]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/trace/ring_buffer.c
Merge tag 'pm-fixes-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[karo-tx-linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 struct buffer_data_page {
284         u64              time_stamp;    /* page time stamp */
285         local_t          commit;        /* write committed index */
286         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
287 };
288
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298         struct list_head list;          /* list of buffer pages */
299         local_t          write;         /* index for next write */
300         unsigned         read;          /* index for next read */
301         local_t          entries;       /* entries on this page */
302         unsigned long    real_end;      /* real end of data */
303         struct buffer_data_page *page;  /* Actual data page */
304 };
305
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK           0xfffff
319 #define RB_WRITE_INTCNT         (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323         local_set(&bpage->commit, 0);
324 }
325
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334         return local_read(&((struct buffer_data_page *)page)->commit)
335                 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344         free_page((unsigned long)bpage->page);
345         kfree(bpage);
346 }
347
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353         if (delta & TS_DELTA_TEST)
354                 return 1;
355         return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365         struct buffer_data_page field;
366
367         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368                          "offset:0;\tsize:%u;\tsigned:%u;\n",
369                          (unsigned int)sizeof(field.time_stamp),
370                          (unsigned int)is_signed_type(u64));
371
372         trace_seq_printf(s, "\tfield: local_t commit;\t"
373                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
374                          (unsigned int)offsetof(typeof(field), commit),
375                          (unsigned int)sizeof(field.commit),
376                          (unsigned int)is_signed_type(long));
377
378         trace_seq_printf(s, "\tfield: int overwrite;\t"
379                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
380                          (unsigned int)offsetof(typeof(field), commit),
381                          1,
382                          (unsigned int)is_signed_type(long));
383
384         trace_seq_printf(s, "\tfield: char data;\t"
385                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
386                          (unsigned int)offsetof(typeof(field), data),
387                          (unsigned int)BUF_PAGE_SIZE,
388                          (unsigned int)is_signed_type(char));
389
390         return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394         struct irq_work                 work;
395         wait_queue_head_t               waiters;
396         wait_queue_head_t               full_waiters;
397         bool                            waiters_pending;
398         bool                            full_waiters_pending;
399         bool                            wakeup_full;
400 };
401
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406         u64                     ts;
407         u64                     delta;
408         unsigned long           length;
409         struct buffer_page      *tail_page;
410         int                     add_timestamp;
411 };
412
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423         RB_CTX_NMI,
424         RB_CTX_IRQ,
425         RB_CTX_SOFTIRQ,
426         RB_CTX_NORMAL,
427         RB_CTX_MAX
428 };
429
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434         int                             cpu;
435         atomic_t                        record_disabled;
436         struct ring_buffer              *buffer;
437         raw_spinlock_t                  reader_lock;    /* serialize readers */
438         arch_spinlock_t                 lock;
439         struct lock_class_key           lock_key;
440         unsigned long                   nr_pages;
441         unsigned int                    current_context;
442         struct list_head                *pages;
443         struct buffer_page              *head_page;     /* read from head */
444         struct buffer_page              *tail_page;     /* write to tail */
445         struct buffer_page              *commit_page;   /* committed pages */
446         struct buffer_page              *reader_page;
447         unsigned long                   lost_events;
448         unsigned long                   last_overrun;
449         local_t                         entries_bytes;
450         local_t                         entries;
451         local_t                         overrun;
452         local_t                         commit_overrun;
453         local_t                         dropped_events;
454         local_t                         committing;
455         local_t                         commits;
456         unsigned long                   read;
457         unsigned long                   read_bytes;
458         u64                             write_stamp;
459         u64                             read_stamp;
460         /* ring buffer pages to update, > 0 to add, < 0 to remove */
461         long                            nr_pages_to_update;
462         struct list_head                new_pages; /* new pages to add */
463         struct work_struct              update_pages_work;
464         struct completion               update_done;
465
466         struct rb_irq_work              irq_work;
467 };
468
469 struct ring_buffer {
470         unsigned                        flags;
471         int                             cpus;
472         atomic_t                        record_disabled;
473         atomic_t                        resize_disabled;
474         cpumask_var_t                   cpumask;
475
476         struct lock_class_key           *reader_lock_key;
477
478         struct mutex                    mutex;
479
480         struct ring_buffer_per_cpu      **buffers;
481
482         struct hlist_node               node;
483         u64                             (*clock)(void);
484
485         struct rb_irq_work              irq_work;
486 };
487
488 struct ring_buffer_iter {
489         struct ring_buffer_per_cpu      *cpu_buffer;
490         unsigned long                   head;
491         struct buffer_page              *head_page;
492         struct buffer_page              *cache_reader_page;
493         unsigned long                   cache_read;
494         u64                             read_stamp;
495 };
496
497 /*
498  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
499  *
500  * Schedules a delayed work to wake up any task that is blocked on the
501  * ring buffer waiters queue.
