]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/smpboot.c
smpboot: allow excluding cpus from the smpboot threads
[karo-tx-linux.git] / kernel / smpboot.c
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30         struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32         if (!tsk)
33                 return ERR_PTR(-ENOMEM);
34         init_idle(tsk, cpu);
35         return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40         per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:        The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51         struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53         if (!tsk) {
54                 tsk = fork_idle(cpu);
55                 if (IS_ERR(tsk))
56                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57                 else
58                         per_cpu(idle_threads, cpu) = tsk;
59         }
60 }
61
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67         unsigned int cpu, boot_cpu;
68
69         boot_cpu = smp_processor_id();
70
71         for_each_possible_cpu(cpu) {
72                 if (cpu != boot_cpu)
73                         idle_init(cpu);
74         }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84         unsigned int                    cpu;
85         unsigned int                    status;
86         struct smp_hotplug_thread       *ht;
87 };
88
89 enum {
90         HP_THREAD_NONE = 0,
91         HP_THREAD_ACTIVE,
92         HP_THREAD_PARKED,
93 };
94
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:       thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107         struct smpboot_thread_data *td = data;
108         struct smp_hotplug_thread *ht = td->ht;
109
110         while (1) {
111                 set_current_state(TASK_INTERRUPTIBLE);
112                 preempt_disable();
113                 if (kthread_should_stop()) {
114                         __set_current_state(TASK_RUNNING);
115                         preempt_enable();
116                         if (ht->cleanup)
117                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
118                         kfree(td);
119                         return 0;
120                 }
121
122                 if (kthread_should_park()) {
123                         __set_current_state(TASK_RUNNING);
124                         preempt_enable();
125                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
126                                 BUG_ON(td->cpu != smp_processor_id());
127                                 ht->park(td->cpu);
128                                 td->status = HP_THREAD_PARKED;
129                         }
130                         kthread_parkme();
131                         /* We might have been woken for stop */
132                         continue;
133                 }
134
135                 BUG_ON(td->cpu != smp_processor_id());
136
137                 /* Check for state change setup */
138                 switch (td->status) {
139                 case HP_THREAD_NONE:
140                         __set_current_state(TASK_RUNNING);
141                         preempt_enable();
142                         if (ht->setup)
143                                 ht->setup(td->cpu);
144                         td->status = HP_THREAD_ACTIVE;
145                         continue;
146
147                 case HP_THREAD_PARKED:
148                         __set_current_state(TASK_RUNNING);
149                         preempt_enable();
150                         if (ht->unpark)
151                                 ht->unpark(td->cpu);
152                         td->status = HP_THREAD_ACTIVE;
153                         continue;
154                 }
155
156                 if (!ht->thread_should_run(td->cpu)) {
157                         preempt_enable_no_resched();
158                         schedule();
159                 } else {
160                         __set_current_state(TASK_RUNNING);
161                         preempt_enable();
162                         ht->thread_fn(td->cpu);
163                 }
164         }
165 }
166
167 static int
168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
169 {
170         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
171         struct smpboot_thread_data *td;
172
173         if (tsk)
174                 return 0;
175
176         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
177         if (!td)
178                 return -ENOMEM;
179         td->cpu = cpu;
180         td->ht = ht;
181
182         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
183                                     ht->thread_comm);
184         if (IS_ERR(tsk)) {
185                 kfree(td);
186                 return PTR_ERR(tsk);
187         }
188         get_task_struct(tsk);
189         *per_cpu_ptr(ht->store, cpu) = tsk;
190         if (ht->create) {
191                 /*
192                  * Make sure that the task has actually scheduled out
193                  * into park position, before calling the create
194                  * callback. At least the migration thread callback
195                  * requires that the task is off the runqueue.
