4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/slab.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
45 #include "timeconst.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz;
53 EXPORT_SYMBOL(sys_tz);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 time_t i = get_seconds();
71 force_successful_syscall_return();
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
87 if (get_user(tv.tv_sec, tptr))
92 err = security_settime(&tv, NULL);
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
105 if (likely(tv != NULL)) {
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
119 * Adjust the time obtained from the CMOS to be UTC time instead of
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
134 static inline void warp_clock(void)
136 write_seqlock_irq(&xtime_lock);
137 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
139 write_sequnlock_irq(&xtime_lock);
144 * In case for some reason the CMOS clock has not already been running
145 * in UTC, but in some local time: The first time we set the timezone,
146 * we will warp the clock so that it is ticking UTC time instead of
147 * local time. Presumably, if someone is setting the timezone then we
148 * are running in an environment where the programs understand about
149 * timezones. This should be done at boot time in the /etc/rc script,
150 * as soon as possible, so that the clock can be set right. Otherwise,
151 * various programs will get confused when the clock gets warped.
154 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
156 static int firsttime = 1;
159 if (tv && !timespec_valid(tv))
162 error = security_settime(tv, tz);
167 /* SMP safe, global irq locking makes it work. */
169 update_vsyscall_tz();
178 /* SMP safe, again the code in arch/foo/time.c should
179 * globally block out interrupts when it runs.
181 return do_settimeofday(tv);
186 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
187 struct timezone __user *, tz)
189 struct timeval user_tv;
190 struct timespec new_ts;
191 struct timezone new_tz;
194 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196 new_ts.tv_sec = user_tv.tv_sec;
197 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
200 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
207 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
209 struct timex txc; /* Local copy of parameter */
212 /* Copy the user data space into the kernel copy
213 * structure. But bear in mind that the structures
216 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218 ret = do_adjtimex(&txc);
219 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
223 * current_fs_time - Return FS time
226 * Return the current time truncated to the time granularity supported by
229 struct timespec current_fs_time(struct super_block *sb)
231 struct timespec now = current_kernel_time();
232 return timespec_trunc(now, sb->s_time_gran);
234 EXPORT_SYMBOL(current_fs_time);
237 * Convert jiffies to milliseconds and back.
239 * Avoid unnecessary multiplications/divisions in the
240 * two most common HZ cases:
242 unsigned int inline jiffies_to_msecs(const unsigned long j)
244 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
245 return (MSEC_PER_SEC / HZ) * j;
246 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
247 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
249 # if BITS_PER_LONG == 32
250 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
252 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256 EXPORT_SYMBOL(jiffies_to_msecs);
258 unsigned int inline jiffies_to_usecs(const unsigned long j)
260 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
261 return (USEC_PER_SEC / HZ) * j;
262 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
263 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
265 # if BITS_PER_LONG == 32
266 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272 EXPORT_SYMBOL(jiffies_to_usecs);
275 * timespec_trunc - Truncate timespec to a granularity
277 * @gran: Granularity in ns.
279 * Truncate a timespec to a granularity. gran must be smaller than a second.
280 * Always rounds down.
282 * This function should be only used for timestamps returned by
283 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
284 * it doesn't handle the better resolution of the latter.
286 struct timespec timespec_trunc(struct timespec t, unsigned gran)
289 * Division is pretty slow so avoid it for common cases.
290 * Currently current_kernel_time() never returns better than
291 * jiffies resolution. Exploit that.
293 if (gran <= jiffies_to_usecs(1) * 1000) {
295 } else if (gran == 1000000000) {
298 t.tv_nsec -= t.tv_nsec % gran;
302 EXPORT_SYMBOL(timespec_trunc);
304 #ifndef CONFIG_GENERIC_TIME
306 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
307 * and therefore only yields usec accuracy
309 void getnstimeofday(struct timespec *tv)
314 tv->tv_sec = x.tv_sec;
315 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
317 EXPORT_SYMBOL_GPL(getnstimeofday);
320 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
321 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
322 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324 * [For the Julian calendar (which was used in Russia before 1917,
325 * Britain & colonies before 1752, anywhere else before 1582,
326 * and is still in use by some communities) leave out the
327 * -year/100+year/400 terms, and add 10.]
329 * This algorithm was first published by Gauss (I think).
