]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/time/tick-broadcast.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41 static void tick_broadcast_clear_oneshot(int cpu);
42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43 #else
44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45 static inline void tick_broadcast_clear_oneshot(int cpu) { }
46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47 #endif
48
49 /*
50  * Debugging: see timer_list.c
51  */
52 struct tick_device *tick_get_broadcast_device(void)
53 {
54         return &tick_broadcast_device;
55 }
56
57 struct cpumask *tick_get_broadcast_mask(void)
58 {
59         return tick_broadcast_mask;
60 }
61
62 /*
63  * Start the device in periodic mode
64  */
65 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66 {
67         if (bc)
68                 tick_setup_periodic(bc, 1);
69 }
70
71 /*
72  * Check, if the device can be utilized as broadcast device:
73  */
74 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75                                         struct clock_event_device *newdev)
76 {
77         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80                 return false;
81
82         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84                 return false;
85
86         return !curdev || newdev->rating > curdev->rating;
87 }
88
89 /*
90  * Conditionally install/replace broadcast device
91  */
92 void tick_install_broadcast_device(struct clock_event_device *dev)
93 {
94         struct clock_event_device *cur = tick_broadcast_device.evtdev;
95
96         if (!tick_check_broadcast_device(cur, dev))
97                 return;
98
99         if (!try_module_get(dev->owner))
100                 return;
101
102         clockevents_exchange_device(cur, dev);
103         if (cur)
104                 cur->event_handler = clockevents_handle_noop;
105         tick_broadcast_device.evtdev = dev;
106         if (!cpumask_empty(tick_broadcast_mask))
107                 tick_broadcast_start_periodic(dev);
108         /*
109          * Inform all cpus about this. We might be in a situation
110          * where we did not switch to oneshot mode because the per cpu
111          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112          * of a oneshot capable broadcast device. Without that
113          * notification the systems stays stuck in periodic mode
114          * forever.
115          */
116         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117                 tick_clock_notify();
118 }
119
120 /*
121  * Check, if the device is the broadcast device
122  */
123 int tick_is_broadcast_device(struct clock_event_device *dev)
124 {
125         return (dev && tick_broadcast_device.evtdev == dev);
126 }
127
128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129 {
130         int ret = -ENODEV;
131
132         if (tick_is_broadcast_device(dev)) {
133                 raw_spin_lock(&tick_broadcast_lock);
134                 ret = __clockevents_update_freq(dev, freq);
135                 raw_spin_unlock(&tick_broadcast_lock);
136         }
137         return ret;
138 }
139
140
141 static void err_broadcast(const struct cpumask *mask)
142 {
143         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144 }
145
146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147 {
148         if (!dev->broadcast)
149                 dev->broadcast = tick_broadcast;
150         if (!dev->broadcast) {
151                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152                              dev->name);
153                 dev->broadcast = err_broadcast;
154         }
155 }
156
157 /*
158  * Check, if the device is disfunctional and a place holder, which
159  * needs to be handled by the broadcast device.
160  */
161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162 {
163         struct clock_event_device *bc = tick_broadcast_device.evtdev;
164         unsigned long flags;
165         int ret = 0;
166
167         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
168
169         /*
170          * Devices might be registered with both periodic and oneshot
171          * mode disabled. This signals, that the device needs to be
172          * operated from the broadcast device and is a placeholder for
173          * the cpu local device.
174          */
175         if (!tick_device_is_functional(dev)) {
176                 dev->event_handler = tick_handle_periodic;
177                 tick_device_setup_broadcast_func(dev);
178                 cpumask_set_cpu(cpu, tick_broadcast_mask);
179                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180                         tick_broadcast_start_periodic(bc);
181                 else
182                         tick_broadcast_setup_oneshot(bc);
183                 ret = 1;
184         } else {
185                 /*
186                  * Clear the broadcast bit for this cpu if the
187                  * device is not power state affected.
188                  */
189                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
191                 else
192                         tick_device_setup_broadcast_func(dev);
193
194                 /*
195                  * Clear the broadcast bit if the CPU is not in
196                  * periodic broadcast on state.
197                  */
198                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
200
201                 switch (tick_broadcast_device.mode) {
202                 case TICKDEV_MODE_ONESHOT:
203                         /*
204                          * If the system is in oneshot mode we can
205                          * unconditionally clear the oneshot mask bit,
206                          * because the CPU is running and therefore
207                          * not in an idle state which causes the power
208                          * state affected device to stop. Let the
209                          * caller initialize the device.
