]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/sched.c
[PATCH] spinlock consolidation
[karo-tx-linux.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t * p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 local_group = cpu_isset(this_cpu, group->cpumask);
970                 /* XXX: put a cpus allowed check */
971
972                 /* Tally up the load of all CPUs in the group */
973                 avg_load = 0;
974
975                 for_each_cpu_mask(i, group->cpumask) {
976                         /* Bias balancing toward cpus of our domain */
977                         if (local_group)
978                                 load = source_load(i, load_idx);
979                         else
980                                 load = target_load(i, load_idx);
981
982                         avg_load += load;
983                 }
984
985                 /* Adjust by relative CPU power of the group */
986                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
987
988                 if (local_group) {
989                         this_load = avg_load;
990                         this = group;
991                 } else if (avg_load < min_load) {
992                         min_load = avg_load;
993                         idlest = group;
994                 }
995                 group = group->next;
996         } while (group != sd->groups);
997
998         if (!idlest || 100*this_load < imbalance*min_load)
999                 return NULL;
1000         return idlest;
1001 }
1002
1003 /*
1004  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1005  */
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1007 {
1008         unsigned long load, min_load = ULONG_MAX;
1009         int idlest = -1;
1010         int i;
1011
1012         for_each_cpu_mask(i, group->cpumask) {
1013                 load = source_load(i, 0);
1014
1015                 if (load < min_load || (load == min_load && i == this_cpu)) {
1016                         min_load = load;
1017                         idlest = i;
1018                 }
1019         }
1020
1021         return idlest;
1022 }
1023
1024 /*
1025  * sched_balance_self: balance the current task (running on cpu) in domains
1026  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1027  * SD_BALANCE_EXEC.
1028  *
1029  * Balance, ie. select the least loaded group.
1030  *
1031  * Returns the target CPU number, or the same CPU if no balancing is needed.
1032  *
1033  * preempt must be disabled.
1034  */
1035 static int sched_balance_self(int cpu, int flag)
1036 {
1037         struct task_struct *t = current;
1038         struct sched_domain *tmp, *sd = NULL;
1039
1040         for_each_domain(cpu, tmp)
1041                 if (tmp->flags & flag)
1042                         sd = tmp;
1043
1044         while (sd) {
1045                 cpumask_t span;
1046                 struct sched_group *group;
1047                 int new_cpu;
1048                 int weight;
1049
1050                 span = sd->span;
1051                 group = find_idlest_group(sd, t, cpu);
1052                 if (!group)
1053                         goto nextlevel;
1054
1055                 new_cpu = find_idlest_cpu(group, cpu);
1056                 if (new_cpu == -1 || new_cpu == cpu)
1057                         goto nextlevel;
1058
1059                 /* Now try balancing at a lower domain level */
1060                 cpu = new_cpu;
1061 nextlevel:
1062                 sd = NULL;
1063                 weight = cpus_weight(span);
1064                 for_each_domain(cpu, tmp) {
1065                         if (weight <= cpus_weight(tmp->span))
1066                                 break;
1067                         if (tmp->flags & flag)
1068                                 sd = tmp;
1069                 }
1070                 /* while loop will break here if sd == NULL */
1071         }
1072
1073         return cpu;
1074 }
1075
1076 #endif /* CONFIG_SMP */
1077
1078 /*
1079  * wake_idle() will wake a task on an idle cpu if task->cpu is
1080  * not idle and an idle cpu is available.  The span of cpus to
1081  * search starts with cpus closest then further out as needed,
1082  * so we always favor a closer, idle cpu.
1083  *
1084  * Returns the CPU we should wake onto.
1085  */
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu, task_t *p)
1088 {
1089         cpumask_t tmp;
1090         struct sched_domain *sd;
1091         int i;
1092
1093         if (idle_cpu(cpu))
1094                 return cpu;
1095
1096         for_each_domain(cpu, sd) {
1097                 if (sd->flags & SD_WAKE_IDLE) {
1098                         cpus_and(tmp, sd->span, p->cpus_allowed);
1099                         for_each_cpu_mask(i, tmp) {
1100                                 if (idle_cpu(i))
1101                                         return i;
1102                         }
1103                 }
1104                 else
1105                         break;
1106         }
1107         return cpu;
1108 }
1109 #else
1110 static inline int wake_idle(int cpu, task_t *p)
1111 {
1112         return cpu;
1113 }
1114 #endif
1115
1116 /***
1117  * try_to_wake_up - wake up a thread
1118  * @p: the to-be-woken-up thread
1119  * @state: the mask of task states that can be woken
1120  * @sync: do a synchronous wakeup?
1121  *
1122  * Put it on the run-queue if it's not already there. The "current"
1123  * thread is always on the run-queue (except when the actual
1124  * re-schedule is in progress), and as such you're allowed to do
1125  * the simpler "current->state = TASK_RUNNING" to mark yourself
1126  * runnable without the overhead of this.
1127  *
1128  * returns failure only if the task is already active.
1129  */
1130 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1131 {
1132         int cpu, this_cpu, success = 0;
1133         unsigned long flags;
1134         long old_state;
1135         runqueue_t *rq;
1136 #ifdef CONFIG_SMP
1137         unsigned long load, this_load;
1138         struct sched_domain *sd, *this_sd = NULL;
1139         int new_cpu;
1140 #endif
1141
1142         rq = task_rq_lock(p, &flags);
1143         old_state = p->state;
1144         if (!(old_state & state))
1145                 goto out;
1146
1147         if (p->array)
1148                 goto out_running;
1149
1150         cpu = task_cpu(p);
1151         this_cpu = smp_processor_id();
1152
1153 #ifdef CONFIG_SMP
1154         if (unlikely(task_running(rq, p)))
1155                 goto out_activate;
1156
1157         new_cpu = cpu;
1158
1159         schedstat_inc(rq, ttwu_cnt);
1160         if (cpu == this_cpu) {
1161                 schedstat_inc(rq, ttwu_local);
1162                 goto out_set_cpu;
1163         }
1164
1165         for_each_domain(this_cpu, sd) {
1166                 if (cpu_isset(cpu, sd->span)) {
1167                         schedstat_inc(sd, ttwu_wake_remote);
1168                         this_sd = sd;
1169                         break;
1170                 }
1171         }
1172
1173         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1174                 goto out_set_cpu;
1175
1176         /*
1177          * Check for affine wakeup and passive balancing possibilities.
1178          */
1179         if (this_sd) {
1180                 int idx = this_sd->wake_idx;
1181                 unsigned int imbalance;
1182
1183                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1184
1185                 load = source_load(cpu, idx);
1186                 this_load = target_load(this_cpu, idx);
1187
1188                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1189
1190                 if (this_sd->flags & SD_WAKE_AFFINE) {
1191                         unsigned long tl = this_load;
1192                         /*
1193                          * If sync wakeup then subtract the (maximum possible)
1194                          * effect of the currently running task from the load
1195                          * of the current CPU:
1196                          */
1197                         if (sync)
1198                                 tl -= SCHED_LOAD_SCALE;
1199
1200                         if ((tl <= load &&
1201                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1203                                 /*
1204                                  * This domain has SD_WAKE_AFFINE and
1205                                  * p is cache cold in this domain, and
1206                                  * there is no bad imbalance.
1207                                  */
1208                                 schedstat_inc(this_sd, ttwu_move_affine);
1209                                 goto out_set_cpu;
1210                         }
1211                 }
1212
1213                 /*
1214                  * Start passive balancing when half the imbalance_pct
1215                  * limit is reached.
1216                  */
1217                 if (this_sd->flags & SD_WAKE_BALANCE) {
1218                         if (imbalance*this_load <= 100*load) {
1219                                 schedstat_inc(this_sd, ttwu_move_balance);
1220                                 goto out_set_cpu;
1221                         }
1222                 }
1223         }
1224
1225         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1226 out_set_cpu:
1227         new_cpu = wake_idle(new_cpu, p);
1228         if (new_cpu != cpu) {
1229                 set_task_cpu(p, new_cpu);
1230                 task_rq_unlock(rq, &flags);
1231                 /* might preempt at this point */
1232                 rq = task_rq_lock(p, &flags);
1233                 old_state = p->state;
1234                 if (!(old_state & state))
1235                         goto out;
1236                 if (p->array)
1237                         goto out_running;
1238
1239                 this_cpu = smp_processor_id();
1240                 cpu = task_cpu(p);
1241         }
1242
1243 out_activate:
1244 #endif /* CONFIG_SMP */
1245         if (old_state == TASK_UNINTERRUPTIBLE) {
1246                 rq->nr_uninterruptible--;
1247                 /*
1248                  * Tasks on involuntary sleep don't earn
1249                  * sleep_avg beyond just interactive state.
1250                  */
1251                 p->activated = -1;
1252         }
1253
1254         /*
1255          * Sync wakeups (i.e. those types of wakeups where the waker
1256          * has indicated that it will leave the CPU in short order)
1257          * don't trigger a preemption, if the woken up task will run on
1258          * this cpu. (in this case the 'I will reschedule' promise of
1259          * the waker guarantees that the freshly woken up task is going
1260          * to be considered on this CPU.)
1261          */
1262         activate_task(p, rq, cpu == this_cpu);
1263         if (!sync || cpu != this_cpu) {
1264                 if (TASK_PREEMPTS_CURR(p, rq))
1265                         resched_task(rq->curr);
1266         }
1267         success = 1;
1268
1269 out_running:
1270         p->state = TASK_RUNNING;
1271 out:
1272         task_rq_unlock(rq, &flags);
1273
1274         return success;
1275 }
1276
1277 int fastcall wake_up_process(task_t * p)
1278 {
1279         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1281 }
1282
1283 EXPORT_SYMBOL(wake_up_process);
1284
1285 int fastcall wake_up_state(task_t *p, unsigned int state)
1286 {
1287         return try_to_wake_up(p, state, 0);
1288 }
1289
1290 /*
1291  * Perform scheduler related setup for a newly forked process p.
1292  * p is forked by current.
1293  */
1294 void fastcall sched_fork(task_t *p, int clone_flags)
1295 {
1296         int cpu = get_cpu();
1297
1298 #ifdef CONFIG_SMP
1299         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1300 #endif
1301         set_task_cpu(p, cpu);
1302
1303         /*
1304          * We mark the process as running here, but have not actually
1305          * inserted it onto the runqueue yet. This guarantees that
1306          * nobody will actually run it, and a signal or other external
1307          * event cannot wake it up and insert it on the runqueue either.
1308          */
1309         p->state = TASK_RUNNING;
1310         INIT_LIST_HEAD(&p->run_list);
1311         p->array = NULL;
1312 #ifdef CONFIG_SCHEDSTATS
1313         memset(&p->sched_info, 0, sizeof(p->sched_info));
1314 #endif
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1316         p->oncpu = 0;
1317 #endif
1318 #ifdef CONFIG_PREEMPT
1319         /* Want to start with kernel preemption disabled. */
1320         p->thread_info->preempt_count = 1;
1321 #endif
1322         /*
1323          * Share the timeslice between parent and child, thus the
1324          * total amount of pending timeslices in the system doesn't change,
1325          * resulting in more scheduling fairness.
1326          */
1327         local_irq_disable();
1328         p->time_slice = (current->time_slice + 1) >> 1;
1329         /*
1330          * The remainder of the first timeslice might be recovered by
1331          * the parent if the child exits early enough.
1332          */
1333         p->first_time_slice = 1;
1334         current->time_slice >>= 1;
1335         p->timestamp = sched_clock();
1336         if (unlikely(!current->time_slice)) {
1337                 /*
1338                  * This case is rare, it happens when the parent has only
1339                  * a single jiffy left from its timeslice. Taking the
1340                  * runqueue lock is not a problem.
1341                  */
1342                 current->time_slice = 1;
1343                 scheduler_tick();
1344         }
1345         local_irq_enable();
1346         put_cpu();
1347 }
1348
1349 /*
1350  * wake_up_new_task - wake up a newly created task for the first time.
1351  *
1352  * This function will do some initial scheduler statistics housekeeping
1353  * that must be done for every newly created context, then puts the task
1354  * on the runqueue and wakes it.
1355  */
1356 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1357 {
1358         unsigned long flags;
1359         int this_cpu, cpu;
1360         runqueue_t *rq, *this_rq;
1361
1362         rq = task_rq_lock(p, &flags);
1363         BUG_ON(p->state != TASK_RUNNING);
1364         this_cpu = smp_processor_id();
1365         cpu = task_cpu(p);
1366
1367         /*
1368          * We decrease the sleep average of forking parents
1369          * and children as well, to keep max-interactive tasks
1370          * from forking tasks that are max-interactive. The parent
1371          * (current) is done further down, under its lock.
1372          */
1373         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1375
1376         p->prio = effective_prio(p);
1377
1378         if (likely(cpu == this_cpu)) {
1379                 if (!(clone_flags & CLONE_VM)) {
1380                         /*
1381                          * The VM isn't cloned, so we're in a good position to
1382                          * do child-runs-first in anticipation of an exec. This
1383                          * usually avoids a lot of COW overhead.
1384                          */
1385                         if (unlikely(!current->array))
1386                                 __activate_task(p, rq);
1387                         else {
1388                                 p->prio = current->prio;
1389                                 list_add_tail(&p->run_list, &current->run_list);
1390                                 p->array = current->array;
1391                                 p->array->nr_active++;
1392                                 rq->nr_running++;
1393                         }
1394                         set_need_resched();
1395                 } else
1396                         /* Run child last */
1397                         __activate_task(p, rq);
1398                 /*
1399                  * We skip the following code due to cpu == this_cpu
1400                  *
1401                  *   task_rq_unlock(rq, &flags);
1402                  *   this_rq = task_rq_lock(current, &flags);
1403                  */
1404                 this_rq = rq;
1405         } else {
1406                 this_rq = cpu_rq(this_cpu);
1407
1408                 /*
1409                  * Not the local CPU - must adjust timestamp. This should
1410                  * get optimised away in the !CONFIG_SMP case.
1411                  */
1412                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413                                         + rq->timestamp_last_tick;
1414                 __activate_task(p, rq);
1415                 if (TASK_PREEMPTS_CURR(p, rq))
1416                         resched_task(rq->curr);
1417
1418                 /*
1419                  * Parent and child are on different CPUs, now get the
1420                  * parent runqueue to update the parent's ->sleep_avg:
1421                  */
1422                 task_rq_unlock(rq, &flags);
1423                 this_rq = task_rq_lock(current, &flags);
1424         }
1425         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427         task_rq_unlock(this_rq, &flags);
1428 }
1429
1430 /*
1431  * Potentially available exiting-child timeslices are
1432  * retrieved here - this way the parent does not get
1433  * penalized for creating too many threads.
1434  *
1435  * (this cannot be used to 'generate' timeslices
1436  * artificially, because any timeslice recovered here
1437  * was given away by the parent in the first place.)
1438  */
1439 void fastcall sched_exit(task_t * p)
1440 {
1441         unsigned long flags;
1442         runqueue_t *rq;
1443
1444         /*
1445          * If the child was a (relative-) CPU hog then decrease
1446          * the sleep_avg of the parent as well.
1447          */
1448         rq = task_rq_lock(p->parent, &flags);
1449         if (p->first_time_slice) {
1450                 p->parent->time_slice += p->time_slice;
1451                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452                         p->parent->time_slice = task_timeslice(p);
1453         }
1454         if (p->sleep_avg < p->parent->sleep_avg)
1455                 p->parent->sleep_avg = p->parent->sleep_avg /
1456                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1457                 (EXIT_WEIGHT + 1);
1458         task_rq_unlock(rq, &flags);
1459 }
1460
1461 /**
1462  * prepare_task_switch - prepare to switch tasks
1463  * @rq: the runqueue preparing to switch
1464  * @next: the task we are going to switch to.
1465  *
1466  * This is called with the rq lock held and interrupts off. It must
1467  * be paired with a subsequent finish_task_switch after the context
1468  * switch.
1469  *
1470  * prepare_task_switch sets up locking and calls architecture specific
1471  * hooks.
1472  */
1473 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1474 {
1475         prepare_lock_switch(rq, next);
1476         prepare_arch_switch(next);
1477 }
1478
1479 /**
1480  * finish_task_switch - clean up after a task-switch
1481  * @rq: runqueue associated with task-switch
1482  * @prev: the thread we just switched away from.
1483  *
1484  * finish_task_switch must be called after the context switch, paired
1485  * with a prepare_task_switch call before the context switch.
1486  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1487  * and do any other architecture-specific cleanup actions.
1488  *
1489  * Note that we may have delayed dropping an mm in context_switch(). If
1490  * so, we finish that here outside of the runqueue lock.  (Doing it
1491  * with the lock held can cause deadlocks; see schedule() for
1492  * details.)
1493  */
1494 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1495         __releases(rq->lock)
1496 {
1497         struct mm_struct *mm = rq->prev_mm;
1498         unsigned long prev_task_flags;
1499
1500         rq->prev_mm = NULL;
1501
1502         /*
1503          * A task struct has one reference for the use as "current".
1504          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1505          * calls schedule one last time. The schedule call will never return,
1506          * and the scheduled task must drop that reference.
1507          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1508          * still held, otherwise prev could be scheduled on another cpu, die
1509          * there before we look at prev->state, and then the reference would
1510          * be dropped twice.
1511          *              Manfred Spraul <manfred@colorfullife.com>
1512          */
1513         prev_task_flags = prev->flags;
1514 #ifdef CONFIG_DEBUG_SPINLOCK
1515         /* this is a valid case when another task releases the spinlock */
1516         rq->lock.owner = current;
1517 #endif
1518         finish_arch_switch(prev);
1519         finish_lock_switch(rq, prev);
1520         if (mm)
1521                 mmdrop(mm);
1522         if (unlikely(prev_task_flags & PF_DEAD))
1523                 put_task_struct(prev);
1524 }
1525
1526 /**
1527  * schedule_tail - first thing a freshly forked thread must call.