196                  */
197                 if (!wait_task_inactive(tsk, TASK_PARKED))
198                         WARN_ON(1);
199                 else
200                         ht->create(cpu);
201         }
202         return 0;
203 }
204
205 int smpboot_create_threads(unsigned int cpu)
206 {
207         struct smp_hotplug_thread *cur;
208         int ret = 0;
209
210         mutex_lock(&smpboot_threads_lock);
211         list_for_each_entry(cur, &hotplug_threads, list) {
212                 ret = __smpboot_create_thread(cur, cpu);
213                 if (ret)
214                         break;
215         }
216         mutex_unlock(&smpboot_threads_lock);
217         return ret;
218 }
219
220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
221 {
222         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
223
224         if (ht->pre_unpark)
225                 ht->pre_unpark(cpu);
226         kthread_unpark(tsk);
227 }
228
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231         struct smp_hotplug_thread *cur;
232
233         mutex_lock(&smpboot_threads_lock);
234         list_for_each_entry(cur, &hotplug_threads, list)
235                 if (cpumask_test_cpu(cpu, cur->cpumask))
236                         smpboot_unpark_thread(cur, cpu);
237         mutex_unlock(&smpboot_threads_lock);
238 }
239
240 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
241 {
242         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
243
244         if (tsk && !ht->selfparking)
245                 kthread_park(tsk);
246 }
247
248 void smpboot_park_threads(unsigned int cpu)
249 {
250         struct smp_hotplug_thread *cur;
251
252         mutex_lock(&smpboot_threads_lock);
253         list_for_each_entry_reverse(cur, &hotplug_threads, list)
254                 smpboot_park_thread(cur, cpu);
255         mutex_unlock(&smpboot_threads_lock);
256 }
257
258 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
259 {
260         unsigned int cpu;
261
262         /* Unpark any threads that were voluntarily parked. */
263         for_each_cpu_not(cpu, ht->cpumask) {
264                 if (cpu_online(cpu)) {
265                         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
266                         if (tsk)
267                                 kthread_unpark(tsk);
268                 }
269         }
270
271         /* We need to destroy also the parked threads of offline cpus */
272         for_each_possible_cpu(cpu) {
273                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274
275                 if (tsk) {
276                         kthread_stop(tsk);
277                         put_task_struct(tsk);
278                         *per_cpu_ptr(ht->store, cpu) = NULL;
279                 }
280         }
281 }
282
283 /**
284  * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
285  * @plug_thread:        Hotplug thread descriptor
286  *
287  * Creates and starts the threads on all online cpus.
288  */
289 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
290 {
291         unsigned int cpu;
292         int ret = 0;
293
294         if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
295                 return -ENOMEM;
296         cpumask_copy(plug_thread->cpumask, cpu_possible_mask);
297
298         get_online_cpus();
299         mutex_lock(&smpboot_threads_lock);
300         for_each_online_cpu(cpu) {
301                 ret = __smpboot_create_thread(plug_thread, cpu);
302                 if (ret) {
303                         smpboot_destroy_threads(plug_thread);
304                         goto out;
305                 }
306                 smpboot_unpark_thread(plug_thread, cpu);
307         }
308         list_add(&plug_thread->list, &hotplug_threads);
309 out:
310         mutex_unlock(&smpboot_threads_lock);
311         put_online_cpus();
312         return ret;
313 }
314 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
315
316 /**
317  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
318  * @plug_thread:        Hotplug thread descriptor
319  *
320  * Stops all threads on all possible cpus.
321  */
322 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
323 {
324         get_online_cpus();
325         mutex_lock(&smpboot_threads_lock);
326         list_del(&plug_thread->list);
327         smpboot_destroy_threads(plug_thread);
328         mutex_unlock(&smpboot_threads_lock);
329         put_online_cpus();
330         free_cpumask_var(plug_thread->cpumask);
331 }
332 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
333
334 /**
335  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
336  * @plug_thread:        Hotplug thread descriptor
337  * @new:                Revised mask to use
338  *
339  * The cpumask field in the smp_hotplug_thread must not be updated directly
340  * by the client, but only by calling this function.
341  */
342 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
343                                          const struct cpumask *new)
344 {
345         struct cpumask *old = plug_thread->cpumask;
346         cpumask_var_t tmp;
347         unsigned int cpu;
348
349         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
350                 return -ENOMEM;
351
352         get_online_cpus();
353         mutex_lock(&smpboot_threads_lock);
354
355         /* Park threads that were exclusively enabled on the old mask. */
356         cpumask_andnot(tmp, old, new);
357         for_each_cpu_and(cpu, tmp, cpu_online_mask)
358                 smpboot_park_thread(plug_thread, cpu);
359
360         /* Unpark threads that are exclusively enabled on the new mask. */
361         cpumask_andnot(tmp, new, old);
362         for_each_cpu_and(cpu, tmp, cpu_online_mask)
363                 smpboot_unpark_thread(plug_thread, cpu);
364
365         cpumask_copy(old, new);
366
367         mutex_unlock(&smpboot_threads_lock);
368         put_online_cpus();
369
370         free_cpumask_var(tmp);
371
372         return 0;
373 }
374 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
375
376 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
377
378 /*
379  * Called to poll specified CPU's state, for example, when waiting for
380  * a CPU to come online.