210                          */
211                         tick_broadcast_clear_oneshot(cpu);
212                         ret = 0;
213                         break;
214
215                 case TICKDEV_MODE_PERIODIC:
216                         /*
217                          * If the system is in periodic mode, check
218                          * whether the broadcast device can be
219                          * switched off now.
220                          */
221                         if (cpumask_empty(tick_broadcast_mask) && bc)
222                                 clockevents_shutdown(bc);
223                         /*
224                          * If we kept the cpu in the broadcast mask,
225                          * tell the caller to leave the per cpu device
226                          * in shutdown state. The periodic interrupt
227                          * is delivered by the broadcast device, if
228                          * the broadcast device exists and is not
229                          * hrtimer based.
230                          */
231                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233                         break;
234                 default:
235                         break;
236                 }
237         }
238         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239         return ret;
240 }
241
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 int tick_receive_broadcast(void)
244 {
245         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246         struct clock_event_device *evt = td->evtdev;
247
248         if (!evt)
249                 return -ENODEV;
250
251         if (!evt->event_handler)
252                 return -EINVAL;
253
254         evt->event_handler(evt);
255         return 0;
256 }
257 #endif
258
259 /*
260  * Broadcast the event to the cpus, which are set in the mask (mangled).
261  */
262 static bool tick_do_broadcast(struct cpumask *mask)
263 {
264         int cpu = smp_processor_id();
265         struct tick_device *td;
266         bool local = false;
267
268         /*
269          * Check, if the current cpu is in the mask
270          */
271         if (cpumask_test_cpu(cpu, mask)) {
272                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
273
274                 cpumask_clear_cpu(cpu, mask);
275                 /*
276                  * We only run the local handler, if the broadcast
277                  * device is not hrtimer based. Otherwise we run into
278                  * a hrtimer recursion.
279                  *
280                  * local timer_interrupt()
281                  *   local_handler()
282                  *     expire_hrtimers()
283                  *       bc_handler()
284                  *         local_handler()
285                  *           expire_hrtimers()
286                  */
287                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
288         }
289
290         if (!cpumask_empty(mask)) {
291                 /*
292                  * It might be necessary to actually check whether the devices
293                  * have different broadcast functions. For now, just use the
294                  * one of the first device. This works as long as we have this
295                  * misfeature only on x86 (lapic)
296                  */
297                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298                 td->evtdev->broadcast(mask);
299         }
300         return local;
301 }
302
303 /*
304  * Periodic broadcast:
305  * - invoke the broadcast handlers
306  */
307 static bool tick_do_periodic_broadcast(void)
308 {
309         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310         return tick_do_broadcast(tmpmask);
311 }
312
313 /*
314  * Event handler for periodic broadcast ticks
315  */
316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317 {
318         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319         bool bc_local;
320
321         raw_spin_lock(&tick_broadcast_lock);
322
323         /* Handle spurious interrupts gracefully */
324         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325                 raw_spin_unlock(&tick_broadcast_lock);
326                 return;
327         }
328
329         bc_local = tick_do_periodic_broadcast();
330
331         if (clockevent_state_oneshot(dev)) {
332                 ktime_t next = ktime_add(dev->next_event, tick_period);
333
334                 clockevents_program_event(dev, next, true);
335         }
336         raw_spin_unlock(&tick_broadcast_lock);
337
338         /*
339          * We run the handler of the local cpu after dropping
340          * tick_broadcast_lock because the handler might deadlock when
341          * trying to switch to oneshot mode.
342          */
343         if (bc_local)
344                 td->evtdev->event_handler(td->evtdev);
345 }
346
347 /**
348  * tick_broadcast_control - Enable/disable or force broadcast mode
349  * @mode:       The selected broadcast mode
350  *
351  * Called when the system enters a state where affected tick devices
352  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
353  */
354 void tick_broadcast_control(enum tick_broadcast_mode mode)
355 {
356         struct clock_event_device *bc, *dev;
357         struct tick_device *td;
358         int cpu, bc_stopped;
359         unsigned long flags;
360
361         /* Protects also the local clockevent device. */
362         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363         td = this_cpu_ptr(&tick_cpu_device);
364         dev = td->evtdev;
365
366         /*
367          * Is the device not affected by the powerstate ?