1528  * @prev: the thread we just switched away from.
1529  */
1530 asmlinkage void schedule_tail(task_t *prev)
1531         __releases(rq->lock)
1532 {
1533         runqueue_t *rq = this_rq();
1534         finish_task_switch(rq, prev);
1535 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1536         /* In this case, finish_task_switch does not reenable preemption */
1537         preempt_enable();
1538 #endif
1539         if (current->set_child_tid)
1540                 put_user(current->pid, current->set_child_tid);
1541 }
1542
1543 /*
1544  * context_switch - switch to the new MM and the new
1545  * thread's register state.
1546  */
1547 static inline
1548 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1549 {
1550         struct mm_struct *mm = next->mm;
1551         struct mm_struct *oldmm = prev->active_mm;
1552
1553         if (unlikely(!mm)) {
1554                 next->active_mm = oldmm;
1555                 atomic_inc(&oldmm->mm_count);
1556                 enter_lazy_tlb(oldmm, next);
1557         } else
1558                 switch_mm(oldmm, mm, next);
1559
1560         if (unlikely(!prev->mm)) {
1561                 prev->active_mm = NULL;
1562                 WARN_ON(rq->prev_mm);
1563                 rq->prev_mm = oldmm;
1564         }
1565
1566         /* Here we just switch the register state and the stack. */
1567         switch_to(prev, next, prev);
1568
1569         return prev;
1570 }
1571
1572 /*
1573  * nr_running, nr_uninterruptible and nr_context_switches:
1574  *
1575  * externally visible scheduler statistics: current number of runnable
1576  * threads, current number of uninterruptible-sleeping threads, total
1577  * number of context switches performed since bootup.
1578  */
1579 unsigned long nr_running(void)
1580 {
1581         unsigned long i, sum = 0;
1582
1583         for_each_online_cpu(i)
1584                 sum += cpu_rq(i)->nr_running;
1585
1586         return sum;
1587 }
1588
1589 unsigned long nr_uninterruptible(void)
1590 {
1591         unsigned long i, sum = 0;
1592
1593         for_each_cpu(i)
1594                 sum += cpu_rq(i)->nr_uninterruptible;
1595
1596         /*
1597          * Since we read the counters lockless, it might be slightly
1598          * inaccurate. Do not allow it to go below zero though:
1599          */
1600         if (unlikely((long)sum < 0))
1601                 sum = 0;
1602
1603         return sum;
1604 }
1605
1606 unsigned long long nr_context_switches(void)
1607 {
1608         unsigned long long i, sum = 0;
1609
1610         for_each_cpu(i)
1611                 sum += cpu_rq(i)->nr_switches;
1612
1613         return sum;
1614 }
1615
1616 unsigned long nr_iowait(void)
1617 {
1618         unsigned long i, sum = 0;
1619
1620         for_each_cpu(i)
1621                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1622
1623         return sum;
1624 }
1625
1626 #ifdef CONFIG_SMP
1627
1628 /*
1629  * double_rq_lock - safely lock two runqueues
1630  *
1631  * Note this does not disable interrupts like task_rq_lock,
1632  * you need to do so manually before calling.
1633  */
1634 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1635         __acquires(rq1->lock)
1636         __acquires(rq2->lock)
1637 {
1638         if (rq1 == rq2) {
1639                 spin_lock(&rq1->lock);
1640                 __acquire(rq2->lock);   /* Fake it out ;) */
1641         } else {
1642                 if (rq1 < rq2) {
1643                         spin_lock(&rq1->lock);
1644                         spin_lock(&rq2->lock);
1645                 } else {
1646                         spin_lock(&rq2->lock);
1647                         spin_lock(&rq1->lock);
1648                 }
1649         }
1650 }
1651
1652 /*
1653  * double_rq_unlock - safely unlock two runqueues
1654  *
1655  * Note this does not restore interrupts like task_rq_unlock,
1656  * you need to do so manually after calling.
1657  */
1658 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1659         __releases(rq1->lock)
1660         __releases(rq2->lock)
1661 {
1662         spin_unlock(&rq1->lock);
1663         if (rq1 != rq2)
1664                 spin_unlock(&rq2->lock);
1665         else
1666                 __release(rq2->lock);
1667 }
1668
1669 /*
1670  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1671  */
1672 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1673         __releases(this_rq->lock)
1674         __acquires(busiest->lock)
1675         __acquires(this_rq->lock)
1676 {
1677         if (unlikely(!spin_trylock(&busiest->lock))) {
1678                 if (busiest < this_rq) {
1679                         spin_unlock(&this_rq->lock);
1680                         spin_lock(&busiest->lock);
1681                         spin_lock(&this_rq->lock);
1682                 } else
1683                         spin_lock(&busiest->lock);
1684         }
1685 }
1686
1687 /*
1688  * If dest_cpu is allowed for this process, migrate the task to it.
1689  * This is accomplished by forcing the cpu_allowed mask to only
1690  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1691  * the cpu_allowed mask is restored.
1692  */
1693 static void sched_migrate_task(task_t *p, int dest_cpu)
1694 {
1695         migration_req_t req;
1696         runqueue_t *rq;
1697         unsigned long flags;
1698
1699         rq = task_rq_lock(p, &flags);
1700         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1701             || unlikely(cpu_is_offline(dest_cpu)))
1702                 goto out;
1703
1704         /* force the process onto the specified CPU */
1705         if (migrate_task(p, dest_cpu, &req)) {
1706                 /* Need to wait for migration thread (might exit: take ref). */
1707                 struct task_struct *mt = rq->migration_thread;
1708                 get_task_struct(mt);
1709                 task_rq_unlock(rq, &flags);
1710                 wake_up_process(mt);
1711                 put_task_struct(mt);
1712                 wait_for_completion(&req.done);
1713                 return;
1714         }
1715 out:
1716         task_rq_unlock(rq, &flags);
1717 }
1718
1719 /*
1720  * sched_exec - execve() is a valuable balancing opportunity, because at
1721  * this point the task has the smallest effective memory and cache footprint.
1722  */
1723 void sched_exec(void)
1724 {
1725         int new_cpu, this_cpu = get_cpu();
1726         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1727         put_cpu();
1728         if (new_cpu != this_cpu)
1729                 sched_migrate_task(current, new_cpu);
1730 }
1731
1732 /*
1733  * pull_task - move a task from a remote runqueue to the local runqueue.
1734  * Both runqueues must be locked.
1735  */
1736 static inline
1737 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1738                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1739 {
1740         dequeue_task(p, src_array);
1741         src_rq->nr_running--;
1742         set_task_cpu(p, this_cpu);
1743         this_rq->nr_running++;
1744         enqueue_task(p, this_array);
1745         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1746                                 + this_rq->timestamp_last_tick;
1747         /*
1748          * Note that idle threads have a prio of MAX_PRIO, for this test
1749          * to be always true for them.
1750          */
1751         if (TASK_PREEMPTS_CURR(p, this_rq))
1752                 resched_task(this_rq->curr);
1753 }
1754
1755 /*
1756  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1757  */
1758 static inline
1759 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1760              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1761 {
1762         /*
1763          * We do not migrate tasks that are:
1764          * 1) running (obviously), or
1765          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1766          * 3) are cache-hot on their current CPU.
1767          */
1768         if (!cpu_isset(this_cpu, p->cpus_allowed))
1769                 return 0;
1770         *all_pinned = 0;
1771
1772         if (task_running(rq, p))
1773                 return 0;
1774
1775         /*
1776          * Aggressive migration if:
1777          * 1) task is cache cold, or
1778          * 2) too many balance attempts have failed.
1779          */
1780
1781         if (sd->nr_balance_failed > sd->cache_nice_tries)
1782                 return 1;
1783
1784         if (task_hot(p, rq->timestamp_last_tick, sd))
1785                 return 0;
1786         return 1;
1787 }
1788
1789 /*
1790  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1791  * as part of a balancing operation within "domain". Returns the number of
1792  * tasks moved.
1793  *
1794  * Called with both runqueues locked.
1795  */
1796 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1797                       unsigned long max_nr_move, struct sched_domain *sd,
1798                       enum idle_type idle, int *all_pinned)
1799 {
1800         prio_array_t *array, *dst_array;
1801         struct list_head *head, *curr;
1802         int idx, pulled = 0, pinned = 0;
1803         task_t *tmp;
1804
1805         if (max_nr_move == 0)
1806                 goto out;
1807
1808         pinned = 1;
1809
1810         /*
1811          * We first consider expired tasks. Those will likely not be
1812          * executed in the near future, and they are most likely to
1813          * be cache-cold, thus switching CPUs has the least effect
1814          * on them.
1815          */
1816         if (busiest->expired->nr_active) {
1817                 array = busiest->expired;
1818                 dst_array = this_rq->expired;
1819         } else {
1820                 array = busiest->active;
1821                 dst_array = this_rq->active;
1822         }
1823
1824 new_array:
1825         /* Start searching at priority 0: */
1826         idx = 0;
1827 skip_bitmap:
1828         if (!idx)
1829                 idx = sched_find_first_bit(array->bitmap);
1830         else
1831                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1832         if (idx >= MAX_PRIO) {
1833                 if (array == busiest->expired && busiest->active->nr_active) {
1834                         array = busiest->active;
1835                         dst_array = this_rq->active;
1836                         goto new_array;
1837                 }
1838                 goto out;
1839         }
1840
1841         head = array->queue + idx;
1842         curr = head->prev;
1843 skip_queue:
1844         tmp = list_entry(curr, task_t, run_list);
1845
1846         curr = curr->prev;
1847
1848         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1849                 if (curr != head)
1850                         goto skip_queue;
1851                 idx++;
1852                 goto skip_bitmap;
1853         }
1854
1855 #ifdef CONFIG_SCHEDSTATS
1856         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1857                 schedstat_inc(sd, lb_hot_gained[idle]);
1858 #endif
1859
1860         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1861         pulled++;
1862
1863         /* We only want to steal up to the prescribed number of tasks. */
1864         if (pulled < max_nr_move) {
1865                 if (curr != head)
1866                         goto skip_queue;
1867                 idx++;
1868                 goto skip_bitmap;
1869         }
1870 out:
1871         /*
1872          * Right now, this is the only place pull_task() is called,
1873          * so we can safely collect pull_task() stats here rather than
1874          * inside pull_task().
1875          */
1876         schedstat_add(sd, lb_gained[idle], pulled);
1877
1878         if (all_pinned)
1879                 *all_pinned = pinned;
1880         return pulled;
1881 }
1882
1883 /*
1884  * find_busiest_group finds and returns the busiest CPU group within the
1885  * domain. It calculates and returns the number of tasks which should be
1886  * moved to restore balance via the imbalance parameter.
1887  */
1888 static struct sched_group *
1889 find_busiest_group(struct sched_domain *sd, int this_cpu,
1890                    unsigned long *imbalance, enum idle_type idle)
1891 {
1892         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1893         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1894         int load_idx;
1895
1896         max_load = this_load = total_load = total_pwr = 0;
1897         if (idle == NOT_IDLE)
1898                 load_idx = sd->busy_idx;
1899         else if (idle == NEWLY_IDLE)
1900                 load_idx = sd->newidle_idx;
1901         else
1902                 load_idx = sd->idle_idx;
1903
1904         do {
1905                 unsigned long load;
1906                 int local_group;
1907                 int i;
1908
1909                 local_group = cpu_isset(this_cpu, group->cpumask);
1910
1911                 /* Tally up the load of all CPUs in the group */
1912                 avg_load = 0;
1913
1914                 for_each_cpu_mask(i, group->cpumask) {
1915                         /* Bias balancing toward cpus of our domain */
1916                         if (local_group)
1917                                 load = target_load(i, load_idx);
1918                         else
1919                                 load = source_load(i, load_idx);
1920
1921                         avg_load += load;
1922                 }
1923
1924                 total_load += avg_load;
1925                 total_pwr += group->cpu_power;
1926
1927                 /* Adjust by relative CPU power of the group */
1928                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1929
1930                 if (local_group) {
1931                         this_load = avg_load;
1932                         this = group;
1933                 } else if (avg_load > max_load) {
1934                         max_load = avg_load;
1935                         busiest = group;
1936                 }
1937                 group = group->next;
1938         } while (group != sd->groups);
1939
1940         if (!busiest || this_load >= max_load)
1941                 goto out_balanced;
1942
1943         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1944
1945         if (this_load >= avg_load ||
1946                         100*max_load <= sd->imbalance_pct*this_load)
1947                 goto out_balanced;
1948
1949         /*
1950          * We're trying to get all the cpus to the average_load, so we don't
1951          * want to push ourselves above the average load, nor do we wish to
1952          * reduce the max loaded cpu below the average load, as either of these
1953          * actions would just result in more rebalancing later, and ping-pong
1954          * tasks around. Thus we look for the minimum possible imbalance.
1955          * Negative imbalances (*we* are more loaded than anyone else) will
1956          * be counted as no imbalance for these purposes -- we can't fix that
1957          * by pulling tasks to us.  Be careful of negative numbers as they'll
1958          * appear as very large values with unsigned longs.
1959          */
1960         /* How much load to actually move to equalise the imbalance */
1961         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1962                                 (avg_load - this_load) * this->cpu_power)
1963                         / SCHED_LOAD_SCALE;
1964
1965         if (*imbalance < SCHED_LOAD_SCALE) {
1966                 unsigned long pwr_now = 0, pwr_move = 0;
1967                 unsigned long tmp;
1968
1969                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1970                         *imbalance = 1;
1971                         return busiest;
1972                 }
1973
1974                 /*
1975                  * OK, we don't have enough imbalance to justify moving tasks,
1976                  * however we may be able to increase total CPU power used by
1977                  * moving them.
1978                  */
1979
1980                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1981                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1982                 pwr_now /= SCHED_LOAD_SCALE;
1983
1984                 /* Amount of load we'd subtract */
1985                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1986                 if (max_load > tmp)
1987                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1988                                                         max_load - tmp);
1989
1990                 /* Amount of load we'd add */
1991                 if (max_load*busiest->cpu_power <
1992                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1993                         tmp = max_load*busiest->cpu_power/this->cpu_power;
1994                 else
1995                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1996                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1997                 pwr_move /= SCHED_LOAD_SCALE;
1998
1999                 /* Move if we gain throughput */
2000                 if (pwr_move <= pwr_now)
2001                         goto out_balanced;
2002
2003                 *imbalance = 1;
2004                 return busiest;
2005         }
2006
2007         /* Get rid of the scaling factor, rounding down as we divide */
2008         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2009         return busiest;
2010
2011 out_balanced:
2012
2013         *imbalance = 0;
2014         return NULL;
2015 }
2016
2017 /*
2018  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2019  */
2020 static runqueue_t *find_busiest_queue(struct sched_group *group)
2021 {
2022         unsigned long load, max_load = 0;
2023         runqueue_t *busiest = NULL;
2024         int i;
2025
2026         for_each_cpu_mask(i, group->cpumask) {
2027                 load = source_load(i, 0);
2028
2029                 if (load > max_load) {
2030                         max_load = load;
2031                         busiest = cpu_rq(i);
2032                 }
2033         }
2034
2035         return busiest;
2036 }
2037
2038 /*
2039  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2040  * so long as it is large enough.
2041  */
2042 #define MAX_PINNED_INTERVAL     512
2043
2044 /*
2045  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2046  * tasks if there is an imbalance.
2047  *
2048  * Called with this_rq unlocked.
2049  */
2050 static int load_balance(int this_cpu, runqueue_t *this_rq,
2051                         struct sched_domain *sd, enum idle_type idle)
2052 {
2053         struct sched_group *group;
2054         runqueue_t *busiest;
2055         unsigned long imbalance;
2056         int nr_moved, all_pinned = 0;
2057         int active_balance = 0;
2058
2059         spin_lock(&this_rq->lock);
2060         schedstat_inc(sd, lb_cnt[idle]);
2061
2062         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2063         if (!group) {
2064                 schedstat_inc(sd, lb_nobusyg[idle]);
2065                 goto out_balanced;
2066         }
2067
2068         busiest = find_busiest_queue(group);
2069         if (!busiest) {
2070                 schedstat_inc(sd, lb_nobusyq[idle]);
2071                 goto out_balanced;
2072         }
2073
2074         BUG_ON(busiest == this_rq);
2075
2076         schedstat_add(sd, lb_imbalance[idle], imbalance);
2077
2078         nr_moved = 0;
2079         if (busiest->nr_running > 1) {
2080                 /*
2081                  * Attempt to move tasks. If find_busiest_group has found
2082                  * an imbalance but busiest->nr_running <= 1, the group is
2083                  * still unbalanced. nr_moved simply stays zero, so it is
2084                  * correctly treated as an imbalance.
2085                  */
2086                 double_lock_balance(this_rq, busiest);
2087                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2088                                                 imbalance, sd, idle,
2089                                                 &all_pinned);
2090                 spin_unlock(&busiest->lock);
2091
2092                 /* All tasks on this runqueue were pinned by CPU affinity */
2093                 if (unlikely(all_pinned))
2094                         goto out_balanced;
2095         }
2096
2097         spin_unlock(&this_rq->lock);
2098
2099         if (!nr_moved) {
2100                 schedstat_inc(sd, lb_failed[idle]);
2101                 sd->nr_balance_failed++;
2102
2103                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2104
2105                         spin_lock(&busiest->lock);
2106                         if (!busiest->active_balance) {
2107                                 busiest->active_balance = 1;
2108                                 busiest->push_cpu = this_cpu;
2109                                 active_balance = 1;
2110                         }
2111                         spin_unlock(&busiest->lock);
2112                         if (active_balance)
2113                                 wake_up_process(busiest->migration_thread);
2114
2115                         /*
2116                          * We've kicked active balancing, reset the failure
2117                          * counter.
