, &flags);
1152         old_state = p->state;
1153         if (!(old_state & state))
1154                 goto out;
1155
1156         if (p->array)
1157                 goto out_running;
1158
1159         cpu = task_cpu(p);
1160         this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163         if (unlikely(task_running(rq, p)))
1164                 goto out_activate;
1165
1166         new_cpu = cpu;
1167
1168         schedstat_inc(rq, ttwu_cnt);
1169         if (cpu == this_cpu) {
1170                 schedstat_inc(rq, ttwu_local);
1171                 goto out_set_cpu;
1172         }
1173
1174         for_each_domain(this_cpu, sd) {
1175                 if (cpu_isset(cpu, sd->span)) {
1176                         schedstat_inc(sd, ttwu_wake_remote);
1177                         this_sd = sd;
1178                         break;
1179                 }
1180         }
1181
1182         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183                 goto out_set_cpu;
1184
1185         /*
1186          * Check for affine wakeup and passive balancing possibilities.
1187          */
1188         if (this_sd) {
1189                 int idx = this_sd->wake_idx;
1190                 unsigned int imbalance;
1191
1192                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194                 load = source_load(cpu, idx);
1195                 this_load = target_load(this_cpu, idx);
1196
1197                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199                 if (this_sd->flags & SD_WAKE_AFFINE) {
1200                         unsigned long tl = this_load;
1201                         /*
1202                          * If sync wakeup then subtract the (maximum possible)
1203                          * effect of the currently running task from the load
1204                          * of the current CPU:
1205                          */
1206                         if (sync)
1207                                 tl -= SCHED_LOAD_SCALE;
1208
1209                         if ((tl <= load &&
1210                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212                                 /*
1213                                  * This domain has SD_WAKE_AFFINE and
1214                                  * p is cache cold in this domain, and
1215                                  * there is no bad imbalance.
1216                                  */
1217                                 schedstat_inc(this_sd, ttwu_move_affine);
1218                                 goto out_set_cpu;
1219                         }
1220                 }
1221
1222                 /*
1223                  * Start passive balancing when half the imbalance_pct
1224                  * limit is reached.
1225                  */
1226                 if (this_sd->flags & SD_WAKE_BALANCE) {
1227                         if (imbalance*this_load <= 100*load) {
1228                                 schedstat_inc(this_sd, ttwu_move_balance);
1229                                 goto out_set_cpu;
1230                         }
1231                 }
1232         }
1233
1234         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236         new_cpu = wake_idle(new_cpu, p);
1237         if (new_cpu != cpu) {
1238                 set_task_cpu(p, new_cpu);
1239                 task_rq_unlock(rq, &flags);
1240                 /* might preempt at this point */
1241                 rq = task_rq_lock(p, &flags);
1242                 old_state = p->state;
1243                 if (!(old_state & state))
1244                         goto out;
1245                 if (p->array)
1246                         goto out_running;
1247
1248                 this_cpu = smp_processor_id();
1249                 cpu = task_cpu(p);
1250         }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254         if (old_state == TASK_UNINTERRUPTIBLE) {
1255                 rq->nr_uninterruptible--;
1256                 /*
1257                  * Tasks on involuntary sleep don't earn
1258                  * sleep_avg beyond just interactive state.
1259                  */
1260                 p->activated = -1;
1261         }
1262
1263         /*
1264          * Tasks that have marked their sleep as noninteractive get
1265          * woken up without updating their sleep average. (i.e. their
1266          * sleep is handled in a priority-neutral manner, no priority
1267          * boost and no penalty.)
1268          */
1269         if (old_state & TASK_NONINTERACTIVE)
1270                 __activate_task(p, rq);
1271         else
1272                 activate_task(p, rq, cpu == this_cpu);
1273         /*
1274          * Sync wakeups (i.e. those types of wakeups where the waker
1275          * has indicated that it will leave the CPU in short order)
1276          * don't trigger a preemption, if the woken up task will run on
1277          * this cpu. (in this case the 'I will reschedule' promise of
1278          * the waker guarantees that the freshly woken up task is going
1279          * to be considered on this CPU.)
1280          */
1281         if (!sync || cpu != this_cpu) {
1282                 if (TASK_PREEMPTS_CURR(p, rq))
1283                         resched_task(rq->curr);
1284         }
1285         success = 1;
1286
1287 out_running:
1288         p->state = TASK_RUNNING;
1289 out:
1290         task_rq_unlock(rq, &flags);
1291
1292         return success;
1293 }
1294
1295 int fastcall wake_up_process(task_t *p)
1296 {
1297         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1299 }
1300
1301 EXPORT_SYMBOL(wake_up_process);
1302
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1304 {
1305         return try_to_wake_up(p, state, 0);
1306 }
1307
1308 /*
1309  * Perform scheduler related setup for a newly forked process p.
1310  * p is forked by current.
1311  */
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1313 {
1314         int cpu = get_cpu();
1315
1316 #ifdef CONFIG_SMP
1317         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318 #endif
1319         set_task_cpu(p, cpu);
1320
1321         /*
1322          * We mark the process as running here, but have not actually
1323          * inserted it onto the runqueue yet. This guarantees that
1324          * nobody will actually run it, and a signal or other external
1325          * event cannot wake it up and insert it on the runqueue either.
1326          */
1327         p->state = TASK_RUNNING;
1328         INIT_LIST_HEAD(&p->run_list);
1329         p->array = NULL;
1330 #ifdef CONFIG_SCHEDSTATS
1331         memset(&p->sched_info, 0, sizeof(p->sched_info));
1332 #endif
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334         p->oncpu = 0;
1335 #endif
1336 #ifdef CONFIG_PREEMPT
1337         /* Want to start with kernel preemption disabled. */
1338         p->thread_info->preempt_count = 1;
1339 #endif
1340         /*
1341          * Share the timeslice between parent and child, thus the
1342          * total amount of pending timeslices in the system doesn't change,
1343          * resulting in more scheduling fairness.
1344          */
1345         local_irq_disable();
1346         p->time_slice = (current->time_slice + 1) >> 1;
1347         /*
1348          * The remainder of the first timeslice might be recovered by
1349          * the parent if the child exits early enough.
1350          */
1351         p->first_time_slice = 1;
1352         current->time_slice >>= 1;
1353         p->timestamp = sched_clock();
1354         if (unlikely(!current->time_slice)) {
1355                 /*
1356                  * This case is rare, it happens when the parent has only
1357                  * a single jiffy left from its timeslice. Taking the
1358                  * runqueue lock is not a problem.
1359                  */
1360                 current->time_slice = 1;
1361                 scheduler_tick();
1362         }
1363         local_irq_enable();
1364         put_cpu();
1365 }
1366
1367 /*
1368  * wake_up_new_task - wake up a newly created task for the first time.
1369  *
1370  * This function will do some initial scheduler statistics housekeeping
1371  * that must be done for every newly created context, then puts the task
1372  * on the runqueue and wakes it.
1373  */
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1375 {
1376         unsigned long flags;
1377         int this_cpu, cpu;
1378         runqueue_t *rq, *this_rq;
1379
1380         rq = task_rq_lock(p, &flags);
1381         BUG_ON(p->state != TASK_RUNNING);
1382         this_cpu = smp_processor_id();
1383         cpu = task_cpu(p);
1384
1385         /*
1386          * We decrease the sleep average of forking parents
1387          * and children as well, to keep max-interactive tasks
1388          * from forking tasks that are max-interactive. The parent
1389          * (current) is done further down, under its lock.
1390          */
1391         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1393
1394         p->prio = effective_prio(p);
1395
1396         if (likely(cpu == this_cpu)) {
1397                 if (!(clone_flags & CLONE_VM)) {
1398                         /*
1399                          * The VM isn't cloned, so we're in a good position to
1400                          * do child-runs-first in anticipation of an exec. This
1401                          * usually avoids a lot of COW overhead.
1402                          */
1403                         if (unlikely(!current->array))
1404                                 __activate_task(p, rq);
1405                         else {
1406                                 p->prio = current->prio;
1407                                 list_add_tail(&p->run_list, &current->run_list);
1408                                 p->array = current->array;
1409                                 p->array->nr_active++;
1410                                 rq->nr_running++;
1411                         }
1412                         set_need_resched();
1413                 } else
1414                         /* Run child last */
1415                         __activate_task(p, rq);
1416                 /*
1417                  * We skip the following code due to cpu == this_cpu
1418                  *
1419                  *   task_rq_unlock(rq, &flags);
1420                  *   this_rq = task_rq_lock(current, &flags);
1421                  */
1422                 this_rq = rq;
1423         } else {
1424                 this_rq = cpu_rq(this_cpu);
1425
1426                 /*
1427                  * Not the local CPU - must adjust timestamp. This should
1428                  * get optimised away in the !CONFIG_SMP case.
1429                  */
1430                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431                                         + rq->timestamp_last_tick;
1432                 __activate_task(p, rq);
1433                 if (TASK_PREEMPTS_CURR(p, rq))
1434                         resched_task(rq->curr);
1435
1436                 /*
1437                  * Parent and child are on different CPUs, now get the
1438                  * parent runqueue to update the parent's ->sleep_avg:
1439                  */
1440                 task_rq_unlock(rq, &flags);
1441                 this_rq = task_rq_lock(current, &flags);
1442         }
1443         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445         task_rq_unlock(this_rq, &flags);
1446 }
1447
1448 /*
1449  * Potentially available exiting-child timeslices are
1450  * retrieved here - this way the parent does not get
1451  * penalized for creating too many threads.
1452  *
1453  * (this cannot be used to 'generate' timeslices
1454  * artificially, because any timeslice recovered here
1455  * was given away by the parent in the first place.)
1456  */
1457 void fastcall sched_exit(task_t *p)
1458 {
1459         unsigned long flags;
1460         runqueue_t *rq;
1461
1462         /*
1463          * If the child was a (relative-) CPU hog then decrease
1464          * the sleep_avg of the parent as well.
1465          */
1466         rq = task_rq_lock(p->parent, &flags);
1467         if (p->first_time_slice) {
1468                 p->parent->time_slice += p->time_slice;
1469                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470                         p->parent->time_slice = task_timeslice(p);
1471         }
1472         if (p->sleep_avg < p->parent->sleep_avg)
1473                 p->parent->sleep_avg = p->parent->sleep_avg /
1474                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475                 (EXIT_WEIGHT + 1);
1476         task_rq_unlock(rq, &flags);
1477 }
1478
1479 /**
1480  * prepare_task_switch - prepare to switch tasks
1481  * @rq: the runqueue preparing to switch
1482  * @next: the task we are going to switch to.
1483  *
1484  * This is called with the rq lock held and interrupts off. It must
1485  * be paired with a subsequent finish_task_switch after the context
1486  * switch.
1487  *
1488  * prepare_task_switch sets up locking and calls architecture specific
1489  * hooks.
1490  */
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1492 {
1493         prepare_lock_switch(rq, next);
1494         prepare_arch_switch(next);
1495 }
1496
1497 /**
1498  * finish_task_switch - clean up after a task-switch
1499  * @rq: runqueue associated with task-switch
1500  * @prev: the thread we just switched away from.
1501  *
1502  * finish_task_switch must be called after the context switch, paired
1503  * with a prepare_task_switch call before the context switch.
1504  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505  * and do any other architecture-specific cleanup actions.
1506  *
1507  * Note that we may have delayed dropping an mm in context_switch(). If
1508  * so, we finish that here outside of the runqueue lock.  (Doing it
1509  * with the lock held can cause deadlocks; see schedule() for
1510  * details.)
1511  */
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513         __releases(rq->lock)
1514 {
1515         struct mm_struct *mm = rq->prev_mm;
1516         unsigned long prev_task_flags;
1517
1518         rq->prev_mm = NULL;
1519
1520         /*
1521          * A task struct has one reference for the use as "current".
1522          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523          * calls schedule one last time. The schedule call will never return,
1524          * and the scheduled task must drop that reference.
1525          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526          * still held, otherwise prev could be scheduled on another cpu, die
1527          * there before we look at prev->state, and then the reference would
1528          * be dropped twice.
1529          *              Manfred Spraul <manfred@colorfullife.com>
1530          */
1531         prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533         /* this is a valid case when another task releases the spinlock */
1534         rq->lock.owner = current;
1535 #endif
1536         finish_arch_switch(prev);
1537         finish_lock_switch(rq, prev);
1538         if (mm)
1539                 mmdrop(mm);
1540         if (unlikely(prev_task_flags & PF_DEAD))
1541                 put_task_struct(prev);
1542 }
1543
1544 /**
1545  * schedule_tail - first thing a freshly forked thread must call.
1546  * @prev: the thread we just switched away from.
1547  */
1548 asmlinkage void schedule_tail(task_t *prev)
1549         __releases(rq->lock)
1550 {
1551         runqueue_t *rq = this_rq();
1552         finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554         /* In this case, finish_task_switch does not reenable preemption */
1555         preempt_enable();
1556 #endif
1557         if (current->set_child_tid)
1558                 put_user(current->pid, current->set_child_tid);
1559 }
1560
1561 /*
1562  * context_switch - switch to the new MM and the new
1563  * thread's register state.
1564  */
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567 {
1568         struct mm_struct *mm = next->mm;
1569         struct mm_struct *oldmm = prev->active_mm;
1570
1571         if (unlikely(!mm)) {
1572                 next->active_mm = oldmm;
1573                 atomic_inc(&oldmm->mm_count);
1574                 enter_lazy_tlb(oldmm, next);
1575         } else
1576                 switch_mm(oldmm, mm, next);
1577
1578         if (unlikely(!prev->mm)) {
1579                 prev->active_mm = NULL;
1580                 WARN_ON(rq->prev_mm);
1581                 rq->prev_mm = oldmm;
1582         }
1583
1584         /* Here we just switch the register state and the stack. */
1585         switch_to(prev, next, prev);
1586
1587         return prev;
1588 }
1589
1590 /*
1591  * nr_running, nr_uninterruptible and nr_context_switches:
1592  *
1593  * externally visible scheduler statistics: current number of runnable
1594  * threads, current number of uninterruptible-sleeping threads, total
1595  * number of context switches performed since bootup.
1596  */
1597 unsigned long nr_running(void)
1598 {
1599         unsigned long i, sum = 0;
1600
1601         for_each_online_cpu(i)
1602                 sum += cpu_rq(i)->nr_running;
1603
1604         return sum;
1605 }
1606
1607 unsigned long nr_uninterruptible(void)
1608 {
1609         unsigned long i, sum = 0;
1610
1611         for_each_cpu(i)
1612                 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614         /*
1615          * Since we read the counters lockless, it might be slightly
1616          * inaccurate. Do not allow it to go below zero though:
1617          */
1618         if (unlikely((long)sum < 0))
1619                 sum = 0;
1620
1621         return sum;
1622 }
1623
1624 unsigned long long nr_context_switches(void)
1625 {
1626         unsigned long long i, sum = 0;
1627
1628         for_each_cpu(i)
1629                 sum += cpu_rq(i)->nr_switches;
1630
1631         return sum;
1632 }
1633
1634 unsigned long nr_iowait(void)
1635 {
1636         unsigned long i, sum = 0;
1637
1638         for_each_cpu(i)
1639                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641         return sum;
1642 }
1643
1644 #ifdef CONFIG_SMP
1645
1646 /*
1647  * double_rq_lock - safely lock two runqueues
1648  *
1649  * Note this does not disable interrupts like task_rq_lock,
1650  * you need to do so manually before calling.
1651  */
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653         __acquires(rq1->lock)
1654         __acquires(rq2->lock)
1655 {
1656         if (rq1 == rq2) {
1657                 spin_lock(&rq1->lock);
1658                 __acquire(rq2->lock);   /* Fake it out ;) */
1659         } else {
1660                 if (rq1 < rq2) {
1661                         spin_lock(&rq1->lock);
1662                         spin_lock(&rq2->lock);
1663                 } else {
1664                         spin_lock(&rq2->lock);
1665                         spin_lock(&rq1->lock);
1666                 }
1667         }
1668 }
1669
1670 /*
1671  * double_rq_unlock - safely unlock two runqueues
1672  *
1673  * Note this does not restore interrupts like task_rq_unlock,
1674  * you need to do so manually after calling.
1675  */
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677         __releases(rq1->lock)
1678         __releases(rq2->lock)
1679 {
1680         spin_unlock(&rq1->lock);
1681         if (rq1 != rq2)
1682                 spin_unlock(&rq2->lock);
1683         else
1684                 __release(rq2->lock);
1685 }
1686
1687 /*
1688  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689  */
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691         __releases(this_rq->lock)
1692         __acquires(busiest->lock)
1693         __acquires(this_rq->lock)
1694 {
1695         if (unlikely(!spin_trylock(&busiest->lock))) {
1696                 if (busiest < this_rq) {
1697                         spin_unlock(&this_rq->lock);
1698                         spin_lock(&busiest->lock);
1699                         spin_lock(&this_rq->lock);
1700                 } else
1701                         spin_lock(&busiest->lock);
1702         }
1703 }
1704
1705 /*
1706  * If dest_cpu is allowed for this process, migrate the task to it.
1707  * This is accomplished by forcing the cpu_allowed mask to only
1708  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1709  * the cpu_allowed mask is restored.