331 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
332 * machines where long is 32-bit! (However, as time_t is signed, we
333 * will already get problems at other places on 2038-01-19 03:14:08)
336 mktime(const unsigned int year0, const unsigned int mon0,
337 const unsigned int day, const unsigned int hour,
338 const unsigned int min, const unsigned int sec)
340 unsigned int mon = mon0, year = year0;
342 /* 1..12 -> 11,12,1..10 */
343 if (0 >= (int) (mon -= 2)) {
344 mon += 12; /* Puts Feb last since it has leap day */
348 return ((((unsigned long)
349 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
351 )*24 + hour /* now have hours */
352 )*60 + min /* now have minutes */
353 )*60 + sec; /* finally seconds */
356 EXPORT_SYMBOL(mktime);
359 * set_normalized_timespec - set timespec sec and nsec parts and normalize
361 * @ts: pointer to timespec variable to be set
362 * @sec: seconds to set
363 * @nsec: nanoseconds to set
365 * Set seconds and nanoseconds field of a timespec variable and
366 * normalize to the timespec storage format
368 * Note: The tv_nsec part is always in the range of
369 * 0 <= tv_nsec < NSEC_PER_SEC
370 * For negative values only the tv_sec field is negative !
372 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
374 while (nsec >= NSEC_PER_SEC) {
376 * The following asm() prevents the compiler from
377 * optimising this loop into a modulo operation. See
378 * also __iter_div_u64_rem() in include/linux/time.h
380 asm("" : "+rm"(nsec));
381 nsec -= NSEC_PER_SEC;
385 asm("" : "+rm"(nsec));
386 nsec += NSEC_PER_SEC;
392 EXPORT_SYMBOL(set_normalized_timespec);
395 * ns_to_timespec - Convert nanoseconds to timespec
396 * @nsec: the nanoseconds value to be converted
398 * Returns the timespec representation of the nsec parameter.
400 struct timespec ns_to_timespec(const s64 nsec)
406 return (struct timespec) {0, 0};
408 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
409 if (unlikely(rem < 0)) {
417 EXPORT_SYMBOL(ns_to_timespec);
420 * ns_to_timeval - Convert nanoseconds to timeval
421 * @nsec: the nanoseconds value to be converted
423 * Returns the timeval representation of the nsec parameter.
425 struct timeval ns_to_timeval(const s64 nsec)
427 struct timespec ts = ns_to_timespec(nsec);
430 tv.tv_sec = ts.tv_sec;
431 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
435 EXPORT_SYMBOL(ns_to_timeval);
438 * When we convert to jiffies then we interpret incoming values
441 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
443 * - 'too large' values [that would result in larger than
444 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
446 * - all other values are converted to jiffies by either multiplying
447 * the input value by a factor or dividing it with a factor
449 * We must also be careful about 32-bit overflows.
451 unsigned long msecs_to_jiffies(const unsigned int m)
454 * Negative value, means infinite timeout:
457 return MAX_JIFFY_OFFSET;
459 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
461 * HZ is equal to or smaller than 1000, and 1000 is a nice
462 * round multiple of HZ, divide with the factor between them,
465 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
466 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
468 * HZ is larger than 1000, and HZ is a nice round multiple of
469 * 1000 - simply multiply with the factor between them.
471 * But first make sure the multiplication result cannot
474 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
475 return MAX_JIFFY_OFFSET;
477 return m * (HZ / MSEC_PER_SEC);
480 * Generic case - multiply, round and divide. But first
481 * check that if we are doing a net multiplication, that
482 * we wouldn't overflow:
484 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
485 return MAX_JIFFY_OFFSET;
487 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
491 EXPORT_SYMBOL(msecs_to_jiffies);
493 unsigned long usecs_to_jiffies(const unsigned int u)
495 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
496 return MAX_JIFFY_OFFSET;
497 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
498 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
499 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
500 return u * (HZ / USEC_PER_SEC);
502 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
506 EXPORT_SYMBOL(usecs_to_jiffies);
509 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
510 * that a remainder subtract here would not do the right thing as the
511 * resolution values don't fall on second boundries. I.e. the line:
512 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
514 * Rather, we just shift the bits off the right.
516 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
517 * value to a scaled second value.