2118                          */
2119                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2120                 }
2121         } else
2122                 sd->nr_balance_failed = 0;
2123
2124         if (likely(!active_balance)) {
2125                 /* We were unbalanced, so reset the balancing interval */
2126                 sd->balance_interval = sd->min_interval;
2127         } else {
2128                 /*
2129                  * If we've begun active balancing, start to back off. This
2130                  * case may not be covered by the all_pinned logic if there
2131                  * is only 1 task on the busy runqueue (because we don't call
2132                  * move_tasks).
2133                  */
2134                 if (sd->balance_interval < sd->max_interval)
2135                         sd->balance_interval *= 2;
2136         }
2137
2138         return nr_moved;
2139
2140 out_balanced:
2141         spin_unlock(&this_rq->lock);
2142
2143         schedstat_inc(sd, lb_balanced[idle]);
2144
2145         sd->nr_balance_failed = 0;
2146         /* tune up the balancing interval */
2147         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2148                         (sd->balance_interval < sd->max_interval))
2149                 sd->balance_interval *= 2;
2150
2151         return 0;
2152 }
2153
2154 /*
2155  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2156  * tasks if there is an imbalance.
2157  *
2158  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2159  * this_rq is locked.
2160  */
2161 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2162                                 struct sched_domain *sd)
2163 {
2164         struct sched_group *group;
2165         runqueue_t *busiest = NULL;
2166         unsigned long imbalance;
2167         int nr_moved = 0;
2168
2169         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2170         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2171         if (!group) {
2172                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2173                 goto out_balanced;
2174         }
2175
2176         busiest = find_busiest_queue(group);
2177         if (!busiest) {
2178                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2179                 goto out_balanced;
2180         }
2181
2182         BUG_ON(busiest == this_rq);
2183
2184         /* Attempt to move tasks */
2185         double_lock_balance(this_rq, busiest);
2186
2187         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2188         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2189                                         imbalance, sd, NEWLY_IDLE, NULL);
2190         if (!nr_moved)
2191                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2192         else
2193                 sd->nr_balance_failed = 0;
2194
2195         spin_unlock(&busiest->lock);
2196         return nr_moved;
2197
2198 out_balanced:
2199         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2200         sd->nr_balance_failed = 0;
2201         return 0;
2202 }
2203
2204 /*
2205  * idle_balance is called by schedule() if this_cpu is about to become
2206  * idle. Attempts to pull tasks from other CPUs.
2207  */
2208 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2209 {
2210         struct sched_domain *sd;
2211
2212         for_each_domain(this_cpu, sd) {
2213                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2214                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2215                                 /* We've pulled tasks over so stop searching */
2216                                 break;
2217                         }
2218                 }
2219         }
2220 }
2221
2222 /*
2223  * active_load_balance is run by migration threads. It pushes running tasks
2224  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2225  * running on each physical CPU where possible, and avoids physical /
2226  * logical imbalances.
2227  *
2228  * Called with busiest_rq locked.
2229  */
2230 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2231 {
2232         struct sched_domain *sd;
2233         runqueue_t *target_rq;
2234         int target_cpu = busiest_rq->push_cpu;
2235
2236         if (busiest_rq->nr_running <= 1)
2237                 /* no task to move */
2238                 return;
2239
2240         target_rq = cpu_rq(target_cpu);
2241
2242         /*
2243          * This condition is "impossible", if it occurs
2244          * we need to fix it.  Originally reported by
2245          * Bjorn Helgaas on a 128-cpu setup.
2246          */
2247         BUG_ON(busiest_rq == target_rq);
2248
2249         /* move a task from busiest_rq to target_rq */
2250         double_lock_balance(busiest_rq, target_rq);
2251
2252         /* Search for an sd spanning us and the target CPU. */
2253         for_each_domain(target_cpu, sd)
2254                 if ((sd->flags & SD_LOAD_BALANCE) &&
2255                         cpu_isset(busiest_cpu, sd->span))
2256                                 break;
2257
2258         if (unlikely(sd == NULL))
2259                 goto out;
2260
2261         schedstat_inc(sd, alb_cnt);
2262
2263         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2264                 schedstat_inc(sd, alb_pushed);
2265         else
2266                 schedstat_inc(sd, alb_failed);
2267 out:
2268         spin_unlock(&target_rq->lock);
2269 }
2270
2271 /*
2272  * rebalance_tick will get called every timer tick, on every CPU.
2273  *
2274  * It checks each scheduling domain to see if it is due to be balanced,
2275  * and initiates a balancing operation if so.
2276  *
2277  * Balancing parameters are set up in arch_init_sched_domains.
2278  */
2279
2280 /* Don't have all balancing operations going off at once */
2281 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2282
2283 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2284                            enum idle_type idle)
2285 {
2286         unsigned long old_load, this_load;
2287         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2288         struct sched_domain *sd;
2289         int i;
2290
2291         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2292         /* Update our load */
2293         for (i = 0; i < 3; i++) {
2294                 unsigned long new_load = this_load;
2295                 int scale = 1 << i;
2296                 old_load = this_rq->cpu_load[i];
2297                 /*
2298                  * Round up the averaging division if load is increasing. This
2299                  * prevents us from getting stuck on 9 if the load is 10, for
2300                  * example.
2301                  */
2302                 if (new_load > old_load)
2303                         new_load += scale-1;
2304                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2305         }
2306
2307         for_each_domain(this_cpu, sd) {
2308                 unsigned long interval;
2309
2310                 if (!(sd->flags & SD_LOAD_BALANCE))
2311                         continue;
2312
2313                 interval = sd->balance_interval;
2314                 if (idle != SCHED_IDLE)
2315                         interval *= sd->busy_factor;
2316
2317                 /* scale ms to jiffies */
2318                 interval = msecs_to_jiffies(interval);
2319                 if (unlikely(!interval))
2320                         interval = 1;
2321
2322                 if (j - sd->last_balance >= interval) {
2323                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2324                                 /* We've pulled tasks over so no longer idle */
2325                                 idle = NOT_IDLE;
2326                         }
2327                         sd->last_balance += interval;
2328                 }
2329         }
2330 }
2331 #else
2332 /*
2333  * on UP we do not need to balance between CPUs:
2334  */
2335 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2336 {
2337 }
2338 static inline void idle_balance(int cpu, runqueue_t *rq)
2339 {
2340 }
2341 #endif
2342
2343 static inline int wake_priority_sleeper(runqueue_t *rq)
2344 {
2345         int ret = 0;
2346 #ifdef CONFIG_SCHED_SMT
2347         spin_lock(&rq->lock);
2348         /*
2349          * If an SMT sibling task has been put to sleep for priority
2350          * reasons reschedule the idle task to see if it can now run.
2351          */
2352         if (rq->nr_running) {
2353                 resched_task(rq->idle);
2354                 ret = 1;
2355         }
2356         spin_unlock(&rq->lock);
2357 #endif
2358         return ret;
2359 }
2360
2361 DEFINE_PER_CPU(struct kernel_stat, kstat);
2362
2363 EXPORT_PER_CPU_SYMBOL(kstat);
2364
2365 /*
2366  * This is called on clock ticks and on context switches.
2367  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2368  */
2369 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2370                                     unsigned long long now)
2371 {
2372         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2373         p->sched_time += now - last;
2374 }
2375
2376 /*
2377  * Return current->sched_time plus any more ns on the sched_clock
2378  * that have not yet been banked.
2379  */
2380 unsigned long long current_sched_time(const task_t *tsk)
2381 {
2382         unsigned long long ns;
2383         unsigned long flags;
2384         local_irq_save(flags);
2385         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2386         ns = tsk->sched_time + (sched_clock() - ns);
2387         local_irq_restore(flags);
2388         return ns;
2389 }
2390
2391 /*
2392  * We place interactive tasks back into the active array, if possible.
2393  *
2394  * To guarantee that this does not starve expired tasks we ignore the
2395  * interactivity of a task if the first expired task had to wait more
2396  * than a 'reasonable' amount of time. This deadline timeout is
2397  * load-dependent, as the frequency of array switched decreases with
2398  * increasing number of running tasks. We also ignore the interactivity
2399  * if a better static_prio task has expired:
2400  */
2401 #define EXPIRED_STARVING(rq) \
2402         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2403                 (jiffies - (rq)->expired_timestamp >= \
2404                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2405                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2406
2407 /*
2408  * Account user cpu time to a process.
2409  * @p: the process that the cpu time gets accounted to
2410  * @hardirq_offset: the offset to subtract from hardirq_count()
2411  * @cputime: the cpu time spent in user space since the last update
2412  */
2413 void account_user_time(struct task_struct *p, cputime_t cputime)
2414 {
2415         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2416         cputime64_t tmp;
2417
2418         p->utime = cputime_add(p->utime, cputime);
2419
2420         /* Add user time to cpustat. */
2421         tmp = cputime_to_cputime64(cputime);
2422         if (TASK_NICE(p) > 0)
2423                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2424         else
2425                 cpustat->user = cputime64_add(cpustat->user, tmp);
2426 }
2427
2428 /*
2429  * Account system cpu time to a process.
2430  * @p: the process that the cpu time gets accounted to
2431  * @hardirq_offset: the offset to subtract from hardirq_count()
2432  * @cputime: the cpu time spent in kernel space since the last update
2433  */
2434 void account_system_time(struct task_struct *p, int hardirq_offset,
2435                          cputime_t cputime)
2436 {
2437         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2438         runqueue_t *rq = this_rq();
2439         cputime64_t tmp;
2440
2441         p->stime = cputime_add(p->stime, cputime);
2442
2443         /* Add system time to cpustat. */
2444         tmp = cputime_to_cputime64(cputime);
2445         if (hardirq_count() - hardirq_offset)
2446                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2447         else if (softirq_count())
2448                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2449         else if (p != rq->idle)
2450                 cpustat->system = cputime64_add(cpustat->system, tmp);
2451         else if (atomic_read(&rq->nr_iowait) > 0)
2452                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2453         else
2454                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2455         /* Account for system time used */
2456         acct_update_integrals(p);
2457         /* Update rss highwater mark */
2458         update_mem_hiwater(p);
2459 }
2460
2461 /*
2462  * Account for involuntary wait time.
2463  * @p: the process from which the cpu time has been stolen
2464  * @steal: the cpu time spent in involuntary wait
2465  */
2466 void account_steal_time(struct task_struct *p, cputime_t steal)
2467 {
2468         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2469         cputime64_t tmp = cputime_to_cputime64(steal);
2470         runqueue_t *rq = this_rq();
2471
2472         if (p == rq->idle) {
2473                 p->stime = cputime_add(p->stime, steal);
2474                 if (atomic_read(&rq->nr_iowait) > 0)
2475                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2476                 else
2477                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2478         } else
2479                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2480 }
2481
2482 /*
2483  * This function gets called by the timer code, with HZ frequency.
2484  * We call it with interrupts disabled.
2485  *
2486  * It also gets called by the fork code, when changing the parent's
2487  * timeslices.
2488  */
2489 void scheduler_tick(void)
2490 {
2491         int cpu = smp_processor_id();
2492         runqueue_t *rq = this_rq();
2493         task_t *p = current;
2494         unsigned long long now = sched_clock();
2495
2496         update_cpu_clock(p, rq, now);
2497
2498         rq->timestamp_last_tick = now;
2499
2500         if (p == rq->idle) {
2501                 if (wake_priority_sleeper(rq))
2502                         goto out;
2503                 rebalance_tick(cpu, rq, SCHED_IDLE);
2504                 return;
2505         }
2506
2507         /* Task might have expired already, but not scheduled off yet */
2508         if (p->array != rq->active) {
2509                 set_tsk_need_resched(p);
2510                 goto out;
2511         }
2512         spin_lock(&rq->lock);
2513         /*
2514          * The task was running during this tick - update the
2515          * time slice counter. Note: we do not update a thread's
2516          * priority until it either goes to sleep or uses up its
2517          * timeslice. This makes it possible for interactive tasks
2518          * to use up their timeslices at their highest priority levels.
2519          */
2520         if (rt_task(p)) {
2521                 /*
2522                  * RR tasks need a special form of timeslice management.
2523                  * FIFO tasks have no timeslices.
2524                  */
2525                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2526                         p->time_slice = task_timeslice(p);
2527                         p->first_time_slice = 0;
2528                         set_tsk_need_resched(p);
2529
2530                         /* put it at the end of the queue: */
2531                         requeue_task(p, rq->active);
2532                 }
2533                 goto out_unlock;
2534         }
2535         if (!--p->time_slice) {
2536                 dequeue_task(p, rq->active);
2537                 set_tsk_need_resched(p);
2538                 p->prio = effective_prio(p);
2539                 p->time_slice = task_timeslice(p);
2540                 p->first_time_slice = 0;
2541
2542                 if (!rq->expired_timestamp)
2543                         rq->expired_timestamp = jiffies;
2544                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2545                         enqueue_task(p, rq->expired);
2546                         if (p->static_prio < rq->best_expired_prio)
2547                                 rq->best_expired_prio = p->static_prio;
2548                 } else
2549                         enqueue_task(p, rq->active);
2550         } else {
2551                 /*
2552                  * Prevent a too long timeslice allowing a task to monopolize
2553                  * the CPU. We do this by splitting up the timeslice into
2554                  * smaller pieces.
2555                  *
2556                  * Note: this does not mean the task's timeslices expire or
2557                  * get lost in any way, they just might be preempted by
2558                  * another task of equal priority. (one with higher
2559                  * priority would have preempted this task already.) We
2560                  * requeue this task to the end of the list on this priority
2561                  * level, which is in essence a round-robin of tasks with
2562                  * equal priority.
2563                  *
2564                  * This only applies to tasks in the interactive
2565                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2566                  */
2567                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2568                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2569                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2570                         (p->array == rq->active)) {
2571
2572                         requeue_task(p, rq->active);
2573                         set_tsk_need_resched(p);
2574                 }
2575         }
2576 out_unlock:
2577         spin_unlock(&rq->lock);
2578 out:
2579         rebalance_tick(cpu, rq, NOT_IDLE);
2580 }
2581
2582 #ifdef CONFIG_SCHED_SMT
2583 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2584 {
2585         struct sched_domain *tmp, *sd = NULL;
2586         cpumask_t sibling_map;
2587         int i;
2588
2589         for_each_domain(this_cpu, tmp)
2590                 if (tmp->flags & SD_SHARE_CPUPOWER)
2591                         sd = tmp;
2592
2593         if (!sd)
2594                 return;
2595
2596         /*
2597          * Unlock the current runqueue because we have to lock in
2598          * CPU order to avoid deadlocks. Caller knows that we might
2599          * unlock. We keep IRQs disabled.
2600          */
2601         spin_unlock(&this_rq->lock);
2602
2603         sibling_map = sd->span;
2604
2605         for_each_cpu_mask(i, sibling_map)
2606                 spin_lock(&cpu_rq(i)->lock);
2607         /*
2608          * We clear this CPU from the mask. This both simplifies the
2609          * inner loop and keps this_rq locked when we exit:
2610          */
2611         cpu_clear(this_cpu, sibling_map);
2612
2613         for_each_cpu_mask(i, sibling_map) {
2614                 runqueue_t *smt_rq = cpu_rq(i);
2615
2616                 /*
2617                  * If an SMT sibling task is sleeping due to priority
2618                  * reasons wake it up now.
2619                  */
2620                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2621                         resched_task(smt_rq->idle);
2622         }
2623
2624         for_each_cpu_mask(i, sibling_map)
2625                 spin_unlock(&cpu_rq(i)->lock);
2626         /*
2627          * We exit with this_cpu's rq still held and IRQs
2628          * still disabled:
2629          */
2630 }
2631
2632 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2633 {
2634         struct sched_domain *tmp, *sd = NULL;
2635         cpumask_t sibling_map;
2636         prio_array_t *array;
2637         int ret = 0, i;
2638         task_t *p;
2639
2640         for_each_domain(this_cpu, tmp)
2641                 if (tmp->flags & SD_SHARE_CPUPOWER)
2642                         sd = tmp;
2643
2644         if (!sd)
2645                 return 0;
2646
2647         /*
2648          * The same locking rules and details apply as for
2649          * wake_sleeping_dependent():
2650          */
2651         spin_unlock(&this_rq->lock);
2652         sibling_map = sd->span;
2653         for_each_cpu_mask(i, sibling_map)
2654                 spin_lock(&cpu_rq(i)->lock);
2655         cpu_clear(this_cpu, sibling_map);
2656
2657         /*
2658          * Establish next task to be run - it might have gone away because
2659          * we released the runqueue lock above:
2660          */
2661         if (!this_rq->nr_running)
2662                 goto out_unlock;
2663         array = this_rq->active;
2664         if (!array->nr_active)
2665                 array = this_rq->expired;
2666         BUG_ON(!array->nr_active);
2667
2668         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2669                 task_t, run_list);
2670
2671         for_each_cpu_mask(i, sibling_map) {
2672                 runqueue_t *smt_rq = cpu_rq(i);
2673                 task_t *smt_curr = smt_rq->curr;
2674
2675                 /*
2676                  * If a user task with lower static priority than the
2677                  * running task on the SMT sibling is trying to schedule,
2678                  * delay it till there is proportionately less timeslice
2679                  * left of the sibling task to prevent a lower priority
2680                  * task from using an unfair proportion of the
2681                  * physical cpu's resources. -ck
2682                  */
2683                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2684                         task_timeslice(p) || rt_task(smt_curr)) &&
2685                         p->mm && smt_curr->mm && !rt_task(p))
2686                                 ret = 1;
2687
2688                 /*
2689                  * Reschedule a lower priority task on the SMT sibling,
2690                  * or wake it up if it has been put to sleep for priority
2691                  * reasons.