1710  */
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1712 {
1713         migration_req_t req;
1714         runqueue_t *rq;
1715         unsigned long flags;
1716
1717         rq = task_rq_lock(p, &flags);
1718         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719             || unlikely(cpu_is_offline(dest_cpu)))
1720                 goto out;
1721
1722         /* force the process onto the specified CPU */
1723         if (migrate_task(p, dest_cpu, &req)) {
1724                 /* Need to wait for migration thread (might exit: take ref). */
1725                 struct task_struct *mt = rq->migration_thread;
1726                 get_task_struct(mt);
1727                 task_rq_unlock(rq, &flags);
1728                 wake_up_process(mt);
1729                 put_task_struct(mt);
1730                 wait_for_completion(&req.done);
1731                 return;
1732         }
1733 out:
1734         task_rq_unlock(rq, &flags);
1735 }
1736
1737 /*
1738  * sched_exec - execve() is a valuable balancing opportunity, because at
1739  * this point the task has the smallest effective memory and cache footprint.
1740  */
1741 void sched_exec(void)
1742 {
1743         int new_cpu, this_cpu = get_cpu();
1744         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745         put_cpu();
1746         if (new_cpu != this_cpu)
1747                 sched_migrate_task(current, new_cpu);
1748 }
1749
1750 /*
1751  * pull_task - move a task from a remote runqueue to the local runqueue.
1752  * Both runqueues must be locked.
1753  */
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757 {
1758         dequeue_task(p, src_array);
1759         src_rq->nr_running--;
1760         set_task_cpu(p, this_cpu);
1761         this_rq->nr_running++;
1762         enqueue_task(p, this_array);
1763         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764                                 + this_rq->timestamp_last_tick;
1765         /*
1766          * Note that idle threads have a prio of MAX_PRIO, for this test
1767          * to be always true for them.
1768          */
1769         if (TASK_PREEMPTS_CURR(p, this_rq))
1770                 resched_task(this_rq->curr);
1771 }
1772
1773 /*
1774  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775  */
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778                      struct sched_domain *sd, enum idle_type idle,
1779                      int *all_pinned)
1780 {
1781         /*
1782          * We do not migrate tasks that are:
1783          * 1) running (obviously), or
1784          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785          * 3) are cache-hot on their current CPU.
1786          */
1787         if (!cpu_isset(this_cpu, p->cpus_allowed))
1788                 return 0;
1789         *all_pinned = 0;
1790
1791         if (task_running(rq, p))
1792                 return 0;
1793
1794         /*
1795          * Aggressive migration if:
1796          * 1) task is cache cold, or
1797          * 2) too many balance attempts have failed.
1798          */
1799
1800         if (sd->nr_balance_failed > sd->cache_nice_tries)
1801                 return 1;
1802
1803         if (task_hot(p, rq->timestamp_last_tick, sd))
1804                 return 0;
1805         return 1;
1806 }
1807
1808 /*
1809  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810  * as part of a balancing operation within "domain". Returns the number of
1811  * tasks moved.
1812  *
1813  * Called with both runqueues locked.
1814  */
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816                       unsigned long max_nr_move, struct sched_domain *sd,
1817                       enum idle_type idle, int *all_pinned)
1818 {
1819         prio_array_t *array, *dst_array;
1820         struct list_head *head, *curr;
1821         int idx, pulled = 0, pinned = 0;
1822         task_t *tmp;
1823
1824         if (max_nr_move == 0)
1825                 goto out;
1826
1827         pinned = 1;
1828
1829         /*
1830          * We first consider expired tasks. Those will likely not be
1831          * executed in the near future, and they are most likely to
1832          * be cache-cold, thus switching CPUs has the least effect
1833          * on them.
1834          */
1835         if (busiest->expired->nr_active) {
1836                 array = busiest->expired;
1837                 dst_array = this_rq->expired;
1838         } else {
1839                 array = busiest->active;
1840                 dst_array = this_rq->active;
1841         }
1842
1843 new_array:
1844         /* Start searching at priority 0: */
1845         idx = 0;
1846 skip_bitmap:
1847         if (!idx)
1848                 idx = sched_find_first_bit(array->bitmap);
1849         else
1850                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851         if (idx >= MAX_PRIO) {
1852                 if (array == busiest->expired && busiest->active->nr_active) {
1853                         array = busiest->active;
1854                         dst_array = this_rq->active;
1855                         goto new_array;
1856                 }
1857                 goto out;
1858         }
1859
1860         head = array->queue + idx;
1861         curr = head->prev;
1862 skip_queue:
1863         tmp = list_entry(curr, task_t, run_list);
1864
1865         curr = curr->prev;
1866
1867         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868                 if (curr != head)
1869                         goto skip_queue;
1870                 idx++;
1871                 goto skip_bitmap;
1872         }
1873
1874 #ifdef CONFIG_SCHEDSTATS
1875         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876                 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1878
1879         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880         pulled++;
1881
1882         /* We only want to steal up to the prescribed number of tasks. */
1883         if (pulled < max_nr_move) {
1884                 if (curr != head)
1885                         goto skip_queue;
1886                 idx++;
1887                 goto skip_bitmap;
1888         }
1889 out:
1890         /*
1891          * Right now, this is the only place pull_task() is called,
1892          * so we can safely collect pull_task() stats here rather than
1893          * inside pull_task().
1894          */
1895         schedstat_add(sd, lb_gained[idle], pulled);
1896
1897         if (all_pinned)
1898                 *all_pinned = pinned;
1899         return pulled;
1900 }
1901
1902 /*
1903  * find_busiest_group finds and returns the busiest CPU group within the
1904  * domain. It calculates and returns the number of tasks which should be
1905  * moved to restore balance via the imbalance parameter.
1906  */
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909                    unsigned long *imbalance, enum idle_type idle)
1910 {
1911         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913         int load_idx;
1914
1915         max_load = this_load = total_load = total_pwr = 0;
1916         if (idle == NOT_IDLE)
1917                 load_idx = sd->busy_idx;
1918         else if (idle == NEWLY_IDLE)
1919                 load_idx = sd->newidle_idx;
1920         else
1921                 load_idx = sd->idle_idx;
1922
1923         do {
1924                 unsigned long load;
1925                 int local_group;
1926                 int i;
1927
1928                 local_group = cpu_isset(this_cpu, group->cpumask);
1929
1930                 /* Tally up the load of all CPUs in the group */
1931                 avg_load = 0;
1932
1933                 for_each_cpu_mask(i, group->cpumask) {
1934                         /* Bias balancing toward cpus of our domain */
1935                         if (local_group)
1936                                 load = target_load(i, load_idx);
1937                         else
1938                                 load = source_load(i, load_idx);
1939
1940                         avg_load += load;
1941                 }
1942
1943                 total_load += avg_load;
1944                 total_pwr += group->cpu_power;
1945
1946                 /* Adjust by relative CPU power of the group */
1947                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1948
1949                 if (local_group) {
1950                         this_load = avg_load;
1951                         this = group;
1952                 } else if (avg_load > max_load) {
1953                         max_load = avg_load;
1954                         busiest = group;
1955                 }
1956                 group = group->next;
1957         } while (group != sd->groups);
1958
1959         if (!busiest || this_load >= max_load)
1960                 goto out_balanced;
1961
1962         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1963
1964         if (this_load >= avg_load ||
1965                         100*max_load <= sd->imbalance_pct*this_load)
1966                 goto out_balanced;
1967
1968         /*
1969          * We're trying to get all the cpus to the average_load, so we don't
1970          * want to push ourselves above the average load, nor do we wish to
1971          * reduce the max loaded cpu below the average load, as either of these
1972          * actions would just result in more rebalancing later, and ping-pong
1973          * tasks around. Thus we look for the minimum possible imbalance.
1974          * Negative imbalances (*we* are more loaded than anyone else) will
1975          * be counted as no imbalance for these purposes -- we can't fix that
1976          * by pulling tasks to us.  Be careful of negative numbers as they'll
1977          * appear as very large values with unsigned longs.
1978          */
1979         /* How much load to actually move to equalise the imbalance */
1980         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1981                                 (avg_load - this_load) * this->cpu_power)
1982                         / SCHED_LOAD_SCALE;
1983
1984         if (*imbalance < SCHED_LOAD_SCALE) {
1985                 unsigned long pwr_now = 0, pwr_move = 0;
1986                 unsigned long tmp;
1987
1988                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1989                         *imbalance = 1;
1990                         return busiest;
1991                 }
1992
1993                 /*
1994                  * OK, we don't have enough imbalance to justify moving tasks,
1995                  * however we may be able to increase total CPU power used by
1996                  * moving them.
1997                  */
1998
1999                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2000                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2001                 pwr_now /= SCHED_LOAD_SCALE;
2002
2003                 /* Amount of load we'd subtract */
2004                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2005                 if (max_load > tmp)
2006                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2007                                                         max_load - tmp);
2008
2009                 /* Amount of load we'd add */
2010                 if (max_load*busiest->cpu_power <
2011                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2012                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2013                 else
2014                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2015                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2016                 pwr_move /= SCHED_LOAD_SCALE;
2017
2018                 /* Move if we gain throughput */
2019                 if (pwr_move <= pwr_now)
2020                         goto out_balanced;
2021
2022                 *imbalance = 1;
2023                 return busiest;
2024         }
2025
2026         /* Get rid of the scaling factor, rounding down as we divide */
2027         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2028         return busiest;
2029
2030 out_balanced:
2031
2032         *imbalance = 0;
2033         return NULL;
2034 }
2035
2036 /*
2037  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2038  */
2039 static runqueue_t *find_busiest_queue(struct sched_group *group)
2040 {
2041         unsigned long load, max_load = 0;
2042         runqueue_t *busiest = NULL;
2043         int i;
2044
2045         for_each_cpu_mask(i, group->cpumask) {
2046                 load = source_load(i, 0);
2047
2048                 if (load > max_load) {
2049                         max_load = load;
2050                         busiest = cpu_rq(i);
2051                 }
2052         }
2053
2054         return busiest;
2055 }
2056
2057 /*
2058  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2059  * so long as it is large enough.
2060  */
2061 #define MAX_PINNED_INTERVAL     512
2062
2063 /*
2064  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2065  * tasks if there is an imbalance.
2066  *
2067  * Called with this_rq unlocked.
2068  */
2069 static int load_balance(int this_cpu, runqueue_t *this_rq,
2070                         struct sched_domain *sd, enum idle_type idle)
2071 {
2072         struct sched_group *group;
2073         runqueue_t *busiest;
2074         unsigned long imbalance;
2075         int nr_moved, all_pinned = 0;
2076         int active_balance = 0;
2077
2078         spin_lock(&this_rq->lock);
2079         schedstat_inc(sd, lb_cnt[idle]);
2080
2081         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2082         if (!group) {
2083                 schedstat_inc(sd, lb_nobusyg[idle]);
2084                 goto out_balanced;
2085         }
2086
2087         busiest = find_busiest_queue(group);
2088         if (!busiest) {
2089                 schedstat_inc(sd, lb_nobusyq[idle]);
2090                 goto out_balanced;
2091         }
2092
2093         BUG_ON(busiest == this_rq);
2094
2095         schedstat_add(sd, lb_imbalance[idle], imbalance);
2096
2097         nr_moved = 0;
2098         if (busiest->nr_running > 1) {
2099                 /*
2100                  * Attempt to move tasks. If find_busiest_group has found
2101                  * an imbalance but busiest->nr_running <= 1, the group is
2102                  * still unbalanced. nr_moved simply stays zero, so it is
2103                  * correctly treated as an imbalance.
2104                  */
2105                 double_lock_balance(this_rq, busiest);
2106                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2107                                         imbalance, sd, idle, &all_pinned);
2108                 spin_unlock(&busiest->lock);
2109
2110                 /* All tasks on this runqueue were pinned by CPU affinity */
2111                 if (unlikely(all_pinned))
2112                         goto out_balanced;
2113         }
2114
2115         spin_unlock(&this_rq->lock);
2116
2117         if (!nr_moved) {
2118                 schedstat_inc(sd, lb_failed[idle]);
2119                 sd->nr_balance_failed++;
2120
2121                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2122
2123                         spin_lock(&busiest->lock);
2124                         if (!busiest->active_balance) {
2125                                 busiest->active_balance = 1;
2126                                 busiest->push_cpu = this_cpu;
2127                                 active_balance = 1;
2128                         }
2129                         spin_unlock(&busiest->lock);
2130                         if (active_balance)
2131                                 wake_up_process(busiest->migration_thread);
2132
2133                         /*
2134                          * We've kicked active balancing, reset the failure
2135                          * counter.
2136                          */
2137                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2138                 }
2139         } else
2140                 sd->nr_balance_failed = 0;
2141
2142         if (likely(!active_balance)) {
2143                 /* We were unbalanced, so reset the balancing interval */
2144                 sd->balance_interval = sd->min_interval;
2145         } else {
2146                 /*
2147                  * If we've begun active balancing, start to back off. This
2148                  * case may not be covered by the all_pinned logic if there
2149                  * is only 1 task on the busy runqueue (because we don't call
2150                  * move_tasks).
2151                  */
2152                 if (sd->balance_interval < sd->max_interval)
2153                         sd->balance_interval *= 2;
2154         }
2155
2156         return nr_moved;
2157
2158 out_balanced:
2159         spin_unlock(&this_rq->lock);
2160
2161         schedstat_inc(sd, lb_balanced[idle]);
2162
2163         sd->nr_balance_failed = 0;
2164         /* tune up the balancing interval */
2165         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2166                         (sd->balance_interval < sd->max_interval))
2167                 sd->balance_interval *= 2;
2168
2169         return 0;
2170 }
2171
2172 /*
2173  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2174  * tasks if there is an imbalance.
2175  *
2176  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2177  * this_rq is locked.
2178  */
2179 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2180                                 struct sched_domain *sd)
2181 {
2182         struct sched_group *group;
2183         runqueue_t *busiest = NULL;
2184         unsigned long imbalance;
2185         int nr_moved = 0;
2186
2187         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2188         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2189         if (!group) {
2190                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2191                 goto out_balanced;
2192         }
2193
2194         busiest = find_busiest_queue(group);
2195         if (!busiest) {
2196                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2197                 goto out_balanced;
2198         }
2199
2200         BUG_ON(busiest == this_rq);
2201
2202         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2203
2204         nr_moved = 0;
2205         if (busiest->nr_running > 1) {
2206                 /* Attempt to move tasks */
2207                 double_lock_balance(this_rq, busiest);
2208                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2209                                         imbalance, sd, NEWLY_IDLE, NULL);
2210                 spin_unlock(&busiest->lock);
2211         }
2212
2213         if (!nr_moved)
2214                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2215         else
2216                 sd->nr_balance_failed = 0;
2217
2218         return nr_moved;
2219
2220 out_balanced:
2221         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2222         sd->nr_balance_failed = 0;
2223         return 0;
2224 }
2225
2226 /*
2227  * idle_balance is called by schedule() if this_cpu is about to become
2228  * idle. Attempts to pull tasks from other CPUs.
2229  */
2230 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2231 {
2232         struct sched_domain *sd;
2233
2234         for_each_domain(this_cpu, sd) {
2235                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2236                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2237                                 /* We've pulled tasks over so stop searching */
2238                                 break;
2239                         }
2240                 }
2241         }
2242 }
2243
2244 /*
2245  * active_load_balance is run by migration threads. It pushes running tasks
2246  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2247  * running on each physical CPU where possible, and avoids physical /
2248  * logical imbalances.
2249  *
2250  * Called with busiest_rq locked.
2251  */
2252 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2253 {
2254         struct sched_domain *sd;
2255         runqueue_t *target_rq;
2256         int target_cpu = busiest_rq->push_cpu;
2257
2258         if (busiest_rq->nr_running <= 1)
2259                 /* no task to move */
2260                 return;
2261
2262         target_rq = cpu_rq(target_cpu);
2263
2264         /*
2265          * This condition is "impossible", if it occurs
2266          * we need to fix it.  Originally reported by
2267          * Bjorn Helgaas on a 128-cpu setup.
2268          */
2269         BUG_ON(busiest_rq == target_rq);
2270
2271         /* move a task from busiest_rq to target_rq */
2272         double_lock_balance(busiest_rq, target_rq);
2273
2274         /* Search for an sd spanning us and the target CPU. */
2275         for_each_domain(target_cpu, sd)
2276                 if ((sd->flags & SD_LOAD_BALANCE) &&
2277                         cpu_isset(busiest_cpu, sd->span))
2278                                 break;
2279
2280         if (unlikely(sd == NULL))
2281                 goto out;
2282
2283         schedstat_inc(sd, alb_cnt);
2284
2285         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2286                 schedstat_inc(sd, alb_pushed);
2287         else
2288                 schedstat_inc(sd, alb_failed);
2289 out:
2290         spin_unlock(&target_rq->lock);
2291 }
2292
2293 /*
2294  * rebalance_tick will get called every timer tick, on every CPU.
2295  *
2296  * It checks each scheduling domain to see if it is due to be balanced,
2297  * and initiates a balancing operation if so.
2298  *
2299  * Balancing parameters are set up in arch_init_sched_domains.