502  */
503 static void rb_wake_up_waiters(struct irq_work *work)
504 {
505         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
506
507         wake_up_all(&rbwork->waiters);
508         if (rbwork->wakeup_full) {
509                 rbwork->wakeup_full = false;
510                 wake_up_all(&rbwork->full_waiters);
511         }
512 }
513
514 /**
515  * ring_buffer_wait - wait for input to the ring buffer
516  * @buffer: buffer to wait on
517  * @cpu: the cpu buffer to wait on
518  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
519  *
520  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
521  * as data is added to any of the @buffer's cpu buffers. Otherwise
522  * it will wait for data to be added to a specific cpu buffer.
523  */
524 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
525 {
526         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
527         DEFINE_WAIT(wait);
528         struct rb_irq_work *work;
529         int ret = 0;
530
531         /*
532          * Depending on what the caller is waiting for, either any
533          * data in any cpu buffer, or a specific buffer, put the
534          * caller on the appropriate wait queue.
535          */
536         if (cpu == RING_BUFFER_ALL_CPUS) {
537                 work = &buffer->irq_work;
538                 /* Full only makes sense on per cpu reads */
539                 full = false;
540         } else {
541                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
542                         return -ENODEV;
543                 cpu_buffer = buffer->buffers[cpu];
544                 work = &cpu_buffer->irq_work;
545         }
546
547
548         while (true) {
549                 if (full)
550                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
551                 else
552                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
553
554                 /*
555                  * The events can happen in critical sections where
556                  * checking a work queue can cause deadlocks.
557                  * After adding a task to the queue, this flag is set
558                  * only to notify events to try to wake up the queue
559                  * using irq_work.
560                  *
561                  * We don't clear it even if the buffer is no longer
562                  * empty. The flag only causes the next event to run
563                  * irq_work to do the work queue wake up. The worse
564                  * that can happen if we race with !trace_empty() is that
565                  * an event will cause an irq_work to try to wake up
566                  * an empty queue.
567                  *
568                  * There's no reason to protect this flag either, as
569                  * the work queue and irq_work logic will do the necessary
570                  * synchronization for the wake ups. The only thing
571                  * that is necessary is that the wake up happens after
572                  * a task has been queued. It's OK for spurious wake ups.
573                  */
574                 if (full)
575                         work->full_waiters_pending = true;
576                 else
577                         work->waiters_pending = true;
578
579                 if (signal_pending(current)) {
580                         ret = -EINTR;
581                         break;
582                 }
583
584                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
585                         break;
586
587                 if (cpu != RING_BUFFER_ALL_CPUS &&
588                     !ring_buffer_empty_cpu(buffer, cpu)) {
589                         unsigned long flags;
590                         bool pagebusy;
591
592                         if (!full)
593                                 break;
594
595                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
596                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
597                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
598
599                         if (!pagebusy)
600                                 break;
601                 }
602
603                 schedule();
604         }
605
606         if (full)
607                 finish_wait(&work->full_waiters, &wait);
608         else
609                 finish_wait(&work->waiters, &wait);
610
611         return ret;
612 }
613
614 /**
615  * ring_buffer_poll_wait - poll on buffer input
616  * @buffer: buffer to wait on
617  * @cpu: the cpu buffer to wait on
618  * @filp: the file descriptor
619  * @poll_table: The poll descriptor
620  *
621  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
622  * as data is added to any of the @buffer's cpu buffers. Otherwise
623  * it will wait for data to be added to a specific cpu buffer.
624  *
625  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
626  * zero otherwise.