2692                  */
2693                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2694                         task_timeslice(smt_curr) || rt_task(p)) &&
2695                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2696                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2697                                 resched_task(smt_curr);
2698         }
2699 out_unlock:
2700         for_each_cpu_mask(i, sibling_map)
2701                 spin_unlock(&cpu_rq(i)->lock);
2702         return ret;
2703 }
2704 #else
2705 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2706 {
2707 }
2708
2709 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2710 {
2711         return 0;
2712 }
2713 #endif
2714
2715 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2716
2717 void fastcall add_preempt_count(int val)
2718 {
2719         /*
2720          * Underflow?
2721          */
2722         BUG_ON((preempt_count() < 0));
2723         preempt_count() += val;
2724         /*
2725          * Spinlock count overflowing soon?
2726          */
2727         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2728 }
2729 EXPORT_SYMBOL(add_preempt_count);
2730
2731 void fastcall sub_preempt_count(int val)
2732 {
2733         /*
2734          * Underflow?
2735          */
2736         BUG_ON(val > preempt_count());
2737         /*
2738          * Is the spinlock portion underflowing?
2739          */
2740         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2741         preempt_count() -= val;
2742 }
2743 EXPORT_SYMBOL(sub_preempt_count);
2744
2745 #endif
2746
2747 /*
2748  * schedule() is the main scheduler function.
2749  */
2750 asmlinkage void __sched schedule(void)
2751 {
2752         long *switch_count;
2753         task_t *prev, *next;
2754         runqueue_t *rq;
2755         prio_array_t *array;
2756         struct list_head *queue;
2757         unsigned long long now;
2758         unsigned long run_time;
2759         int cpu, idx, new_prio;
2760
2761         /*
2762          * Test if we are atomic.  Since do_exit() needs to call into
2763          * schedule() atomically, we ignore that path for now.
2764          * Otherwise, whine if we are scheduling when we should not be.
2765          */
2766         if (likely(!current->exit_state)) {
2767                 if (unlikely(in_atomic())) {
2768                         printk(KERN_ERR "scheduling while atomic: "
2769                                 "%s/0x%08x/%d\n",
2770                                 current->comm, preempt_count(), current->pid);
2771                         dump_stack();
2772                 }
2773         }
2774         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2775
2776 need_resched:
2777         preempt_disable();
2778         prev = current;
2779         release_kernel_lock(prev);
2780 need_resched_nonpreemptible:
2781         rq = this_rq();
2782
2783         /*
2784          * The idle thread is not allowed to schedule!
2785          * Remove this check after it has been exercised a bit.
2786          */
2787         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2788                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2789                 dump_stack();
2790         }
2791
2792         schedstat_inc(rq, sched_cnt);
2793         now = sched_clock();
2794         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2795                 run_time = now - prev->timestamp;
2796                 if (unlikely((long long)(now - prev->timestamp) < 0))
2797                         run_time = 0;
2798         } else
2799                 run_time = NS_MAX_SLEEP_AVG;
2800
2801         /*
2802          * Tasks charged proportionately less run_time at high sleep_avg to
2803          * delay them losing their interactive status
2804          */
2805         run_time /= (CURRENT_BONUS(prev) ? : 1);
2806
2807         spin_lock_irq(&rq->lock);
2808
2809         if (unlikely(prev->flags & PF_DEAD))
2810                 prev->state = EXIT_DEAD;
2811
2812         switch_count = &prev->nivcsw;
2813         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2814                 switch_count = &prev->nvcsw;
2815                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2816                                 unlikely(signal_pending(prev))))
2817                         prev->state = TASK_RUNNING;
2818                 else {
2819                         if (prev->state == TASK_UNINTERRUPTIBLE)
2820                                 rq->nr_uninterruptible++;
2821                         deactivate_task(prev, rq);
2822                 }
2823         }
2824
2825         cpu = smp_processor_id();
2826         if (unlikely(!rq->nr_running)) {
2827 go_idle:
2828                 idle_balance(cpu, rq);
2829                 if (!rq->nr_running) {
2830                         next = rq->idle;
2831                         rq->expired_timestamp = 0;
2832                         wake_sleeping_dependent(cpu, rq);
2833                         /*
2834                          * wake_sleeping_dependent() might have released
2835                          * the runqueue, so break out if we got new
2836                          * tasks meanwhile:
2837                          */
2838                         if (!rq->nr_running)
2839                                 goto switch_tasks;
2840                 }
2841         } else {
2842                 if (dependent_sleeper(cpu, rq)) {
2843                         next = rq->idle;
2844                         goto switch_tasks;
2845                 }
2846                 /*
2847                  * dependent_sleeper() releases and reacquires the runqueue
2848                  * lock, hence go into the idle loop if the rq went
2849                  * empty meanwhile:
2850                  */
2851                 if (unlikely(!rq->nr_running))
2852                         goto go_idle;
2853         }
2854
2855         array = rq->active;
2856         if (unlikely(!array->nr_active)) {
2857                 /*
2858                  * Switch the active and expired arrays.
2859                  */
2860                 schedstat_inc(rq, sched_switch);
2861                 rq->active = rq->expired;
2862                 rq->expired = array;
2863                 array = rq->active;
2864                 rq->expired_timestamp = 0;
2865                 rq->best_expired_prio = MAX_PRIO;
2866         }
2867
2868         idx = sched_find_first_bit(array->bitmap);
2869         queue = array->queue + idx;
2870         next = list_entry(queue->next, task_t, run_list);
2871
2872         if (!rt_task(next) && next->activated > 0) {
2873                 unsigned long long delta = now - next->timestamp;
2874                 if (unlikely((long long)(now - next->timestamp) < 0))
2875                         delta = 0;
2876
2877                 if (next->activated == 1)
2878                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2879
2880                 array = next->array;
2881                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2882
2883                 if (unlikely(next->prio != new_prio)) {
2884                         dequeue_task(next, array);
2885                         next->prio = new_prio;
2886                         enqueue_task(next, array);
2887                 } else
2888                         requeue_task(next, array);
2889         }
2890         next->activated = 0;
2891 switch_tasks:
2892         if (next == rq->idle)
2893                 schedstat_inc(rq, sched_goidle);
2894         prefetch(next);
2895         prefetch_stack(next);
2896         clear_tsk_need_resched(prev);
2897         rcu_qsctr_inc(task_cpu(prev));
2898
2899         update_cpu_clock(prev, rq, now);
2900
2901         prev->sleep_avg -= run_time;
2902         if ((long)prev->sleep_avg <= 0)
2903                 prev->sleep_avg = 0;
2904         prev->timestamp = prev->last_ran = now;
2905
2906         sched_info_switch(prev, next);
2907         if (likely(prev != next)) {
2908                 next->timestamp = now;
2909                 rq->nr_switches++;
2910                 rq->curr = next;
2911                 ++*switch_count;
2912
2913                 prepare_task_switch(rq, next);
2914                 prev = context_switch(rq, prev, next);
2915                 barrier();
2916                 /*
2917                  * this_rq must be evaluated again because prev may have moved
2918                  * CPUs since it called schedule(), thus the 'rq' on its stack
2919                  * frame will be invalid.
2920                  */
2921                 finish_task_switch(this_rq(), prev);
2922         } else
2923                 spin_unlock_irq(&rq->lock);
2924
2925         prev = current;
2926         if (unlikely(reacquire_kernel_lock(prev) < 0))
2927                 goto need_resched_nonpreemptible;
2928         preempt_enable_no_resched();
2929         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2930                 goto need_resched;
2931 }
2932
2933 EXPORT_SYMBOL(schedule);
2934
2935 #ifdef CONFIG_PREEMPT
2936 /*
2937  * this is is the entry point to schedule() from in-kernel preemption
2938  * off of preempt_enable.  Kernel preemptions off return from interrupt
2939  * occur there and call schedule directly.
2940  */
2941 asmlinkage void __sched preempt_schedule(void)
2942 {
2943         struct thread_info *ti = current_thread_info();
2944 #ifdef CONFIG_PREEMPT_BKL
2945         struct task_struct *task = current;
2946         int saved_lock_depth;
2947 #endif
2948         /*
2949          * If there is a non-zero preempt_count or interrupts are disabled,
2950          * we do not want to preempt the current task.  Just return..
2951          */
2952         if (unlikely(ti->preempt_count || irqs_disabled()))
2953                 return;
2954
2955 need_resched:
2956         add_preempt_count(PREEMPT_ACTIVE);
2957         /*
2958          * We keep the big kernel semaphore locked, but we
2959          * clear ->lock_depth so that schedule() doesnt
2960          * auto-release the semaphore:
2961          */
2962 #ifdef CONFIG_PREEMPT_BKL
2963         saved_lock_depth = task->lock_depth;
2964         task->lock_depth = -1;
2965 #endif
2966         schedule();
2967 #ifdef CONFIG_PREEMPT_BKL
2968         task->lock_depth = saved_lock_depth;
2969 #endif
2970         sub_preempt_count(PREEMPT_ACTIVE);
2971
2972         /* we could miss a preemption opportunity between schedule and now */
2973         barrier();
2974         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2975                 goto need_resched;
2976 }
2977
2978 EXPORT_SYMBOL(preempt_schedule);
2979
2980 /*
2981  * this is is the entry point to schedule() from kernel preemption
2982  * off of irq context.
2983  * Note, that this is called and return with irqs disabled. This will
2984  * protect us against recursive calling from irq.
2985  */
2986 asmlinkage void __sched preempt_schedule_irq(void)
2987 {
2988         struct thread_info *ti = current_thread_info();
2989 #ifdef CONFIG_PREEMPT_BKL
2990         struct task_struct *task = current;
2991         int saved_lock_depth;
2992 #endif
2993         /* Catch callers which need to be fixed*/
2994         BUG_ON(ti->preempt_count || !irqs_disabled());
2995
2996 need_resched:
2997         add_preempt_count(PREEMPT_ACTIVE);
2998         /*
2999          * We keep the big kernel semaphore locked, but we
3000          * clear ->lock_depth so that schedule() doesnt
3001          * auto-release the semaphore:
3002          */
3003 #ifdef CONFIG_PREEMPT_BKL
3004         saved_lock_depth = task->lock_depth;
3005         task->lock_depth = -1;
3006 #endif
3007         local_irq_enable();
3008         schedule();
3009         local_irq_disable();
3010 #ifdef CONFIG_PREEMPT_BKL
3011         task->lock_depth = saved_lock_depth;
3012 #endif
3013         sub_preempt_count(PREEMPT_ACTIVE);
3014
3015         /* we could miss a preemption opportunity between schedule and now */
3016         barrier();
3017         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3018                 goto need_resched;
3019 }
3020
3021 #endif /* CONFIG_PREEMPT */
3022
3023 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3024 {
3025         task_t *p = curr->private;
3026         return try_to_wake_up(p, mode, sync);
3027 }
3028
3029 EXPORT_SYMBOL(default_wake_function);
3030
3031 /*
3032  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3033  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3034  * number) then we wake all the non-exclusive tasks and one exclusive task.
3035  *
3036  * There are circumstances in which we can try to wake a task which has already
3037  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3038  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3039  */
3040 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3041                              int nr_exclusive, int sync, void *key)
3042 {
3043         struct list_head *tmp, *next;
3044
3045         list_for_each_safe(tmp, next, &q->task_list) {
3046                 wait_queue_t *curr;
3047                 unsigned flags;
3048                 curr = list_entry(tmp, wait_queue_t, task_list);
3049                 flags = curr->flags;
3050                 if (curr->func(curr, mode, sync, key) &&
3051                     (flags & WQ_FLAG_EXCLUSIVE) &&
3052                     !--nr_exclusive)
3053                         break;
3054         }
3055 }
3056
3057 /**
3058  * __wake_up - wake up threads blocked on a waitqueue.
3059  * @q: the waitqueue
3060  * @mode: which threads
3061  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3062  * @key: is directly passed to the wakeup function
3063  */
3064 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3065                                 int nr_exclusive, void *key)
3066 {
3067         unsigned long flags;
3068
3069         spin_lock_irqsave(&q->lock, flags);
3070         __wake_up_common(q, mode, nr_exclusive, 0, key);
3071         spin_unlock_irqrestore(&q->lock, flags);
3072 }
3073
3074 EXPORT_SYMBOL(__wake_up);
3075
3076 /*
3077  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3078  */
3079 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3080 {
3081         __wake_up_common(q, mode, 1, 0, NULL);
3082 }
3083
3084 /**
3085  * __wake_up_sync - wake up threads blocked on a waitqueue.
3086  * @q: the waitqueue
3087  * @mode: which threads
3088  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3089  *
3090  * The sync wakeup differs that the waker knows that it will schedule
3091  * away soon, so while the target thread will be woken up, it will not
3092  * be migrated to another CPU - ie. the two threads are 'synchronized'
3093  * with each other. This can prevent needless bouncing between CPUs.
3094  *
3095  * On UP it can prevent extra preemption.
3096  */
3097 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3098 {
3099         unsigned long flags;
3100         int sync = 1;
3101
3102         if (unlikely(!q))
3103                 return;
3104
3105         if (unlikely(!nr_exclusive))
3106                 sync = 0;
3107
3108         spin_lock_irqsave(&q->lock, flags);
3109         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3110         spin_unlock_irqrestore(&q->lock, flags);
3111 }
3112 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3113
3114 void fastcall complete(struct completion *x)
3115 {
3116         unsigned long flags;
3117
3118         spin_lock_irqsave(&x->wait.lock, flags);
3119         x->done++;
3120         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3121                          1, 0, NULL);
3122         spin_unlock_irqrestore(&x->wait.lock, flags);
3123 }
3124 EXPORT_SYMBOL(complete);
3125
3126 void fastcall complete_all(struct completion *x)
3127 {
3128         unsigned long flags;
3129
3130         spin_lock_irqsave(&x->wait.lock, flags);
3131         x->done += UINT_MAX/2;
3132         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3133                          0, 0, NULL);
3134         spin_unlock_irqrestore(&x->wait.lock, flags);
3135 }
3136 EXPORT_SYMBOL(complete_all);
3137
3138 void fastcall __sched wait_for_completion(struct completion *x)
3139 {
3140         might_sleep();
3141         spin_lock_irq(&x->wait.lock);
3142         if (!x->done) {
3143                 DECLARE_WAITQUEUE(wait, current);
3144
3145                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3146                 __add_wait_queue_tail(&x->wait, &wait);
3147                 do {
3148                         __set_current_state(TASK_UNINTERRUPTIBLE);
3149                         spin_unlock_irq(&x->wait.lock);
3150                         schedule();
3151                         spin_lock_irq(&x->wait.lock);
3152                 } while (!x->done);
3153                 __remove_wait_queue(&x->wait, &wait);
3154         }
3155         x->done--;
3156         spin_unlock_irq(&x->wait.lock);
3157 }
3158 EXPORT_SYMBOL(wait_for_completion);
3159
3160 unsigned long fastcall __sched
3161 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3162 {
3163         might_sleep();
3164
3165         spin_lock_irq(&x->wait.lock);
3166         if (!x->done) {
3167                 DECLARE_WAITQUEUE(wait, current);
3168
3169                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3170                 __add_wait_queue_tail(&x->wait, &wait);
3171                 do {
3172                         __set_current_state(TASK_UNINTERRUPTIBLE);
3173                         spin_unlock_irq(&x->wait.lock);
3174                         timeout = schedule_timeout(timeout);
3175                         spin_lock_irq(&x->wait.lock);
3176                         if (!timeout) {
3177                                 __remove_wait_queue(&x->wait, &wait);
3178                                 goto out;
3179                         }
3180                 } while (!x->done);
3181                 __remove_wait_queue(&x->wait, &wait);
3182         }
3183         x->done--;
3184 out:
3185         spin_unlock_irq(&x->wait.lock);
3186         return timeout;
3187 }
3188 EXPORT_SYMBOL(wait_for_completion_timeout);
3189
3190 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3191 {
3192         int ret = 0;
3193
3194         might_sleep();
3195
3196         spin_lock_irq(&x->wait.lock);
3197         if (!x->done) {
3198                 DECLARE_WAITQUEUE(wait, current);
3199
3200                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3201                 __add_wait_queue_tail(&x->wait, &wait);
3202                 do {
3203                         if (signal_pending(current)) {
3204                                 ret = -ERESTARTSYS;
3205                                 __remove_wait_queue(&x->wait, &wait);
3206                                 goto out;
3207                         }
3208                         __set_current_state(TASK_INTERRUPTIBLE);
3209                         spin_unlock_irq(&x->wait.lock);
3210                         schedule();
3211                         spin_lock_irq(&x->wait.lock);
3212                 } while (!x->done);
3213                 __remove_wait_queue(&x->wait, &wait);
3214         }
3215         x->done--;
3216 out:
3217         spin_unlock_irq(&x->wait.lock);
3218
3219         return ret;
3220 }
3221 EXPORT_SYMBOL(wait_for_completion_interruptible);
3222
3223 unsigned long fastcall __sched
3224 wait_for_completion_interruptible_timeout(struct completion *x,
3225                                           unsigned long timeout)
3226 {
3227         might_sleep();
3228
3229         spin_lock_irq(&x->wait.lock);
3230         if (!x->done) {
3231                 DECLARE_WAITQUEUE(wait, current);
3232
3233                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3234                 __add_wait_queue_tail(&x->wait, &wait);
3235                 do {
3236                         if (signal_pending(current)) {
3237                                 timeout = -ERESTARTSYS;
3238                                 __remove_wait_queue(&x->wait, &wait);
3239                                 goto out;
3240                         }
3241                         __set_current_state(TASK_INTERRUPTIBLE);
3242                         spin_unlock_irq(&x->wait.lock);
3243                         timeout = schedule_timeout(timeout);
3244                         spin_lock_irq(&x->wait.lock);
3245                         if (!timeout) {
3246                                 __remove_wait_queue(&x->wait, &wait);
3247                                 goto out;
3248                         }
3249                 } while (!x->done);
3250                 __remove_wait_queue(&x->wait, &wait);
3251         }
3252         x->done--;
3253 out:
3254         spin_unlock_irq(&x->wait.lock);
3255         return timeout;
3256 }
3257 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3258
3259
3260 #define SLEEP_ON_VAR                                    \
3261         unsigned long flags;                            \
3262         wait_queue_t wait;                              \
3263         init_waitqueue_entry(&wait, current);
3264
3265 #define SLEEP_ON_HEAD                                   \
3266         spin_lock_irqsave(&q->lock,flags);              \
3267         __add_wait_queue(q, &wait);                     \
3268         spin_unlock(&q->lock);
3269
3270 #define SLEEP_ON_TAIL                                   \
3271         spin_lock_irq(&q->lock);                        \
3272         __remove_wait_queue(q, &wait);                  \
3273         spin_unlock_irqrestore(&q->lock, flags);
3274
3275 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3276 {
3277         SLEEP_ON_VAR
3278
3279         current->state = TASK_INTERRUPTIBLE;
3280
3281         SLEEP_ON_HEAD
3282         schedule();
3283         SLEEP_ON_TAIL
3284 }
3285
3286 EXPORT_SYMBOL(interruptible_sleep_on);
3287
3288 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3289 {
3290         SLEEP_ON_VAR
3291
3292         current->state = TASK_INTERRUPTIBLE;
3293
3294         SLEEP_ON_HEAD
3295         timeout = schedule_timeout(timeout);
3296         SLEEP_ON_TAIL
3297
3298         return timeout;
3299 }
3300
3301 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3302
3303 void fastcall __sched sleep_on(wait_queue_head_t *q)
3304 {
3305         SLEEP_ON_VAR
3306
3307         current->state = TASK_UNINTERRUPTIBLE;
3308
3309         SLEEP_ON_HEAD
3310         schedule();
3311         SLEEP_ON_TAIL
3312 }
3313
3314 EXPORT_SYMBOL(sleep_on);
3315
3316 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3317 {
3318         SLEEP_ON_VAR
3319
3320         current->state = TASK_UNINTERRUPTIBLE;
3321
3322         SLEEP_ON_HEAD
3323         timeout = schedule_timeout(timeout);
3324         SLEEP_ON_TAIL
3325
3326         return timeout;
3327 }
3328
3329 EXPORT_SYMBOL(sleep_on_timeout);
3330
3331 void set_user_nice(task_t *p, long nice)
3332 {
3333         unsigned long flags;
3334         prio_array_t *array;
3335         runqueue_t *rq;
3336         int old_prio, new_prio, delta;
3337
3338         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3339                 return;
3340         /*
3341          * We have to be careful, if called from sys_setpriority(),
3342          * the task might be in the middle of scheduling on another CPU.