368          */
369         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370                 goto out;
371
372         if (!tick_device_is_functional(dev))
373                 goto out;
374
375         cpu = smp_processor_id();
376         bc = tick_broadcast_device.evtdev;
377         bc_stopped = cpumask_empty(tick_broadcast_mask);
378
379         switch (mode) {
380         case TICK_BROADCAST_FORCE:
381                 tick_broadcast_forced = 1;
382         case TICK_BROADCAST_ON:
383                 cpumask_set_cpu(cpu, tick_broadcast_on);
384                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385                         /*
386                          * Only shutdown the cpu local device, if:
387                          *
388                          * - the broadcast device exists
389                          * - the broadcast device is not a hrtimer based one
390                          * - the broadcast device is in periodic mode to
391                          *   avoid a hickup during switch to oneshot mode
392                          */
393                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395                                 clockevents_shutdown(dev);
396                 }
397                 break;
398
399         case TICK_BROADCAST_OFF:
400                 if (tick_broadcast_forced)
401                         break;
402                 cpumask_clear_cpu(cpu, tick_broadcast_on);
403                 if (!tick_device_is_functional(dev))
404                         break;
405                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
406                         if (tick_broadcast_device.mode ==
407                             TICKDEV_MODE_PERIODIC)
408                                 tick_setup_periodic(dev, 0);
409                 }
410                 break;
411         }
412
413         if (bc) {
414                 if (cpumask_empty(tick_broadcast_mask)) {
415                         if (!bc_stopped)
416                                 clockevents_shutdown(bc);
417                 } else if (bc_stopped) {
418                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419                                 tick_broadcast_start_periodic(bc);
420                         else
421                                 tick_broadcast_setup_oneshot(bc);
422                 }
423         }
424 out:
425         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
426 }
427 EXPORT_SYMBOL_GPL(tick_broadcast_control);
428
429 /*
430  * Set the periodic handler depending on broadcast on/off
431  */
432 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
433 {
434         if (!broadcast)
435                 dev->event_handler = tick_handle_periodic;
436         else
437                 dev->event_handler = tick_handle_periodic_broadcast;
438 }
439
440 #ifdef CONFIG_HOTPLUG_CPU
441 /*
442  * Remove a CPU from broadcasting
443  */
444 void tick_shutdown_broadcast(unsigned int cpu)
445 {
446         struct clock_event_device *bc;
447         unsigned long flags;
448
449         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450
451         bc = tick_broadcast_device.evtdev;
452         cpumask_clear_cpu(cpu, tick_broadcast_mask);
453         cpumask_clear_cpu(cpu, tick_broadcast_on);
454
455         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
456                 if (bc && cpumask_empty(tick_broadcast_mask))
457                         clockevents_shutdown(bc);
458         }
459
460         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
461 }
462 #endif
463
464 void tick_suspend_broadcast(void)
465 {
466         struct clock_event_device *bc;
467         unsigned long flags;
468
469         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
470
471         bc = tick_broadcast_device.evtdev;
472         if (bc)
473                 clockevents_shutdown(bc);
474
475         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
476 }
477
478 /*
479  * This is called from tick_resume_local() on a resuming CPU. That's
480  * called from the core resume function, tick_unfreeze() and the magic XEN
481  * resume hackery.
482  *
483  * In none of these cases the broadcast device mode can change and the
484  * bit of the resuming CPU in the broadcast mask is safe as well.
485  */
486 bool tick_resume_check_broadcast(void)
487 {
488         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
489                 return false;
490         else
491                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492 }
493
494 void tick_resume_broadcast(void)
495 {
496         struct clock_event_device *bc;
497         unsigned long flags;
498
499         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
500
501         bc = tick_broadcast_device.evtdev;
502
503         if (bc) {
504                 clockevents_tick_resume(bc);
505
506                 switch (tick_broadcast_device.mode) {
507                 case TICKDEV_MODE_PERIODIC:
508                         if (!cpumask_empty(tick_broadcast_mask))
509                                 tick_broadcast_start_periodic(bc);
510                         break;
511                 case TICKDEV_MODE_ONESHOT:
512                         if (!cpumask_empty(tick_broadcast_mask))
513                                 tick_resume_broadcast_oneshot(bc);
514                         break;
515                 }
516         }
517         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
518 }
519
520 #ifdef CONFIG_TICK_ONESHOT
521
522 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
523 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
524 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
525
526 /*
527  * Exposed for debugging: see timer_list.c
528  */
529 struct cpumask *tick_get_broadcast_oneshot_mask(void)
530 {
531         return tick_broadcast_oneshot_mask;
532 }
533
534 /*
535  * Called before going idle with interrupts disabled. Checks whether a
536  * broadcast event from the other core is about to happen. We detected
537  * that in tick_broadcast_oneshot_control(). The callsite can use this
538  * to avoid a deep idle transition as we are about to get the
539  * broadcast IPI right away.
