4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/div64.h>
40 #include <asm/timex.h>
43 #ifdef CONFIG_TIME_INTERPOLATION
44 static void time_interpolator_update(long delta_nsec);
46 #define time_interpolator_update(x)
50 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
62 struct timer_list *running_timer;
65 typedef struct tvec_s {
66 struct list_head vec[TVN_SIZE];
69 typedef struct tvec_root_s {
70 struct list_head vec[TVR_SIZE];
73 struct tvec_t_base_s {
74 struct timer_base_s t_base;
75 unsigned long timer_jiffies;
81 } ____cacheline_aligned_in_smp;
83 typedef struct tvec_t_base_s tvec_base_t;
84 static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
86 static inline void set_running_timer(tvec_base_t *base,
87 struct timer_list *timer)
90 base->t_base.running_timer = timer;
94 static void check_timer_failed(struct timer_list *timer)
96 static int whine_count;
97 if (whine_count < 16) {
99 printk("Uninitialised timer!\n");
100 printk("This is just a warning. Your computer is OK\n");
101 printk("function=0x%p, data=0x%lx\n",
102 timer->function, timer->data);
108 timer->magic = TIMER_MAGIC;
111 static inline void check_timer(struct timer_list *timer)
113 if (timer->magic != TIMER_MAGIC)
114 check_timer_failed(timer);
118 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
120 unsigned long expires = timer->expires;
121 unsigned long idx = expires - base->timer_jiffies;
122 struct list_head *vec;
124 if (idx < TVR_SIZE) {
125 int i = expires & TVR_MASK;
126 vec = base->tv1.vec + i;
127 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
128 int i = (expires >> TVR_BITS) & TVN_MASK;
129 vec = base->tv2.vec + i;
130 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
131 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
132 vec = base->tv3.vec + i;
133 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
134 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
135 vec = base->tv4.vec + i;
136 } else if ((signed long) idx < 0) {
138 * Can happen if you add a timer with expires == jiffies,
139 * or you set a timer to go off in the past
141 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
144 /* If the timeout is larger than 0xffffffff on 64-bit
145 * architectures then we use the maximum timeout:
147 if (idx > 0xffffffffUL) {
149 expires = idx + base->timer_jiffies;
151 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
152 vec = base->tv5.vec + i;
157 list_add_tail(&timer->entry, vec);
160 typedef struct timer_base_s timer_base_t;
162 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
163 * at compile time, and we need timer->base to lock the timer.
165 timer_base_t __init_timer_base
166 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
167 EXPORT_SYMBOL(__init_timer_base);
170 * init_timer - initialize a timer.
171 * @timer: the timer to be initialized
173 * init_timer() must be done to a timer prior calling *any* of the
174 * other timer functions.
176 void fastcall init_timer(struct timer_list *timer)
178 timer->entry.next = NULL;
179 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
180 timer->magic = TIMER_MAGIC;
182 EXPORT_SYMBOL(init_timer);
184 static inline void detach_timer(struct timer_list *timer,
187 struct list_head *entry = &timer->entry;
189 __list_del(entry->prev, entry->next);
192 entry->prev = LIST_POISON2;
196 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
197 * means that all timers which are tied to this base via timer->base are
198 * locked, and the base itself is locked too.
200 * So __run_timers/migrate_timers can safely modify all timers which could
201 * be found on ->tvX lists.
203 * When the timer's base is locked, and the timer removed from list, it is
204 * possible to set timer->base = NULL and drop the lock: the timer remains
207 static timer_base_t *lock_timer_base(struct timer_list *timer,
208 unsigned long *flags)
214 if (likely(base != NULL)) {
215 spin_lock_irqsave(&base->lock, *flags);
216 if (likely(base == timer->base))
218 /* The timer has migrated to another CPU */
219 spin_unlock_irqrestore(&base->lock, *flags);
225 int __mod_timer(struct timer_list *timer, unsigned long expires)
228 tvec_base_t *new_base;
232 BUG_ON(!timer->function);
235 base = lock_timer_base(timer, &flags);
237 if (timer_pending(timer)) {
238 detach_timer(timer, 0);
242 new_base = &__get_cpu_var(tvec_bases);
244 if (base != &new_base->t_base) {
246 * We are trying to schedule the timer on the local CPU.
247 * However we can't change timer's base while it is running,
248 * otherwise del_timer_sync() can't detect that the timer's
249 * handler yet has not finished. This also guarantees that
250 * the timer is serialized wrt itself.
252 if (unlikely(base->running_timer == timer)) {
253 /* The timer remains on a former base */
254 new_base = container_of(base, tvec_base_t, t_base);
256 /* See the comment in lock_timer_base() */
258 spin_unlock(&base->lock);
259 spin_lock(&new_base->t_base.lock);
260 timer->base = &new_base->t_base;
264 timer->expires = expires;
265 internal_add_timer(new_base, timer);
266 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
271 EXPORT_SYMBOL(__mod_timer);
274 * add_timer_on - start a timer on a particular CPU
275 * @timer: the timer to be added
276 * @cpu: the CPU to start it on
278 * This is not very scalable on SMP. Double adds are not possible.