3343          */
3344         rq = task_rq_lock(p, &flags);
3345         /*
3346          * The RT priorities are set via sched_setscheduler(), but we still
3347          * allow the 'normal' nice value to be set - but as expected
3348          * it wont have any effect on scheduling until the task is
3349          * not SCHED_NORMAL:
3350          */
3351         if (rt_task(p)) {
3352                 p->static_prio = NICE_TO_PRIO(nice);
3353                 goto out_unlock;
3354         }
3355         array = p->array;
3356         if (array)
3357                 dequeue_task(p, array);
3358
3359         old_prio = p->prio;
3360         new_prio = NICE_TO_PRIO(nice);
3361         delta = new_prio - old_prio;
3362         p->static_prio = NICE_TO_PRIO(nice);
3363         p->prio += delta;
3364
3365         if (array) {
3366                 enqueue_task(p, array);
3367                 /*
3368                  * If the task increased its priority or is running and
3369                  * lowered its priority, then reschedule its CPU:
3370                  */
3371                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3372                         resched_task(rq->curr);
3373         }
3374 out_unlock:
3375         task_rq_unlock(rq, &flags);
3376 }
3377
3378 EXPORT_SYMBOL(set_user_nice);
3379
3380 /*
3381  * can_nice - check if a task can reduce its nice value
3382  * @p: task
3383  * @nice: nice value
3384  */
3385 int can_nice(const task_t *p, const int nice)
3386 {
3387         /* convert nice value [19,-20] to rlimit style value [1,40] */
3388         int nice_rlim = 20 - nice;
3389         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3390                 capable(CAP_SYS_NICE));
3391 }
3392
3393 #ifdef __ARCH_WANT_SYS_NICE
3394
3395 /*
3396  * sys_nice - change the priority of the current process.
3397  * @increment: priority increment
3398  *
3399  * sys_setpriority is a more generic, but much slower function that
3400  * does similar things.
3401  */
3402 asmlinkage long sys_nice(int increment)
3403 {
3404         int retval;
3405         long nice;
3406
3407         /*
3408          * Setpriority might change our priority at the same moment.
3409          * We don't have to worry. Conceptually one call occurs first
3410          * and we have a single winner.
3411          */
3412         if (increment < -40)
3413                 increment = -40;
3414         if (increment > 40)
3415                 increment = 40;
3416
3417         nice = PRIO_TO_NICE(current->static_prio) + increment;
3418         if (nice < -20)
3419                 nice = -20;
3420         if (nice > 19)
3421                 nice = 19;
3422
3423         if (increment < 0 && !can_nice(current, nice))
3424                 return -EPERM;
3425
3426         retval = security_task_setnice(current, nice);
3427         if (retval)
3428                 return retval;
3429
3430         set_user_nice(current, nice);
3431         return 0;
3432 }
3433
3434 #endif
3435
3436 /**
3437  * task_prio - return the priority value of a given task.
3438  * @p: the task in question.
3439  *
3440  * This is the priority value as seen by users in /proc.
3441  * RT tasks are offset by -200. Normal tasks are centered
3442  * around 0, value goes from -16 to +15.
3443  */
3444 int task_prio(const task_t *p)
3445 {
3446         return p->prio - MAX_RT_PRIO;
3447 }
3448
3449 /**
3450  * task_nice - return the nice value of a given task.
3451  * @p: the task in question.
3452  */
3453 int task_nice(const task_t *p)
3454 {
3455         return TASK_NICE(p);
3456 }
3457 EXPORT_SYMBOL_GPL(task_nice);
3458
3459 /**
3460  * idle_cpu - is a given cpu idle currently?
3461  * @cpu: the processor in question.
3462  */
3463 int idle_cpu(int cpu)
3464 {
3465         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3466 }
3467
3468 EXPORT_SYMBOL_GPL(idle_cpu);
3469
3470 /**
3471  * idle_task - return the idle task for a given cpu.
3472  * @cpu: the processor in question.
3473  */
3474 task_t *idle_task(int cpu)
3475 {
3476         return cpu_rq(cpu)->idle;
3477 }
3478
3479 /**
3480  * find_process_by_pid - find a process with a matching PID value.
3481  * @pid: the pid in question.
3482  */
3483 static inline task_t *find_process_by_pid(pid_t pid)
3484 {
3485         return pid ? find_task_by_pid(pid) : current;
3486 }
3487
3488 /* Actually do priority change: must hold rq lock. */
3489 static void __setscheduler(struct task_struct *p, int policy, int prio)
3490 {
3491         BUG_ON(p->array);
3492         p->policy = policy;
3493         p->rt_priority = prio;
3494         if (policy != SCHED_NORMAL)
3495                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3496         else
3497                 p->prio = p->static_prio;
3498 }
3499
3500 /**
3501  * sched_setscheduler - change the scheduling policy and/or RT priority of
3502  * a thread.
3503  * @p: the task in question.
3504  * @policy: new policy.
3505  * @param: structure containing the new RT priority.
3506  */
3507 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3508 {
3509         int retval;
3510         int oldprio, oldpolicy = -1;
3511         prio_array_t *array;
3512         unsigned long flags;
3513         runqueue_t *rq;
3514
3515 recheck:
3516         /* double check policy once rq lock held */
3517         if (policy < 0)
3518                 policy = oldpolicy = p->policy;
3519         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3520                                 policy != SCHED_NORMAL)
3521                         return -EINVAL;
3522         /*
3523          * Valid priorities for SCHED_FIFO and SCHED_RR are
3524          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3525          */
3526         if (param->sched_priority < 0 ||
3527             (p->mm &&  param->sched_priority > MAX_USER_RT_PRIO-1) ||
3528             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3529                 return -EINVAL;
3530         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3531                 return -EINVAL;
3532
3533         /*
3534          * Allow unprivileged RT tasks to decrease priority:
3535          */
3536         if (!capable(CAP_SYS_NICE)) {
3537                 /* can't change policy */
3538                 if (policy != p->policy &&
3539                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3540                         return -EPERM;
3541                 /* can't increase priority */
3542                 if (policy != SCHED_NORMAL &&
3543                     param->sched_priority > p->rt_priority &&
3544                     param->sched_priority >
3545                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3546                         return -EPERM;
3547                 /* can't change other user's priorities */
3548                 if ((current->euid != p->euid) &&
3549                     (current->euid != p->uid))
3550                         return -EPERM;
3551         }
3552
3553         retval = security_task_setscheduler(p, policy, param);
3554         if (retval)
3555                 return retval;
3556         /*
3557          * To be able to change p->policy safely, the apropriate
3558          * runqueue lock must be held.
3559          */
3560         rq = task_rq_lock(p, &flags);
3561         /* recheck policy now with rq lock held */
3562         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3563                 policy = oldpolicy = -1;
3564                 task_rq_unlock(rq, &flags);
3565                 goto recheck;
3566         }
3567         array = p->array;
3568         if (array)
3569                 deactivate_task(p, rq);
3570         oldprio = p->prio;
3571         __setscheduler(p, policy, param->sched_priority);
3572         if (array) {
3573                 __activate_task(p, rq);
3574                 /*
3575                  * Reschedule if we are currently running on this runqueue and
3576                  * our priority decreased, or if we are not currently running on
3577                  * this runqueue and our priority is higher than the current's
3578                  */
3579                 if (task_running(rq, p)) {
3580                         if (p->prio > oldprio)
3581                                 resched_task(rq->curr);
3582                 } else if (TASK_PREEMPTS_CURR(p, rq))
3583                         resched_task(rq->curr);
3584         }
3585         task_rq_unlock(rq, &flags);
3586         return 0;
3587 }
3588 EXPORT_SYMBOL_GPL(sched_setscheduler);
3589
3590 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3591 {
3592         int retval;
3593         struct sched_param lparam;
3594         struct task_struct *p;
3595
3596         if (!param || pid < 0)
3597                 return -EINVAL;
3598         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3599                 return -EFAULT;
3600         read_lock_irq(&tasklist_lock);
3601         p = find_process_by_pid(pid);
3602         if (!p) {
3603                 read_unlock_irq(&tasklist_lock);
3604                 return -ESRCH;
3605         }
3606         retval = sched_setscheduler(p, policy, &lparam);
3607         read_unlock_irq(&tasklist_lock);
3608         return retval;
3609 }
3610
3611 /**
3612  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3613  * @pid: the pid in question.
3614  * @policy: new policy.
3615  * @param: structure containing the new RT priority.
3616  */
3617 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3618                                        struct sched_param __user *param)
3619 {
3620         return do_sched_setscheduler(pid, policy, param);
3621 }
3622
3623 /**
3624  * sys_sched_setparam - set/change the RT priority of a thread
3625  * @pid: the pid in question.
3626  * @param: structure containing the new RT priority.
3627  */
3628 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3629 {
3630         return do_sched_setscheduler(pid, -1, param);
3631 }
3632
3633 /**
3634  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3635  * @pid: the pid in question.
3636  */
3637 asmlinkage long sys_sched_getscheduler(pid_t pid)
3638 {
3639         int retval = -EINVAL;
3640         task_t *p;
3641
3642         if (pid < 0)
3643                 goto out_nounlock;
3644
3645         retval = -ESRCH;
3646         read_lock(&tasklist_lock);
3647         p = find_process_by_pid(pid);
3648         if (p) {
3649                 retval = security_task_getscheduler(p);
3650                 if (!retval)
3651                         retval = p->policy;
3652         }
3653         read_unlock(&tasklist_lock);
3654
3655 out_nounlock:
3656         return retval;
3657 }
3658
3659 /**
3660  * sys_sched_getscheduler - get the RT priority of a thread
3661  * @pid: the pid in question.
3662  * @param: structure containing the RT priority.
3663  */
3664 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3665 {
3666         struct sched_param lp;
3667         int retval = -EINVAL;
3668         task_t *p;
3669
3670         if (!param || pid < 0)
3671                 goto out_nounlock;
3672
3673         read_lock(&tasklist_lock);
3674         p = find_process_by_pid(pid);
3675         retval = -ESRCH;
3676         if (!p)
3677                 goto out_unlock;
3678
3679         retval = security_task_getscheduler(p);
3680         if (retval)
3681                 goto out_unlock;
3682
3683         lp.sched_priority = p->rt_priority;
3684         read_unlock(&tasklist_lock);
3685
3686         /*
3687          * This one might sleep, we cannot do it with a spinlock held ...
3688          */
3689         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3690
3691 out_nounlock:
3692         return retval;
3693
3694 out_unlock:
3695         read_unlock(&tasklist_lock);
3696         return retval;
3697 }
3698
3699 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3700 {
3701         task_t *p;
3702         int retval;
3703         cpumask_t cpus_allowed;
3704
3705         lock_cpu_hotplug();
3706         read_lock(&tasklist_lock);
3707
3708         p = find_process_by_pid(pid);
3709         if (!p) {
3710                 read_unlock(&tasklist_lock);
3711                 unlock_cpu_hotplug();
3712                 return -ESRCH;
3713         }
3714
3715         /*
3716          * It is not safe to call set_cpus_allowed with the
3717          * tasklist_lock held.  We will bump the task_struct's
3718          * usage count and then drop tasklist_lock.
3719          */
3720         get_task_struct(p);
3721         read_unlock(&tasklist_lock);
3722
3723         retval = -EPERM;
3724         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3725                         !capable(CAP_SYS_NICE))
3726                 goto out_unlock;
3727
3728         cpus_allowed = cpuset_cpus_allowed(p);
3729         cpus_and(new_mask, new_mask, cpus_allowed);
3730         retval = set_cpus_allowed(p, new_mask);
3731
3732 out_unlock:
3733         put_task_struct(p);
3734         unlock_cpu_hotplug();
3735         return retval;
3736 }
3737
3738 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3739                              cpumask_t *new_mask)
3740 {
3741         if (len < sizeof(cpumask_t)) {
3742                 memset(new_mask, 0, sizeof(cpumask_t));
3743         } else if (len > sizeof(cpumask_t)) {
3744                 len = sizeof(cpumask_t);
3745         }
3746         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3747 }
3748
3749 /**
3750  * sys_sched_setaffinity - set the cpu affinity of a process
3751  * @pid: pid of the process
3752  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3753  * @user_mask_ptr: user-space pointer to the new cpu mask
3754  */
3755 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3756                                       unsigned long __user *user_mask_ptr)
3757 {
3758         cpumask_t new_mask;
3759         int retval;
3760
3761         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3762         if (retval)
3763                 return retval;
3764
3765         return sched_setaffinity(pid, new_mask);
3766 }
3767
3768 /*
3769  * Represents all cpu's present in the system
3770  * In systems capable of hotplug, this map could dynamically grow
3771  * as new cpu's are detected in the system via any platform specific
3772  * method, such as ACPI for e.g.
3773  */
3774
3775 cpumask_t cpu_present_map;
3776 EXPORT_SYMBOL(cpu_present_map);
3777
3778 #ifndef CONFIG_SMP
3779 cpumask_t cpu_online_map = CPU_MASK_ALL;
3780 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3781 #endif
3782
3783 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3784 {
3785         int retval;
3786         task_t *p;
3787
3788         lock_cpu_hotplug();
3789         read_lock(&tasklist_lock);
3790
3791         retval = -ESRCH;
3792         p = find_process_by_pid(pid);
3793         if (!p)
3794                 goto out_unlock;
3795
3796         retval = 0;
3797         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3798
3799 out_unlock:
3800         read_unlock(&tasklist_lock);
3801         unlock_cpu_hotplug();
3802         if (retval)
3803                 return retval;
3804
3805         return 0;
3806 }
3807
3808 /**
3809  * sys_sched_getaffinity - get the cpu affinity of a process
3810  * @pid: pid of the process
3811  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3812  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3813  */
3814 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3815                                       unsigned long __user *user_mask_ptr)
3816 {
3817         int ret;
3818         cpumask_t mask;
3819
3820         if (len < sizeof(cpumask_t))
3821                 return -EINVAL;
3822
3823         ret = sched_getaffinity(pid, &mask);
3824         if (ret < 0)
3825                 return ret;
3826
3827         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3828                 return -EFAULT;
3829
3830         return sizeof(cpumask_t);
3831 }
3832
3833 /**
3834  * sys_sched_yield - yield the current processor to other threads.
3835  *
3836  * this function yields the current CPU by moving the calling thread
3837  * to the expired array. If there are no other threads running on this
3838  * CPU then this function will return.
3839  */
3840 asmlinkage long sys_sched_yield(void)
3841 {
3842         runqueue_t *rq = this_rq_lock();
3843         prio_array_t *array = current->array;
3844         prio_array_t *target = rq->expired;
3845
3846         schedstat_inc(rq, yld_cnt);
3847         /*
3848          * We implement yielding by moving the task into the expired
3849          * queue.
3850          *
3851          * (special rule: RT tasks will just roundrobin in the active
3852          *  array.)