520 timespec_to_jiffies(const struct timespec *value)
522 unsigned long sec = value->tv_sec;
523 long nsec = value->tv_nsec + TICK_NSEC - 1;
525 if (sec >= MAX_SEC_IN_JIFFIES){
526 sec = MAX_SEC_IN_JIFFIES;
529 return (((u64)sec * SEC_CONVERSION) +
530 (((u64)nsec * NSEC_CONVERSION) >>
531 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
534 EXPORT_SYMBOL(timespec_to_jiffies);
537 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
540 * Convert jiffies to nanoseconds and separate with
544 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
546 value->tv_nsec = rem;
548 EXPORT_SYMBOL(jiffies_to_timespec);
550 /* Same for "timeval"
552 * Well, almost. The problem here is that the real system resolution is
553 * in nanoseconds and the value being converted is in micro seconds.
554 * Also for some machines (those that use HZ = 1024, in-particular),
555 * there is a LARGE error in the tick size in microseconds.
557 * The solution we use is to do the rounding AFTER we convert the
558 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
559 * Instruction wise, this should cost only an additional add with carry
560 * instruction above the way it was done above.
563 timeval_to_jiffies(const struct timeval *value)
565 unsigned long sec = value->tv_sec;
566 long usec = value->tv_usec;
568 if (sec >= MAX_SEC_IN_JIFFIES){
569 sec = MAX_SEC_IN_JIFFIES;
572 return (((u64)sec * SEC_CONVERSION) +
573 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
574 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
576 EXPORT_SYMBOL(timeval_to_jiffies);
578 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
581 * Convert jiffies to nanoseconds and separate with
586 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
588 value->tv_usec = rem / NSEC_PER_USEC;
590 EXPORT_SYMBOL(jiffies_to_timeval);
593 * Convert jiffies/jiffies_64 to clock_t and back.
595 clock_t jiffies_to_clock_t(long x)
597 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
599 return x * (USER_HZ / HZ);
601 return x / (HZ / USER_HZ);
604 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
607 EXPORT_SYMBOL(jiffies_to_clock_t);
609 unsigned long clock_t_to_jiffies(unsigned long x)
611 #if (HZ % USER_HZ)==0
612 if (x >= ~0UL / (HZ / USER_HZ))
614 return x * (HZ / USER_HZ);
616 /* Don't worry about loss of precision here .. */
617 if (x >= ~0UL / HZ * USER_HZ)
620 /* .. but do try to contain it here */
621 return div_u64((u64)x * HZ, USER_HZ);
624 EXPORT_SYMBOL(clock_t_to_jiffies);
626 u64 jiffies_64_to_clock_t(u64 x)
628 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
630 x = div_u64(x * USER_HZ, HZ);
632 x = div_u64(x, HZ / USER_HZ);
638 * There are better ways that don't overflow early,
639 * but even this doesn't overflow in hundreds of years
642 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
646 EXPORT_SYMBOL(jiffies_64_to_clock_t);
648 u64 nsec_to_clock_t(u64 x)
650 #if (NSEC_PER_SEC % USER_HZ) == 0
651 return div_u64(x, NSEC_PER_SEC / USER_HZ);
652 #elif (USER_HZ % 512) == 0
653 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
656 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
657 * overflow after 64.99 years.
658 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
660 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
665 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
669 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
670 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
671 * for scheduler, not for use in device drivers to calculate timeout value.
674 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
675 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
677 unsigned long nsecs_to_jiffies(u64 n)
679 #if (NSEC_PER_SEC % HZ) == 0
680 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
681 return div_u64(n, NSEC_PER_SEC / HZ);
682 #elif (HZ % 512) == 0
683 /* overflow after 292 years if HZ = 1024 */
684 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
687 * Generic case - optimized for cases where HZ is a multiple of 3.
688 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
690 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
694 #if (BITS_PER_LONG < 64)
695 u64 get_jiffies_64(void)
701 seq = read_seqbegin(&xtime_lock);
703 } while (read_seqretry(&xtime_lock, seq));
706 EXPORT_SYMBOL(get_jiffies_64);
709 EXPORT_SYMBOL(jiffies);
712 * Add two timespec values and do a safety check for overflow.
713 * It's assumed that both values are valid (>= 0)
715 struct timespec timespec_add_safe(const struct timespec lhs,
716 const struct timespec rhs)
720 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
721 lhs.tv_nsec + rhs.tv_nsec);
723 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
724 res.tv_sec = TIME_T_MAX;