2300  */
2301
2302 /* Don't have all balancing operations going off at once */
2303 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2304
2305 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2306                            enum idle_type idle)
2307 {
2308         unsigned long old_load, this_load;
2309         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2310         struct sched_domain *sd;
2311         int i;
2312
2313         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2314         /* Update our load */
2315         for (i = 0; i < 3; i++) {
2316                 unsigned long new_load = this_load;
2317                 int scale = 1 << i;
2318                 old_load = this_rq->cpu_load[i];
2319                 /*
2320                  * Round up the averaging division if load is increasing. This
2321                  * prevents us from getting stuck on 9 if the load is 10, for
2322                  * example.
2323                  */
2324                 if (new_load > old_load)
2325                         new_load += scale-1;
2326                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2327         }
2328
2329         for_each_domain(this_cpu, sd) {
2330                 unsigned long interval;
2331
2332                 if (!(sd->flags & SD_LOAD_BALANCE))
2333                         continue;
2334
2335                 interval = sd->balance_interval;
2336                 if (idle != SCHED_IDLE)
2337                         interval *= sd->busy_factor;
2338
2339                 /* scale ms to jiffies */
2340                 interval = msecs_to_jiffies(interval);
2341                 if (unlikely(!interval))
2342                         interval = 1;
2343
2344                 if (j - sd->last_balance >= interval) {
2345                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2346                                 /* We've pulled tasks over so no longer idle */
2347                                 idle = NOT_IDLE;
2348                         }
2349                         sd->last_balance += interval;
2350                 }
2351         }
2352 }
2353 #else
2354 /*
2355  * on UP we do not need to balance between CPUs:
2356  */
2357 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2358 {
2359 }
2360 static inline void idle_balance(int cpu, runqueue_t *rq)
2361 {
2362 }
2363 #endif
2364
2365 static inline int wake_priority_sleeper(runqueue_t *rq)
2366 {
2367         int ret = 0;
2368 #ifdef CONFIG_SCHED_SMT
2369         spin_lock(&rq->lock);
2370         /*
2371          * If an SMT sibling task has been put to sleep for priority
2372          * reasons reschedule the idle task to see if it can now run.
2373          */
2374         if (rq->nr_running) {
2375                 resched_task(rq->idle);
2376                 ret = 1;
2377         }
2378         spin_unlock(&rq->lock);
2379 #endif
2380         return ret;
2381 }
2382
2383 DEFINE_PER_CPU(struct kernel_stat, kstat);
2384
2385 EXPORT_PER_CPU_SYMBOL(kstat);
2386
2387 /*
2388  * This is called on clock ticks and on context switches.
2389  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2390  */
2391 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2392                                     unsigned long long now)
2393 {
2394         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2395         p->sched_time += now - last;
2396 }
2397
2398 /*
2399  * Return current->sched_time plus any more ns on the sched_clock
2400  * that have not yet been banked.
2401  */
2402 unsigned long long current_sched_time(const task_t *tsk)
2403 {
2404         unsigned long long ns;
2405         unsigned long flags;
2406         local_irq_save(flags);
2407         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2408         ns = tsk->sched_time + (sched_clock() - ns);
2409         local_irq_restore(flags);
2410         return ns;
2411 }
2412
2413 /*
2414  * We place interactive tasks back into the active array, if possible.
2415  *
2416  * To guarantee that this does not starve expired tasks we ignore the
2417  * interactivity of a task if the first expired task had to wait more
2418  * than a 'reasonable' amount of time. This deadline timeout is
2419  * load-dependent, as the frequency of array switched decreases with
2420  * increasing number of running tasks. We also ignore the interactivity
2421  * if a better static_prio task has expired:
2422  */
2423 #define EXPIRED_STARVING(rq) \
2424         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2425                 (jiffies - (rq)->expired_timestamp >= \
2426                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2427                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2428
2429 /*
2430  * Account user cpu time to a process.
2431  * @p: the process that the cpu time gets accounted to
2432  * @hardirq_offset: the offset to subtract from hardirq_count()
2433  * @cputime: the cpu time spent in user space since the last update
2434  */
2435 void account_user_time(struct task_struct *p, cputime_t cputime)
2436 {
2437         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2438         cputime64_t tmp;
2439
2440         p->utime = cputime_add(p->utime, cputime);
2441
2442         /* Add user time to cpustat. */
2443         tmp = cputime_to_cputime64(cputime);
2444         if (TASK_NICE(p) > 0)
2445                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2446         else
2447                 cpustat->user = cputime64_add(cpustat->user, tmp);
2448 }
2449
2450 /*
2451  * Account system cpu time to a process.
2452  * @p: the process that the cpu time gets accounted to
2453  * @hardirq_offset: the offset to subtract from hardirq_count()
2454  * @cputime: the cpu time spent in kernel space since the last update
2455  */
2456 void account_system_time(struct task_struct *p, int hardirq_offset,
2457                          cputime_t cputime)
2458 {
2459         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2460         runqueue_t *rq = this_rq();
2461         cputime64_t tmp;
2462
2463         p->stime = cputime_add(p->stime, cputime);
2464
2465         /* Add system time to cpustat. */
2466         tmp = cputime_to_cputime64(cputime);
2467         if (hardirq_count() - hardirq_offset)
2468                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2469         else if (softirq_count())
2470                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2471         else if (p != rq->idle)
2472                 cpustat->system = cputime64_add(cpustat->system, tmp);
2473         else if (atomic_read(&rq->nr_iowait) > 0)
2474                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2475         else
2476                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2477         /* Account for system time used */
2478         acct_update_integrals(p);
2479         /* Update rss highwater mark */
2480         update_mem_hiwater(p);
2481 }
2482
2483 /*
2484  * Account for involuntary wait time.
2485  * @p: the process from which the cpu time has been stolen
2486  * @steal: the cpu time spent in involuntary wait
2487  */
2488 void account_steal_time(struct task_struct *p, cputime_t steal)
2489 {
2490         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2491         cputime64_t tmp = cputime_to_cputime64(steal);
2492         runqueue_t *rq = this_rq();
2493
2494         if (p == rq->idle) {
2495                 p->stime = cputime_add(p->stime, steal);
2496                 if (atomic_read(&rq->nr_iowait) > 0)
2497                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2498                 else
2499                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2500         } else
2501                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2502 }
2503
2504 /*
2505  * This function gets called by the timer code, with HZ frequency.
2506  * We call it with interrupts disabled.
2507  *
2508  * It also gets called by the fork code, when changing the parent's
2509  * timeslices.
2510  */
2511 void scheduler_tick(void)
2512 {
2513         int cpu = smp_processor_id();
2514         runqueue_t *rq = this_rq();
2515         task_t *p = current;
2516         unsigned long long now = sched_clock();
2517
2518         update_cpu_clock(p, rq, now);
2519
2520         rq->timestamp_last_tick = now;
2521
2522         if (p == rq->idle) {
2523                 if (wake_priority_sleeper(rq))
2524                         goto out;
2525                 rebalance_tick(cpu, rq, SCHED_IDLE);
2526                 return;
2527         }
2528
2529         /* Task might have expired already, but not scheduled off yet */
2530         if (p->array != rq->active) {
2531                 set_tsk_need_resched(p);
2532                 goto out;
2533         }
2534         spin_lock(&rq->lock);
2535         /*
2536          * The task was running during this tick - update the
2537          * time slice counter. Note: we do not update a thread's
2538          * priority until it either goes to sleep or uses up its
2539          * timeslice. This makes it possible for interactive tasks
2540          * to use up their timeslices at their highest priority levels.
2541          */
2542         if (rt_task(p)) {
2543                 /*
2544                  * RR tasks need a special form of timeslice management.
2545                  * FIFO tasks have no timeslices.
2546                  */
2547                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2548                         p->time_slice = task_timeslice(p);
2549                         p->first_time_slice = 0;
2550                         set_tsk_need_resched(p);
2551
2552                         /* put it at the end of the queue: */
2553                         requeue_task(p, rq->active);
2554                 }
2555                 goto out_unlock;
2556         }
2557         if (!--p->time_slice) {
2558                 dequeue_task(p, rq->active);
2559                 set_tsk_need_resched(p);
2560                 p->prio = effective_prio(p);
2561                 p->time_slice = task_timeslice(p);
2562                 p->first_time_slice = 0;
2563
2564                 if (!rq->expired_timestamp)
2565                         rq->expired_timestamp = jiffies;
2566                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2567                         enqueue_task(p, rq->expired);
2568                         if (p->static_prio < rq->best_expired_prio)
2569                                 rq->best_expired_prio = p->static_prio;
2570                 } else
2571                         enqueue_task(p, rq->active);
2572         } else {
2573                 /*
2574                  * Prevent a too long timeslice allowing a task to monopolize
2575                  * the CPU. We do this by splitting up the timeslice into
2576                  * smaller pieces.
2577                  *
2578                  * Note: this does not mean the task's timeslices expire or
2579                  * get lost in any way, they just might be preempted by
2580                  * another task of equal priority. (one with higher
2581                  * priority would have preempted this task already.) We
2582                  * requeue this task to the end of the list on this priority
2583                  * level, which is in essence a round-robin of tasks with
2584                  * equal priority.
2585                  *
2586                  * This only applies to tasks in the interactive
2587                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2588                  */
2589                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2590                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2591                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2592                         (p->array == rq->active)) {
2593
2594                         requeue_task(p, rq->active);
2595                         set_tsk_need_resched(p);
2596                 }
2597         }
2598 out_unlock:
2599         spin_unlock(&rq->lock);
2600 out:
2601         rebalance_tick(cpu, rq, NOT_IDLE);
2602 }
2603
2604 #ifdef CONFIG_SCHED_SMT
2605 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2606 {
2607         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2608         if (rq->curr == rq->idle && rq->nr_running)
2609                 resched_task(rq->idle);
2610 }
2611
2612 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2613 {
2614         struct sched_domain *tmp, *sd = NULL;
2615         cpumask_t sibling_map;
2616         int i;
2617
2618         for_each_domain(this_cpu, tmp)
2619                 if (tmp->flags & SD_SHARE_CPUPOWER)
2620                         sd = tmp;
2621
2622         if (!sd)
2623                 return;
2624
2625         /*
2626          * Unlock the current runqueue because we have to lock in
2627          * CPU order to avoid deadlocks. Caller knows that we might
2628          * unlock. We keep IRQs disabled.
2629          */
2630         spin_unlock(&this_rq->lock);
2631
2632         sibling_map = sd->span;
2633
2634         for_each_cpu_mask(i, sibling_map)
2635                 spin_lock(&cpu_rq(i)->lock);
2636         /*
2637          * We clear this CPU from the mask. This both simplifies the
2638          * inner loop and keps this_rq locked when we exit:
2639          */
2640         cpu_clear(this_cpu, sibling_map);
2641
2642         for_each_cpu_mask(i, sibling_map) {
2643                 runqueue_t *smt_rq = cpu_rq(i);
2644
2645                 wakeup_busy_runqueue(smt_rq);
2646         }
2647
2648         for_each_cpu_mask(i, sibling_map)
2649                 spin_unlock(&cpu_rq(i)->lock);
2650         /*
2651          * We exit with this_cpu's rq still held and IRQs
2652          * still disabled:
2653          */
2654 }
2655
2656 /*
2657  * number of 'lost' timeslices this task wont be able to fully
2658  * utilize, if another task runs on a sibling. This models the
2659  * slowdown effect of other tasks running on siblings:
2660  */
2661 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2662 {
2663         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2664 }
2665
2666 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2667 {
2668         struct sched_domain *tmp, *sd = NULL;
2669         cpumask_t sibling_map;
2670         prio_array_t *array;
2671         int ret = 0, i;
2672         task_t *p;
2673
2674         for_each_domain(this_cpu, tmp)
2675                 if (tmp->flags & SD_SHARE_CPUPOWER)
2676                         sd = tmp;
2677
2678         if (!sd)
2679                 return 0;
2680
2681         /*
2682          * The same locking rules and details apply as for
2683          * wake_sleeping_dependent():
2684          */
2685         spin_unlock(&this_rq->lock);
2686         sibling_map = sd->span;
2687         for_each_cpu_mask(i, sibling_map)
2688                 spin_lock(&cpu_rq(i)->lock);
2689         cpu_clear(this_cpu, sibling_map);
2690
2691         /*
2692          * Establish next task to be run - it might have gone away because
2693          * we released the runqueue lock above:
2694          */
2695         if (!this_rq->nr_running)
2696                 goto out_unlock;
2697         array = this_rq->active;
2698         if (!array->nr_active)
2699                 array = this_rq->expired;
2700         BUG_ON(!array->nr_active);
2701
2702         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2703                 task_t, run_list);
2704
2705         for_each_cpu_mask(i, sibling_map) {
2706                 runqueue_t *smt_rq = cpu_rq(i);
2707                 task_t *smt_curr = smt_rq->curr;
2708
2709                 /* Kernel threads do not participate in dependent sleeping */
2710                 if (!p->mm || !smt_curr->mm || rt_task(p))
2711                         goto check_smt_task;
2712
2713                 /*
2714                  * If a user task with lower static priority than the
2715                  * running task on the SMT sibling is trying to schedule,
2716                  * delay it till there is proportionately less timeslice
2717                  * left of the sibling task to prevent a lower priority
2718                  * task from using an unfair proportion of the
2719                  * physical cpu's resources. -ck
2720                  */
2721                 if (rt_task(smt_curr)) {
2722                         /*
2723                          * With real time tasks we run non-rt tasks only
2724                          * per_cpu_gain% of the time.
2725                          */
2726                         if ((jiffies % DEF_TIMESLICE) >
2727                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2728                                         ret = 1;
2729                 } else
2730                         if (smt_curr->static_prio < p->static_prio &&
2731                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2732                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2733                                         ret = 1;
2734
2735 check_smt_task:
2736                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2737                         rt_task(smt_curr))
2738                                 continue;
2739                 if (!p->mm) {
2740                         wakeup_busy_runqueue(smt_rq);
2741                         continue;
2742                 }
2743
2744                 /*
2745                  * Reschedule a lower priority task on the SMT sibling for
2746                  * it to be put to sleep, or wake it up if it has been put to
2747                  * sleep for priority reasons to see if it should run now.
2748                  */
2749                 if (rt_task(p)) {
2750                         if ((jiffies % DEF_TIMESLICE) >
2751                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2752                                         resched_task(smt_curr);
2753                 } else {
2754                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2755                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2756                                         resched_task(smt_curr);
2757                         else
2758                                 wakeup_busy_runqueue(smt_rq);
2759                 }
2760         }
2761 out_unlock:
2762         for_each_cpu_mask(i, sibling_map)
2763                 spin_unlock(&cpu_rq(i)->lock);
2764         return ret;
2765 }
2766 #else
2767 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2768 {
2769 }
2770
2771 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2772 {
2773         return 0;
2774 }
2775 #endif
2776
2777 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2778
2779 void fastcall add_preempt_count(int val)
2780 {
2781         /*
2782          * Underflow?
2783          */
2784         BUG_ON((preempt_count() < 0));
2785         preempt_count() += val;
2786         /*
2787          * Spinlock count overflowing soon?
2788          */
2789         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2790 }
2791 EXPORT_SYMBOL(add_preempt_count);
2792
2793 void fastcall sub_preempt_count(int val)
2794 {
2795         /*
2796          * Underflow?
2797          */
2798         BUG_ON(val > preempt_count());
2799         /*
2800          * Is the spinlock portion underflowing?
2801          */
2802         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2803         preempt_count() -= val;
2804 }
2805 EXPORT_SYMBOL(sub_preempt_count);
2806
2807 #endif
2808
2809 /*
2810  * schedule() is the main scheduler function.
2811  */
2812 asmlinkage void __sched schedule(void)
2813 {
2814         long *switch_count;
2815         task_t *prev, *next;
2816         runqueue_t *rq;
2817         prio_array_t *array;
2818         struct list_head *queue;
2819         unsigned long long now;
2820         unsigned long run_time;
2821         int cpu, idx, new_prio;
2822
2823         /*
2824          * Test if we are atomic.  Since do_exit() needs to call into
2825          * schedule() atomically, we ignore that path for now.
2826          * Otherwise, whine if we are scheduling when we should not be.
2827          */
2828         if (likely(!current->exit_state)) {
2829                 if (unlikely(in_atomic())) {
2830                         printk(KERN_ERR "scheduling while atomic: "
2831                                 "%s/0x%08x/%d\n",
2832                                 current->comm, preempt_count(), current->pid);
2833                         dump_stack();
2834                 }
2835         }
2836         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2837
2838 need_resched:
2839         preempt_disable();
2840         prev = current;
2841         release_kernel_lock(prev);
2842 need_resched_nonpreemptible:
2843         rq = this_rq();
2844
2845         /*
2846          * The idle thread is not allowed to schedule!
2847          * Remove this check after it has been exercised a bit.