540  */
541 int tick_check_broadcast_expired(void)
542 {
543         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
544 }
545
546 /*
547  * Set broadcast interrupt affinity
548  */
549 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
550                                         const struct cpumask *cpumask)
551 {
552         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
553                 return;
554
555         if (cpumask_equal(bc->cpumask, cpumask))
556                 return;
557
558         bc->cpumask = cpumask;
559         irq_set_affinity(bc->irq, bc->cpumask);
560 }
561
562 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
563                                      ktime_t expires)
564 {
565         if (!clockevent_state_oneshot(bc))
566                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
567
568         clockevents_program_event(bc, expires, 1);
569         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
570 }
571
572 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
573 {
574         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
575 }
576
577 /*
578  * Called from irq_enter() when idle was interrupted to reenable the
579  * per cpu device.
580  */
581 void tick_check_oneshot_broadcast_this_cpu(void)
582 {
583         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
584                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
585
586                 /*
587                  * We might be in the middle of switching over from
588                  * periodic to oneshot. If the CPU has not yet
589                  * switched over, leave the device alone.
590                  */
591                 if (td->mode == TICKDEV_MODE_ONESHOT) {
592                         clockevents_switch_state(td->evtdev,
593                                               CLOCK_EVT_STATE_ONESHOT);
594                 }
595         }
596 }
597
598 /*
599  * Handle oneshot mode broadcasting
600  */
601 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
602 {
603         struct tick_device *td;
604         ktime_t now, next_event;
605         int cpu, next_cpu = 0;
606         bool bc_local;
607
608         raw_spin_lock(&tick_broadcast_lock);
609         dev->next_event = KTIME_MAX;
610         next_event = KTIME_MAX;
611         cpumask_clear(tmpmask);
612         now = ktime_get();
613         /* Find all expired events */
614         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
615                 td = &per_cpu(tick_cpu_device, cpu);
616                 if (td->evtdev->next_event <= now) {
617                         cpumask_set_cpu(cpu, tmpmask);
618                         /*
619                          * Mark the remote cpu in the pending mask, so
620                          * it can avoid reprogramming the cpu local
621                          * timer in tick_broadcast_oneshot_control().
622                          */
623                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
624                 } else if (td->evtdev->next_event < next_event) {
625                         next_event = td->evtdev->next_event;
626                         next_cpu = cpu;
627                 }
628         }
629
630         /*
631          * Remove the current cpu from the pending mask. The event is
632          * delivered immediately in tick_do_broadcast() !
633          */
634         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
635
636         /* Take care of enforced broadcast requests */
637         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
638         cpumask_clear(tick_broadcast_force_mask);
639
640         /*
641          * Sanity check. Catch the case where we try to broadcast to
642          * offline cpus.
643          */
644         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
645                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
646
647         /*
648          * Wakeup the cpus which have an expired event.
649          */
650         bc_local = tick_do_broadcast(tmpmask);
651
652         /*
653          * Two reasons for reprogram:
654          *
655          * - The global event did not expire any CPU local
656          * events. This happens in dyntick mode, as the maximum PIT
657          * delta is quite small.
658          *
659          * - There are pending events on sleeping CPUs which were not
660          * in the event mask
661          */
662         if (next_event != KTIME_MAX)
663                 tick_broadcast_set_event(dev, next_cpu, next_event);
664
665         raw_spin_unlock(&tick_broadcast_lock);
666
667         if (bc_local) {
668                 td = this_cpu_ptr(&tick_cpu_device);
669                 td->evtdev->event_handler(td->evtdev);
670         }
671 }
672
673 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
674 {
675         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
676                 return 0;
677         if (bc->next_event == KTIME_MAX)
678                 return 0;
679         return bc->bound_on == cpu ? -EBUSY : 0;
680 }
681
682 static void broadcast_shutdown_local(struct clock_event_device *bc,
683                                      struct clock_event_device *dev)
684 {
685         /*
686          * For hrtimer based broadcasting we cannot shutdown the cpu
687          * local device if our own event is the first one to expire or
688          * if we own the broadcast timer.