280 void add_timer_on(struct timer_list *timer, int cpu)
282 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
285 BUG_ON(timer_pending(timer) || !timer->function);
289 spin_lock_irqsave(&base->t_base.lock, flags);
290 timer->base = &base->t_base;
291 internal_add_timer(base, timer);
292 spin_unlock_irqrestore(&base->t_base.lock, flags);
297 * mod_timer - modify a timer's timeout
298 * @timer: the timer to be modified
300 * mod_timer is a more efficient way to update the expire field of an
301 * active timer (if the timer is inactive it will be activated)
303 * mod_timer(timer, expires) is equivalent to:
305 * del_timer(timer); timer->expires = expires; add_timer(timer);
307 * Note that if there are multiple unserialized concurrent users of the
308 * same timer, then mod_timer() is the only safe way to modify the timeout,
309 * since add_timer() cannot modify an already running timer.
311 * The function returns whether it has modified a pending timer or not.
312 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
313 * active timer returns 1.)
315 int mod_timer(struct timer_list *timer, unsigned long expires)
317 BUG_ON(!timer->function);
322 * This is a common optimization triggered by the
323 * networking code - if the timer is re-modified
324 * to be the same thing then just return:
326 if (timer->expires == expires && timer_pending(timer))
329 return __mod_timer(timer, expires);
332 EXPORT_SYMBOL(mod_timer);
335 * del_timer - deactive a timer.
336 * @timer: the timer to be deactivated
338 * del_timer() deactivates a timer - this works on both active and inactive
341 * The function returns whether it has deactivated a pending timer or not.
342 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
343 * active timer returns 1.)
345 int del_timer(struct timer_list *timer)
353 if (timer_pending(timer)) {
354 base = lock_timer_base(timer, &flags);
355 if (timer_pending(timer)) {
356 detach_timer(timer, 1);
359 spin_unlock_irqrestore(&base->lock, flags);
365 EXPORT_SYMBOL(del_timer);
369 * This function tries to deactivate a timer. Upon successful (ret >= 0)
370 * exit the timer is not queued and the handler is not running on any CPU.
372 * It must not be called from interrupt contexts.
374 int try_to_del_timer_sync(struct timer_list *timer)
380 base = lock_timer_base(timer, &flags);
382 if (base->running_timer == timer)
386 if (timer_pending(timer)) {
387 detach_timer(timer, 1);
391 spin_unlock_irqrestore(&base->lock, flags);
397 * del_timer_sync - deactivate a timer and wait for the handler to finish.
398 * @timer: the timer to be deactivated
400 * This function only differs from del_timer() on SMP: besides deactivating
401 * the timer it also makes sure the handler has finished executing on other
404 * Synchronization rules: callers must prevent restarting of the timer,
405 * otherwise this function is meaningless. It must not be called from
406 * interrupt contexts. The caller must not hold locks which would prevent
407 * completion of the timer's handler. The timer's handler must not call
408 * add_timer_on(). Upon exit the timer is not queued and the handler is
409 * not running on any CPU.
411 * The function returns whether it has deactivated a pending timer or not.
413 int del_timer_sync(struct timer_list *timer)
418 int ret = try_to_del_timer_sync(timer);
424 EXPORT_SYMBOL(del_timer_sync);
427 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
429 /* cascade all the timers from tv up one level */
430 struct list_head *head, *curr;
432 head = tv->vec + index;
435 * We are removing _all_ timers from the list, so we don't have to
436 * detach them individually, just clear the list afterwards.
438 while (curr != head) {
439 struct timer_list *tmp;
441 tmp = list_entry(curr, struct timer_list, entry);
442 BUG_ON(tmp->base != &base->t_base);
444 internal_add_timer(base, tmp);
446 INIT_LIST_HEAD(head);
452 * __run_timers - run all expired timers (if any) on this CPU.
453 * @base: the timer vector to be processed.