2848          */
2849         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2850                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2851                 dump_stack();
2852         }
2853
2854         schedstat_inc(rq, sched_cnt);
2855         now = sched_clock();
2856         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2857                 run_time = now - prev->timestamp;
2858                 if (unlikely((long long)(now - prev->timestamp) < 0))
2859                         run_time = 0;
2860         } else
2861                 run_time = NS_MAX_SLEEP_AVG;
2862
2863         /*
2864          * Tasks charged proportionately less run_time at high sleep_avg to
2865          * delay them losing their interactive status
2866          */
2867         run_time /= (CURRENT_BONUS(prev) ? : 1);
2868
2869         spin_lock_irq(&rq->lock);
2870
2871         if (unlikely(prev->flags & PF_DEAD))
2872                 prev->state = EXIT_DEAD;
2873
2874         switch_count = &prev->nivcsw;
2875         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2876                 switch_count = &prev->nvcsw;
2877                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2878                                 unlikely(signal_pending(prev))))
2879                         prev->state = TASK_RUNNING;
2880                 else {
2881                         if (prev->state == TASK_UNINTERRUPTIBLE)
2882                                 rq->nr_uninterruptible++;
2883                         deactivate_task(prev, rq);
2884                 }
2885         }
2886
2887         cpu = smp_processor_id();
2888         if (unlikely(!rq->nr_running)) {
2889 go_idle:
2890                 idle_balance(cpu, rq);
2891                 if (!rq->nr_running) {
2892                         next = rq->idle;
2893                         rq->expired_timestamp = 0;
2894                         wake_sleeping_dependent(cpu, rq);
2895                         /*
2896                          * wake_sleeping_dependent() might have released
2897                          * the runqueue, so break out if we got new
2898                          * tasks meanwhile:
2899                          */
2900                         if (!rq->nr_running)
2901                                 goto switch_tasks;
2902                 }
2903         } else {
2904                 if (dependent_sleeper(cpu, rq)) {
2905                         next = rq->idle;
2906                         goto switch_tasks;
2907                 }
2908                 /*
2909                  * dependent_sleeper() releases and reacquires the runqueue
2910                  * lock, hence go into the idle loop if the rq went
2911                  * empty meanwhile:
2912                  */
2913                 if (unlikely(!rq->nr_running))
2914                         goto go_idle;
2915         }
2916
2917         array = rq->active;
2918         if (unlikely(!array->nr_active)) {
2919                 /*
2920                  * Switch the active and expired arrays.
2921                  */
2922                 schedstat_inc(rq, sched_switch);
2923                 rq->active = rq->expired;
2924                 rq->expired = array;
2925                 array = rq->active;
2926                 rq->expired_timestamp = 0;
2927                 rq->best_expired_prio = MAX_PRIO;
2928         }
2929
2930         idx = sched_find_first_bit(array->bitmap);
2931         queue = array->queue + idx;
2932         next = list_entry(queue->next, task_t, run_list);
2933
2934         if (!rt_task(next) && next->activated > 0) {
2935                 unsigned long long delta = now - next->timestamp;
2936                 if (unlikely((long long)(now - next->timestamp) < 0))
2937                         delta = 0;
2938
2939                 if (next->activated == 1)
2940                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2941
2942                 array = next->array;
2943                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2944
2945                 if (unlikely(next->prio != new_prio)) {
2946                         dequeue_task(next, array);
2947                         next->prio = new_prio;
2948                         enqueue_task(next, array);
2949                 } else
2950                         requeue_task(next, array);
2951         }
2952         next->activated = 0;
2953 switch_tasks:
2954         if (next == rq->idle)
2955                 schedstat_inc(rq, sched_goidle);
2956         prefetch(next);
2957         prefetch_stack(next);
2958         clear_tsk_need_resched(prev);
2959         rcu_qsctr_inc(task_cpu(prev));
2960
2961         update_cpu_clock(prev, rq, now);
2962
2963         prev->sleep_avg -= run_time;
2964         if ((long)prev->sleep_avg <= 0)
2965                 prev->sleep_avg = 0;
2966         prev->timestamp = prev->last_ran = now;
2967
2968         sched_info_switch(prev, next);
2969         if (likely(prev != next)) {
2970                 next->timestamp = now;
2971                 rq->nr_switches++;
2972                 rq->curr = next;
2973                 ++*switch_count;
2974
2975                 prepare_task_switch(rq, next);
2976                 prev = context_switch(rq, prev, next);
2977                 barrier();
2978                 /*
2979                  * this_rq must be evaluated again because prev may have moved
2980                  * CPUs since it called schedule(), thus the 'rq' on its stack
2981                  * frame will be invalid.
2982                  */
2983                 finish_task_switch(this_rq(), prev);
2984         } else
2985                 spin_unlock_irq(&rq->lock);
2986
2987         prev = current;
2988         if (unlikely(reacquire_kernel_lock(prev) < 0))
2989                 goto need_resched_nonpreemptible;
2990         preempt_enable_no_resched();
2991         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2992                 goto need_resched;
2993 }
2994
2995 EXPORT_SYMBOL(schedule);
2996
2997 #ifdef CONFIG_PREEMPT
2998 /*
2999  * this is is the entry point to schedule() from in-kernel preemption
3000  * off of preempt_enable.  Kernel preemptions off return from interrupt
3001  * occur there and call schedule directly.
3002  */
3003 asmlinkage void __sched preempt_schedule(void)
3004 {
3005         struct thread_info *ti = current_thread_info();
3006 #ifdef CONFIG_PREEMPT_BKL
3007         struct task_struct *task = current;
3008         int saved_lock_depth;
3009 #endif
3010         /*
3011          * If there is a non-zero preempt_count or interrupts are disabled,
3012          * we do not want to preempt the current task.  Just return..
3013          */
3014         if (unlikely(ti->preempt_count || irqs_disabled()))
3015                 return;
3016
3017 need_resched:
3018         add_preempt_count(PREEMPT_ACTIVE);
3019         /*
3020          * We keep the big kernel semaphore locked, but we
3021          * clear ->lock_depth so that schedule() doesnt
3022          * auto-release the semaphore:
3023          */
3024 #ifdef CONFIG_PREEMPT_BKL
3025         saved_lock_depth = task->lock_depth;
3026         task->lock_depth = -1;
3027 #endif
3028         schedule();
3029 #ifdef CONFIG_PREEMPT_BKL
3030         task->lock_depth = saved_lock_depth;
3031 #endif
3032         sub_preempt_count(PREEMPT_ACTIVE);
3033
3034         /* we could miss a preemption opportunity between schedule and now */
3035         barrier();
3036         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3037                 goto need_resched;
3038 }
3039
3040 EXPORT_SYMBOL(preempt_schedule);
3041
3042 /*
3043  * this is is the entry point to schedule() from kernel preemption
3044  * off of irq context.
3045  * Note, that this is called and return with irqs disabled. This will
3046  * protect us against recursive calling from irq.
3047  */
3048 asmlinkage void __sched preempt_schedule_irq(void)
3049 {
3050         struct thread_info *ti = current_thread_info();
3051 #ifdef CONFIG_PREEMPT_BKL
3052         struct task_struct *task = current;
3053         int saved_lock_depth;
3054 #endif
3055         /* Catch callers which need to be fixed*/
3056         BUG_ON(ti->preempt_count || !irqs_disabled());
3057
3058 need_resched:
3059         add_preempt_count(PREEMPT_ACTIVE);
3060         /*
3061          * We keep the big kernel semaphore locked, but we
3062          * clear ->lock_depth so that schedule() doesnt
3063          * auto-release the semaphore:
3064          */
3065 #ifdef CONFIG_PREEMPT_BKL
3066         saved_lock_depth = task->lock_depth;
3067         task->lock_depth = -1;
3068 #endif
3069         local_irq_enable();
3070         schedule();
3071         local_irq_disable();
3072 #ifdef CONFIG_PREEMPT_BKL
3073         task->lock_depth = saved_lock_depth;
3074 #endif
3075         sub_preempt_count(PREEMPT_ACTIVE);
3076
3077         /* we could miss a preemption opportunity between schedule and now */
3078         barrier();
3079         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3080                 goto need_resched;
3081 }
3082
3083 #endif /* CONFIG_PREEMPT */
3084
3085 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3086                           void *key)
3087 {
3088         task_t *p = curr->private;
3089         return try_to_wake_up(p, mode, sync);
3090 }
3091
3092 EXPORT_SYMBOL(default_wake_function);
3093
3094 /*
3095  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3096  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3097  * number) then we wake all the non-exclusive tasks and one exclusive task.
3098  *
3099  * There are circumstances in which we can try to wake a task which has already
3100  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3101  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3102  */
3103 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3104                              int nr_exclusive, int sync, void *key)
3105 {
3106         struct list_head *tmp, *next;
3107
3108         list_for_each_safe(tmp, next, &q->task_list) {
3109                 wait_queue_t *curr;
3110                 unsigned flags;
3111                 curr = list_entry(tmp, wait_queue_t, task_list);
3112                 flags = curr->flags;
3113                 if (curr->func(curr, mode, sync, key) &&
3114                     (flags & WQ_FLAG_EXCLUSIVE) &&
3115                     !--nr_exclusive)
3116                         break;
3117         }
3118 }
3119
3120 /**
3121  * __wake_up - wake up threads blocked on a waitqueue.
3122  * @q: the waitqueue
3123  * @mode: which threads
3124  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3125  * @key: is directly passed to the wakeup function
3126  */
3127 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3128                         int nr_exclusive, void *key)
3129 {
3130         unsigned long flags;
3131
3132         spin_lock_irqsave(&q->lock, flags);
3133         __wake_up_common(q, mode, nr_exclusive, 0, key);
3134         spin_unlock_irqrestore(&q->lock, flags);
3135 }
3136
3137 EXPORT_SYMBOL(__wake_up);
3138
3139 /*
3140  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3141  */
3142 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3143 {
3144         __wake_up_common(q, mode, 1, 0, NULL);
3145 }
3146
3147 /**
3148  * __wake_up_sync - wake up threads blocked on a waitqueue.
3149  * @q: the waitqueue
3150  * @mode: which threads
3151  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152  *
3153  * The sync wakeup differs that the waker knows that it will schedule
3154  * away soon, so while the target thread will be woken up, it will not
3155  * be migrated to another CPU - ie. the two threads are 'synchronized'
3156  * with each other. This can prevent needless bouncing between CPUs.
3157  *
3158  * On UP it can prevent extra preemption.
3159  */
3160 void fastcall
3161 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3162 {
3163         unsigned long flags;
3164         int sync = 1;
3165
3166         if (unlikely(!q))
3167                 return;
3168
3169         if (unlikely(!nr_exclusive))
3170                 sync = 0;
3171
3172         spin_lock_irqsave(&q->lock, flags);
3173         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3174         spin_unlock_irqrestore(&q->lock, flags);
3175 }
3176 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3177
3178 void fastcall complete(struct completion *x)
3179 {
3180         unsigned long flags;
3181
3182         spin_lock_irqsave(&x->wait.lock, flags);
3183         x->done++;
3184         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3185                          1, 0, NULL);
3186         spin_unlock_irqrestore(&x->wait.lock, flags);
3187 }
3188 EXPORT_SYMBOL(complete);
3189
3190 void fastcall complete_all(struct completion *x)
3191 {
3192         unsigned long flags;
3193
3194         spin_lock_irqsave(&x->wait.lock, flags);
3195         x->done += UINT_MAX/2;
3196         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3197                          0, 0, NULL);
3198         spin_unlock_irqrestore(&x->wait.lock, flags);
3199 }
3200 EXPORT_SYMBOL(complete_all);
3201
3202 void fastcall __sched wait_for_completion(struct completion *x)
3203 {
3204         might_sleep();
3205         spin_lock_irq(&x->wait.lock);
3206         if (!x->done) {
3207                 DECLARE_WAITQUEUE(wait, current);
3208
3209                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3210                 __add_wait_queue_tail(&x->wait, &wait);
3211                 do {
3212                         __set_current_state(TASK_UNINTERRUPTIBLE);
3213                         spin_unlock_irq(&x->wait.lock);
3214                         schedule();
3215                         spin_lock_irq(&x->wait.lock);
3216                 } while (!x->done);
3217                 __remove_wait_queue(&x->wait, &wait);
3218         }
3219         x->done--;
3220         spin_unlock_irq(&x->wait.lock);
3221 }
3222 EXPORT_SYMBOL(wait_for_completion);
3223
3224 unsigned long fastcall __sched
3225 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3226 {
3227         might_sleep();
3228
3229         spin_lock_irq(&x->wait.lock);
3230         if (!x->done) {
3231                 DECLARE_WAITQUEUE(wait, current);
3232
3233                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3234                 __add_wait_queue_tail(&x->wait, &wait);
3235                 do {
3236                         __set_current_state(TASK_UNINTERRUPTIBLE);
3237                         spin_unlock_irq(&x->wait.lock);
3238                         timeout = schedule_timeout(timeout);
3239                         spin_lock_irq(&x->wait.lock);
3240                         if (!timeout) {
3241                                 __remove_wait_queue(&x->wait, &wait);
3242                                 goto out;
3243                         }
3244                 } while (!x->done);
3245                 __remove_wait_queue(&x->wait, &wait);
3246         }
3247         x->done--;
3248 out:
3249         spin_unlock_irq(&x->wait.lock);
3250         return timeout;
3251 }
3252 EXPORT_SYMBOL(wait_for_completion_timeout);
3253
3254 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3255 {
3256         int ret = 0;
3257
3258         might_sleep();
3259
3260         spin_lock_irq(&x->wait.lock);
3261         if (!x->done) {
3262                 DECLARE_WAITQUEUE(wait, current);
3263
3264                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3265                 __add_wait_queue_tail(&x->wait, &wait);
3266                 do {
3267                         if (signal_pending(current)) {
3268                                 ret = -ERESTARTSYS;
3269                                 __remove_wait_queue(&x->wait, &wait);
3270                                 goto out;
3271                         }
3272                         __set_current_state(TASK_INTERRUPTIBLE);
3273                         spin_unlock_irq(&x->wait.lock);
3274                         schedule();
3275                         spin_lock_irq(&x->wait.lock);
3276                 } while (!x->done);
3277                 __remove_wait_queue(&x->wait, &wait);
3278         }
3279         x->done--;
3280 out:
3281         spin_unlock_irq(&x->wait.lock);
3282
3283         return ret;
3284 }
3285 EXPORT_SYMBOL(wait_for_completion_interruptible);
3286
3287 unsigned long fastcall __sched
3288 wait_for_completion_interruptible_timeout(struct completion *x,
3289                                           unsigned long timeout)
3290 {
3291         might_sleep();
3292
3293         spin_lock_irq(&x->wait.lock);
3294         if (!x->done) {
3295                 DECLARE_WAITQUEUE(wait, current);
3296
3297                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3298                 __add_wait_queue_tail(&x->wait, &wait);
3299                 do {
3300                         if (signal_pending(current)) {
3301                                 timeout = -ERESTARTSYS;
3302                                 __remove_wait_queue(&x->wait, &wait);
3303                                 goto out;
3304                         }
3305                         __set_current_state(TASK_INTERRUPTIBLE);
3306                         spin_unlock_irq(&x->wait.lock);
3307                         timeout = schedule_timeout(timeout);
3308                         spin_lock_irq(&x->wait.lock);
3309                         if (!timeout) {
3310                                 __remove_wait_queue(&x->wait, &wait);
3311                                 goto out;
3312                         }
3313                 } while (!x->done);
3314                 __remove_wait_queue(&x->wait, &wait);
3315         }
3316         x->done--;
3317 out:
3318         spin_unlock_irq(&x->wait.lock);
3319         return timeout;
3320 }
3321 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3322
3323
3324 #define SLEEP_ON_VAR                                    \
3325         unsigned long flags;                            \
3326         wait_queue_t wait;                              \
3327         init_waitqueue_entry(&wait, current);
3328
3329 #define SLEEP_ON_HEAD                                   \
3330         spin_lock_irqsave(&q->lock,flags);              \
3331         __add_wait_queue(q, &wait);                     \
3332         spin_unlock(&q->lock);
3333
3334 #define SLEEP_ON_TAIL                                   \
3335         spin_lock_irq(&q->lock);                        \
3336         __remove_wait_queue(q, &wait);                  \
3337         spin_unlock_irqrestore(&q->lock, flags);
3338
3339 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3340 {
3341         SLEEP_ON_VAR
3342
3343         current->state = TASK_INTERRUPTIBLE;
3344
3345         SLEEP_ON_HEAD
3346         schedule();
3347         SLEEP_ON_TAIL
3348 }
3349
3350 EXPORT_SYMBOL(interruptible_sleep_on);
3351
3352 long fastcall __sched
3353 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3354 {
3355         SLEEP_ON_VAR
3356
3357         current->state = TASK_INTERRUPTIBLE;
3358
3359         SLEEP_ON_HEAD
3360         timeout = schedule_timeout(timeout);
3361         SLEEP_ON_TAIL
3362
3363         return timeout;
3364 }
3365
3366 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3367
3368 void fastcall __sched sleep_on(wait_queue_head_t *q)
3369 {
3370         SLEEP_ON_VAR
3371
3372         current->state = TASK_UNINTERRUPTIBLE;
3373
3374         SLEEP_ON_HEAD
3375         schedule();
3376         SLEEP_ON_TAIL
3377 }
3378
3379 EXPORT_SYMBOL(sleep_on);
3380
3381 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3382 {
3383         SLEEP_ON_VAR
3384
3385         current->state = TASK_UNINTERRUPTIBLE;
3386
3387         SLEEP_ON_HEAD
3388         timeout = schedule_timeout(timeout);
3389         SLEEP_ON_TAIL
3390
3391         return timeout;
3392 }
3393
3394 EXPORT_SYMBOL(sleep_on_timeout);
3395
3396 void set_user_nice(task_t *p, long nice)
3397 {
3398         unsigned long flags;
3399         prio_array_t *array;
3400         runqueue_t *rq;
3401         int old_prio, new_prio, delta;
3402
3403         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3404                 return;
3405         /*
3406          * We have to be careful, if called from sys_setpriority(),
3407          * the task might be in the middle of scheduling on another CPU.