689          */
690         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
691                 if (broadcast_needs_cpu(bc, smp_processor_id()))
692                         return;
693                 if (dev->next_event < bc->next_event)
694                         return;
695         }
696         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
697 }
698
699 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
700 {
701         struct clock_event_device *bc, *dev;
702         int cpu, ret = 0;
703         ktime_t now;
704
705         /*
706          * If there is no broadcast device, tell the caller not to go
707          * into deep idle.
708          */
709         if (!tick_broadcast_device.evtdev)
710                 return -EBUSY;
711
712         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
713
714         raw_spin_lock(&tick_broadcast_lock);
715         bc = tick_broadcast_device.evtdev;
716         cpu = smp_processor_id();
717
718         if (state == TICK_BROADCAST_ENTER) {
719                 /*
720                  * If the current CPU owns the hrtimer broadcast
721                  * mechanism, it cannot go deep idle and we do not add
722                  * the CPU to the broadcast mask. We don't have to go
723                  * through the EXIT path as the local timer is not
724                  * shutdown.
725                  */
726                 ret = broadcast_needs_cpu(bc, cpu);
727                 if (ret)
728                         goto out;
729
730                 /*
731                  * If the broadcast device is in periodic mode, we
732                  * return.
733                  */
734                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
735                         /* If it is a hrtimer based broadcast, return busy */
736                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
737                                 ret = -EBUSY;
738                         goto out;
739                 }
740
741                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
742                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
743
744                         /* Conditionally shut down the local timer. */
745                         broadcast_shutdown_local(bc, dev);
746
747                         /*
748                          * We only reprogram the broadcast timer if we
749                          * did not mark ourself in the force mask and
750                          * if the cpu local event is earlier than the
751                          * broadcast event. If the current CPU is in
752                          * the force mask, then we are going to be
753                          * woken by the IPI right away; we return
754                          * busy, so the CPU does not try to go deep
755                          * idle.
756                          */
757                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
758                                 ret = -EBUSY;
759                         } else if (dev->next_event < bc->next_event) {
760                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
761                                 /*
762                                  * In case of hrtimer broadcasts the
763                                  * programming might have moved the
764                                  * timer to this cpu. If yes, remove
765                                  * us from the broadcast mask and
766                                  * return busy.
767                                  */
768                                 ret = broadcast_needs_cpu(bc, cpu);
769                                 if (ret) {
770                                         cpumask_clear_cpu(cpu,
771                                                 tick_broadcast_oneshot_mask);
772                                 }
773                         }
774                 }
775         } else {
776                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
777                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
778                         /*
779                          * The cpu which was handling the broadcast
780                          * timer marked this cpu in the broadcast
781                          * pending mask and fired the broadcast
782                          * IPI. So we are going to handle the expired
783                          * event anyway via the broadcast IPI
784                          * handler. No need to reprogram the timer
785                          * with an already expired event.
786                          */
787                         if (cpumask_test_and_clear_cpu(cpu,
788                                        tick_broadcast_pending_mask))
789                                 goto out;
790
791                         /*
792                          * Bail out if there is no next event.
793                          */
794                         if (dev->next_event == KTIME_MAX)
795                                 goto out;
796                         /*
797                          * If the pending bit is not set, then we are
798                          * either the CPU handling the broadcast
799                          * interrupt or we got woken by something else.
800                          *
801                          * We are not longer in the broadcast mask, so
802                          * if the cpu local expiry time is already
803                          * reached, we would reprogram the cpu local
804                          * timer with an already expired event.
805                          *
806                          * This can lead to a ping-pong when we return
807                          * to idle and therefor rearm the broadcast
808                          * timer before the cpu local timer was able
809                          * to fire. This happens because the forced
810                          * reprogramming makes sure that the event
811                          * will happen in the future and depending on
812                          * the min_delta setting this might be far
813                          * enough out that the ping-pong starts.
814                          *
815                          * If the cpu local next_event has expired
816                          * then we know that the broadcast timer
817                          * next_event has expired as well and
818                          * broadcast is about to be handled. So we
819                          * avoid reprogramming and enforce that the
820                          * broadcast handler, which did not run yet,
821                          * will invoke the cpu local handler.
822                          *
823                          * We cannot call the handler directly from
824                          * here, because we might be in a NOHZ phase
825                          * and we did not go through the irq_enter()
826                          * nohz fixups.
827                          */
828                         now = ktime_get();
829                         if (dev->next_event <= now) {
830                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
831                                 goto out;
832                         }
833                         /*
834                          * We got woken by something else. Reprogram
835                          * the cpu local timer device.