627  */
628 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
629                           struct file *filp, poll_table *poll_table)
630 {
631         struct ring_buffer_per_cpu *cpu_buffer;
632         struct rb_irq_work *work;
633
634         if (cpu == RING_BUFFER_ALL_CPUS)
635                 work = &buffer->irq_work;
636         else {
637                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
638                         return -EINVAL;
639
640                 cpu_buffer = buffer->buffers[cpu];
641                 work = &cpu_buffer->irq_work;
642         }
643
644         poll_wait(filp, &work->waiters, poll_table);
645         work->waiters_pending = true;
646         /*
647          * There's a tight race between setting the waiters_pending and
648          * checking if the ring buffer is empty.  Once the waiters_pending bit
649          * is set, the next event will wake the task up, but we can get stuck
650          * if there's only a single event in.
651          *
652          * FIXME: Ideally, we need a memory barrier on the writer side as well,
653          * but adding a memory barrier to all events will cause too much of a
654          * performance hit in the fast path.  We only need a memory barrier when
655          * the buffer goes from empty to having content.  But as this race is
656          * extremely small, and it's not a problem if another event comes in, we
657          * will fix it later.
658          */
659         smp_mb();
660
661         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
662             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
663                 return POLLIN | POLLRDNORM;
664         return 0;
665 }
666
667 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
668 #define RB_WARN_ON(b, cond)                                             \
669         ({                                                              \
670                 int _____ret = unlikely(cond);                          \
671                 if (_____ret) {                                         \
672                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
673                                 struct ring_buffer_per_cpu *__b =       \
674                                         (void *)b;                      \
675                                 atomic_inc(&__b->buffer->record_disabled); \
676                         } else                                          \
677                                 atomic_inc(&b->record_disabled);        \
678                         WARN_ON(1);                                     \
679                 }                                                       \
680                 _____ret;                                               \
681         })
682
683 /* Up this if you want to test the TIME_EXTENTS and normalization */
684 #define DEBUG_SHIFT 0
685
686 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
687 {
688         /* shift to debug/test normalization and TIME_EXTENTS */
689         return buffer->clock() << DEBUG_SHIFT;
690 }
691
692 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
693 {
694         u64 time;
695
696         preempt_disable_notrace();
697         time = rb_time_stamp(buffer);
698         preempt_enable_no_resched_notrace();
699
700         return time;
701 }
702 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
703
704 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
705                                       int cpu, u64 *ts)
706 {
707         /* Just stupid testing the normalize function and deltas */
708         *ts >>= DEBUG_SHIFT;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
711
712 /*
713  * Making the ring buffer lockless makes things tricky.
714  * Although writes only happen on the CPU that they are on,
715  * and they only need to worry about interrupts. Reads can
716  * happen on any CPU.
717  *
718  * The reader page is always off the ring buffer, but when the
719  * reader finishes with a page, it needs to swap its page with
720  * a new one from the buffer. The reader needs to take from
721  * the head (writes go to the tail). But if a writer is in overwrite
722  * mode and wraps, it must push the head page forward.
723  *
724  * Here lies the problem.
725  *
726  * The reader must be careful to replace only the head page, and
727  * not another one. As described at the top of the file in the
728  * ASCII art, the reader sets its old page to point to the next
729  * page after head. It then sets the page after head to point to
730  * the old reader page. But if the writer moves the head page
731  * during this operation, the reader could end up with the tail.
732  *
733  * We use cmpxchg to help prevent this race. We also do something
734  * special with the page before head. We set the LSB to 1.
735  *
736  * When the writer must push the page forward, it will clear the
737  * bit that points to the head page, move the head, and then set
738  * the bit that points to the new head page.
739  *
740  * We also don't want an interrupt coming in and moving the head
741  * page on another writer. Thus we use the second LSB to catch
742  * that too. Thus:
743  *
744  * head->list->prev->next        bit 1          bit 0
745  *                              -------        -------
746  * Normal page                     0              0
747  * Points to head page             0              1
748  * New head page                   1              0
749  *
750  * Note we can not trust the prev pointer of the head page, because:
751  *
752  * +----+       +-----+        +-----+
753  * |    |------>|  T  |---X--->|  N  |
754  * |    |<------|     |        |     |
755  * +----+       +-----+        +-----+
756  *   ^                           ^ |
757  *   |          +-----+          | |
758  *   +----------|  R  |----------+ |
759  *              |     |<-----------+
760  *              +-----+
761  *
762  * Key:  ---X-->  HEAD flag set in pointer
763  *         T      Tail page
764  *         R      Reader page
765  *         N      Next page
766  *
767  * (see __rb_reserve_next() to see where this happens)
768  *
769  *  What the above shows is that the reader just swapped out
770  *  the reader page with a page in the buffer, but before it
771  *  could make the new header point back to the new page added
772  *  it was preempted by a writer. The writer moved forward onto
773  *  the new page added by the reader and is about to move forward
774  *  again.