455 * This function cascades all vectors and executes all expired timer
458 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
460 static inline void __run_timers(tvec_base_t *base)
462 struct timer_list *timer;
464 spin_lock_irq(&base->t_base.lock);
465 while (time_after_eq(jiffies, base->timer_jiffies)) {
466 struct list_head work_list = LIST_HEAD_INIT(work_list);
467 struct list_head *head = &work_list;
468 int index = base->timer_jiffies & TVR_MASK;
474 (!cascade(base, &base->tv2, INDEX(0))) &&
475 (!cascade(base, &base->tv3, INDEX(1))) &&
476 !cascade(base, &base->tv4, INDEX(2)))
477 cascade(base, &base->tv5, INDEX(3));
478 ++base->timer_jiffies;
479 list_splice_init(base->tv1.vec + index, &work_list);
480 while (!list_empty(head)) {
481 void (*fn)(unsigned long);
484 timer = list_entry(head->next,struct timer_list,entry);
485 fn = timer->function;
488 set_running_timer(base, timer);
489 detach_timer(timer, 1);
490 spin_unlock_irq(&base->t_base.lock);
492 int preempt_count = preempt_count();
494 if (preempt_count != preempt_count()) {
495 printk(KERN_WARNING "huh, entered %p "
496 "with preempt_count %08x, exited"
503 spin_lock_irq(&base->t_base.lock);
506 set_running_timer(base, NULL);
507 spin_unlock_irq(&base->t_base.lock);
510 #ifdef CONFIG_NO_IDLE_HZ
512 * Find out when the next timer event is due to happen. This
513 * is used on S/390 to stop all activity when a cpus is idle.
514 * This functions needs to be called disabled.
516 unsigned long next_timer_interrupt(void)
519 struct list_head *list;
520 struct timer_list *nte;
521 unsigned long expires;
525 base = &__get_cpu_var(tvec_bases);
526 spin_lock(&base->t_base.lock);
527 expires = base->timer_jiffies + (LONG_MAX >> 1);
530 /* Look for timer events in tv1. */
531 j = base->timer_jiffies & TVR_MASK;
533 list_for_each_entry(nte, base->tv1.vec + j, entry) {
534 expires = nte->expires;
535 if (j < (base->timer_jiffies & TVR_MASK))
536 list = base->tv2.vec + (INDEX(0));
539 j = (j + 1) & TVR_MASK;
540 } while (j != (base->timer_jiffies & TVR_MASK));
543 varray[0] = &base->tv2;
544 varray[1] = &base->tv3;
545 varray[2] = &base->tv4;
546 varray[3] = &base->tv5;
547 for (i = 0; i < 4; i++) {
550 if (list_empty(varray[i]->vec + j)) {
551 j = (j + 1) & TVN_MASK;
554 list_for_each_entry(nte, varray[i]->vec + j, entry)
555 if (time_before(nte->expires, expires))
556 expires = nte->expires;
557 if (j < (INDEX(i)) && i < 3)
558 list = varray[i + 1]->vec + (INDEX(i + 1));
560 } while (j != (INDEX(i)));
565 * The search wrapped. We need to look at the next list
566 * from next tv element that would cascade into tv element
567 * where we found the timer element.
569 list_for_each_entry(nte, list, entry) {
570 if (time_before(nte->expires, expires))
571 expires = nte->expires;
574 spin_unlock(&base->t_base.lock);
579 /******************************************************************/
582 * Timekeeping variables
584 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
585 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
589 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
590 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
591 * at zero at system boot time, so wall_to_monotonic will be negative,
592 * however, we will ALWAYS keep the tv_nsec part positive so we can use
593 * the usual normalization.
595 struct timespec xtime __attribute__ ((aligned (16)));
596 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
598 EXPORT_SYMBOL(xtime);
600 /* Don't completely fail for HZ > 500. */
601 int tickadj = 500/HZ ? : 1; /* microsecs */
605 * phase-lock loop variables
607 /* TIME_ERROR prevents overwriting the CMOS clock */
608 int time_state = TIME_OK; /* clock synchronization status */
609 int time_status = STA_UNSYNC; /* clock status bits */
610 long time_offset; /* time adjustment (us) */
611 long time_constant = 2; /* pll time constant */
612 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
613 long time_precision = 1; /* clock precision (us) */
614 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
615 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
616 static long time_phase; /* phase offset (scaled us) */
617 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
618 /* frequency offset (scaled ppm)*/
619 static long time_adj; /* tick adjust (scaled 1 / HZ) */
620 long time_reftime; /* time at last adjustment (s) */
622 long time_next_adjust;
625 * this routine handles the overflow of the microsecond field
627 * The tricky bits of code to handle the accurate clock support
628 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
629 * They were originally developed for SUN and DEC kernels.
630 * All the kudos should go to Dave for this stuff.
633 static void second_overflow(void)
637 /* Bump the maxerror field */
638 time_maxerror += time_tolerance >> SHIFT_USEC;
639 if ( time_maxerror > NTP_PHASE_LIMIT ) {
640 time_maxerror = NTP_PHASE_LIMIT;
641 time_status |= STA_UNSYNC;
645 * Leap second processing. If in leap-insert state at
646 * the end of the day, the system clock is set back one
647 * second; if in leap-delete state, the system clock is
648 * set ahead one second. The microtime() routine or
649 * external clock driver will insure that reported time
650 * is always monotonic. The ugly divides should be
653 switch (time_state) {
656 if (time_status & STA_INS)
657 time_state = TIME_INS;
658 else if (time_status & STA_DEL)
659 time_state = TIME_DEL;
663 if (xtime.tv_sec % 86400 == 0) {
665 wall_to_monotonic.tv_sec++;
666 /* The timer interpolator will make time change gradually instead
667 * of an immediate jump by one second.