381  */
382 int cpu_report_state(int cpu)
383 {
384         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
385 }
386
387 /*
388  * If CPU has died properly, set its state to CPU_UP_PREPARE and
389  * return success.  Otherwise, return -EBUSY if the CPU died after
390  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
391  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
392  * to dying.  In the latter two cases, the CPU might not be set up
393  * properly, but it is up to the arch-specific code to decide.
394  * Finally, -EIO indicates an unanticipated problem.
395  *
396  * Note that it is permissible to omit this call entirely, as is
397  * done in architectures that do no CPU-hotplug error checking.
398  */
399 int cpu_check_up_prepare(int cpu)
400 {
401         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
402                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
403                 return 0;
404         }
405
406         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
407
408         case CPU_POST_DEAD:
409
410                 /* The CPU died properly, so just start it up again. */
411                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
412                 return 0;
413
414         case CPU_DEAD_FROZEN:
415
416                 /*
417                  * Timeout during CPU death, so let caller know.
418                  * The outgoing CPU completed its processing, but after
419                  * cpu_wait_death() timed out and reported the error. The
420                  * caller is free to proceed, in which case the state
421                  * will be reset properly by cpu_set_state_online().
422                  * Proceeding despite this -EBUSY return makes sense
423                  * for systems where the outgoing CPUs take themselves
424                  * offline, with no post-death manipulation required from
425                  * a surviving CPU.
426                  */
427                 return -EBUSY;
428
429         case CPU_BROKEN:
430
431                 /*
432                  * The most likely reason we got here is that there was
433                  * a timeout during CPU death, and the outgoing CPU never
434                  * did complete its processing.  This could happen on
435                  * a virtualized system if the outgoing VCPU gets preempted
436                  * for more than five seconds, and the user attempts to
437                  * immediately online that same CPU.  Trying again later
438                  * might return -EBUSY above, hence -EAGAIN.
439                  */
440                 return -EAGAIN;
441
442         default:
443
444                 /* Should not happen.  Famous last words. */
445                 return -EIO;
446         }
447 }
448
449 /*
450  * Mark the specified CPU online.
451  *
452  * Note that it is permissible to omit this call entirely, as is
453  * done in architectures that do no CPU-hotplug error checking.
454  */
455 void cpu_set_state_online(int cpu)
456 {
457         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
458 }
459
460 #ifdef CONFIG_HOTPLUG_CPU
461
462 /*
463  * Wait for the specified CPU to exit the idle loop and die.
464  */
465 bool cpu_wait_death(unsigned int cpu, int seconds)
466 {
467         int jf_left = seconds * HZ;
468         int oldstate;
469         bool ret = true;
470         int sleep_jf = 1;
471
472         might_sleep();
473
474         /* The outgoing CPU will normally get done quite quickly. */
475         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
476                 goto update_state;
477         udelay(5);
478
479         /* But if the outgoing CPU dawdles, wait increasingly long times. */
480         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
481                 schedule_timeout_uninterruptible(sleep_jf);
482                 jf_left -= sleep_jf;
483                 if (jf_left <= 0)
484                         break;
485                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
486         }
487 update_state:
488         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
489         if (oldstate == CPU_DEAD) {
490                 /* Outgoing CPU died normally, update state. */
491                 smp_mb(); /* atomic_read() before update. */
492                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
493         } else {
494                 /* Outgoing CPU still hasn't died, set state accordingly. */
495                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
496                                    oldstate, CPU_BROKEN) != oldstate)
497                         goto update_state;
498                 ret = false;
499         }
500         return ret;
501 }
502
503 /*
504  * Called by the outgoing CPU to report its successful death.  Return
505  * false if this report follows the surviving CPU's timing out.
506  *
507  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
508  * timed out.  This approach allows architectures to omit calls to
509  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
510  * the next cpu_wait_death()'s polling loop.
511  */
512 bool cpu_report_death(void)
513 {
514         int oldstate;
515         int newstate;
516         int cpu = smp_processor_id();
517
518         do {
519                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
520                 if (oldstate != CPU_BROKEN)
521                         newstate = CPU_DEAD;
522                 else
523                         newstate = CPU_DEAD_FROZEN;
524         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
525                                 oldstate, newstate) != oldstate);
526         return newstate == CPU_DEAD;
527 }
528
529 #endif /* #ifdef CONFIG_HOTPLUG_CPU */