3853          */
3854         if (rt_task(current))
3855                 target = rq->active;
3856
3857         if (current->array->nr_active == 1) {
3858                 schedstat_inc(rq, yld_act_empty);
3859                 if (!rq->expired->nr_active)
3860                         schedstat_inc(rq, yld_both_empty);
3861         } else if (!rq->expired->nr_active)
3862                 schedstat_inc(rq, yld_exp_empty);
3863
3864         if (array != target) {
3865                 dequeue_task(current, array);
3866                 enqueue_task(current, target);
3867         } else
3868                 /*
3869                  * requeue_task is cheaper so perform that if possible.
3870                  */
3871                 requeue_task(current, array);
3872
3873         /*
3874          * Since we are going to call schedule() anyway, there's
3875          * no need to preempt or enable interrupts:
3876          */
3877         __release(rq->lock);
3878         _raw_spin_unlock(&rq->lock);
3879         preempt_enable_no_resched();
3880
3881         schedule();
3882
3883         return 0;
3884 }
3885
3886 static inline void __cond_resched(void)
3887 {
3888         /*
3889          * The BKS might be reacquired before we have dropped
3890          * PREEMPT_ACTIVE, which could trigger a second
3891          * cond_resched() call.
3892          */
3893         if (unlikely(preempt_count()))
3894                 return;
3895         do {
3896                 add_preempt_count(PREEMPT_ACTIVE);
3897                 schedule();
3898                 sub_preempt_count(PREEMPT_ACTIVE);
3899         } while (need_resched());
3900 }
3901
3902 int __sched cond_resched(void)
3903 {
3904         if (need_resched()) {
3905                 __cond_resched();
3906                 return 1;
3907         }
3908         return 0;
3909 }
3910
3911 EXPORT_SYMBOL(cond_resched);
3912
3913 /*
3914  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3915  * call schedule, and on return reacquire the lock.
3916  *
3917  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3918  * operations here to prevent schedule() from being called twice (once via
3919  * spin_unlock(), once by hand).
3920  */
3921 int cond_resched_lock(spinlock_t * lock)
3922 {
3923         int ret = 0;
3924
3925         if (need_lockbreak(lock)) {
3926                 spin_unlock(lock);
3927                 cpu_relax();
3928                 ret = 1;
3929                 spin_lock(lock);
3930         }
3931         if (need_resched()) {
3932                 _raw_spin_unlock(lock);
3933                 preempt_enable_no_resched();
3934                 __cond_resched();
3935                 ret = 1;
3936                 spin_lock(lock);
3937         }
3938         return ret;
3939 }
3940
3941 EXPORT_SYMBOL(cond_resched_lock);
3942
3943 int __sched cond_resched_softirq(void)
3944 {
3945         BUG_ON(!in_softirq());
3946
3947         if (need_resched()) {
3948                 __local_bh_enable();
3949                 __cond_resched();
3950                 local_bh_disable();
3951                 return 1;
3952         }
3953         return 0;
3954 }
3955
3956 EXPORT_SYMBOL(cond_resched_softirq);
3957
3958
3959 /**
3960  * yield - yield the current processor to other threads.
3961  *
3962  * this is a shortcut for kernel-space yielding - it marks the
3963  * thread runnable and calls sys_sched_yield().
3964  */
3965 void __sched yield(void)
3966 {
3967         set_current_state(TASK_RUNNING);
3968         sys_sched_yield();
3969 }
3970
3971 EXPORT_SYMBOL(yield);
3972
3973 /*
3974  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3975  * that process accounting knows that this is a task in IO wait state.
3976  *
3977  * But don't do that if it is a deliberate, throttling IO wait (this task
3978  * has set its backing_dev_info: the queue against which it should throttle)
3979  */
3980 void __sched io_schedule(void)
3981 {
3982         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3983
3984         atomic_inc(&rq->nr_iowait);
3985         schedule();
3986         atomic_dec(&rq->nr_iowait);
3987 }
3988
3989 EXPORT_SYMBOL(io_schedule);
3990
3991 long __sched io_schedule_timeout(long timeout)
3992 {
3993         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3994         long ret;
3995
3996         atomic_inc(&rq->nr_iowait);
3997         ret = schedule_timeout(timeout);
3998         atomic_dec(&rq->nr_iowait);
3999         return ret;
4000 }
4001
4002 /**
4003  * sys_sched_get_priority_max - return maximum RT priority.
4004  * @policy: scheduling class.
4005  *
4006  * this syscall returns the maximum rt_priority that can be used
4007  * by a given scheduling class.
4008  */
4009 asmlinkage long sys_sched_get_priority_max(int policy)
4010 {
4011         int ret = -EINVAL;
4012
4013         switch (policy) {
4014         case SCHED_FIFO:
4015         case SCHED_RR:
4016                 ret = MAX_USER_RT_PRIO-1;
4017                 break;
4018         case SCHED_NORMAL:
4019                 ret = 0;
4020                 break;
4021         }
4022         return ret;
4023 }
4024
4025 /**
4026  * sys_sched_get_priority_min - return minimum RT priority.
4027  * @policy: scheduling class.
4028  *
4029  * this syscall returns the minimum rt_priority that can be used
4030  * by a given scheduling class.
4031  */
4032 asmlinkage long sys_sched_get_priority_min(int policy)
4033 {
4034         int ret = -EINVAL;
4035
4036         switch (policy) {
4037         case SCHED_FIFO:
4038         case SCHED_RR:
4039                 ret = 1;
4040                 break;
4041         case SCHED_NORMAL:
4042                 ret = 0;
4043         }
4044         return ret;
4045 }
4046
4047 /**
4048  * sys_sched_rr_get_interval - return the default timeslice of a process.
4049  * @pid: pid of the process.
4050  * @interval: userspace pointer to the timeslice value.
4051  *
4052  * this syscall writes the default timeslice value of a given process
4053  * into the user-space timespec buffer. A value of '0' means infinity.
4054  */
4055 asmlinkage
4056 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4057 {
4058         int retval = -EINVAL;
4059         struct timespec t;
4060         task_t *p;
4061
4062         if (pid < 0)
4063                 goto out_nounlock;
4064
4065         retval = -ESRCH;
4066         read_lock(&tasklist_lock);
4067         p = find_process_by_pid(pid);
4068         if (!p)
4069                 goto out_unlock;
4070
4071         retval = security_task_getscheduler(p);
4072         if (retval)
4073                 goto out_unlock;
4074
4075         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4076                                 0 : task_timeslice(p), &t);
4077         read_unlock(&tasklist_lock);
4078         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4079 out_nounlock:
4080         return retval;
4081 out_unlock:
4082         read_unlock(&tasklist_lock);
4083         return retval;
4084 }
4085
4086 static inline struct task_struct *eldest_child(struct task_struct *p)
4087 {
4088         if (list_empty(&p->children)) return NULL;
4089         return list_entry(p->children.next,struct task_struct,sibling);
4090 }
4091
4092 static inline struct task_struct *older_sibling(struct task_struct *p)
4093 {
4094         if (p->sibling.prev==&p->parent->children) return NULL;
4095         return list_entry(p->sibling.prev,struct task_struct,sibling);
4096 }
4097
4098 static inline struct task_struct *younger_sibling(struct task_struct *p)
4099 {
4100         if (p->sibling.next==&p->parent->children) return NULL;
4101         return list_entry(p->sibling.next,struct task_struct,sibling);
4102 }
4103
4104 static void show_task(task_t * p)
4105 {
4106         task_t *relative;
4107         unsigned state;
4108         unsigned long free = 0;
4109         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4110
4111         printk("%-13.13s ", p->comm);
4112         state = p->state ? __ffs(p->state) + 1 : 0;
4113         if (state < ARRAY_SIZE(stat_nam))
4114                 printk(stat_nam[state]);
4115         else
4116                 printk("?");
4117 #if (BITS_PER_LONG == 32)
4118         if (state == TASK_RUNNING)
4119                 printk(" running ");
4120         else
4121                 printk(" %08lX ", thread_saved_pc(p));
4122 #else
4123         if (state == TASK_RUNNING)
4124                 printk("  running task   ");
4125         else
4126                 printk(" %016lx ", thread_saved_pc(p));
4127 #endif
4128 #ifdef CONFIG_DEBUG_STACK_USAGE
4129         {
4130                 unsigned long * n = (unsigned long *) (p->thread_info+1);
4131                 while (!*n)
4132                         n++;
4133                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4134         }
4135 #endif
4136         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4137         if ((relative = eldest_child(p)))
4138                 printk("%5d ", relative->pid);
4139         else
4140                 printk("      ");
4141         if ((relative = younger_sibling(p)))
4142                 printk("%7d", relative->pid);
4143         else
4144                 printk("       ");
4145         if ((relative = older_sibling(p)))
4146                 printk(" %5d", relative->pid);
4147         else
4148                 printk("      ");
4149         if (!p->mm)
4150                 printk(" (L-TLB)\n");
4151         else
4152                 printk(" (NOTLB)\n");
4153
4154         if (state != TASK_RUNNING)
4155                 show_stack(p, NULL);
4156 }
4157
4158 void show_state(void)
4159 {
4160         task_t *g, *p;
4161
4162 #if (BITS_PER_LONG == 32)
4163         printk("\n"
4164                "                                               sibling\n");
4165         printk("  task             PC      pid father child younger older\n");
4166 #else
4167         printk("\n"
4168                "                                                       sibling\n");
4169         printk("  task                 PC          pid father child younger older\n");
4170 #endif
4171         read_lock(&tasklist_lock);
4172         do_each_thread(g, p) {
4173                 /*
4174                  * reset the NMI-timeout, listing all files on a slow
4175                  * console might take alot of time:
4176                  */
4177                 touch_nmi_watchdog();
4178                 show_task(p);
4179         } while_each_thread(g, p);
4180
4181         read_unlock(&tasklist_lock);
4182 }
4183
4184 /**
4185  * init_idle - set up an idle thread for a given CPU
4186  * @idle: task in question
4187  * @cpu: cpu the idle task belongs to
4188  *
4189  * NOTE: this function does not set the idle thread's NEED_RESCHED
4190  * flag, to make booting more robust.
4191  */
4192 void __devinit init_idle(task_t *idle, int cpu)
4193 {
4194         runqueue_t *rq = cpu_rq(cpu);
4195         unsigned long flags;
4196
4197         idle->sleep_avg = 0;
4198         idle->array = NULL;
4199         idle->prio = MAX_PRIO;
4200         idle->state = TASK_RUNNING;
4201         idle->cpus_allowed = cpumask_of_cpu(cpu);
4202         set_task_cpu(idle, cpu);
4203
4204         spin_lock_irqsave(&rq->lock, flags);
4205         rq->curr = rq->idle = idle;
4206 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4207         idle->oncpu = 1;
4208 #endif
4209         spin_unlock_irqrestore(&rq->lock, flags);
4210
4211         /* Set the preempt count _outside_ the spinlocks! */
4212 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4213         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4214 #else
4215         idle->thread_info->preempt_count = 0;
4216 #endif
4217 }
4218
4219 /*
4220  * In a system that switches off the HZ timer nohz_cpu_mask
4221  * indicates which cpus entered this state. This is used
4222  * in the rcu update to wait only for active cpus. For system
4223  * which do not switch off the HZ timer nohz_cpu_mask should
4224  * always be CPU_MASK_NONE.
4225  */
4226 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4227
4228 #ifdef CONFIG_SMP
4229 /*
4230  * This is how migration works:
4231  *
4232  * 1) we queue a migration_req_t structure in the source CPU's
4233  *    runqueue and wake up that CPU's migration thread.
4234  * 2) we down() the locked semaphore => thread blocks.
4235  * 3) migration thread wakes up (implicitly it forces the migrated
4236  *    thread off the CPU)
4237  * 4) it gets the migration request and checks whether the migrated
4238  *    task is still in the wrong runqueue.
4239  * 5) if it's in the wrong runqueue then the migration thread removes
4240  *    it and puts it into the right queue.
4241  * 6) migration thread up()s the semaphore.
4242  * 7) we wake up and the migration is done.
4243  */
4244
4245 /*
4246  * Change a given task's CPU affinity. Migrate the thread to a
4247  * proper CPU and schedule it away if the CPU it's executing on
4248  * is removed from the allowed bitmask.
4249  *
4250  * NOTE: the caller must have a valid reference to the task, the
4251  * task must not exit() & deallocate itself prematurely.  The
4252  * call is not atomic; no spinlocks may be held.
4253  */
4254 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4255 {
4256         unsigned long flags;
4257         int ret = 0;
4258         migration_req_t req;
4259         runqueue_t *rq;
4260
4261         rq = task_rq_lock(p, &flags);
4262         if (!cpus_intersects(new_mask, cpu_online_map)) {
4263                 ret = -EINVAL;
4264                 goto out;
4265         }
4266
4267         p->cpus_allowed = new_mask;
4268         /* Can the task run on the task's current CPU? If so, we're done */
4269         if (cpu_isset(task_cpu(p), new_mask))
4270                 goto out;
4271
4272         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4273                 /* Need help from migration thread: drop lock and wait. */
4274                 task_rq_unlock(rq, &flags);
4275                 wake_up_process(rq->migration_thread);
4276                 wait_for_completion(&req.done);
4277                 tlb_migrate_finish(p->mm);
4278                 return 0;
4279         }
4280 out:
4281         task_rq_unlock(rq, &flags);
4282         return ret;
4283 }
4284
4285 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4286
4287 /*
4288  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4289  * this because either it can't run here any more (set_cpus_allowed()
4290  * away from this CPU, or CPU going down), or because we're
4291  * attempting to rebalance this task on exec (sched_exec).
4292  *
4293  * So we race with normal scheduler movements, but that's OK, as long
4294  * as the task is no longer on this CPU.
4295  */
4296 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4297 {
4298         runqueue_t *rq_dest, *rq_src;
4299
4300         if (unlikely(cpu_is_offline(dest_cpu)))
4301                 return;
4302
4303         rq_src = cpu_rq(src_cpu);
4304         rq_dest = cpu_rq(dest_cpu);
4305
4306         double_rq_lock(rq_src, rq_dest);
4307         /* Already moved. */
4308         if (task_cpu(p) != src_cpu)
4309                 goto out;
4310         /* Affinity changed (again). */
4311         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4312                 goto out;
4313
4314         set_task_cpu(p, dest_cpu);
4315         if (p->array) {
4316                 /*
4317                  * Sync timestamp with rq_dest's before activating.
4318                  * The same thing could be achieved by doing this step
4319                  * afterwards, and pretending it was a local activate.
4320                  * This way is cleaner and logically correct.
4321                  */
4322                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4323                                 + rq_dest->timestamp_last_tick;
4324                 deactivate_task(p, rq_src);
4325                 activate_task(p, rq_dest, 0);
4326                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4327                         resched_task(rq_dest->curr);
4328         }
4329
4330 out:
4331         double_rq_unlock(rq_src, rq_dest);
4332 }
4333
4334 /*
4335  * migration_thread - this is a highprio system thread that performs
4336  * thread migration by bumping thread off CPU then 'pushing' onto
4337  * another runqueue.
4338  */
4339 static int migration_thread(void * data)
4340 {
4341         runqueue_t *rq;
4342         int cpu = (long)data;
4343
4344         rq = cpu_rq(cpu);
4345         BUG_ON(rq->migration_thread != current);
4346
4347         set_current_state(TASK_INTERRUPTIBLE);
4348         while (!kthread_should_stop()) {
4349                 struct list_head *head;
4350                 migration_req_t *req;
4351
4352                 try_to_freeze();
4353
4354                 spin_lock_irq(&rq->lock);
4355
4356                 if (cpu_is_offline(cpu)) {
4357                         spin_unlock_irq(&rq->lock);
4358                         goto wait_to_die;
4359                 }
4360
4361                 if (rq->active_balance) {
4362                         active_load_balance(rq, cpu);
4363                         rq->active_balance = 0;
4364                 }
4365
4366                 head = &rq->migration_queue;
4367
4368                 if (list_empty(head)) {
4369                         spin_unlock_irq(&rq->lock);
4370                         schedule();
4371                         set_current_state(TASK_INTERRUPTIBLE);
4372                         continue;
4373                 }
4374                 req = list_entry(head->next, migration_req_t, list);
4375                 list_del_init(head->next);
4376
4377                 spin_unlock(&rq->lock);
4378                 __migrate_task(req->task, cpu, req->dest_cpu);
4379                 local_irq_enable();
4380
4381                 complete(&req->done);
4382         }
4383         __set_current_state(TASK_RUNNING);
4384         return 0;
4385
4386 wait_to_die:
4387         /* Wait for kthread_stop */
4388         set_current_state(TASK_INTERRUPTIBLE);
4389         while (!kthread_should_stop()) {
4390                 schedule();
4391                 set_current_state(TASK_INTERRUPTIBLE);
4392         }
4393         __set_current_state(TASK_RUNNING);
4394         return 0;
4395 }
4396
4397 #ifdef CONFIG_HOTPLUG_CPU
4398 /* Figure out where task on dead CPU should go, use force if neccessary. */
4399 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4400 {
4401         int dest_cpu;
4402         cpumask_t mask;
4403
4404         /* On same node? */
4405         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4406         cpus_and(mask, mask, tsk->cpus_allowed);
4407         dest_cpu = any_online_cpu(mask);
4408
4409         /* On any allowed CPU? */
4410         if (dest_cpu == NR_CPUS)
4411                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4412
4413         /* No more Mr. Nice Guy. */
4414         if (dest_cpu == NR_CPUS) {
4415                 cpus_setall(tsk->cpus_allowed);
4416                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4417
4418                 /*
4419                  * Don't tell them about moving exiting tasks or
4420                  * kernel threads (both mm NULL), since they never
4421                  * leave kernel.