669 time_interpolator_update(-NSEC_PER_SEC);
670 time_state = TIME_OOP;
672 printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
677 if ((xtime.tv_sec + 1) % 86400 == 0) {
679 wall_to_monotonic.tv_sec--;
680 /* Use of time interpolator for a gradual change of time */
681 time_interpolator_update(NSEC_PER_SEC);
682 time_state = TIME_WAIT;
684 printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
689 time_state = TIME_WAIT;
693 if (!(time_status & (STA_INS | STA_DEL)))
694 time_state = TIME_OK;
698 * Compute the phase adjustment for the next second. In
699 * PLL mode, the offset is reduced by a fixed factor
700 * times the time constant. In FLL mode the offset is
701 * used directly. In either mode, the maximum phase
702 * adjustment for each second is clamped so as to spread
703 * the adjustment over not more than the number of
704 * seconds between updates.
706 if (time_offset < 0) {
707 ltemp = -time_offset;
708 if (!(time_status & STA_FLL))
709 ltemp >>= SHIFT_KG + time_constant;
710 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
711 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
712 time_offset += ltemp;
713 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
716 if (!(time_status & STA_FLL))
717 ltemp >>= SHIFT_KG + time_constant;
718 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
719 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
720 time_offset -= ltemp;
721 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
725 * Compute the frequency estimate and additional phase
726 * adjustment due to frequency error for the next
727 * second. When the PPS signal is engaged, gnaw on the
728 * watchdog counter and update the frequency computed by
729 * the pll and the PPS signal.
732 if (pps_valid == PPS_VALID) { /* PPS signal lost */
733 pps_jitter = MAXTIME;
734 pps_stabil = MAXFREQ;
735 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
736 STA_PPSWANDER | STA_PPSERROR);
738 ltemp = time_freq + pps_freq;
740 time_adj -= -ltemp >>
741 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
744 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
747 /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
748 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
751 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
753 time_adj += (time_adj >> 2) + (time_adj >> 5);
756 /* Compensate for (HZ==250) != (1 << SHIFT_HZ).
757 * Add 1.5625% and 0.78125% to get 255.85938; => only 0.05% error (p. 14)
760 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
762 time_adj += (time_adj >> 6) + (time_adj >> 7);
765 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ).
766 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
769 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
771 time_adj += (time_adj >> 6) + (time_adj >> 7);
775 /* in the NTP reference this is called "hardclock()" */
776 static void update_wall_time_one_tick(void)
778 long time_adjust_step, delta_nsec;
780 if ( (time_adjust_step = time_adjust) != 0 ) {
781 /* We are doing an adjtime thing.
783 * Prepare time_adjust_step to be within bounds.
784 * Note that a positive time_adjust means we want the clock
787 * Limit the amount of the step to be in the range
788 * -tickadj .. +tickadj
790 if (time_adjust > tickadj)
791 time_adjust_step = tickadj;
792 else if (time_adjust < -tickadj)
793 time_adjust_step = -tickadj;
795 /* Reduce by this step the amount of time left */
796 time_adjust -= time_adjust_step;
798 delta_nsec = tick_nsec + time_adjust_step * 1000;
800 * Advance the phase, once it gets to one microsecond, then
801 * advance the tick more.
803 time_phase += time_adj;
804 if (time_phase <= -FINENSEC) {
805 long ltemp = -time_phase >> (SHIFT_SCALE - 10);
806 time_phase += ltemp << (SHIFT_SCALE - 10);
809 else if (time_phase >= FINENSEC) {
810 long ltemp = time_phase >> (SHIFT_SCALE - 10);
811 time_phase -= ltemp << (SHIFT_SCALE - 10);
814 xtime.tv_nsec += delta_nsec;
815 time_interpolator_update(delta_nsec);
817 /* Changes by adjtime() do not take effect till next tick. */
818 if (time_next_adjust != 0) {
819 time_adjust = time_next_adjust;
820 time_next_adjust = 0;
825 * Using a loop looks inefficient, but "ticks" is
826 * usually just one (we shouldn't be losing ticks,
827 * we're doing this this way mainly for interrupt
828 * latency reasons, not because we think we'll
829 * have lots of lost timer ticks
831 static void update_wall_time(unsigned long ticks)
835 update_wall_time_one_tick();
836 if (xtime.tv_nsec >= 1000000000) {
837 xtime.tv_nsec -= 1000000000;
845 * Called from the timer interrupt handler to charge one tick to the current
846 * process. user_tick is 1 if the tick is user time, 0 for system.