3408          */
3409         rq = task_rq_lock(p, &flags);
3410         /*
3411          * The RT priorities are set via sched_setscheduler(), but we still
3412          * allow the 'normal' nice value to be set - but as expected
3413          * it wont have any effect on scheduling until the task is
3414          * not SCHED_NORMAL:
3415          */
3416         if (rt_task(p)) {
3417                 p->static_prio = NICE_TO_PRIO(nice);
3418                 goto out_unlock;
3419         }
3420         array = p->array;
3421         if (array)
3422                 dequeue_task(p, array);
3423
3424         old_prio = p->prio;
3425         new_prio = NICE_TO_PRIO(nice);
3426         delta = new_prio - old_prio;
3427         p->static_prio = NICE_TO_PRIO(nice);
3428         p->prio += delta;
3429
3430         if (array) {
3431                 enqueue_task(p, array);
3432                 /*
3433                  * If the task increased its priority or is running and
3434                  * lowered its priority, then reschedule its CPU:
3435                  */
3436                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3437                         resched_task(rq->curr);
3438         }
3439 out_unlock:
3440         task_rq_unlock(rq, &flags);
3441 }
3442
3443 EXPORT_SYMBOL(set_user_nice);
3444
3445 /*
3446  * can_nice - check if a task can reduce its nice value
3447  * @p: task
3448  * @nice: nice value
3449  */
3450 int can_nice(const task_t *p, const int nice)
3451 {
3452         /* convert nice value [19,-20] to rlimit style value [1,40] */
3453         int nice_rlim = 20 - nice;
3454         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3455                 capable(CAP_SYS_NICE));
3456 }
3457
3458 #ifdef __ARCH_WANT_SYS_NICE
3459
3460 /*
3461  * sys_nice - change the priority of the current process.
3462  * @increment: priority increment
3463  *
3464  * sys_setpriority is a more generic, but much slower function that
3465  * does similar things.
3466  */
3467 asmlinkage long sys_nice(int increment)
3468 {
3469         int retval;
3470         long nice;
3471
3472         /*
3473          * Setpriority might change our priority at the same moment.
3474          * We don't have to worry. Conceptually one call occurs first
3475          * and we have a single winner.
3476          */
3477         if (increment < -40)
3478                 increment = -40;
3479         if (increment > 40)
3480                 increment = 40;
3481
3482         nice = PRIO_TO_NICE(current->static_prio) + increment;
3483         if (nice < -20)
3484                 nice = -20;
3485         if (nice > 19)
3486                 nice = 19;
3487
3488         if (increment < 0 && !can_nice(current, nice))
3489                 return -EPERM;
3490
3491         retval = security_task_setnice(current, nice);
3492         if (retval)
3493                 return retval;
3494
3495         set_user_nice(current, nice);
3496         return 0;
3497 }
3498
3499 #endif
3500
3501 /**
3502  * task_prio - return the priority value of a given task.
3503  * @p: the task in question.
3504  *
3505  * This is the priority value as seen by users in /proc.
3506  * RT tasks are offset by -200. Normal tasks are centered
3507  * around 0, value goes from -16 to +15.
3508  */
3509 int task_prio(const task_t *p)
3510 {
3511         return p->prio - MAX_RT_PRIO;
3512 }
3513
3514 /**
3515  * task_nice - return the nice value of a given task.
3516  * @p: the task in question.
3517  */
3518 int task_nice(const task_t *p)
3519 {
3520         return TASK_NICE(p);
3521 }
3522 EXPORT_SYMBOL_GPL(task_nice);
3523
3524 /**
3525  * idle_cpu - is a given cpu idle currently?
3526  * @cpu: the processor in question.
3527  */
3528 int idle_cpu(int cpu)
3529 {
3530         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3531 }
3532
3533 EXPORT_SYMBOL_GPL(idle_cpu);
3534
3535 /**
3536  * idle_task - return the idle task for a given cpu.
3537  * @cpu: the processor in question.
3538  */
3539 task_t *idle_task(int cpu)
3540 {
3541         return cpu_rq(cpu)->idle;
3542 }
3543
3544 /**
3545  * find_process_by_pid - find a process with a matching PID value.
3546  * @pid: the pid in question.
3547  */
3548 static inline task_t *find_process_by_pid(pid_t pid)
3549 {
3550         return pid ? find_task_by_pid(pid) : current;
3551 }
3552
3553 /* Actually do priority change: must hold rq lock. */
3554 static void __setscheduler(struct task_struct *p, int policy, int prio)
3555 {
3556         BUG_ON(p->array);
3557         p->policy = policy;
3558         p->rt_priority = prio;
3559         if (policy != SCHED_NORMAL)
3560                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3561         else
3562                 p->prio = p->static_prio;
3563 }
3564
3565 /**
3566  * sched_setscheduler - change the scheduling policy and/or RT priority of
3567  * a thread.
3568  * @p: the task in question.
3569  * @policy: new policy.
3570  * @param: structure containing the new RT priority.
3571  */
3572 int sched_setscheduler(struct task_struct *p, int policy,
3573                        struct sched_param *param)
3574 {
3575         int retval;
3576         int oldprio, oldpolicy = -1;
3577         prio_array_t *array;
3578         unsigned long flags;
3579         runqueue_t *rq;
3580
3581 recheck:
3582         /* double check policy once rq lock held */
3583         if (policy < 0)
3584                 policy = oldpolicy = p->policy;
3585         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3586                                 policy != SCHED_NORMAL)
3587                         return -EINVAL;
3588         /*
3589          * Valid priorities for SCHED_FIFO and SCHED_RR are
3590          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3591          */
3592         if (param->sched_priority < 0 ||
3593             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3594             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3595                 return -EINVAL;
3596         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3597                 return -EINVAL;
3598
3599         /*
3600          * Allow unprivileged RT tasks to decrease priority:
3601          */
3602         if (!capable(CAP_SYS_NICE)) {
3603                 /* can't change policy */
3604                 if (policy != p->policy &&
3605                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3606                         return -EPERM;
3607                 /* can't increase priority */
3608                 if (policy != SCHED_NORMAL &&
3609                     param->sched_priority > p->rt_priority &&
3610                     param->sched_priority >
3611                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3612                         return -EPERM;
3613                 /* can't change other user's priorities */
3614                 if ((current->euid != p->euid) &&
3615                     (current->euid != p->uid))
3616                         return -EPERM;
3617         }
3618
3619         retval = security_task_setscheduler(p, policy, param);
3620         if (retval)
3621                 return retval;
3622         /*
3623          * To be able to change p->policy safely, the apropriate
3624          * runqueue lock must be held.
3625          */
3626         rq = task_rq_lock(p, &flags);
3627         /* recheck policy now with rq lock held */
3628         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3629                 policy = oldpolicy = -1;
3630                 task_rq_unlock(rq, &flags);
3631                 goto recheck;
3632         }
3633         array = p->array;
3634         if (array)
3635                 deactivate_task(p, rq);
3636         oldprio = p->prio;
3637         __setscheduler(p, policy, param->sched_priority);
3638         if (array) {
3639                 __activate_task(p, rq);
3640                 /*
3641                  * Reschedule if we are currently running on this runqueue and
3642                  * our priority decreased, or if we are not currently running on
3643                  * this runqueue and our priority is higher than the current's
3644                  */
3645                 if (task_running(rq, p)) {
3646                         if (p->prio > oldprio)
3647                                 resched_task(rq->curr);
3648                 } else if (TASK_PREEMPTS_CURR(p, rq))
3649                         resched_task(rq->curr);
3650         }
3651         task_rq_unlock(rq, &flags);
3652         return 0;
3653 }
3654 EXPORT_SYMBOL_GPL(sched_setscheduler);
3655
3656 static int
3657 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3658 {
3659         int retval;
3660         struct sched_param lparam;
3661         struct task_struct *p;
3662
3663         if (!param || pid < 0)
3664                 return -EINVAL;
3665         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3666                 return -EFAULT;
3667         read_lock_irq(&tasklist_lock);
3668         p = find_process_by_pid(pid);
3669         if (!p) {
3670                 read_unlock_irq(&tasklist_lock);
3671                 return -ESRCH;
3672         }
3673         retval = sched_setscheduler(p, policy, &lparam);
3674         read_unlock_irq(&tasklist_lock);
3675         return retval;
3676 }
3677
3678 /**
3679  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3680  * @pid: the pid in question.
3681  * @policy: new policy.
3682  * @param: structure containing the new RT priority.
3683  */
3684 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3685                                        struct sched_param __user *param)
3686 {
3687         return do_sched_setscheduler(pid, policy, param);
3688 }
3689
3690 /**
3691  * sys_sched_setparam - set/change the RT priority of a thread
3692  * @pid: the pid in question.
3693  * @param: structure containing the new RT priority.
3694  */
3695 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3696 {
3697         return do_sched_setscheduler(pid, -1, param);
3698 }
3699
3700 /**
3701  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3702  * @pid: the pid in question.
3703  */
3704 asmlinkage long sys_sched_getscheduler(pid_t pid)
3705 {
3706         int retval = -EINVAL;
3707         task_t *p;
3708
3709         if (pid < 0)
3710                 goto out_nounlock;
3711
3712         retval = -ESRCH;
3713         read_lock(&tasklist_lock);
3714         p = find_process_by_pid(pid);
3715         if (p) {
3716                 retval = security_task_getscheduler(p);
3717                 if (!retval)
3718                         retval = p->policy;
3719         }
3720         read_unlock(&tasklist_lock);
3721
3722 out_nounlock:
3723         return retval;
3724 }
3725
3726 /**
3727  * sys_sched_getscheduler - get the RT priority of a thread
3728  * @pid: the pid in question.
3729  * @param: structure containing the RT priority.
3730  */
3731 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3732 {
3733         struct sched_param lp;
3734         int retval = -EINVAL;
3735         task_t *p;
3736
3737         if (!param || pid < 0)
3738                 goto out_nounlock;
3739
3740         read_lock(&tasklist_lock);
3741         p = find_process_by_pid(pid);
3742         retval = -ESRCH;
3743         if (!p)
3744                 goto out_unlock;
3745
3746         retval = security_task_getscheduler(p);
3747         if (retval)
3748                 goto out_unlock;
3749
3750         lp.sched_priority = p->rt_priority;
3751         read_unlock(&tasklist_lock);
3752
3753         /*
3754          * This one might sleep, we cannot do it with a spinlock held ...
3755          */
3756         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3757
3758 out_nounlock:
3759         return retval;
3760
3761 out_unlock:
3762         read_unlock(&tasklist_lock);
3763         return retval;
3764 }
3765
3766 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3767 {
3768         task_t *p;
3769         int retval;
3770         cpumask_t cpus_allowed;
3771
3772         lock_cpu_hotplug();
3773         read_lock(&tasklist_lock);
3774
3775         p = find_process_by_pid(pid);
3776         if (!p) {
3777                 read_unlock(&tasklist_lock);
3778                 unlock_cpu_hotplug();
3779                 return -ESRCH;
3780         }
3781
3782         /*
3783          * It is not safe to call set_cpus_allowed with the
3784          * tasklist_lock held.  We will bump the task_struct's
3785          * usage count and then drop tasklist_lock.
3786          */
3787         get_task_struct(p);
3788         read_unlock(&tasklist_lock);
3789
3790         retval = -EPERM;
3791         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3792                         !capable(CAP_SYS_NICE))
3793                 goto out_unlock;
3794
3795         cpus_allowed = cpuset_cpus_allowed(p);
3796         cpus_and(new_mask, new_mask, cpus_allowed);
3797         retval = set_cpus_allowed(p, new_mask);
3798
3799 out_unlock:
3800         put_task_struct(p);
3801         unlock_cpu_hotplug();
3802         return retval;
3803 }
3804
3805 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3806                              cpumask_t *new_mask)
3807 {
3808         if (len < sizeof(cpumask_t)) {
3809                 memset(new_mask, 0, sizeof(cpumask_t));
3810         } else if (len > sizeof(cpumask_t)) {
3811                 len = sizeof(cpumask_t);
3812         }
3813         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3814 }
3815
3816 /**
3817  * sys_sched_setaffinity - set the cpu affinity of a process
3818  * @pid: pid of the process
3819  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3820  * @user_mask_ptr: user-space pointer to the new cpu mask
3821  */
3822 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3823                                       unsigned long __user *user_mask_ptr)
3824 {
3825         cpumask_t new_mask;
3826         int retval;
3827
3828         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3829         if (retval)
3830                 return retval;
3831
3832         return sched_setaffinity(pid, new_mask);
3833 }
3834
3835 /*
3836  * Represents all cpu's present in the system
3837  * In systems capable of hotplug, this map could dynamically grow
3838  * as new cpu's are detected in the system via any platform specific
3839  * method, such as ACPI for e.g.
3840  */
3841
3842 cpumask_t cpu_present_map;
3843 EXPORT_SYMBOL(cpu_present_map);
3844
3845 #ifndef CONFIG_SMP
3846 cpumask_t cpu_online_map = CPU_MASK_ALL;
3847 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3848 #endif
3849
3850 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3851 {
3852         int retval;
3853         task_t *p;
3854
3855         lock_cpu_hotplug();
3856         read_lock(&tasklist_lock);
3857
3858         retval = -ESRCH;
3859         p = find_process_by_pid(pid);
3860         if (!p)
3861                 goto out_unlock;
3862
3863         retval = 0;
3864         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3865
3866 out_unlock:
3867         read_unlock(&tasklist_lock);
3868         unlock_cpu_hotplug();
3869         if (retval)
3870                 return retval;
3871
3872         return 0;
3873 }
3874
3875 /**
3876  * sys_sched_getaffinity - get the cpu affinity of a process
3877  * @pid: pid of the process
3878  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3879  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3880  */
3881 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3882                                       unsigned long __user *user_mask_ptr)
3883 {
3884         int ret;
3885         cpumask_t mask;
3886
3887         if (len < sizeof(cpumask_t))
3888                 return -EINVAL;
3889
3890         ret = sched_getaffinity(pid, &mask);
3891         if (ret < 0)
3892                 return ret;
3893
3894         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3895                 return -EFAULT;
3896
3897         return sizeof(cpumask_t);
3898 }
3899
3900 /**
3901  * sys_sched_yield - yield the current processor to other threads.
3902  *
3903  * this function yields the current CPU by moving the calling thread
3904  * to the expired array. If there are no other threads running on this
3905  * CPU then this function will return.
3906  */
3907 asmlinkage long sys_sched_yield(void)
3908 {
3909         runqueue_t *rq = this_rq_lock();
3910         prio_array_t *array = current->array;
3911         prio_array_t *target = rq->expired;
3912
3913         schedstat_inc(rq, yld_cnt);
3914         /*
3915          * We implement yielding by moving the task into the expired
3916          * queue.
3917          *
3918          * (special rule: RT tasks will just roundrobin in the active
3919          *  array.)
3920          */
3921         if (rt_task(current))
3922                 target = rq->active;
3923
3924         if (current->array->nr_active == 1) {
3925                 schedstat_inc(rq, yld_act_empty);
3926                 if (!rq->expired->nr_active)
3927                         schedstat_inc(rq, yld_both_empty);
3928         } else if (!rq->expired->nr_active)
3929                 schedstat_inc(rq, yld_exp_empty);
3930
3931         if (array != target) {
3932                 dequeue_task(current, array);
3933                 enqueue_task(current, target);
3934         } else
3935                 /*
3936                  * requeue_task is cheaper so perform that if possible.
3937                  */
3938                 requeue_task(current, array);
3939
3940         /*
3941          * Since we are going to call schedule() anyway, there's
3942          * no need to preempt or enable interrupts:
3943          */
3944         __release(rq->lock);
3945         _raw_spin_unlock(&rq->lock);
3946         preempt_enable_no_resched();
3947
3948         schedule();
3949
3950         return 0;
3951 }
3952
3953 static inline void __cond_resched(void)
3954 {
3955         /*
3956          * The BKS might be reacquired before we have dropped
3957          * PREEMPT_ACTIVE, which could trigger a second
3958          * cond_resched() call.
3959          */
3960         if (unlikely(preempt_count()))
3961                 return;
3962         do {
3963                 add_preempt_count(PREEMPT_ACTIVE);
3964                 schedule();
3965                 sub_preempt_count(PREEMPT_ACTIVE);
3966         } while (need_resched());
3967 }
3968
3969 int __sched cond_resched(void)
3970 {
3971         if (need_resched()) {
3972                 __cond_resched();
3973                 return 1;
3974         }
3975         return 0;
3976 }
3977
3978 EXPORT_SYMBOL(cond_resched);
3979
3980 /*
3981  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3982  * call schedule, and on return reacquire the lock.