775  *
776  *  You can see, it is legitimate for the previous pointer of
777  *  the head (or any page) not to point back to itself. But only
778  *  temporarially.
779  */
780
781 #define RB_PAGE_NORMAL          0UL
782 #define RB_PAGE_HEAD            1UL
783 #define RB_PAGE_UPDATE          2UL
784
785
786 #define RB_FLAG_MASK            3UL
787
788 /* PAGE_MOVED is not part of the mask */
789 #define RB_PAGE_MOVED           4UL
790
791 /*
792  * rb_list_head - remove any bit
793  */
794 static struct list_head *rb_list_head(struct list_head *list)
795 {
796         unsigned long val = (unsigned long)list;
797
798         return (struct list_head *)(val & ~RB_FLAG_MASK);
799 }
800
801 /*
802  * rb_is_head_page - test if the given page is the head page
803  *
804  * Because the reader may move the head_page pointer, we can
805  * not trust what the head page is (it may be pointing to
806  * the reader page). But if the next page is a header page,
807  * its flags will be non zero.
808  */
809 static inline int
810 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
811                 struct buffer_page *page, struct list_head *list)
812 {
813         unsigned long val;
814
815         val = (unsigned long)list->next;
816
817         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
818                 return RB_PAGE_MOVED;
819
820         return val & RB_FLAG_MASK;
821 }
822
823 /*
824  * rb_is_reader_page
825  *
826  * The unique thing about the reader page, is that, if the
827  * writer is ever on it, the previous pointer never points
828  * back to the reader page.
829  */
830 static bool rb_is_reader_page(struct buffer_page *page)
831 {
832         struct list_head *list = page->list.prev;
833
834         return rb_list_head(list->next) != &page->list;
835 }
836
837 /*
838  * rb_set_list_to_head - set a list_head to be pointing to head.
839  */
840 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
841                                 struct list_head *list)
842 {
843         unsigned long *ptr;
844
845         ptr = (unsigned long *)&list->next;
846         *ptr |= RB_PAGE_HEAD;
847         *ptr &= ~RB_PAGE_UPDATE;
848 }
849
850 /*
851  * rb_head_page_activate - sets up head page
852  */
853 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855         struct buffer_page *head;
856
857         head = cpu_buffer->head_page;
858         if (!head)
859                 return;
860
861         /*
862          * Set the previous list pointer to have the HEAD flag.
863          */
864         rb_set_list_to_head(cpu_buffer, head->list.prev);
865 }
866
867 static void rb_list_head_clear(struct list_head *list)
868 {
869         unsigned long *ptr = (unsigned long *)&list->next;
870
871         *ptr &= ~RB_FLAG_MASK;
872 }
873
874 /*
875  * rb_head_page_dactivate - clears head page ptr (for free list)
876  */
877 static void
878 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880         struct list_head *hd;
881
882         /* Go through the whole list and clear any pointers found. */
883         rb_list_head_clear(cpu_buffer->pages);
884
885         list_for_each(hd, cpu_buffer->pages)
886                 rb_list_head_clear(hd);
887 }
888
889 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
890                             struct buffer_page *head,
891                             struct buffer_page *prev,
892                             int old_flag, int new_flag)
893 {
894         struct list_head *list;
895         unsigned long val = (unsigned long)&head->list;
896         unsigned long ret;
897
898         list = &prev->list;
899
900         val &= ~RB_FLAG_MASK;
901
902         ret = cmpxchg((unsigned long *)&list->next,
903                       val | old_flag, val | new_flag);
904
905         /* check if the reader took the page */
906         if ((ret & ~RB_FLAG_MASK) != val)
907                 return RB_PAGE_MOVED;
908
909         return ret & RB_FLAG_MASK;
910 }
911
912 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
913                                    struct buffer_page *head,
914                                    struct buffer_page *prev,
915                                    int old_flag)
916 {
917         return rb_head_page_set(cpu_buffer, head, prev,
918                                 old_flag, RB_PAGE_UPDATE);
919 }
920
921 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
922                                  struct buffer_page *head,
923                                  struct buffer_page *prev,
924                                  int old_flag)
925 {
926         return rb_head_page_set(cpu_buffer, head, prev,
927                                 old_flag, RB_PAGE_HEAD);
928 }
929
930 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
931                                    struct buffer_page *head,
932                                    struct buffer_page *prev,
933                                    int old_flag)
934 {
935         return rb_head_page_set(cpu_buffer, head, prev,
936                                 old_flag, RB_PAGE_NORMAL);
937 }
938
939 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
940                                struct buffer_page **bpage)
941 {
942         struct list_head *p = rb_list_head((*bpage)->list.next);
943
944         *bpage = list_entry(p, struct buffer_page, list);
945 }
946
947 static struct buffer_page *
948 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
949 {
950         struct buffer_page *head;
951         struct buffer_page *page;
952         struct list_head *list;
953         int i;
954
955         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
956                 return NULL;
957
958         /* sanity check */
959         list = cpu_buffer->pages;
960         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
961                 return NULL;
962
963         page = head = cpu_buffer->head_page;
964         /*
965          * It is possible that the writer moves the header behind
966          * where we started, and we miss in one loop.