848 void update_process_times(int user_tick)
850 struct task_struct *p = current;
851 int cpu = smp_processor_id();
853 /* Note: this timer irq context must be accounted for as well. */
855 account_user_time(p, jiffies_to_cputime(1));
857 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
859 if (rcu_pending(cpu))
860 rcu_check_callbacks(cpu, user_tick);
862 run_posix_cpu_timers(p);
866 * Nr of active tasks - counted in fixed-point numbers
868 static unsigned long count_active_tasks(void)
870 return (nr_running() + nr_uninterruptible()) * FIXED_1;
874 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
875 * imply that avenrun[] is the standard name for this kind of thing.
876 * Nothing else seems to be standardized: the fractional size etc
877 * all seem to differ on different machines.
879 * Requires xtime_lock to access.
881 unsigned long avenrun[3];
883 EXPORT_SYMBOL(avenrun);
886 * calc_load - given tick count, update the avenrun load estimates.
887 * This is called while holding a write_lock on xtime_lock.
889 static inline void calc_load(unsigned long ticks)
891 unsigned long active_tasks; /* fixed-point */
892 static int count = LOAD_FREQ;
897 active_tasks = count_active_tasks();
898 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
899 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
900 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
904 /* jiffies at the most recent update of wall time */
905 unsigned long wall_jiffies = INITIAL_JIFFIES;
908 * This read-write spinlock protects us from races in SMP while
909 * playing with xtime and avenrun.
911 #ifndef ARCH_HAVE_XTIME_LOCK
912 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
914 EXPORT_SYMBOL(xtime_lock);
918 * This function runs timers and the timer-tq in bottom half context.
920 static void run_timer_softirq(struct softirq_action *h)
922 tvec_base_t *base = &__get_cpu_var(tvec_bases);
924 if (time_after_eq(jiffies, base->timer_jiffies))
929 * Called by the local, per-CPU timer interrupt on SMP.
931 void run_local_timers(void)
933 raise_softirq(TIMER_SOFTIRQ);
937 * Called by the timer interrupt. xtime_lock must already be taken
940 static inline void update_times(void)
944 ticks = jiffies - wall_jiffies;
946 wall_jiffies += ticks;
947 update_wall_time(ticks);
953 * The 64-bit jiffies value is not atomic - you MUST NOT read it
954 * without sampling the sequence number in xtime_lock.
955 * jiffies is defined in the linker script...
958 void do_timer(struct pt_regs *regs)
962 softlockup_tick(regs);
965 #ifdef __ARCH_WANT_SYS_ALARM
968 * For backwards compatibility? This can be done in libc so Alpha
969 * and all newer ports shouldn't need it.
971 asmlinkage unsigned long sys_alarm(unsigned int seconds)
973 struct itimerval it_new, it_old;
974 unsigned int oldalarm;
976 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
977 it_new.it_value.tv_sec = seconds;
978 it_new.it_value.tv_usec = 0;
979 do_setitimer(ITIMER_REAL, &it_new, &it_old);
980 oldalarm = it_old.it_value.tv_sec;
981 /* ehhh.. We can't return 0 if we have an alarm pending.. */
982 /* And we'd better return too much than too little anyway */
983 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
993 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
994 * should be moved into arch/i386 instead?
998 * sys_getpid - return the thread group id of the current process
1000 * Note, despite the name, this returns the tgid not the pid. The tgid and
1001 * the pid are identical unless CLONE_THREAD was specified on clone() in
1002 * which case the tgid is the same in all threads of the same group.
1004 * This is SMP safe as current->tgid does not change.
1006 asmlinkage long sys_getpid(void)
1008 return current->tgid;
1012 * Accessing ->group_leader->real_parent is not SMP-safe, it could
1013 * change from under us. However, rather than getting any lock
1014 * we can use an optimistic algorithm: get the parent
1015 * pid, and go back and check that the parent is still
1016 * the same. If it has changed (which is extremely unlikely
1017 * indeed), we just try again..
1019 * NOTE! This depends on the fact that even if we _do_
1020 * get an old value of "parent", we can happily dereference
1021 * the pointer (it was and remains a dereferencable kernel pointer
1022 * no matter what): we just can't necessarily trust the result
1023 * until we know that the parent pointer is valid.
1025 * NOTE2: ->group_leader never changes from under us.