3983  *
3984  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3985  * operations here to prevent schedule() from being called twice (once via
3986  * spin_unlock(), once by hand).
3987  */
3988 int cond_resched_lock(spinlock_t *lock)
3989 {
3990         int ret = 0;
3991
3992         if (need_lockbreak(lock)) {
3993                 spin_unlock(lock);
3994                 cpu_relax();
3995                 ret = 1;
3996                 spin_lock(lock);
3997         }
3998         if (need_resched()) {
3999                 _raw_spin_unlock(lock);
4000                 preempt_enable_no_resched();
4001                 __cond_resched();
4002                 ret = 1;
4003                 spin_lock(lock);
4004         }
4005         return ret;
4006 }
4007
4008 EXPORT_SYMBOL(cond_resched_lock);
4009
4010 int __sched cond_resched_softirq(void)
4011 {
4012         BUG_ON(!in_softirq());
4013
4014         if (need_resched()) {
4015                 __local_bh_enable();
4016                 __cond_resched();
4017                 local_bh_disable();
4018                 return 1;
4019         }
4020         return 0;
4021 }
4022
4023 EXPORT_SYMBOL(cond_resched_softirq);
4024
4025
4026 /**
4027  * yield - yield the current processor to other threads.
4028  *
4029  * this is a shortcut for kernel-space yielding - it marks the
4030  * thread runnable and calls sys_sched_yield().
4031  */
4032 void __sched yield(void)
4033 {
4034         set_current_state(TASK_RUNNING);
4035         sys_sched_yield();
4036 }
4037
4038 EXPORT_SYMBOL(yield);
4039
4040 /*
4041  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4042  * that process accounting knows that this is a task in IO wait state.
4043  *
4044  * But don't do that if it is a deliberate, throttling IO wait (this task
4045  * has set its backing_dev_info: the queue against which it should throttle)
4046  */
4047 void __sched io_schedule(void)
4048 {
4049         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4050
4051         atomic_inc(&rq->nr_iowait);
4052         schedule();
4053         atomic_dec(&rq->nr_iowait);
4054 }
4055
4056 EXPORT_SYMBOL(io_schedule);
4057
4058 long __sched io_schedule_timeout(long timeout)
4059 {
4060         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4061         long ret;
4062
4063         atomic_inc(&rq->nr_iowait);
4064         ret = schedule_timeout(timeout);
4065         atomic_dec(&rq->nr_iowait);
4066         return ret;
4067 }
4068
4069 /**
4070  * sys_sched_get_priority_max - return maximum RT priority.
4071  * @policy: scheduling class.
4072  *
4073  * this syscall returns the maximum rt_priority that can be used
4074  * by a given scheduling class.
4075  */
4076 asmlinkage long sys_sched_get_priority_max(int policy)
4077 {
4078         int ret = -EINVAL;
4079
4080         switch (policy) {
4081         case SCHED_FIFO:
4082         case SCHED_RR:
4083                 ret = MAX_USER_RT_PRIO-1;
4084                 break;
4085         case SCHED_NORMAL:
4086                 ret = 0;
4087                 break;
4088         }
4089         return ret;
4090 }
4091
4092 /**
4093  * sys_sched_get_priority_min - return minimum RT priority.
4094  * @policy: scheduling class.
4095  *
4096  * this syscall returns the minimum rt_priority that can be used
4097  * by a given scheduling class.
4098  */
4099 asmlinkage long sys_sched_get_priority_min(int policy)
4100 {
4101         int ret = -EINVAL;
4102
4103         switch (policy) {
4104         case SCHED_FIFO:
4105         case SCHED_RR:
4106                 ret = 1;
4107                 break;
4108         case SCHED_NORMAL:
4109                 ret = 0;
4110         }
4111         return ret;
4112 }
4113
4114 /**
4115  * sys_sched_rr_get_interval - return the default timeslice of a process.
4116  * @pid: pid of the process.
4117  * @interval: userspace pointer to the timeslice value.
4118  *
4119  * this syscall writes the default timeslice value of a given process
4120  * into the user-space timespec buffer. A value of '0' means infinity.
4121  */
4122 asmlinkage
4123 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4124 {
4125         int retval = -EINVAL;
4126         struct timespec t;
4127         task_t *p;
4128
4129         if (pid < 0)
4130                 goto out_nounlock;
4131
4132         retval = -ESRCH;
4133         read_lock(&tasklist_lock);
4134         p = find_process_by_pid(pid);
4135         if (!p)
4136                 goto out_unlock;
4137
4138         retval = security_task_getscheduler(p);
4139         if (retval)
4140                 goto out_unlock;
4141
4142         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4143                                 0 : task_timeslice(p), &t);
4144         read_unlock(&tasklist_lock);
4145         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4146 out_nounlock:
4147         return retval;
4148 out_unlock:
4149         read_unlock(&tasklist_lock);
4150         return retval;
4151 }
4152
4153 static inline struct task_struct *eldest_child(struct task_struct *p)
4154 {
4155         if (list_empty(&p->children)) return NULL;
4156         return list_entry(p->children.next,struct task_struct,sibling);
4157 }
4158
4159 static inline struct task_struct *older_sibling(struct task_struct *p)
4160 {
4161         if (p->sibling.prev==&p->parent->children) return NULL;
4162         return list_entry(p->sibling.prev,struct task_struct,sibling);
4163 }
4164
4165 static inline struct task_struct *younger_sibling(struct task_struct *p)
4166 {
4167         if (p->sibling.next==&p->parent->children) return NULL;
4168         return list_entry(p->sibling.next,struct task_struct,sibling);
4169 }
4170
4171 static void show_task(task_t *p)
4172 {
4173         task_t *relative;
4174         unsigned state;
4175         unsigned long free = 0;
4176         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4177
4178         printk("%-13.13s ", p->comm);
4179         state = p->state ? __ffs(p->state) + 1 : 0;
4180         if (state < ARRAY_SIZE(stat_nam))
4181                 printk(stat_nam[state]);
4182         else
4183                 printk("?");
4184 #if (BITS_PER_LONG == 32)
4185         if (state == TASK_RUNNING)
4186                 printk(" running ");
4187         else
4188                 printk(" %08lX ", thread_saved_pc(p));
4189 #else
4190         if (state == TASK_RUNNING)
4191                 printk("  running task   ");
4192         else
4193                 printk(" %016lx ", thread_saved_pc(p));
4194 #endif
4195 #ifdef CONFIG_DEBUG_STACK_USAGE
4196         {
4197                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4198                 while (!*n)
4199                         n++;
4200                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4201         }
4202 #endif
4203         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4204         if ((relative = eldest_child(p)))
4205                 printk("%5d ", relative->pid);
4206         else
4207                 printk("      ");
4208         if ((relative = younger_sibling(p)))
4209                 printk("%7d", relative->pid);
4210         else
4211                 printk("       ");
4212         if ((relative = older_sibling(p)))
4213                 printk(" %5d", relative->pid);
4214         else
4215                 printk("      ");
4216         if (!p->mm)
4217                 printk(" (L-TLB)\n");
4218         else
4219                 printk(" (NOTLB)\n");
4220
4221         if (state != TASK_RUNNING)
4222                 show_stack(p, NULL);
4223 }
4224
4225 void show_state(void)
4226 {
4227         task_t *g, *p;
4228
4229 #if (BITS_PER_LONG == 32)
4230         printk("\n"
4231                "                                               sibling\n");
4232         printk("  task             PC      pid father child younger older\n");
4233 #else
4234         printk("\n"
4235                "                                                       sibling\n");
4236         printk("  task                 PC          pid father child younger older\n");
4237 #endif
4238         read_lock(&tasklist_lock);
4239         do_each_thread(g, p) {
4240                 /*
4241                  * reset the NMI-timeout, listing all files on a slow
4242                  * console might take alot of time:
4243                  */
4244                 touch_nmi_watchdog();
4245                 show_task(p);
4246         } while_each_thread(g, p);
4247
4248         read_unlock(&tasklist_lock);
4249 }
4250
4251 /**
4252  * init_idle - set up an idle thread for a given CPU
4253  * @idle: task in question
4254  * @cpu: cpu the idle task belongs to
4255  *
4256  * NOTE: this function does not set the idle thread's NEED_RESCHED
4257  * flag, to make booting more robust.
4258  */
4259 void __devinit init_idle(task_t *idle, int cpu)
4260 {
4261         runqueue_t *rq = cpu_rq(cpu);
4262         unsigned long flags;
4263
4264         idle->sleep_avg = 0;
4265         idle->array = NULL;
4266         idle->prio = MAX_PRIO;
4267         idle->state = TASK_RUNNING;
4268         idle->cpus_allowed = cpumask_of_cpu(cpu);
4269         set_task_cpu(idle, cpu);
4270
4271         spin_lock_irqsave(&rq->lock, flags);
4272         rq->curr = rq->idle = idle;
4273 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4274         idle->oncpu = 1;
4275 #endif
4276         spin_unlock_irqrestore(&rq->lock, flags);
4277
4278         /* Set the preempt count _outside_ the spinlocks! */
4279 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4280         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4281 #else
4282         idle->thread_info->preempt_count = 0;
4283 #endif
4284 }
4285
4286 /*
4287  * In a system that switches off the HZ timer nohz_cpu_mask
4288  * indicates which cpus entered this state. This is used
4289  * in the rcu update to wait only for active cpus. For system
4290  * which do not switch off the HZ timer nohz_cpu_mask should
4291  * always be CPU_MASK_NONE.
4292  */
4293 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4294
4295 #ifdef CONFIG_SMP
4296 /*
4297  * This is how migration works:
4298  *
4299  * 1) we queue a migration_req_t structure in the source CPU's
4300  *    runqueue and wake up that CPU's migration thread.
4301  * 2) we down() the locked semaphore => thread blocks.
4302  * 3) migration thread wakes up (implicitly it forces the migrated
4303  *    thread off the CPU)
4304  * 4) it gets the migration request and checks whether the migrated
4305  *    task is still in the wrong runqueue.
4306  * 5) if it's in the wrong runqueue then the migration thread removes
4307  *    it and puts it into the right queue.
4308  * 6) migration thread up()s the semaphore.
4309  * 7) we wake up and the migration is done.
4310  */
4311
4312 /*
4313  * Change a given task's CPU affinity. Migrate the thread to a
4314  * proper CPU and schedule it away if the CPU it's executing on
4315  * is removed from the allowed bitmask.
4316  *
4317  * NOTE: the caller must have a valid reference to the task, the
4318  * task must not exit() & deallocate itself prematurely.  The
4319  * call is not atomic; no spinlocks may be held.
4320  */
4321 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4322 {
4323         unsigned long flags;
4324         int ret = 0;
4325         migration_req_t req;
4326         runqueue_t *rq;
4327
4328         rq = task_rq_lock(p, &flags);
4329         if (!cpus_intersects(new_mask, cpu_online_map)) {
4330                 ret = -EINVAL;
4331                 goto out;
4332         }
4333
4334         p->cpus_allowed = new_mask;
4335         /* Can the task run on the task's current CPU? If so, we're done */
4336         if (cpu_isset(task_cpu(p), new_mask))
4337                 goto out;
4338
4339         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4340                 /* Need help from migration thread: drop lock and wait. */
4341                 task_rq_unlock(rq, &flags);
4342                 wake_up_process(rq->migration_thread);
4343                 wait_for_completion(&req.done);
4344                 tlb_migrate_finish(p->mm);
4345                 return 0;
4346         }
4347 out:
4348         task_rq_unlock(rq, &flags);
4349         return ret;
4350 }
4351
4352 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4353
4354 /*
4355  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4356  * this because either it can't run here any more (set_cpus_allowed()
4357  * away from this CPU, or CPU going down), or because we're
4358  * attempting to rebalance this task on exec (sched_exec).
4359  *
4360  * So we race with normal scheduler movements, but that's OK, as long
4361  * as the task is no longer on this CPU.
4362  */
4363 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4364 {
4365         runqueue_t *rq_dest, *rq_src;
4366
4367         if (unlikely(cpu_is_offline(dest_cpu)))
4368                 return;
4369
4370         rq_src = cpu_rq(src_cpu);
4371         rq_dest = cpu_rq(dest_cpu);
4372
4373         double_rq_lock(rq_src, rq_dest);
4374         /* Already moved. */
4375         if (task_cpu(p) != src_cpu)
4376                 goto out;
4377         /* Affinity changed (again). */
4378         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4379                 goto out;
4380
4381         set_task_cpu(p, dest_cpu);
4382         if (p->array) {
4383                 /*
4384                  * Sync timestamp with rq_dest's before activating.
4385                  * The same thing could be achieved by doing this step
4386                  * afterwards, and pretending it was a local activate.
4387                  * This way is cleaner and logically correct.
4388                  */
4389                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4390                                 + rq_dest->timestamp_last_tick;
4391                 deactivate_task(p, rq_src);
4392                 activate_task(p, rq_dest, 0);
4393                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4394                         resched_task(rq_dest->curr);
4395         }
4396
4397 out:
4398         double_rq_unlock(rq_src, rq_dest);
4399 }
4400
4401 /*
4402  * migration_thread - this is a highprio system thread that performs
4403  * thread migration by bumping thread off CPU then 'pushing' onto
4404  * another runqueue.
4405  */
4406 static int migration_thread(void *data)
4407 {
4408         runqueue_t *rq;
4409         int cpu = (long)data;
4410
4411         rq = cpu_rq(cpu);
4412         BUG_ON(rq->migration_thread != current);
4413
4414         set_current_state(TASK_INTERRUPTIBLE);
4415         while (!kthread_should_stop()) {
4416                 struct list_head *head;
4417                 migration_req_t *req;
4418
4419                 try_to_freeze();
4420
4421                 spin_lock_irq(&rq->lock);
4422
4423                 if (cpu_is_offline(cpu)) {
4424                         spin_unlock_irq(&rq->lock);
4425                         goto wait_to_die;
4426                 }
4427
4428                 if (rq->active_balance) {
4429                         active_load_balance(rq, cpu);
4430                         rq->active_balance = 0;
4431                 }
4432
4433                 head = &rq->migration_queue;
4434
4435                 if (list_empty(head)) {
4436                         spin_unlock_irq(&rq->lock);
4437                         schedule();
4438                         set_current_state(TASK_INTERRUPTIBLE);
4439                         continue;
4440                 }
4441                 req = list_entry(head->next, migration_req_t, list);
4442                 list_del_init(head->next);
4443
4444                 spin_unlock(&rq->lock);
4445                 __migrate_task(req->task, cpu, req->dest_cpu);
4446                 local_irq_enable();
4447
4448                 complete(&req->done);
4449         }
4450         __set_current_state(TASK_RUNNING);
4451         return 0;
4452
4453 wait_to_die:
4454         /* Wait for kthread_stop */
4455         set_current_state(TASK_INTERRUPTIBLE);
4456         while (!kthread_should_stop()) {
4457                 schedule();
4458                 set_current_state(TASK_INTERRUPTIBLE);
4459         }
4460         __set_current_state(TASK_RUNNING);
4461         return 0;
4462 }
4463
4464 #ifdef CONFIG_HOTPLUG_CPU
4465 /* Figure out where task on dead CPU should go, use force if neccessary. */
4466 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4467 {
4468         int dest_cpu;
4469         cpumask_t mask;
4470
4471         /* On same node? */
4472         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4473         cpus_and(mask, mask, tsk->cpus_allowed);
4474         dest_cpu = any_online_cpu(mask);
4475
4476         /* On any allowed CPU? */
4477         if (dest_cpu == NR_CPUS)
4478                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4479
4480         /* No more Mr. Nice Guy. */
4481         if (dest_cpu == NR_CPUS) {
4482                 cpus_setall(tsk->cpus_allowed);
4483                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4484
4485                 /*
4486                  * Don't tell them about moving exiting tasks or
4487                  * kernel threads (both mm NULL), since they never
4488                  * leave kernel.
4489                  */
4490                 if (tsk->mm && printk_ratelimit())
4491                         printk(KERN_INFO "process %d (%s) no "
4492                                "longer affine to cpu%d\n",
4493                                tsk->pid, tsk->comm, dead_cpu);
4494         }
4495         __migrate_task(tsk, dead_cpu, dest_cpu);
4496 }
4497
4498 /*
4499  * While a dead CPU has no uninterruptible tasks queued at this point,
4500  * it might still have a nonzero ->nr_uninterruptible counter, because
4501  * for performance reasons the counter is not stricly tracking tasks to
4502  * their home CPUs. So we just add the counter to another CPU's counter,
4503  * to keep the global sum constant after CPU-down:
4504  */
4505 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4506 {
4507         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4508         unsigned long flags;
4509
4510         local_irq_save(flags);
4511         double_rq_lock(rq_src, rq_dest);
4512         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4513         rq_src->nr_uninterruptible = 0;
4514         double_rq_unlock(rq_src, rq_dest);
4515         local_irq_restore(flags);
4516 }
4517
4518 /* Run through task list and migrate tasks from the dead cpu. */
4519 static void migrate_live_tasks(int src_cpu)
4520 {
4521         struct task_struct *tsk, *t;
4522
4523         write_lock_irq(&tasklist_lock);
4524
4525         do_each_thread(t, tsk) {
4526                 if (tsk == current)
4527                         continue;
4528
4529                 if (task_cpu(tsk) == src_cpu)
4530                         move_task_off_dead_cpu(src_cpu, tsk);
4531         } while_each_thread(t, tsk);
4532
4533         write_unlock_irq(&tasklist_lock);
4534 }
4535
4536 /* Schedules idle task to be the next runnable task on current CPU.