967          * A second loop should grab the header, but we'll do
968          * three loops just because I'm paranoid.
969          */
970         for (i = 0; i < 3; i++) {
971                 do {
972                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
973                                 cpu_buffer->head_page = page;
974                                 return page;
975                         }
976                         rb_inc_page(cpu_buffer, &page);
977                 } while (page != head);
978         }
979
980         RB_WARN_ON(cpu_buffer, 1);
981
982         return NULL;
983 }
984
985 static int rb_head_page_replace(struct buffer_page *old,
986                                 struct buffer_page *new)
987 {
988         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
989         unsigned long val;
990         unsigned long ret;
991
992         val = *ptr & ~RB_FLAG_MASK;
993         val |= RB_PAGE_HEAD;
994
995         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
996
997         return ret == val;
998 }
999
1000 /*
1001  * rb_tail_page_update - move the tail page forward
1002  */
1003 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1004                                struct buffer_page *tail_page,
1005                                struct buffer_page *next_page)
1006 {
1007         unsigned long old_entries;
1008         unsigned long old_write;
1009
1010         /*
1011          * The tail page now needs to be moved forward.
1012          *
1013          * We need to reset the tail page, but without messing
1014          * with possible erasing of data brought in by interrupts
1015          * that have moved the tail page and are currently on it.
1016          *
1017          * We add a counter to the write field to denote this.
1018          */
1019         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1020         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1021
1022         /*
1023          * Just make sure we have seen our old_write and synchronize
1024          * with any interrupts that come in.
1025          */
1026         barrier();
1027
1028         /*
1029          * If the tail page is still the same as what we think
1030          * it is, then it is up to us to update the tail
1031          * pointer.
1032          */
1033         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1034                 /* Zero the write counter */
1035                 unsigned long val = old_write & ~RB_WRITE_MASK;
1036                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1037
1038                 /*
1039                  * This will only succeed if an interrupt did
1040                  * not come in and change it. In which case, we
1041                  * do not want to modify it.
1042                  *
1043                  * We add (void) to let the compiler know that we do not care
1044                  * about the return value of these functions. We use the
1045                  * cmpxchg to only update if an interrupt did not already
1046                  * do it for us. If the cmpxchg fails, we don't care.
1047                  */
1048                 (void)local_cmpxchg(&next_page->write, old_write, val);
1049                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1050
1051                 /*
1052                  * No need to worry about races with clearing out the commit.
1053                  * it only can increment when a commit takes place. But that
1054                  * only happens in the outer most nested commit.
1055                  */
1056                 local_set(&next_page->page->commit, 0);
1057
1058                 /* Again, either we update tail_page or an interrupt does */
1059                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1060         }
1061 }
1062
1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1064                           struct buffer_page *bpage)
1065 {
1066         unsigned long val = (unsigned long)bpage;
1067
1068         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1069                 return 1;
1070
1071         return 0;
1072 }
1073
1074 /**
1075  * rb_check_list - make sure a pointer to a list has the last bits zero
1076  */
1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1078                          struct list_head *list)
1079 {
1080         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1081                 return 1;
1082         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1083                 return 1;
1084         return 0;
1085 }
1086
1087 /**
1088  * rb_check_pages - integrity check of buffer pages
1089  * @cpu_buffer: CPU buffer with pages to test
1090  *
1091  * As a safety measure we check to make sure the data pages have not
1092  * been corrupted.