1027 asmlinkage long sys_getppid(void)
1030 struct task_struct *me = current;
1031 struct task_struct *parent;
1033 parent = me->group_leader->real_parent;
1036 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1038 struct task_struct *old = parent;
1041 * Make sure we read the pid before re-reading the
1045 parent = me->group_leader->real_parent;
1055 asmlinkage long sys_getuid(void)
1057 /* Only we change this so SMP safe */
1058 return current->uid;
1061 asmlinkage long sys_geteuid(void)
1063 /* Only we change this so SMP safe */
1064 return current->euid;
1067 asmlinkage long sys_getgid(void)
1069 /* Only we change this so SMP safe */
1070 return current->gid;
1073 asmlinkage long sys_getegid(void)
1075 /* Only we change this so SMP safe */
1076 return current->egid;
1081 static void process_timeout(unsigned long __data)
1083 wake_up_process((task_t *)__data);
1087 * schedule_timeout - sleep until timeout
1088 * @timeout: timeout value in jiffies
1090 * Make the current task sleep until @timeout jiffies have
1091 * elapsed. The routine will return immediately unless
1092 * the current task state has been set (see set_current_state()).
1094 * You can set the task state as follows -
1096 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1097 * pass before the routine returns. The routine will return 0
1099 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1100 * delivered to the current task. In this case the remaining time
1101 * in jiffies will be returned, or 0 if the timer expired in time
1103 * The current task state is guaranteed to be TASK_RUNNING when this
1106 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1107 * the CPU away without a bound on the timeout. In this case the return
1108 * value will be %MAX_SCHEDULE_TIMEOUT.
1110 * In all cases the return value is guaranteed to be non-negative.
1112 fastcall signed long __sched schedule_timeout(signed long timeout)
1114 struct timer_list timer;
1115 unsigned long expire;
1119 case MAX_SCHEDULE_TIMEOUT:
1121 * These two special cases are useful to be comfortable
1122 * in the caller. Nothing more. We could take
1123 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1124 * but I' d like to return a valid offset (>=0) to allow
1125 * the caller to do everything it want with the retval.
1131 * Another bit of PARANOID. Note that the retval will be
1132 * 0 since no piece of kernel is supposed to do a check
1133 * for a negative retval of schedule_timeout() (since it
1134 * should never happens anyway). You just have the printk()
1135 * that will tell you if something is gone wrong and where.
1139 printk(KERN_ERR "schedule_timeout: wrong timeout "
1140 "value %lx from %p\n", timeout,
1141 __builtin_return_address(0));
1142 current->state = TASK_RUNNING;
1147 expire = timeout + jiffies;
1150 timer.expires = expire;
1151 timer.data = (unsigned long) current;
1152 timer.function = process_timeout;
1156 del_singleshot_timer_sync(&timer);
1158 timeout = expire - jiffies;
1161 return timeout < 0 ? 0 : timeout;
1163 EXPORT_SYMBOL(schedule_timeout);
1166 * We can use __set_current_state() here because schedule_timeout() calls
1167 * schedule() unconditionally.
1169 signed long __sched schedule_timeout_interruptible(signed long timeout)
1171 __set_current_state(TASK_INTERRUPTIBLE);
1172 return schedule_timeout(timeout);
1174 EXPORT_SYMBOL(schedule_timeout_interruptible);
1176 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1178 __set_current_state(TASK_UNINTERRUPTIBLE);
1179 return schedule_timeout(timeout);
1181 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1183 /* Thread ID - the internal kernel "pid" */
1184 asmlinkage long sys_gettid(void)
1186 return current->pid;
1189 static long __sched nanosleep_restart(struct restart_block *restart)
1191 unsigned long expire = restart->arg0, now = jiffies;
1192 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
1195 /* Did it expire while we handled signals? */
1196 if (!time_after(expire, now))
1199 expire = schedule_timeout_interruptible(expire - now);
1204 jiffies_to_timespec(expire, &t);
1206 ret = -ERESTART_RESTARTBLOCK;
1207 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1209 /* The 'restart' block is already filled in */
1214 asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1217 unsigned long expire;
1220 if (copy_from_user(&t, rqtp, sizeof(t)))
1223 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
1226 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
1227 expire = schedule_timeout_interruptible(expire);
1231 struct restart_block *restart;
1232 jiffies_to_timespec(expire, &t);
1233 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1236 restart = ¤t_thread_info()->restart_block;
1237 restart->fn = nanosleep_restart;
1238 restart->arg0 = jiffies + expire;
1239 restart->arg1 = (unsigned long) rmtp;
1240 ret = -ERESTART_RESTARTBLOCK;
1246 * sys_sysinfo - fill in sysinfo struct
1248 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1251 unsigned long mem_total, sav_total;
1252 unsigned int mem_unit, bitcount;
1255 memset((char *)&val, 0, sizeof(struct sysinfo));
1259 seq = read_seqbegin(&xtime_lock);
1262 * This is annoying. The below is the same thing
1263 * posix_get_clock_monotonic() does, but it wants to
1264 * take the lock which we want to cover the loads stuff
1268 getnstimeofday(&tp);
1269 tp.tv_sec += wall_to_monotonic.tv_sec;
1270 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1271 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1272 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1275 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1277 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1278 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1279 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1281 val.procs = nr_threads;
1282 } while (read_seqretry(&xtime_lock, seq));
1288 * If the sum of all the available memory (i.e. ram + swap)
1289 * is less than can be stored in a 32 bit unsigned long then
1290 * we can be binary compatible with 2.2.x kernels. If not,
1291 * well, in that case 2.2.x was broken anyways...