836                          */
837                         tick_program_event(dev->next_event, 1);
838                 }
839         }
840 out:
841         raw_spin_unlock(&tick_broadcast_lock);
842         return ret;
843 }
844
845 /*
846  * Reset the one shot broadcast for a cpu
847  *
848  * Called with tick_broadcast_lock held
849  */
850 static void tick_broadcast_clear_oneshot(int cpu)
851 {
852         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
853         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
854 }
855
856 static void tick_broadcast_init_next_event(struct cpumask *mask,
857                                            ktime_t expires)
858 {
859         struct tick_device *td;
860         int cpu;
861
862         for_each_cpu(cpu, mask) {
863                 td = &per_cpu(tick_cpu_device, cpu);
864                 if (td->evtdev)
865                         td->evtdev->next_event = expires;
866         }
867 }
868
869 /**
870  * tick_broadcast_setup_oneshot - setup the broadcast device
871  */
872 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
873 {
874         int cpu = smp_processor_id();
875
876         if (!bc)
877                 return;
878
879         /* Set it up only once ! */
880         if (bc->event_handler != tick_handle_oneshot_broadcast) {
881                 int was_periodic = clockevent_state_periodic(bc);
882
883                 bc->event_handler = tick_handle_oneshot_broadcast;
884
885                 /*
886                  * We must be careful here. There might be other CPUs
887                  * waiting for periodic broadcast. We need to set the
888                  * oneshot_mask bits for those and program the
889                  * broadcast device to fire.
890                  */
891                 cpumask_copy(tmpmask, tick_broadcast_mask);
892                 cpumask_clear_cpu(cpu, tmpmask);
893                 cpumask_or(tick_broadcast_oneshot_mask,
894                            tick_broadcast_oneshot_mask, tmpmask);
895
896                 if (was_periodic && !cpumask_empty(tmpmask)) {
897                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
898                         tick_broadcast_init_next_event(tmpmask,
899                                                        tick_next_period);
900                         tick_broadcast_set_event(bc, cpu, tick_next_period);
901                 } else
902                         bc->next_event = KTIME_MAX;
903         } else {
904                 /*
905                  * The first cpu which switches to oneshot mode sets
906                  * the bit for all other cpus which are in the general
907                  * (periodic) broadcast mask. So the bit is set and
908                  * would prevent the first broadcast enter after this
909                  * to program the bc device.
910                  */
911                 tick_broadcast_clear_oneshot(cpu);
912         }
913 }
914
915 /*
916  * Select oneshot operating mode for the broadcast device
917  */
918 void tick_broadcast_switch_to_oneshot(void)
919 {
920         struct clock_event_device *bc;
921         unsigned long flags;
922
923         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
924
925         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
926         bc = tick_broadcast_device.evtdev;
927         if (bc)
928                 tick_broadcast_setup_oneshot(bc);
929
930         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
931 }
932
933 #ifdef CONFIG_HOTPLUG_CPU
934 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
935 {
936         struct clock_event_device *bc;
937         unsigned long flags;
938
939         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
940         bc = tick_broadcast_device.evtdev;
941
942         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
943                 /* This moves the broadcast assignment to this CPU: */
944                 clockevents_program_event(bc, bc->next_event, 1);
945         }
946         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
947 }
948
949 /*
950  * Remove a dead CPU from broadcasting
951  */
952 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
953 {
954         unsigned long flags;
955
956         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
957
958         /*
959          * Clear the broadcast masks for the dead cpu, but do not stop
960          * the broadcast device!
961          */
962         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
963         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
964         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
965
966         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
967 }
968 #endif
969
970 /*
971  * Check, whether the broadcast device is in one shot mode
972  */
973 int tick_broadcast_oneshot_active(void)
974 {
975         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
976 }
977
978 /*
979  * Check whether the broadcast device supports oneshot.
980  */
981 bool tick_broadcast_oneshot_available(void)
982 {
983         struct clock_event_device *bc = tick_broadcast_device.evtdev;
984
985         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
986 }
987
988 #else
989 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
990 {
991         struct clock_event_device *bc = tick_broadcast_device.evtdev;
992
993         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
994                 return -EBUSY;
995
996         return 0;
997 }
998 #endif
999
1000 void __init tick_broadcast_init(void)
1001 {
1002         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1003         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1004         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1005 #ifdef CONFIG_TICK_ONESHOT
1006         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1007         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1008         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1009 #endif
1010 }