1093  */
1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1095 {
1096         struct list_head *head = cpu_buffer->pages;
1097         struct buffer_page *bpage, *tmp;
1098
1099         /* Reset the head page if it exists */
1100         if (cpu_buffer->head_page)
1101                 rb_set_head_page(cpu_buffer);
1102
1103         rb_head_page_deactivate(cpu_buffer);
1104
1105         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1106                 return -1;
1107         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1108                 return -1;
1109
1110         if (rb_check_list(cpu_buffer, head))
1111                 return -1;
1112
1113         list_for_each_entry_safe(bpage, tmp, head, list) {
1114                 if (RB_WARN_ON(cpu_buffer,
1115                                bpage->list.next->prev != &bpage->list))
1116                         return -1;
1117                 if (RB_WARN_ON(cpu_buffer,
1118                                bpage->list.prev->next != &bpage->list))
1119                         return -1;
1120                 if (rb_check_list(cpu_buffer, &bpage->list))
1121                         return -1;
1122         }
1123
1124         rb_head_page_activate(cpu_buffer);
1125
1126         return 0;
1127 }
1128
1129 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1130 {
1131         struct buffer_page *bpage, *tmp;
1132         long i;
1133
1134         for (i = 0; i < nr_pages; i++) {
1135                 struct page *page;
1136                 /*
1137                  * __GFP_NORETRY flag makes sure that the allocation fails
1138                  * gracefully without invoking oom-killer and the system is
1139                  * not destabilized.
1140                  */
1141                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1142                                     GFP_KERNEL | __GFP_NORETRY,
1143                                     cpu_to_node(cpu));
1144                 if (!bpage)
1145                         goto free_pages;
1146
1147                 list_add(&bpage->list, pages);
1148
1149                 page = alloc_pages_node(cpu_to_node(cpu),
1150                                         GFP_KERNEL | __GFP_NORETRY, 0);
1151                 if (!page)
1152                         goto free_pages;
1153                 bpage->page = page_address(page);
1154                 rb_init_page(bpage->page);
1155         }
1156
1157         return 0;
1158
1159 free_pages:
1160         list_for_each_entry_safe(bpage, tmp, pages, list) {
1161                 list_del_init(&bpage->list);
1162                 free_buffer_page(bpage);
1163         }
1164
1165         return -ENOMEM;
1166 }
1167
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1169                              unsigned long nr_pages)
1170 {
1171         LIST_HEAD(pages);
1172
1173         WARN_ON(!nr_pages);
1174
1175         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1176                 return -ENOMEM;
1177
1178         /*
1179          * The ring buffer page list is a circular list that does not
1180          * start and end with a list head. All page list items point to
1181          * other pages.
1182          */
1183         cpu_buffer->pages = pages.next;
1184         list_del(&pages);
1185
1186         cpu_buffer->nr_pages = nr_pages;
1187
1188         rb_check_pages(cpu_buffer);
1189
1190         return 0;
1191 }
1192
1193 static struct ring_buffer_per_cpu *
1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1195 {
1196         struct ring_buffer_per_cpu *cpu_buffer;
1197         struct buffer_page *bpage;
1198         struct page *page;
1199         int ret;
1200
1201         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1202                                   GFP_KERNEL, cpu_to_node(cpu));
1203         if (!cpu_buffer)
1204                 return NULL;
1205
1206         cpu_buffer->cpu = cpu;
1207         cpu_buffer->buffer = buffer;
1208         raw_spin_lock_init(&cpu_buffer->reader_lock);
1209         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1210         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1211         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1212         init_completion(&cpu_buffer->update_done);
1213         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1214         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1215         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1216
1217         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1218                             GFP_KERNEL, cpu_to_node(cpu));
1219         if (!bpage)
1220                 goto fail_free_buffer;
1221
1222         rb_check_bpage(cpu_buffer, bpage);
1223
1224         cpu_buffer->reader_page = bpage;
1225         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1226         if (!page)
1227                 goto fail_free_reader;
1228         bpage->page = page_address(page);
1229         rb_init_page(bpage->page);
1230
1231         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1232         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1233
1234         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1235         if (ret < 0)
1236                 goto fail_free_reader;
1237
1238         cpu_buffer->head_page
1239                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1240         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1241