4422                  */
4423                 if (tsk->mm && printk_ratelimit())
4424                         printk(KERN_INFO "process %d (%s) no "
4425                                "longer affine to cpu%d\n",
4426                                tsk->pid, tsk->comm, dead_cpu);
4427         }
4428         __migrate_task(tsk, dead_cpu, dest_cpu);
4429 }
4430
4431 /*
4432  * While a dead CPU has no uninterruptible tasks queued at this point,
4433  * it might still have a nonzero ->nr_uninterruptible counter, because
4434  * for performance reasons the counter is not stricly tracking tasks to
4435  * their home CPUs. So we just add the counter to another CPU's counter,
4436  * to keep the global sum constant after CPU-down:
4437  */
4438 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4439 {
4440         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4441         unsigned long flags;
4442
4443         local_irq_save(flags);
4444         double_rq_lock(rq_src, rq_dest);
4445         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4446         rq_src->nr_uninterruptible = 0;
4447         double_rq_unlock(rq_src, rq_dest);
4448         local_irq_restore(flags);
4449 }
4450
4451 /* Run through task list and migrate tasks from the dead cpu. */
4452 static void migrate_live_tasks(int src_cpu)
4453 {
4454         struct task_struct *tsk, *t;
4455
4456         write_lock_irq(&tasklist_lock);
4457
4458         do_each_thread(t, tsk) {
4459                 if (tsk == current)
4460                         continue;
4461
4462                 if (task_cpu(tsk) == src_cpu)
4463                         move_task_off_dead_cpu(src_cpu, tsk);
4464         } while_each_thread(t, tsk);
4465
4466         write_unlock_irq(&tasklist_lock);
4467 }
4468
4469 /* Schedules idle task to be the next runnable task on current CPU.
4470  * It does so by boosting its priority to highest possible and adding it to
4471  * the _front_ of runqueue. Used by CPU offline code.
4472  */
4473 void sched_idle_next(void)
4474 {
4475         int cpu = smp_processor_id();
4476         runqueue_t *rq = this_rq();
4477         struct task_struct *p = rq->idle;
4478         unsigned long flags;
4479
4480         /* cpu has to be offline */
4481         BUG_ON(cpu_online(cpu));
4482
4483         /* Strictly not necessary since rest of the CPUs are stopped by now
4484          * and interrupts disabled on current cpu.
4485          */
4486         spin_lock_irqsave(&rq->lock, flags);
4487
4488         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4489         /* Add idle task to _front_ of it's priority queue */
4490         __activate_idle_task(p, rq);
4491
4492         spin_unlock_irqrestore(&rq->lock, flags);
4493 }
4494
4495 /* Ensures that the idle task is using init_mm right before its cpu goes
4496  * offline.
4497  */
4498 void idle_task_exit(void)
4499 {
4500         struct mm_struct *mm = current->active_mm;
4501
4502         BUG_ON(cpu_online(smp_processor_id()));
4503
4504         if (mm != &init_mm)
4505                 switch_mm(mm, &init_mm, current);
4506         mmdrop(mm);
4507 }
4508
4509 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4510 {
4511         struct runqueue *rq = cpu_rq(dead_cpu);
4512
4513         /* Must be exiting, otherwise would be on tasklist. */
4514         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4515
4516         /* Cannot have done final schedule yet: would have vanished. */
4517         BUG_ON(tsk->flags & PF_DEAD);
4518
4519         get_task_struct(tsk);
4520
4521         /*
4522          * Drop lock around migration; if someone else moves it,
4523          * that's OK.  No task can be added to this CPU, so iteration is
4524          * fine.
4525          */
4526         spin_unlock_irq(&rq->lock);
4527         move_task_off_dead_cpu(dead_cpu, tsk);
4528         spin_lock_irq(&rq->lock);
4529
4530         put_task_struct(tsk);
4531 }
4532
4533 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4534 static void migrate_dead_tasks(unsigned int dead_cpu)
4535 {
4536         unsigned arr, i;
4537         struct runqueue *rq = cpu_rq(dead_cpu);
4538
4539         for (arr = 0; arr < 2; arr++) {
4540                 for (i = 0; i < MAX_PRIO; i++) {
4541                         struct list_head *list = &rq->arrays[arr].queue[i];
4542                         while (!list_empty(list))
4543                                 migrate_dead(dead_cpu,
4544                                              list_entry(list->next, task_t,
4545                                                         run_list));
4546                 }
4547         }
4548 }
4549 #endif /* CONFIG_HOTPLUG_CPU */
4550
4551 /*
4552  * migration_call - callback that gets triggered when a CPU is added.
4553  * Here we can start up the necessary migration thread for the new CPU.
4554  */
4555 static int migration_call(struct notifier_block *nfb, unsigned long action,
4556                           void *hcpu)
4557 {
4558         int cpu = (long)hcpu;
4559         struct task_struct *p;
4560         struct runqueue *rq;
4561         unsigned long flags;
4562
4563         switch (action) {
4564         case CPU_UP_PREPARE:
4565                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4566                 if (IS_ERR(p))
4567                         return NOTIFY_BAD;
4568                 p->flags |= PF_NOFREEZE;
4569                 kthread_bind(p, cpu);
4570                 /* Must be high prio: stop_machine expects to yield to it. */
4571                 rq = task_rq_lock(p, &flags);
4572                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4573                 task_rq_unlock(rq, &flags);
4574                 cpu_rq(cpu)->migration_thread = p;
4575                 break;
4576         case CPU_ONLINE:
4577                 /* Strictly unneccessary, as first user will wake it. */
4578                 wake_up_process(cpu_rq(cpu)->migration_thread);
4579                 break;
4580 #ifdef CONFIG_HOTPLUG_CPU
4581         case CPU_UP_CANCELED:
4582                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4583                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4584                 kthread_stop(cpu_rq(cpu)->migration_thread);
4585                 cpu_rq(cpu)->migration_thread = NULL;
4586                 break;
4587         case CPU_DEAD:
4588                 migrate_live_tasks(cpu);
4589                 rq = cpu_rq(cpu);
4590                 kthread_stop(rq->migration_thread);
4591                 rq->migration_thread = NULL;
4592                 /* Idle task back to normal (off runqueue, low prio) */
4593                 rq = task_rq_lock(rq->idle, &flags);
4594                 deactivate_task(rq->idle, rq);
4595                 rq->idle->static_prio = MAX_PRIO;
4596                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4597                 migrate_dead_tasks(cpu);
4598                 task_rq_unlock(rq, &flags);
4599                 migrate_nr_uninterruptible(rq);
4600                 BUG_ON(rq->nr_running != 0);
4601
4602                 /* No need to migrate the tasks: it was best-effort if
4603                  * they didn't do lock_cpu_hotplug().  Just wake up
4604                  * the requestors. */
4605                 spin_lock_irq(&rq->lock);
4606                 while (!list_empty(&rq->migration_queue)) {
4607                         migration_req_t *req;
4608                         req = list_entry(rq->migration_queue.next,
4609                                          migration_req_t, list);
4610                         list_del_init(&req->list);
4611                         complete(&req->done);
4612                 }
4613                 spin_unlock_irq(&rq->lock);
4614                 break;
4615 #endif
4616         }
4617         return NOTIFY_OK;
4618 }
4619
4620 /* Register at highest priority so that task migration (migrate_all_tasks)
4621  * happens before everything else.
4622  */
4623 static struct notifier_block __devinitdata migration_notifier = {
4624         .notifier_call = migration_call,
4625         .priority = 10
4626 };
4627
4628 int __init migration_init(void)
4629 {
4630         void *cpu = (void *)(long)smp_processor_id();
4631         /* Start one for boot CPU. */
4632         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4633         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4634         register_cpu_notifier(&migration_notifier);
4635         return 0;
4636 }
4637 #endif
4638
4639 #ifdef CONFIG_SMP
4640 #undef SCHED_DOMAIN_DEBUG
4641 #ifdef SCHED_DOMAIN_DEBUG
4642 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4643 {
4644         int level = 0;
4645
4646         if (!sd) {
4647                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4648                 return;
4649         }
4650
4651         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4652
4653         do {
4654                 int i;
4655                 char str[NR_CPUS];
4656                 struct sched_group *group = sd->groups;
4657                 cpumask_t groupmask;
4658
4659                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4660                 cpus_clear(groupmask);
4661
4662                 printk(KERN_DEBUG);
4663                 for (i = 0; i < level + 1; i++)
4664                         printk(" ");
4665                 printk("domain %d: ", level);
4666
4667                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4668                         printk("does not load-balance\n");
4669                         if (sd->parent)
4670                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4671                         break;
4672                 }
4673
4674                 printk("span %s\n", str);
4675
4676                 if (!cpu_isset(cpu, sd->span))
4677                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4678                 if (!cpu_isset(cpu, group->cpumask))
4679                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4680
4681                 printk(KERN_DEBUG);
4682                 for (i = 0; i < level + 2; i++)
4683                         printk(" ");
4684                 printk("groups:");
4685                 do {
4686                         if (!group) {
4687                                 printk("\n");
4688                                 printk(KERN_ERR "ERROR: group is NULL\n");
4689                                 break;
4690                         }
4691
4692                         if (!group->cpu_power) {
4693                                 printk("\n");
4694                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4695                         }
4696
4697                         if (!cpus_weight(group->cpumask)) {
4698                                 printk("\n");
4699                                 printk(KERN_ERR "ERROR: empty group\n");
4700                         }
4701
4702                         if (cpus_intersects(groupmask, group->cpumask)) {
4703                                 printk("\n");
4704                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4705                         }
4706
4707                         cpus_or(groupmask, groupmask, group->cpumask);
4708
4709                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4710                         printk(" %s", str);
4711
4712                         group = group->next;
4713                 } while (group != sd->groups);
4714                 printk("\n");
4715
4716                 if (!cpus_equal(sd->span, groupmask))
4717                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4718
4719                 level++;
4720                 sd = sd->parent;
4721
4722                 if (sd) {
4723                         if (!cpus_subset(groupmask, sd->span))
4724                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4725                 }
4726
4727         } while (sd);
4728 }
4729 #else
4730 #define sched_domain_debug(sd, cpu) {}
4731 #endif
4732
4733 static int sd_degenerate(struct sched_domain *sd)
4734 {
4735         if (cpus_weight(sd->span) == 1)
4736                 return 1;
4737
4738         /* Following flags need at least 2 groups */
4739         if (sd->flags & (SD_LOAD_BALANCE |
4740                          SD_BALANCE_NEWIDLE |
4741                          SD_BALANCE_FORK |
4742                          SD_BALANCE_EXEC)) {
4743                 if (sd->groups != sd->groups->next)
4744                         return 0;
4745         }
4746
4747         /* Following flags don't use groups */
4748         if (sd->flags & (SD_WAKE_IDLE |
4749                          SD_WAKE_AFFINE |
4750                          SD_WAKE_BALANCE))
4751                 return 0;
4752
4753         return 1;
4754 }
4755
4756 static int sd_parent_degenerate(struct sched_domain *sd,
4757                                                 struct sched_domain *parent)
4758 {
4759         unsigned long cflags = sd->flags, pflags = parent->flags;
4760
4761         if (sd_degenerate(parent))
4762                 return 1;
4763
4764         if (!cpus_equal(sd->span, parent->span))
4765                 return 0;
4766
4767         /* Does parent contain flags not in child? */
4768         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4769         if (cflags & SD_WAKE_AFFINE)
4770                 pflags &= ~SD_WAKE_BALANCE;
4771         /* Flags needing groups don't count if only 1 group in parent */
4772         if (parent->groups == parent->groups->next) {
4773                 pflags &= ~(SD_LOAD_BALANCE |
4774                                 SD_BALANCE_NEWIDLE |
4775                                 SD_BALANCE_FORK |
4776                                 SD_BALANCE_EXEC);
4777         }
4778         if (~cflags & pflags)
4779                 return 0;
4780
4781         return 1;
4782 }
4783
4784 /*
4785  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4786  * hold the hotplug lock.
4787  */
4788 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4789 {
4790         runqueue_t *rq = cpu_rq(cpu);
4791         struct sched_domain *tmp;
4792
4793         /* Remove the sched domains which do not contribute to scheduling. */
4794         for (tmp = sd; tmp; tmp = tmp->parent) {
4795                 struct sched_domain *parent = tmp->parent;
4796                 if (!parent)
4797                         break;
4798                 if (sd_parent_degenerate(tmp, parent))
4799                         tmp->parent = parent->parent;
4800         }
4801
4802         if (sd && sd_degenerate(sd))
4803                 sd = sd->parent;
4804
4805         sched_domain_debug(sd, cpu);
4806
4807         rcu_assign_pointer(rq->sd, sd);
4808 }
4809
4810 /* cpus with isolated domains */
4811 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4812
4813 /* Setup the mask of cpus configured for isolated domains */
4814 static int __init isolated_cpu_setup(char *str)
4815 {
4816         int ints[NR_CPUS], i;
4817
4818         str = get_options(str, ARRAY_SIZE(ints), ints);
4819         cpus_clear(cpu_isolated_map);
4820         for (i = 1; i <= ints[0]; i++)
4821                 if (ints[i] < NR_CPUS)
4822                         cpu_set(ints[i], cpu_isolated_map);
4823         return 1;
4824 }
4825
4826 __setup ("isolcpus=", isolated_cpu_setup);
4827
4828 /*
4829  * init_sched_build_groups takes an array of groups, the cpumask we wish
4830  * to span, and a pointer to a function which identifies what group a CPU
4831  * belongs to. The return value of group_fn must be a valid index into the
4832  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4833  * keep track of groups covered with a cpumask_t).
4834  *
4835  * init_sched_build_groups will build a circular linked list of the groups
4836  * covered by the given span, and will set each group's ->cpumask correctly,
4837  * and ->cpu_power to 0.
4838  */
4839 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4840                                     int (*group_fn)(int cpu))
4841 {
4842         struct sched_group *first = NULL, *last = NULL;
4843         cpumask_t covered = CPU_MASK_NONE;
4844         int i;
4845
4846         for_each_cpu_mask(i, span) {
4847                 int group = group_fn(i);
4848                 struct sched_group *sg = &groups[group];
4849                 int j;
4850
4851                 if (cpu_isset(i, covered))
4852                         continue;
4853
4854                 sg->cpumask = CPU_MASK_NONE;
4855                 sg->cpu_power = 0;
4856
4857                 for_each_cpu_mask(j, span) {
4858                         if (group_fn(j) != group)
4859                                 continue;
4860
4861                         cpu_set(j, covered);
4862                         cpu_set(j, sg->cpumask);
4863                 }
4864                 if (!first)
4865                         first = sg;
4866                 if (last)
4867                         last->next = sg;
4868                 last = sg;
4869         }
4870         last->next = first;
4871 }
4872
4873 #define SD_NODES_PER_DOMAIN 16
4874
4875 #ifdef CONFIG_NUMA
4876 /**
4877  * find_next_best_node - find the next node to include in a sched_domain
4878  * @node: node whose sched_domain we're building
4879  * @used_nodes: nodes already in the sched_domain
4880  *
4881  * Find the next node to include in a given scheduling domain.  Simply
4882  * finds the closest node not already in the @used_nodes map.
4883  *
4884  * Should use nodemask_t.
4885  */
4886 static int find_next_best_node(int node, unsigned long *used_nodes)
4887 {
4888         int i, n, val, min_val, best_node = 0;
4889
4890         min_val = INT_MAX;
4891
4892         for (i = 0; i < MAX_NUMNODES; i++) {
4893                 /* Start at @node */
4894                 n = (node + i) % MAX_NUMNODES;
4895
4896                 if (!nr_cpus_node(n))
4897                         continue;
4898
4899                 /* Skip already used nodes */
4900                 if (test_bit(n, used_nodes))
4901                         continue;
4902
4903                 /* Simple min distance search */
4904                 val = node_distance(node, n);
4905
4906                 if (val < min_val) {
4907                         min_val = val;
4908                         best_node = n;
4909                 }
4910         }
4911
4912         set_bit(best_node, used_nodes);
4913         return best_node;
4914 }
4915
4916 /**
4917  * sched_domain_node_span - get a cpumask for a node's sched_domain
4918  * @node: node whose cpumask we're constructing
4919  * @size: number of nodes to include in this span
4920  *
4921  * Given a node, construct a good cpumask for its sched_domain to span.  It
4922  * should be one that prevents unnecessary balancing, but also spreads tasks
4923  * out optimally.
4924  */
4925 static cpumask_t sched_domain_node_span(int node)
4926 {
4927         int i;
4928         cpumask_t span, nodemask;
4929         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4930
4931         cpus_clear(span);
4932         bitmap_zero(used_nodes, MAX_NUMNODES);
4933
4934         nodemask = node_to_cpumask(node);
4935         cpus_or(span, span, nodemask);
4936         set_bit(node, used_nodes);
4937
4938         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4939                 int next_node = find_next_best_node(node, used_nodes);
4940                 nodemask = node_to_cpumask(next_node);
4941                 cpus_or(span, span, nodemask);
4942         }
4943
4944         return span;
4945 }
4946 #endif
4947
4948 /*
4949  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4950  * can switch it on easily if needed.
4951  */
4952 #ifdef CONFIG_SCHED_SMT
4953 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4954 static struct sched_group sched_group_cpus[NR_CPUS];
4955 static int cpu_to_cpu_group(int cpu)
4956 {
4957         return cpu;
4958 }
4959 #endif
4960
4961 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4962 static struct sched_group sched_group_phys[NR_CPUS];
4963 static int cpu_to_phys_group(int cpu)
4964 {
4965 #ifdef CONFIG_SCHED_SMT
4966         return first_cpu(cpu_sibling_map[cpu]);
4967 #else
4968         return cpu;
4969 #endif
4970 }
4971
4972 #ifdef CONFIG_NUMA
4973 /*
4974  * The init_sched_build_groups can't handle what we want to do with node
4975  * groups, so roll our own. Now each node has its own list of groups which
4976  * gets dynamically allocated.