4537  * It does so by boosting its priority to highest possible and adding it to
4538  * the _front_ of runqueue. Used by CPU offline code.
4539  */
4540 void sched_idle_next(void)
4541 {
4542         int cpu = smp_processor_id();
4543         runqueue_t *rq = this_rq();
4544         struct task_struct *p = rq->idle;
4545         unsigned long flags;
4546
4547         /* cpu has to be offline */
4548         BUG_ON(cpu_online(cpu));
4549
4550         /* Strictly not necessary since rest of the CPUs are stopped by now
4551          * and interrupts disabled on current cpu.
4552          */
4553         spin_lock_irqsave(&rq->lock, flags);
4554
4555         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4556         /* Add idle task to _front_ of it's priority queue */
4557         __activate_idle_task(p, rq);
4558
4559         spin_unlock_irqrestore(&rq->lock, flags);
4560 }
4561
4562 /* Ensures that the idle task is using init_mm right before its cpu goes
4563  * offline.
4564  */
4565 void idle_task_exit(void)
4566 {
4567         struct mm_struct *mm = current->active_mm;
4568
4569         BUG_ON(cpu_online(smp_processor_id()));
4570
4571         if (mm != &init_mm)
4572                 switch_mm(mm, &init_mm, current);
4573         mmdrop(mm);
4574 }
4575
4576 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4577 {
4578         struct runqueue *rq = cpu_rq(dead_cpu);
4579
4580         /* Must be exiting, otherwise would be on tasklist. */
4581         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4582
4583         /* Cannot have done final schedule yet: would have vanished. */
4584         BUG_ON(tsk->flags & PF_DEAD);
4585
4586         get_task_struct(tsk);
4587
4588         /*
4589          * Drop lock around migration; if someone else moves it,
4590          * that's OK.  No task can be added to this CPU, so iteration is
4591          * fine.
4592          */
4593         spin_unlock_irq(&rq->lock);
4594         move_task_off_dead_cpu(dead_cpu, tsk);
4595         spin_lock_irq(&rq->lock);
4596
4597         put_task_struct(tsk);
4598 }
4599
4600 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4601 static void migrate_dead_tasks(unsigned int dead_cpu)
4602 {
4603         unsigned arr, i;
4604         struct runqueue *rq = cpu_rq(dead_cpu);
4605
4606         for (arr = 0; arr < 2; arr++) {
4607                 for (i = 0; i < MAX_PRIO; i++) {
4608                         struct list_head *list = &rq->arrays[arr].queue[i];
4609                         while (!list_empty(list))
4610                                 migrate_dead(dead_cpu,
4611                                              list_entry(list->next, task_t,
4612                                                         run_list));
4613                 }
4614         }
4615 }
4616 #endif /* CONFIG_HOTPLUG_CPU */
4617
4618 /*
4619  * migration_call - callback that gets triggered when a CPU is added.
4620  * Here we can start up the necessary migration thread for the new CPU.
4621  */
4622 static int migration_call(struct notifier_block *nfb, unsigned long action,
4623                           void *hcpu)
4624 {
4625         int cpu = (long)hcpu;
4626         struct task_struct *p;
4627         struct runqueue *rq;
4628         unsigned long flags;
4629
4630         switch (action) {
4631         case CPU_UP_PREPARE:
4632                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4633                 if (IS_ERR(p))
4634                         return NOTIFY_BAD;
4635                 p->flags |= PF_NOFREEZE;
4636                 kthread_bind(p, cpu);
4637                 /* Must be high prio: stop_machine expects to yield to it. */
4638                 rq = task_rq_lock(p, &flags);
4639                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4640                 task_rq_unlock(rq, &flags);
4641                 cpu_rq(cpu)->migration_thread = p;
4642                 break;
4643         case CPU_ONLINE:
4644                 /* Strictly unneccessary, as first user will wake it. */
4645                 wake_up_process(cpu_rq(cpu)->migration_thread);
4646                 break;
4647 #ifdef CONFIG_HOTPLUG_CPU
4648         case CPU_UP_CANCELED:
4649                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4650                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4651                 kthread_stop(cpu_rq(cpu)->migration_thread);
4652                 cpu_rq(cpu)->migration_thread = NULL;
4653                 break;
4654         case CPU_DEAD:
4655                 migrate_live_tasks(cpu);
4656                 rq = cpu_rq(cpu);
4657                 kthread_stop(rq->migration_thread);
4658                 rq->migration_thread = NULL;
4659                 /* Idle task back to normal (off runqueue, low prio) */
4660                 rq = task_rq_lock(rq->idle, &flags);
4661                 deactivate_task(rq->idle, rq);
4662                 rq->idle->static_prio = MAX_PRIO;
4663                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4664                 migrate_dead_tasks(cpu);
4665                 task_rq_unlock(rq, &flags);
4666                 migrate_nr_uninterruptible(rq);
4667                 BUG_ON(rq->nr_running != 0);
4668
4669                 /* No need to migrate the tasks: it was best-effort if
4670                  * they didn't do lock_cpu_hotplug().  Just wake up
4671                  * the requestors. */
4672                 spin_lock_irq(&rq->lock);
4673                 while (!list_empty(&rq->migration_queue)) {
4674                         migration_req_t *req;
4675                         req = list_entry(rq->migration_queue.next,
4676                                          migration_req_t, list);
4677                         list_del_init(&req->list);
4678                         complete(&req->done);
4679                 }
4680                 spin_unlock_irq(&rq->lock);
4681                 break;
4682 #endif
4683         }
4684         return NOTIFY_OK;
4685 }
4686
4687 /* Register at highest priority so that task migration (migrate_all_tasks)
4688  * happens before everything else.
4689  */
4690 static struct notifier_block __devinitdata migration_notifier = {
4691         .notifier_call = migration_call,
4692         .priority = 10
4693 };
4694
4695 int __init migration_init(void)
4696 {
4697         void *cpu = (void *)(long)smp_processor_id();
4698         /* Start one for boot CPU. */
4699         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4700         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4701         register_cpu_notifier(&migration_notifier);
4702         return 0;
4703 }
4704 #endif
4705
4706 #ifdef CONFIG_SMP
4707 #undef SCHED_DOMAIN_DEBUG
4708 #ifdef SCHED_DOMAIN_DEBUG
4709 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4710 {
4711         int level = 0;
4712
4713         if (!sd) {
4714                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4715                 return;
4716         }
4717
4718         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4719
4720         do {
4721                 int i;
4722                 char str[NR_CPUS];
4723                 struct sched_group *group = sd->groups;
4724                 cpumask_t groupmask;
4725
4726                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4727                 cpus_clear(groupmask);
4728
4729                 printk(KERN_DEBUG);
4730                 for (i = 0; i < level + 1; i++)
4731                         printk(" ");
4732                 printk("domain %d: ", level);
4733
4734                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4735                         printk("does not load-balance\n");
4736                         if (sd->parent)
4737                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4738                         break;
4739                 }
4740
4741                 printk("span %s\n", str);
4742
4743                 if (!cpu_isset(cpu, sd->span))
4744                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4745                 if (!cpu_isset(cpu, group->cpumask))
4746                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4747
4748                 printk(KERN_DEBUG);
4749                 for (i = 0; i < level + 2; i++)
4750                         printk(" ");
4751                 printk("groups:");
4752                 do {
4753                         if (!group) {
4754                                 printk("\n");
4755                                 printk(KERN_ERR "ERROR: group is NULL\n");
4756                                 break;
4757                         }
4758
4759                         if (!group->cpu_power) {
4760                                 printk("\n");
4761                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4762                         }
4763
4764                         if (!cpus_weight(group->cpumask)) {
4765                                 printk("\n");
4766                                 printk(KERN_ERR "ERROR: empty group\n");
4767                         }
4768
4769                         if (cpus_intersects(groupmask, group->cpumask)) {
4770                                 printk("\n");
4771                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4772                         }
4773
4774                         cpus_or(groupmask, groupmask, group->cpumask);
4775
4776                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4777                         printk(" %s", str);
4778
4779                         group = group->next;
4780                 } while (group != sd->groups);
4781                 printk("\n");
4782
4783                 if (!cpus_equal(sd->span, groupmask))
4784                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4785
4786                 level++;
4787                 sd = sd->parent;
4788
4789                 if (sd) {
4790                         if (!cpus_subset(groupmask, sd->span))
4791                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4792                 }
4793
4794         } while (sd);
4795 }
4796 #else
4797 #define sched_domain_debug(sd, cpu) {}
4798 #endif
4799
4800 static int sd_degenerate(struct sched_domain *sd)
4801 {
4802         if (cpus_weight(sd->span) == 1)
4803                 return 1;
4804
4805         /* Following flags need at least 2 groups */
4806         if (sd->flags & (SD_LOAD_BALANCE |
4807                          SD_BALANCE_NEWIDLE |
4808                          SD_BALANCE_FORK |
4809                          SD_BALANCE_EXEC)) {
4810                 if (sd->groups != sd->groups->next)
4811                         return 0;
4812         }
4813
4814         /* Following flags don't use groups */
4815         if (sd->flags & (SD_WAKE_IDLE |
4816                          SD_WAKE_AFFINE |
4817                          SD_WAKE_BALANCE))
4818                 return 0;
4819
4820         return 1;
4821 }
4822
4823 static int sd_parent_degenerate(struct sched_domain *sd,
4824                                                 struct sched_domain *parent)
4825 {
4826         unsigned long cflags = sd->flags, pflags = parent->flags;
4827
4828         if (sd_degenerate(parent))
4829                 return 1;
4830
4831         if (!cpus_equal(sd->span, parent->span))
4832                 return 0;
4833
4834         /* Does parent contain flags not in child? */
4835         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4836         if (cflags & SD_WAKE_AFFINE)
4837                 pflags &= ~SD_WAKE_BALANCE;
4838         /* Flags needing groups don't count if only 1 group in parent */
4839         if (parent->groups == parent->groups->next) {
4840                 pflags &= ~(SD_LOAD_BALANCE |
4841                                 SD_BALANCE_NEWIDLE |
4842                                 SD_BALANCE_FORK |
4843                                 SD_BALANCE_EXEC);
4844         }
4845         if (~cflags & pflags)
4846                 return 0;
4847
4848         return 1;
4849 }
4850
4851 /*
4852  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4853  * hold the hotplug lock.
4854  */
4855 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4856 {
4857         runqueue_t *rq = cpu_rq(cpu);
4858         struct sched_domain *tmp;
4859
4860         /* Remove the sched domains which do not contribute to scheduling. */
4861         for (tmp = sd; tmp; tmp = tmp->parent) {
4862                 struct sched_domain *parent = tmp->parent;
4863                 if (!parent)
4864                         break;
4865                 if (sd_parent_degenerate(tmp, parent))
4866                         tmp->parent = parent->parent;
4867         }
4868
4869         if (sd && sd_degenerate(sd))
4870                 sd = sd->parent;
4871
4872         sched_domain_debug(sd, cpu);
4873
4874         rcu_assign_pointer(rq->sd, sd);
4875 }
4876
4877 /* cpus with isolated domains */
4878 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4879
4880 /* Setup the mask of cpus configured for isolated domains */
4881 static int __init isolated_cpu_setup(char *str)
4882 {
4883         int ints[NR_CPUS], i;
4884
4885         str = get_options(str, ARRAY_SIZE(ints), ints);
4886         cpus_clear(cpu_isolated_map);
4887         for (i = 1; i <= ints[0]; i++)
4888                 if (ints[i] < NR_CPUS)
4889                         cpu_set(ints[i], cpu_isolated_map);
4890         return 1;
4891 }
4892
4893 __setup ("isolcpus=", isolated_cpu_setup);
4894
4895 /*
4896  * init_sched_build_groups takes an array of groups, the cpumask we wish
4897  * to span, and a pointer to a function which identifies what group a CPU
4898  * belongs to. The return value of group_fn must be a valid index into the
4899  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4900  * keep track of groups covered with a cpumask_t).
4901  *
4902  * init_sched_build_groups will build a circular linked list of the groups
4903  * covered by the given span, and will set each group's ->cpumask correctly,
4904  * and ->cpu_power to 0.
4905  */
4906 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4907                                     int (*group_fn)(int cpu))
4908 {
4909         struct sched_group *first = NULL, *last = NULL;
4910         cpumask_t covered = CPU_MASK_NONE;
4911         int i;
4912
4913         for_each_cpu_mask(i, span) {
4914                 int group = group_fn(i);
4915                 struct sched_group *sg = &groups[group];
4916                 int j;
4917
4918                 if (cpu_isset(i, covered))
4919                         continue;
4920
4921                 sg->cpumask = CPU_MASK_NONE;
4922                 sg->cpu_power = 0;
4923
4924                 for_each_cpu_mask(j, span) {
4925                         if (group_fn(j) != group)
4926                                 continue;
4927
4928                         cpu_set(j, covered);
4929                         cpu_set(j, sg->cpumask);
4930                 }
4931                 if (!first)
4932                         first = sg;
4933                 if (last)
4934                         last->next = sg;
4935                 last = sg;
4936         }
4937         last->next = first;
4938 }
4939
4940 #define SD_NODES_PER_DOMAIN 16
4941
4942 #ifdef CONFIG_NUMA
4943 /**
4944  * find_next_best_node - find the next node to include in a sched_domain
4945  * @node: node whose sched_domain we're building
4946  * @used_nodes: nodes already in the sched_domain
4947  *
4948  * Find the next node to include in a given scheduling domain.  Simply
4949  * finds the closest node not already in the @used_nodes map.
4950  *
4951  * Should use nodemask_t.
4952  */
4953 static int find_next_best_node(int node, unsigned long *used_nodes)
4954 {
4955         int i, n, val, min_val, best_node = 0;
4956
4957         min_val = INT_MAX;
4958
4959         for (i = 0; i < MAX_NUMNODES; i++) {
4960                 /* Start at @node */
4961                 n = (node + i) % MAX_NUMNODES;
4962
4963                 if (!nr_cpus_node(n))
4964                         continue;
4965
4966                 /* Skip already used nodes */
4967                 if (test_bit(n, used_nodes))
4968                         continue;
4969
4970                 /* Simple min distance search */
4971                 val = node_distance(node, n);
4972
4973                 if (val < min_val) {
4974                         min_val = val;
4975                         best_node = n;
4976                 }
4977         }
4978
4979         set_bit(best_node, used_nodes);
4980         return best_node;
4981 }
4982
4983 /**
4984  * sched_domain_node_span - get a cpumask for a node's sched_domain
4985  * @node: node whose cpumask we're constructing
4986  * @size: number of nodes to include in this span
4987  *
4988  * Given a node, construct a good cpumask for its sched_domain to span.  It
4989  * should be one that prevents unnecessary balancing, but also spreads tasks
4990  * out optimally.
4991  */
4992 static cpumask_t sched_domain_node_span(int node)
4993 {
4994         int i;
4995         cpumask_t span, nodemask;
4996         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4997
4998         cpus_clear(span);
4999         bitmap_zero(used_nodes, MAX_NUMNODES);
5000
5001         nodemask = node_to_cpumask(node);
5002         cpus_or(span, span, nodemask);
5003         set_bit(node, used_nodes);
5004
5005         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5006                 int next_node = find_next_best_node(node, used_nodes);
5007                 nodemask = node_to_cpumask(next_node);
5008                 cpus_or(span, span, nodemask);
5009         }
5010
5011         return span;
5012 }
5013 #endif
5014
5015 /*
5016  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5017  * can switch it on easily if needed.
5018  */
5019 #ifdef CONFIG_SCHED_SMT
5020 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5021 static struct sched_group sched_group_cpus[NR_CPUS];
5022 static int cpu_to_cpu_group(int cpu)
5023 {
5024         return cpu;
5025 }
5026 #endif
5027
5028 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5029 static struct sched_group sched_group_phys[NR_CPUS];
5030 static int cpu_to_phys_group(int cpu)
5031 {
5032 #ifdef CONFIG_SCHED_SMT
5033         return first_cpu(cpu_sibling_map[cpu]);
5034 #else
5035         return cpu;
5036 #endif
5037 }
5038
5039 #ifdef CONFIG_NUMA
5040 /*
5041  * The init_sched_build_groups can't handle what we want to do with node
5042  * groups, so roll our own. Now each node has its own list of groups which
5043  * gets dynamically allocated.