1242         rb_head_page_activate(cpu_buffer);
1243
1244         return cpu_buffer;
1245
1246  fail_free_reader:
1247         free_buffer_page(cpu_buffer->reader_page);
1248
1249  fail_free_buffer:
1250         kfree(cpu_buffer);
1251         return NULL;
1252 }
1253
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1255 {
1256         struct list_head *head = cpu_buffer->pages;
1257         struct buffer_page *bpage, *tmp;
1258
1259         free_buffer_page(cpu_buffer->reader_page);
1260
1261         rb_head_page_deactivate(cpu_buffer);
1262
1263         if (head) {
1264                 list_for_each_entry_safe(bpage, tmp, head, list) {
1265                         list_del_init(&bpage->list);
1266                         free_buffer_page(bpage);
1267                 }
1268                 bpage = list_entry(head, struct buffer_page, list);
1269                 free_buffer_page(bpage);
1270         }
1271
1272         kfree(cpu_buffer);
1273 }
1274
1275 /**
1276  * __ring_buffer_alloc - allocate a new ring_buffer
1277  * @size: the size in bytes per cpu that is needed.
1278  * @flags: attributes to set for the ring buffer.
1279  *
1280  * Currently the only flag that is available is the RB_FL_OVERWRITE
1281  * flag. This flag means that the buffer will overwrite old data
1282  * when the buffer wraps. If this flag is not set, the buffer will
1283  * drop data when the tail hits the head.
1284  */
1285 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1286                                         struct lock_class_key *key)
1287 {
1288         struct ring_buffer *buffer;
1289         long nr_pages;
1290         int bsize;
1291         int cpu;
1292         int ret;
1293
1294         /* keep it in its own cache line */
1295         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1296                          GFP_KERNEL);
1297         if (!buffer)
1298                 return NULL;
1299
1300         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1301                 goto fail_free_buffer;
1302
1303         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304         buffer->flags = flags;
1305         buffer->clock = trace_clock_local;
1306         buffer->reader_lock_key = key;
1307
1308         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1309         init_waitqueue_head(&buffer->irq_work.waiters);
1310
1311         /* need at least two pages */
1312         if (nr_pages < 2)
1313                 nr_pages = 2;
1314
1315         buffer->cpus = nr_cpu_ids;
1316
1317         bsize = sizeof(void *) * nr_cpu_ids;
1318         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1319                                   GFP_KERNEL);
1320         if (!buffer->buffers)
1321                 goto fail_free_cpumask;
1322
1323         cpu = raw_smp_processor_id();
1324         cpumask_set_cpu(cpu, buffer->cpumask);
1325         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1326         if (!buffer->buffers[cpu])
1327                 goto fail_free_buffers;
1328
1329         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1330         if (ret < 0)
1331                 goto fail_free_buffers;
1332
1333         mutex_init(&buffer->mutex);
1334
1335         return buffer;
1336
1337  fail_free_buffers:
1338         for_each_buffer_cpu(buffer, cpu) {
1339                 if (buffer->buffers[cpu])
1340                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1341         }
1342         kfree(buffer->buffers);
1343
1344  fail_free_cpumask:
1345         free_cpumask_var(buffer->cpumask);
1346
1347  fail_free_buffer:
1348         kfree(buffer);
1349         return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352
1353 /**
1354  * ring_buffer_free - free a ring buffer.
1355  * @buffer: the buffer to free.
1356  */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360         int cpu;
1361
1362         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1363
1364         for_each_buffer_cpu(buffer, cpu)
1365                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1366
1367         kfree(buffer->buffers);
1368         free_cpumask_var(buffer->cpumask);
1369
1370         kfree(buffer);
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_free);
1373
1374 void ring_buffer_set_clock(struct ring_buffer *buffer,
1375                            u64 (*clock)(void))
1376 {
1377         buffer->clock = clock;
1378 }
1379
1380 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1381
1382 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1383 {
1384         return local_read(&bpage->entries) & RB_WRITE_MASK;
1385 }
1386
1387 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1388 {
1389         return local_read(&bpage->write) & RB_WRITE_MASK;
1390 }
1391
1392 static int
1393 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1394 {
1395         struct list_head *tail_page, *to_remove, *next_page;
1396         struct buffer_page *to_remove_page, *tmp_iter_page;
1397         struct buffer_page *last_page, *first_page;
1398         unsigned long nr_removed;
1399         unsigned long head_bit;
1400         int page_entries;
1401
1402         head_bit = 0;
1403
1404         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1405         atomic_inc(&cpu_buffer->record_disabled);
1406         /*
1407          * We don't race with the readers since we have acquired the reader
1408          * lock. We also don't race with writers after disabling recording.