4977  */
4978 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4979 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
4980
4981 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
4982 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
4983
4984 static int cpu_to_allnodes_group(int cpu)
4985 {
4986         return cpu_to_node(cpu);
4987 }
4988 #endif
4989
4990 /*
4991  * Build sched domains for a given set of cpus and attach the sched domains
4992  * to the individual cpus
4993  */
4994 void build_sched_domains(const cpumask_t *cpu_map)
4995 {
4996         int i;
4997 #ifdef CONFIG_NUMA
4998         struct sched_group **sched_group_nodes = NULL;
4999         struct sched_group *sched_group_allnodes = NULL;
5000
5001         /*
5002          * Allocate the per-node list of sched groups
5003          */
5004         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5005                                            GFP_ATOMIC);
5006         if (!sched_group_nodes) {
5007                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5008                 return;
5009         }
5010         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5011 #endif
5012
5013         /*
5014          * Set up domains for cpus specified by the cpu_map.
5015          */
5016         for_each_cpu_mask(i, *cpu_map) {
5017                 int group;
5018                 struct sched_domain *sd = NULL, *p;
5019                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5020
5021                 cpus_and(nodemask, nodemask, *cpu_map);
5022
5023 #ifdef CONFIG_NUMA
5024                 if (cpus_weight(*cpu_map)
5025                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5026                         if (!sched_group_allnodes) {
5027                                 sched_group_allnodes
5028                                         = kmalloc(sizeof(struct sched_group)
5029                                                         * MAX_NUMNODES,
5030                                                   GFP_KERNEL);
5031                                 if (!sched_group_allnodes) {
5032                                         printk(KERN_WARNING
5033                                         "Can not alloc allnodes sched group\n");
5034                                         break;
5035                                 }
5036                                 sched_group_allnodes_bycpu[i]
5037                                                 = sched_group_allnodes;
5038                         }
5039                         sd = &per_cpu(allnodes_domains, i);
5040                         *sd = SD_ALLNODES_INIT;
5041                         sd->span = *cpu_map;
5042                         group = cpu_to_allnodes_group(i);
5043                         sd->groups = &sched_group_allnodes[group];
5044                         p = sd;
5045                 } else
5046                         p = NULL;
5047
5048                 sd = &per_cpu(node_domains, i);
5049                 *sd = SD_NODE_INIT;
5050                 sd->span = sched_domain_node_span(cpu_to_node(i));
5051                 sd->parent = p;
5052                 cpus_and(sd->span, sd->span, *cpu_map);
5053 #endif
5054
5055                 p = sd;
5056                 sd = &per_cpu(phys_domains, i);
5057                 group = cpu_to_phys_group(i);
5058                 *sd = SD_CPU_INIT;
5059                 sd->span = nodemask;
5060                 sd->parent = p;
5061                 sd->groups = &sched_group_phys[group];
5062
5063 #ifdef CONFIG_SCHED_SMT
5064                 p = sd;
5065                 sd = &per_cpu(cpu_domains, i);
5066                 group = cpu_to_cpu_group(i);
5067                 *sd = SD_SIBLING_INIT;
5068                 sd->span = cpu_sibling_map[i];
5069                 cpus_and(sd->span, sd->span, *cpu_map);
5070                 sd->parent = p;
5071                 sd->groups = &sched_group_cpus[group];
5072 #endif
5073         }
5074
5075 #ifdef CONFIG_SCHED_SMT
5076         /* Set up CPU (sibling) groups */
5077         for_each_cpu_mask(i, *cpu_map) {
5078                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5079                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5080                 if (i != first_cpu(this_sibling_map))
5081                         continue;
5082
5083                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5084                                                 &cpu_to_cpu_group);
5085         }
5086 #endif
5087
5088         /* Set up physical groups */
5089         for (i = 0; i < MAX_NUMNODES; i++) {
5090                 cpumask_t nodemask = node_to_cpumask(i);
5091
5092                 cpus_and(nodemask, nodemask, *cpu_map);
5093                 if (cpus_empty(nodemask))
5094                         continue;
5095
5096                 init_sched_build_groups(sched_group_phys, nodemask,
5097                                                 &cpu_to_phys_group);
5098         }
5099
5100 #ifdef CONFIG_NUMA
5101         /* Set up node groups */
5102         if (sched_group_allnodes)
5103                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5104                                         &cpu_to_allnodes_group);
5105
5106         for (i = 0; i < MAX_NUMNODES; i++) {
5107                 /* Set up node groups */
5108                 struct sched_group *sg, *prev;
5109                 cpumask_t nodemask = node_to_cpumask(i);
5110                 cpumask_t domainspan;
5111                 cpumask_t covered = CPU_MASK_NONE;
5112                 int j;
5113
5114                 cpus_and(nodemask, nodemask, *cpu_map);
5115                 if (cpus_empty(nodemask)) {
5116                         sched_group_nodes[i] = NULL;
5117                         continue;
5118                 }
5119
5120                 domainspan = sched_domain_node_span(i);
5121                 cpus_and(domainspan, domainspan, *cpu_map);
5122
5123                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5124                 sched_group_nodes[i] = sg;
5125                 for_each_cpu_mask(j, nodemask) {
5126                         struct sched_domain *sd;
5127                         sd = &per_cpu(node_domains, j);
5128                         sd->groups = sg;
5129                         if (sd->groups == NULL) {
5130                                 /* Turn off balancing if we have no groups */
5131                                 sd->flags = 0;
5132                         }
5133                 }
5134                 if (!sg) {
5135                         printk(KERN_WARNING
5136                         "Can not alloc domain group for node %d\n", i);
5137                         continue;
5138                 }
5139                 sg->cpu_power = 0;
5140                 sg->cpumask = nodemask;
5141                 cpus_or(covered, covered, nodemask);
5142                 prev = sg;
5143
5144                 for (j = 0; j < MAX_NUMNODES; j++) {
5145                         cpumask_t tmp, notcovered;
5146                         int n = (i + j) % MAX_NUMNODES;
5147
5148                         cpus_complement(notcovered, covered);
5149                         cpus_and(tmp, notcovered, *cpu_map);
5150                         cpus_and(tmp, tmp, domainspan);
5151                         if (cpus_empty(tmp))
5152                                 break;
5153
5154                         nodemask = node_to_cpumask(n);
5155                         cpus_and(tmp, tmp, nodemask);
5156                         if (cpus_empty(tmp))
5157                                 continue;
5158
5159                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5160                         if (!sg) {
5161                                 printk(KERN_WARNING
5162                                 "Can not alloc domain group for node %d\n", j);
5163                                 break;
5164                         }
5165                         sg->cpu_power = 0;
5166                         sg->cpumask = tmp;
5167                         cpus_or(covered, covered, tmp);
5168                         prev->next = sg;
5169                         prev = sg;
5170                 }
5171                 prev->next = sched_group_nodes[i];
5172         }
5173 #endif
5174
5175         /* Calculate CPU power for physical packages and nodes */
5176         for_each_cpu_mask(i, *cpu_map) {
5177                 int power;
5178                 struct sched_domain *sd;
5179 #ifdef CONFIG_SCHED_SMT
5180                 sd = &per_cpu(cpu_domains, i);
5181                 power = SCHED_LOAD_SCALE;
5182                 sd->groups->cpu_power = power;
5183 #endif
5184
5185                 sd = &per_cpu(phys_domains, i);
5186                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5187                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5188                 sd->groups->cpu_power = power;
5189
5190 #ifdef CONFIG_NUMA
5191                 sd = &per_cpu(allnodes_domains, i);
5192                 if (sd->groups) {
5193                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5194                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5195                         sd->groups->cpu_power = power;
5196                 }
5197 #endif
5198         }
5199
5200 #ifdef CONFIG_NUMA
5201         for (i = 0; i < MAX_NUMNODES; i++) {
5202                 struct sched_group *sg = sched_group_nodes[i];
5203                 int j;
5204
5205                 if (sg == NULL)
5206                         continue;
5207 next_sg:
5208                 for_each_cpu_mask(j, sg->cpumask) {
5209                         struct sched_domain *sd;
5210                         int power;
5211
5212                         sd = &per_cpu(phys_domains, j);
5213                         if (j != first_cpu(sd->groups->cpumask)) {
5214                                 /*
5215                                  * Only add "power" once for each
5216                                  * physical package.
5217                                  */
5218                                 continue;
5219                         }
5220                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5221                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5222
5223                         sg->cpu_power += power;
5224                 }
5225                 sg = sg->next;
5226                 if (sg != sched_group_nodes[i])
5227                         goto next_sg;
5228         }
5229 #endif
5230
5231         /* Attach the domains */
5232         for_each_cpu_mask(i, *cpu_map) {
5233                 struct sched_domain *sd;
5234 #ifdef CONFIG_SCHED_SMT
5235                 sd = &per_cpu(cpu_domains, i);
5236 #else
5237                 sd = &per_cpu(phys_domains, i);
5238 #endif
5239                 cpu_attach_domain(sd, i);
5240         }
5241 }
5242 /*
5243  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5244  */
5245 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5246 {
5247         cpumask_t cpu_default_map;
5248
5249         /*
5250          * Setup mask for cpus without special case scheduling requirements.
5251          * For now this just excludes isolated cpus, but could be used to
5252          * exclude other special cases in the future.
5253          */
5254         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5255
5256         build_sched_domains(&cpu_default_map);
5257 }
5258
5259 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5260 {
5261 #ifdef CONFIG_NUMA
5262         int i;
5263         int cpu;
5264
5265         for_each_cpu_mask(cpu, *cpu_map) {
5266                 struct sched_group *sched_group_allnodes
5267                         = sched_group_allnodes_bycpu[cpu];
5268                 struct sched_group **sched_group_nodes
5269                         = sched_group_nodes_bycpu[cpu];
5270
5271                 if (sched_group_allnodes) {
5272                         kfree(sched_group_allnodes);
5273                         sched_group_allnodes_bycpu[cpu] = NULL;
5274                 }
5275
5276                 if (!sched_group_nodes)
5277                         continue;
5278
5279                 for (i = 0; i < MAX_NUMNODES; i++) {
5280                         cpumask_t nodemask = node_to_cpumask(i);
5281                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5282
5283                         cpus_and(nodemask, nodemask, *cpu_map);
5284                         if (cpus_empty(nodemask))
5285                                 continue;
5286
5287                         if (sg == NULL)
5288                                 continue;
5289                         sg = sg->next;
5290 next_sg:
5291                         oldsg = sg;
5292                         sg = sg->next;
5293                         kfree(oldsg);
5294                         if (oldsg != sched_group_nodes[i])
5295                                 goto next_sg;
5296                 }
5297                 kfree(sched_group_nodes);
5298                 sched_group_nodes_bycpu[cpu] = NULL;
5299         }
5300 #endif
5301 }
5302
5303 /*
5304  * Detach sched domains from a group of cpus specified in cpu_map
5305  * These cpus will now be attached to the NULL domain
5306  */
5307 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5308 {
5309         int i;
5310
5311         for_each_cpu_mask(i, *cpu_map)
5312                 cpu_attach_domain(NULL, i);
5313         synchronize_sched();
5314         arch_destroy_sched_domains(cpu_map);
5315 }
5316
5317 /*
5318  * Partition sched domains as specified by the cpumasks below.
5319  * This attaches all cpus from the cpumasks to the NULL domain,
5320  * waits for a RCU quiescent period, recalculates sched
5321  * domain information and then attaches them back to the
5322  * correct sched domains
5323  * Call with hotplug lock held
5324  */
5325 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5326 {
5327         cpumask_t change_map;
5328
5329         cpus_and(*partition1, *partition1, cpu_online_map);
5330         cpus_and(*partition2, *partition2, cpu_online_map);
5331         cpus_or(change_map, *partition1, *partition2);
5332
5333         /* Detach sched domains from all of the affected cpus */
5334         detach_destroy_domains(&change_map);
5335         if (!cpus_empty(*partition1))
5336                 build_sched_domains(partition1);
5337         if (!cpus_empty(*partition2))
5338                 build_sched_domains(partition2);
5339 }
5340
5341 #ifdef CONFIG_HOTPLUG_CPU
5342 /*
5343  * Force a reinitialization of the sched domains hierarchy.  The domains
5344  * and groups cannot be updated in place without racing with the balancing
5345  * code, so we temporarily attach all running cpus to the NULL domain
5346  * which will prevent rebalancing while the sched domains are recalculated.
5347  */
5348 static int update_sched_domains(struct notifier_block *nfb,
5349                                 unsigned long action, void *hcpu)
5350 {
5351         switch (action) {
5352         case CPU_UP_PREPARE:
5353         case CPU_DOWN_PREPARE:
5354                 detach_destroy_domains(&cpu_online_map);
5355                 return NOTIFY_OK;
5356
5357         case CPU_UP_CANCELED:
5358         case CPU_DOWN_FAILED:
5359         case CPU_ONLINE:
5360         case CPU_DEAD:
5361                 /*
5362                  * Fall through and re-initialise the domains.
5363                  */
5364                 break;
5365         default:
5366                 return NOTIFY_DONE;
5367         }
5368
5369         /* The hotplug lock is already held by cpu_up/cpu_down */
5370         arch_init_sched_domains(&cpu_online_map);
5371
5372         return NOTIFY_OK;
5373 }
5374 #endif
5375
5376 void __init sched_init_smp(void)
5377 {
5378         lock_cpu_hotplug();
5379         arch_init_sched_domains(&cpu_online_map);
5380         unlock_cpu_hotplug();
5381         /* XXX: Theoretical race here - CPU may be hotplugged now */
5382         hotcpu_notifier(update_sched_domains, 0);
5383 }
5384 #else
5385 void __init sched_init_smp(void)
5386 {
5387 }
5388 #endif /* CONFIG_SMP */
5389
5390 int in_sched_functions(unsigned long addr)
5391 {
5392         /* Linker adds these: start and end of __sched functions */
5393         extern char __sched_text_start[], __sched_text_end[];
5394         return in_lock_functions(addr) ||
5395                 (addr >= (unsigned long)__sched_text_start
5396                 && addr < (unsigned long)__sched_text_end);
5397 }
5398
5399 void __init sched_init(void)
5400 {
5401         runqueue_t *rq;
5402         int i, j, k;
5403
5404         for (i = 0; i < NR_CPUS; i++) {
5405                 prio_array_t *array;
5406
5407                 rq = cpu_rq(i);
5408                 spin_lock_init(&rq->lock);
5409                 rq->nr_running = 0;
5410                 rq->active = rq->arrays;
5411                 rq->expired = rq->arrays + 1;
5412                 rq->best_expired_prio = MAX_PRIO;
5413
5414 #ifdef CONFIG_SMP
5415                 rq->sd = NULL;
5416                 for (j = 1; j < 3; j++)
5417                         rq->cpu_load[j] = 0;
5418                 rq->active_balance = 0;
5419                 rq->push_cpu = 0;
5420                 rq->migration_thread = NULL;
5421                 INIT_LIST_HEAD(&rq->migration_queue);
5422 #endif
5423                 atomic_set(&rq->nr_iowait, 0);
5424
5425                 for (j = 0; j < 2; j++) {
5426                         array = rq->arrays + j;
5427                         for (k = 0; k < MAX_PRIO; k++) {
5428                                 INIT_LIST_HEAD(array->queue + k);
5429                                 __clear_bit(k, array->bitmap);
5430                         }
5431                         // delimiter for bitsearch
5432                         __set_bit(MAX_PRIO, array->bitmap);
5433                 }
5434         }
5435
5436         /*
5437          * The boot idle thread does lazy MMU switching as well:
5438          */
5439         atomic_inc(&init_mm.mm_count);
5440         enter_lazy_tlb(&init_mm, current);
5441
5442         /*
5443          * Make us the idle thread. Technically, schedule() should not be
5444          * called from this thread, however somewhere below it might be,
5445          * but because we are the idle thread, we just pick up running again
5446          * when this runqueue becomes "idle".
5447          */
5448         init_idle(current, smp_processor_id());
5449 }
5450
5451 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5452 void __might_sleep(char *file, int line)
5453 {
5454 #if defined(in_atomic)
5455         static unsigned long prev_jiffy;        /* ratelimiting */
5456
5457         if ((in_atomic() || irqs_disabled()) &&
5458             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5459                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5460                         return;
5461                 prev_jiffy = jiffies;
5462                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5463                                 " context at %s:%d\n", file, line);
5464                 printk("in_atomic():%d, irqs_disabled():%d\n",
5465                         in_atomic(), irqs_disabled());
5466                 dump_stack();
5467         }
5468 #endif
5469 }
5470 EXPORT_SYMBOL(__might_sleep);
5471 #endif
5472
5473 #ifdef CONFIG_MAGIC_SYSRQ
5474 void normalize_rt_tasks(void)
5475 {
5476         struct task_struct *p;
5477         prio_array_t *array;
5478         unsigned long flags;
5479         runqueue_t *rq;
5480
5481         read_lock_irq(&tasklist_lock);
5482         for_each_process (p) {
5483                 if (!rt_task(p))
5484                         continue;
5485
5486                 rq = task_rq_lock(p, &flags);
5487
5488                 array = p->array;
5489                 if (array)
5490                         deactivate_task(p, task_rq(p));
5491                 __setscheduler(p, SCHED_NORMAL, 0);
5492                 if (array) {
5493                         __activate_task(p, task_rq(p));
5494                         resched_task(rq->curr);
5495                 }
5496
5497                 task_rq_unlock(rq, &flags);
5498         }
5499         read_unlock_irq(&tasklist_lock);
5500 }
5501
5502 #endif /* CONFIG_MAGIC_SYSRQ */