5044  */
5045 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5046 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5047
5048 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5049 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5050
5051 static int cpu_to_allnodes_group(int cpu)
5052 {
5053         return cpu_to_node(cpu);
5054 }
5055 #endif
5056
5057 /*
5058  * Build sched domains for a given set of cpus and attach the sched domains
5059  * to the individual cpus
5060  */
5061 void build_sched_domains(const cpumask_t *cpu_map)
5062 {
5063         int i;
5064 #ifdef CONFIG_NUMA
5065         struct sched_group **sched_group_nodes = NULL;
5066         struct sched_group *sched_group_allnodes = NULL;
5067
5068         /*
5069          * Allocate the per-node list of sched groups
5070          */
5071         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5072                                            GFP_ATOMIC);
5073         if (!sched_group_nodes) {
5074                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5075                 return;
5076         }
5077         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5078 #endif
5079
5080         /*
5081          * Set up domains for cpus specified by the cpu_map.
5082          */
5083         for_each_cpu_mask(i, *cpu_map) {
5084                 int group;
5085                 struct sched_domain *sd = NULL, *p;
5086                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5087
5088                 cpus_and(nodemask, nodemask, *cpu_map);
5089
5090 #ifdef CONFIG_NUMA
5091                 if (cpus_weight(*cpu_map)
5092                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5093                         if (!sched_group_allnodes) {
5094                                 sched_group_allnodes
5095                                         = kmalloc(sizeof(struct sched_group)
5096                                                         * MAX_NUMNODES,
5097                                                   GFP_KERNEL);
5098                                 if (!sched_group_allnodes) {
5099                                         printk(KERN_WARNING
5100                                         "Can not alloc allnodes sched group\n");
5101                                         break;
5102                                 }
5103                                 sched_group_allnodes_bycpu[i]
5104                                                 = sched_group_allnodes;
5105                         }
5106                         sd = &per_cpu(allnodes_domains, i);
5107                         *sd = SD_ALLNODES_INIT;
5108                         sd->span = *cpu_map;
5109                         group = cpu_to_allnodes_group(i);
5110                         sd->groups = &sched_group_allnodes[group];
5111                         p = sd;
5112                 } else
5113                         p = NULL;
5114
5115                 sd = &per_cpu(node_domains, i);
5116                 *sd = SD_NODE_INIT;
5117                 sd->span = sched_domain_node_span(cpu_to_node(i));
5118                 sd->parent = p;
5119                 cpus_and(sd->span, sd->span, *cpu_map);
5120 #endif
5121
5122                 p = sd;
5123                 sd = &per_cpu(phys_domains, i);
5124                 group = cpu_to_phys_group(i);
5125                 *sd = SD_CPU_INIT;
5126                 sd->span = nodemask;
5127                 sd->parent = p;
5128                 sd->groups = &sched_group_phys[group];
5129
5130 #ifdef CONFIG_SCHED_SMT
5131                 p = sd;
5132                 sd = &per_cpu(cpu_domains, i);
5133                 group = cpu_to_cpu_group(i);
5134                 *sd = SD_SIBLING_INIT;
5135                 sd->span = cpu_sibling_map[i];
5136                 cpus_and(sd->span, sd->span, *cpu_map);
5137                 sd->parent = p;
5138                 sd->groups = &sched_group_cpus[group];
5139 #endif
5140         }
5141
5142 #ifdef CONFIG_SCHED_SMT
5143         /* Set up CPU (sibling) groups */
5144         for_each_cpu_mask(i, *cpu_map) {
5145                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5146                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5147                 if (i != first_cpu(this_sibling_map))
5148                         continue;
5149
5150                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5151                                                 &cpu_to_cpu_group);
5152         }
5153 #endif
5154
5155         /* Set up physical groups */
5156         for (i = 0; i < MAX_NUMNODES; i++) {
5157                 cpumask_t nodemask = node_to_cpumask(i);
5158
5159                 cpus_and(nodemask, nodemask, *cpu_map);
5160                 if (cpus_empty(nodemask))
5161                         continue;
5162
5163                 init_sched_build_groups(sched_group_phys, nodemask,
5164                                                 &cpu_to_phys_group);
5165         }
5166
5167 #ifdef CONFIG_NUMA
5168         /* Set up node groups */
5169         if (sched_group_allnodes)
5170                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5171                                         &cpu_to_allnodes_group);
5172
5173         for (i = 0; i < MAX_NUMNODES; i++) {
5174                 /* Set up node groups */
5175                 struct sched_group *sg, *prev;
5176                 cpumask_t nodemask = node_to_cpumask(i);
5177                 cpumask_t domainspan;
5178                 cpumask_t covered = CPU_MASK_NONE;
5179                 int j;
5180
5181                 cpus_and(nodemask, nodemask, *cpu_map);
5182                 if (cpus_empty(nodemask)) {
5183                         sched_group_nodes[i] = NULL;
5184                         continue;
5185                 }
5186
5187                 domainspan = sched_domain_node_span(i);
5188                 cpus_and(domainspan, domainspan, *cpu_map);
5189
5190                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5191                 sched_group_nodes[i] = sg;
5192                 for_each_cpu_mask(j, nodemask) {
5193                         struct sched_domain *sd;
5194                         sd = &per_cpu(node_domains, j);
5195                         sd->groups = sg;
5196                         if (sd->groups == NULL) {
5197                                 /* Turn off balancing if we have no groups */
5198                                 sd->flags = 0;
5199                         }
5200                 }
5201                 if (!sg) {
5202                         printk(KERN_WARNING
5203                         "Can not alloc domain group for node %d\n", i);
5204                         continue;
5205                 }
5206                 sg->cpu_power = 0;
5207                 sg->cpumask = nodemask;
5208                 cpus_or(covered, covered, nodemask);
5209                 prev = sg;
5210
5211                 for (j = 0; j < MAX_NUMNODES; j++) {
5212                         cpumask_t tmp, notcovered;
5213                         int n = (i + j) % MAX_NUMNODES;
5214
5215                         cpus_complement(notcovered, covered);
5216                         cpus_and(tmp, notcovered, *cpu_map);
5217                         cpus_and(tmp, tmp, domainspan);
5218                         if (cpus_empty(tmp))
5219                                 break;
5220
5221                         nodemask = node_to_cpumask(n);
5222                         cpus_and(tmp, tmp, nodemask);
5223                         if (cpus_empty(tmp))
5224                                 continue;
5225
5226                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5227                         if (!sg) {
5228                                 printk(KERN_WARNING
5229                                 "Can not alloc domain group for node %d\n", j);
5230                                 break;
5231                         }
5232                         sg->cpu_power = 0;
5233                         sg->cpumask = tmp;
5234                         cpus_or(covered, covered, tmp);
5235                         prev->next = sg;
5236                         prev = sg;
5237                 }
5238                 prev->next = sched_group_nodes[i];
5239         }
5240 #endif
5241
5242         /* Calculate CPU power for physical packages and nodes */
5243         for_each_cpu_mask(i, *cpu_map) {
5244                 int power;
5245                 struct sched_domain *sd;
5246 #ifdef CONFIG_SCHED_SMT
5247                 sd = &per_cpu(cpu_domains, i);
5248                 power = SCHED_LOAD_SCALE;
5249                 sd->groups->cpu_power = power;
5250 #endif
5251
5252                 sd = &per_cpu(phys_domains, i);
5253                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5254                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5255                 sd->groups->cpu_power = power;
5256
5257 #ifdef CONFIG_NUMA
5258                 sd = &per_cpu(allnodes_domains, i);
5259                 if (sd->groups) {
5260                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5261                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5262                         sd->groups->cpu_power = power;
5263                 }
5264 #endif
5265         }
5266
5267 #ifdef CONFIG_NUMA
5268         for (i = 0; i < MAX_NUMNODES; i++) {
5269                 struct sched_group *sg = sched_group_nodes[i];
5270                 int j;
5271
5272                 if (sg == NULL)
5273                         continue;
5274 next_sg:
5275                 for_each_cpu_mask(j, sg->cpumask) {
5276                         struct sched_domain *sd;
5277                         int power;
5278
5279                         sd = &per_cpu(phys_domains, j);
5280                         if (j != first_cpu(sd->groups->cpumask)) {
5281                                 /*
5282                                  * Only add "power" once for each
5283                                  * physical package.
5284                                  */
5285                                 continue;
5286                         }
5287                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5288                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5289
5290                         sg->cpu_power += power;
5291                 }
5292                 sg = sg->next;
5293                 if (sg != sched_group_nodes[i])
5294                         goto next_sg;
5295         }
5296 #endif
5297
5298         /* Attach the domains */
5299         for_each_cpu_mask(i, *cpu_map) {
5300                 struct sched_domain *sd;
5301 #ifdef CONFIG_SCHED_SMT
5302                 sd = &per_cpu(cpu_domains, i);
5303 #else
5304                 sd = &per_cpu(phys_domains, i);
5305 #endif
5306                 cpu_attach_domain(sd, i);
5307         }
5308 }
5309 /*
5310  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5311  */
5312 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5313 {
5314         cpumask_t cpu_default_map;
5315
5316         /*
5317          * Setup mask for cpus without special case scheduling requirements.
5318          * For now this just excludes isolated cpus, but could be used to
5319          * exclude other special cases in the future.
5320          */
5321         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5322
5323         build_sched_domains(&cpu_default_map);
5324 }
5325
5326 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5327 {
5328 #ifdef CONFIG_NUMA
5329         int i;
5330         int cpu;
5331
5332         for_each_cpu_mask(cpu, *cpu_map) {
5333                 struct sched_group *sched_group_allnodes
5334                         = sched_group_allnodes_bycpu[cpu];
5335                 struct sched_group **sched_group_nodes
5336                         = sched_group_nodes_bycpu[cpu];
5337
5338                 if (sched_group_allnodes) {
5339                         kfree(sched_group_allnodes);
5340                         sched_group_allnodes_bycpu[cpu] = NULL;
5341                 }
5342
5343                 if (!sched_group_nodes)
5344                         continue;
5345
5346                 for (i = 0; i < MAX_NUMNODES; i++) {
5347                         cpumask_t nodemask = node_to_cpumask(i);
5348                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5349
5350                         cpus_and(nodemask, nodemask, *cpu_map);
5351                         if (cpus_empty(nodemask))
5352                                 continue;
5353
5354                         if (sg == NULL)
5355                                 continue;
5356                         sg = sg->next;
5357 next_sg:
5358                         oldsg = sg;
5359                         sg = sg->next;
5360                         kfree(oldsg);
5361                         if (oldsg != sched_group_nodes[i])
5362                                 goto next_sg;
5363                 }
5364                 kfree(sched_group_nodes);
5365                 sched_group_nodes_bycpu[cpu] = NULL;
5366         }
5367 #endif
5368 }
5369
5370 /*
5371  * Detach sched domains from a group of cpus specified in cpu_map
5372  * These cpus will now be attached to the NULL domain
5373  */
5374 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5375 {
5376         int i;
5377
5378         for_each_cpu_mask(i, *cpu_map)
5379                 cpu_attach_domain(NULL, i);
5380         synchronize_sched();
5381         arch_destroy_sched_domains(cpu_map);
5382 }
5383
5384 /*
5385  * Partition sched domains as specified by the cpumasks below.
5386  * This attaches all cpus from the cpumasks to the NULL domain,
5387  * waits for a RCU quiescent period, recalculates sched
5388  * domain information and then attaches them back to the
5389  * correct sched domains
5390  * Call with hotplug lock held
5391  */
5392 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5393 {
5394         cpumask_t change_map;
5395
5396         cpus_and(*partition1, *partition1, cpu_online_map);
5397         cpus_and(*partition2, *partition2, cpu_online_map);
5398         cpus_or(change_map, *partition1, *partition2);
5399
5400         /* Detach sched domains from all of the affected cpus */
5401         detach_destroy_domains(&change_map);
5402         if (!cpus_empty(*partition1))
5403                 build_sched_domains(partition1);
5404         if (!cpus_empty(*partition2))
5405                 build_sched_domains(partition2);
5406 }
5407
5408 #ifdef CONFIG_HOTPLUG_CPU
5409 /*
5410  * Force a reinitialization of the sched domains hierarchy.  The domains
5411  * and groups cannot be updated in place without racing with the balancing
5412  * code, so we temporarily attach all running cpus to the NULL domain
5413  * which will prevent rebalancing while the sched domains are recalculated.
5414  */
5415 static int update_sched_domains(struct notifier_block *nfb,
5416                                 unsigned long action, void *hcpu)
5417 {
5418         switch (action) {
5419         case CPU_UP_PREPARE:
5420         case CPU_DOWN_PREPARE:
5421                 detach_destroy_domains(&cpu_online_map);
5422                 return NOTIFY_OK;
5423
5424         case CPU_UP_CANCELED:
5425         case CPU_DOWN_FAILED:
5426         case CPU_ONLINE:
5427         case CPU_DEAD:
5428                 /*
5429                  * Fall through and re-initialise the domains.
5430                  */
5431                 break;
5432         default:
5433                 return NOTIFY_DONE;
5434         }
5435
5436         /* The hotplug lock is already held by cpu_up/cpu_down */
5437         arch_init_sched_domains(&cpu_online_map);
5438
5439         return NOTIFY_OK;
5440 }
5441 #endif
5442
5443 void __init sched_init_smp(void)
5444 {
5445         lock_cpu_hotplug();
5446         arch_init_sched_domains(&cpu_online_map);
5447         unlock_cpu_hotplug();
5448         /* XXX: Theoretical race here - CPU may be hotplugged now */
5449         hotcpu_notifier(update_sched_domains, 0);
5450 }
5451 #else
5452 void __init sched_init_smp(void)
5453 {
5454 }
5455 #endif /* CONFIG_SMP */
5456
5457 int in_sched_functions(unsigned long addr)
5458 {
5459         /* Linker adds these: start and end of __sched functions */
5460         extern char __sched_text_start[], __sched_text_end[];
5461         return in_lock_functions(addr) ||
5462                 (addr >= (unsigned long)__sched_text_start
5463                 && addr < (unsigned long)__sched_text_end);
5464 }
5465
5466 void __init sched_init(void)
5467 {
5468         runqueue_t *rq;
5469         int i, j, k;
5470
5471         for (i = 0; i < NR_CPUS; i++) {
5472                 prio_array_t *array;
5473
5474                 rq = cpu_rq(i);
5475                 spin_lock_init(&rq->lock);
5476                 rq->nr_running = 0;
5477                 rq->active = rq->arrays;
5478                 rq->expired = rq->arrays + 1;
5479                 rq->best_expired_prio = MAX_PRIO;
5480
5481 #ifdef CONFIG_SMP
5482                 rq->sd = NULL;
5483                 for (j = 1; j < 3; j++)
5484                         rq->cpu_load[j] = 0;
5485                 rq->active_balance = 0;
5486                 rq->push_cpu = 0;
5487                 rq->migration_thread = NULL;
5488                 INIT_LIST_HEAD(&rq->migration_queue);
5489 #endif
5490                 atomic_set(&rq->nr_iowait, 0);
5491
5492                 for (j = 0; j < 2; j++) {
5493                         array = rq->arrays + j;
5494                         for (k = 0; k < MAX_PRIO; k++) {
5495                                 INIT_LIST_HEAD(array->queue + k);
5496                                 __clear_bit(k, array->bitmap);
5497                         }
5498                         // delimiter for bitsearch
5499                         __set_bit(MAX_PRIO, array->bitmap);
5500                 }
5501         }
5502
5503         /*
5504          * The boot idle thread does lazy MMU switching as well:
5505          */
5506         atomic_inc(&init_mm.mm_count);
5507         enter_lazy_tlb(&init_mm, current);
5508
5509         /*
5510          * Make us the idle thread. Technically, schedule() should not be
5511          * called from this thread, however somewhere below it might be,
5512          * but because we are the idle thread, we just pick up running again
5513          * when this runqueue becomes "idle".
5514          */
5515         init_idle(current, smp_processor_id());
5516 }
5517
5518 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5519 void __might_sleep(char *file, int line)
5520 {
5521 #if defined(in_atomic)
5522         static unsigned long prev_jiffy;        /* ratelimiting */
5523
5524         if ((in_atomic() || irqs_disabled()) &&
5525             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5526                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5527                         return;
5528                 prev_jiffy = jiffies;
5529                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5530                                 " context at %s:%d\n", file, line);
5531                 printk("in_atomic():%d, irqs_disabled():%d\n",
5532                         in_atomic(), irqs_disabled());
5533                 dump_stack();
5534         }
5535 #endif
5536 }
5537 EXPORT_SYMBOL(__might_sleep);
5538 #endif
5539
5540 #ifdef CONFIG_MAGIC_SYSRQ
5541 void normalize_rt_tasks(void)
5542 {
5543         struct task_struct *p;
5544         prio_array_t *array;
5545         unsigned long flags;
5546         runqueue_t *rq;
5547
5548         read_lock_irq(&tasklist_lock);
5549         for_each_process (p) {
5550                 if (!rt_task(p))
5551                         continue;
5552
5553                 rq = task_rq_lock(p, &flags);
5554
5555                 array = p->array;
5556                 if (array)
5557                         deactivate_task(p, task_rq(p));
5558                 __setscheduler(p, SCHED_NORMAL, 0);
5559                 if (array) {
5560                         __activate_task(p, task_rq(p));
5561                         resched_task(rq->curr);
5562                 }
5563
5564                 task_rq_unlock(rq, &flags);
5565         }
5566         read_unlock_irq(&tasklist_lock);
5567 }
5568
5569 #endif /* CONFIG_MAGIC_SYSRQ */