1293 * -Erik Andersen <andersee@debian.org>
1296 mem_total = val.totalram + val.totalswap;
1297 if (mem_total < val.totalram || mem_total < val.totalswap)
1300 mem_unit = val.mem_unit;
1301 while (mem_unit > 1) {
1304 sav_total = mem_total;
1306 if (mem_total < sav_total)
1311 * If mem_total did not overflow, multiply all memory values by
1312 * val.mem_unit and set it to 1. This leaves things compatible
1313 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1318 val.totalram <<= bitcount;
1319 val.freeram <<= bitcount;
1320 val.sharedram <<= bitcount;
1321 val.bufferram <<= bitcount;
1322 val.totalswap <<= bitcount;
1323 val.freeswap <<= bitcount;
1324 val.totalhigh <<= bitcount;
1325 val.freehigh <<= bitcount;
1328 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1334 static void __devinit init_timers_cpu(int cpu)
1339 base = &per_cpu(tvec_bases, cpu);
1340 spin_lock_init(&base->t_base.lock);
1341 for (j = 0; j < TVN_SIZE; j++) {
1342 INIT_LIST_HEAD(base->tv5.vec + j);
1343 INIT_LIST_HEAD(base->tv4.vec + j);
1344 INIT_LIST_HEAD(base->tv3.vec + j);
1345 INIT_LIST_HEAD(base->tv2.vec + j);
1347 for (j = 0; j < TVR_SIZE; j++)
1348 INIT_LIST_HEAD(base->tv1.vec + j);
1350 base->timer_jiffies = jiffies;
1353 #ifdef CONFIG_HOTPLUG_CPU
1354 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1356 struct timer_list *timer;
1358 while (!list_empty(head)) {
1359 timer = list_entry(head->next, struct timer_list, entry);
1360 detach_timer(timer, 0);
1361 timer->base = &new_base->t_base;
1362 internal_add_timer(new_base, timer);
1366 static void __devinit migrate_timers(int cpu)
1368 tvec_base_t *old_base;
1369 tvec_base_t *new_base;
1372 BUG_ON(cpu_online(cpu));
1373 old_base = &per_cpu(tvec_bases, cpu);
1374 new_base = &get_cpu_var(tvec_bases);
1376 local_irq_disable();
1377 spin_lock(&new_base->t_base.lock);
1378 spin_lock(&old_base->t_base.lock);
1380 if (old_base->t_base.running_timer)
1382 for (i = 0; i < TVR_SIZE; i++)
1383 migrate_timer_list(new_base, old_base->tv1.vec + i);
1384 for (i = 0; i < TVN_SIZE; i++) {
1385 migrate_timer_list(new_base, old_base->tv2.vec + i);
1386 migrate_timer_list(new_base, old_base->tv3.vec + i);
1387 migrate_timer_list(new_base, old_base->tv4.vec + i);
1388 migrate_timer_list(new_base, old_base->tv5.vec + i);
1391 spin_unlock(&old_base->t_base.lock);
1392 spin_unlock(&new_base->t_base.lock);
1394 put_cpu_var(tvec_bases);
1396 #endif /* CONFIG_HOTPLUG_CPU */
1398 static int __devinit timer_cpu_notify(struct notifier_block *self,
1399 unsigned long action, void *hcpu)
1401 long cpu = (long)hcpu;
1403 case CPU_UP_PREPARE:
1404 init_timers_cpu(cpu);
1406 #ifdef CONFIG_HOTPLUG_CPU
1408 migrate_timers(cpu);
1417 static struct notifier_block __devinitdata timers_nb = {
1418 .notifier_call = timer_cpu_notify,
1422 void __init init_timers(void)
1424 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1425 (void *)(long)smp_processor_id());
1426 register_cpu_notifier(&timers_nb);
1427 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1430 #ifdef CONFIG_TIME_INTERPOLATION
1432 struct time_interpolator *time_interpolator;
1433 static struct time_interpolator *time_interpolator_list;
1434 static DEFINE_SPINLOCK(time_interpolator_lock);
1436 static inline u64 time_interpolator_get_cycles(unsigned int src)
1438 unsigned long (*x)(void);
1442 case TIME_SOURCE_FUNCTION:
1443 x = time_interpolator->addr;
1446 case TIME_SOURCE_MMIO64 :
1447 return readq((void __iomem *) time_interpolator->addr);
1449 case TIME_SOURCE_MMIO32 :
1450 return readl((void __iomem *) time_interpolator->addr);
1452 default: return get_cycles();
1456 static inline u64 time_interpolator_get_counter(int writelock)
1458 unsigned int src = time_interpolator->source;
1460 if (time_interpolator->jitter)
1466 lcycle = time_interpolator->last_cycle;
1467 now = time_interpolator_get_cycles(src);
1468 if (lcycle && time_after(lcycle, now))
1471 /* When holding the xtime write lock, there's no need
1472 * to add the overhead of the cmpxchg. Readers are
1473 * force to retry until the write lock is released.
1476 time_interpolator->last_cycle = now;
1479 /* Keep track of the last timer value returned. The use of cmpxchg here
1480 * will cause contention in an SMP environment.
1482 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1486 return time_interpolator_get_cycles(src);
1489 void time_interpolator_reset(void)
1491 time_interpolator->offset = 0;
1492 time_interpolator->last_counter = time_interpolator_get_counter(1);
1495 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1497 unsigned long time_interpolator_get_offset(void)
1499 /* If we do not have a time interpolator set up then just return zero */
1500 if (!time_interpolator)
1503 return time_interpolator->offset +
1504 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1507 #define INTERPOLATOR_ADJUST 65536
1508 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1510 static void time_interpolator_update(long delta_nsec)
1513 unsigned long offset;
1515 /* If there is no time interpolator set up then do nothing */
1516 if (!time_interpolator)
1519 /* The interpolator compensates for late ticks by accumulating
1520 * the late time in time_interpolator->offset. A tick earlier than
1521 * expected will lead to a reset of the offset and a corresponding
1522 * jump of the clock forward. Again this only works if the
1523 * interpolator clock is running slightly slower than the regular clock
1524 * and the tuning logic insures that.
1527 counter = time_interpolator_get_counter(1);
1528 offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator);
1530 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1531 time_interpolator->offset = offset - delta_nsec;
1533 time_interpolator->skips++;
1534 time_interpolator->ns_skipped += delta_nsec - offset;
1535 time_interpolator->offset = 0;
1537 time_interpolator->last_counter = counter;
1539 /* Tuning logic for time interpolator invoked every minute or so.
1540 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1541 * Increase interpolator clock speed if we skip too much time.
1543 if (jiffies % INTERPOLATOR_ADJUST == 0)
1545 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1546 time_interpolator->nsec_per_cyc--;
1547 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1548 time_interpolator->nsec_per_cyc++;
1549 time_interpolator->skips = 0;
1550 time_interpolator->ns_skipped = 0;
1555 is_better_time_interpolator(struct time_interpolator *new)
1557 if (!time_interpolator)
1559 return new->frequency > 2*time_interpolator->frequency ||
1560 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1564 register_time_interpolator(struct time_interpolator *ti)
1566 unsigned long flags;
1569 if (ti->frequency == 0 || ti->mask == 0)
1572 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1573 spin_lock(&time_interpolator_lock);
1574 write_seqlock_irqsave(&xtime_lock, flags);
1575 if (is_better_time_interpolator(ti)) {
1576 time_interpolator = ti;
1577 time_interpolator_reset();
1579 write_sequnlock_irqrestore(&xtime_lock, flags);
1581 ti->next = time_interpolator_list;
1582 time_interpolator_list = ti;
1583 spin_unlock(&time_interpolator_lock);
1587 unregister_time_interpolator(struct time_interpolator *ti)
1589 struct time_interpolator *curr, **prev;
1590 unsigned long flags;
1592 spin_lock(&time_interpolator_lock);
1593 prev = &time_interpolator_list;
1594 for (curr = *prev; curr; curr = curr->next) {
1602 write_seqlock_irqsave(&xtime_lock, flags);
1603 if (ti == time_interpolator) {
1604 /* we lost the best time-interpolator: */
1605 time_interpolator = NULL;
1606 /* find the next-best interpolator */
1607 for (curr = time_interpolator_list; curr; curr = curr->next)
1608 if (is_better_time_interpolator(curr))
1609 time_interpolator = curr;
1610 time_interpolator_reset();
1612 write_sequnlock_irqrestore(&xtime_lock, flags);
1613 spin_unlock(&time_interpolator_lock);
1615 #endif /* CONFIG_TIME_INTERPOLATION */
1618 * msleep - sleep safely even with waitqueue interruptions
1619 * @msecs: Time in milliseconds to sleep for
1621 void msleep(unsigned int msecs)
1623 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1626 timeout = schedule_timeout_uninterruptible(timeout);
1629 EXPORT_SYMBOL(msleep);
1632 * msleep_interruptible - sleep waiting for signals
1633 * @msecs: Time in milliseconds to sleep for
1635 unsigned long msleep_interruptible(unsigned int msecs)
1637 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1639 while (timeout && !signal_pending(current))
1640 timeout = schedule_timeout_interruptible(timeout);
1641 return jiffies_to_msecs(timeout);
1644 EXPORT_SYMBOL(msleep_interruptible);