1409          * This makes it easy to figure out the first and the last page to be
1410          * removed from the list. We unlink all the pages in between including
1411          * the first and last pages. This is done in a busy loop so that we
1412          * lose the least number of traces.
1413          * The pages are freed after we restart recording and unlock readers.
1414          */
1415         tail_page = &cpu_buffer->tail_page->list;
1416
1417         /*
1418          * tail page might be on reader page, we remove the next page
1419          * from the ring buffer
1420          */
1421         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1422                 tail_page = rb_list_head(tail_page->next);
1423         to_remove = tail_page;
1424
1425         /* start of pages to remove */
1426         first_page = list_entry(rb_list_head(to_remove->next),
1427                                 struct buffer_page, list);
1428
1429         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1430                 to_remove = rb_list_head(to_remove)->next;
1431                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1432         }
1433
1434         next_page = rb_list_head(to_remove)->next;
1435
1436         /*
1437          * Now we remove all pages between tail_page and next_page.
1438          * Make sure that we have head_bit value preserved for the
1439          * next page
1440          */
1441         tail_page->next = (struct list_head *)((unsigned long)next_page |
1442                                                 head_bit);
1443         next_page = rb_list_head(next_page);
1444         next_page->prev = tail_page;
1445
1446         /* make sure pages points to a valid page in the ring buffer */
1447         cpu_buffer->pages = next_page;
1448
1449         /* update head page */
1450         if (head_bit)
1451                 cpu_buffer->head_page = list_entry(next_page,
1452                                                 struct buffer_page, list);
1453
1454         /*
1455          * change read pointer to make sure any read iterators reset
1456          * themselves
1457          */
1458         cpu_buffer->read = 0;
1459
1460         /* pages are removed, resume tracing and then free the pages */
1461         atomic_dec(&cpu_buffer->record_disabled);
1462         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1463
1464         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1465
1466         /* last buffer page to remove */
1467         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1468                                 list);
1469         tmp_iter_page = first_page;
1470
1471         do {
1472                 to_remove_page = tmp_iter_page;
1473                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1474
1475                 /* update the counters */
1476                 page_entries = rb_page_entries(to_remove_page);
1477                 if (page_entries) {
1478                         /*
1479                          * If something was added to this page, it was full
1480                          * since it is not the tail page. So we deduct the
1481                          * bytes consumed in ring buffer from here.
1482                          * Increment overrun to account for the lost events.
1483                          */
1484                         local_add(page_entries, &cpu_buffer->overrun);
1485                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1486                 }
1487
1488                 /*
1489                  * We have already removed references to this list item, just
1490                  * free up the buffer_page and its page
1491                  */
1492                 free_buffer_page(to_remove_page);
1493                 nr_removed--;
1494
1495         } while (to_remove_page != last_page);
1496
1497         RB_WARN_ON(cpu_buffer, nr_removed);
1498
1499         return nr_removed == 0;
1500 }
1501
1502 static int
1503 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505         struct list_head *pages = &cpu_buffer->new_pages;
1506         int retries, success;
1507
1508         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1509         /*
1510          * We are holding the reader lock, so the reader page won't be swapped
1511          * in the ring buffer. Now we are racing with the writer trying to
1512          * move head page and the tail page.
1513          * We are going to adapt the reader page update process where:
1514          * 1. We first splice the start and end of list of new pages between
1515          *    the head page and its previous page.
1516          * 2. We cmpxchg the prev_page->next to point from head page to the
1517          *    start of new pages list.
1518          * 3. Finally, we update the head->prev to the end of new list.
1519          *
1520          * We will try this process 10 times, to make sure that we don't keep
1521          * spinning.
1522          */
1523         retries = 10;
1524         success = 0;
1525         while (retries--) {
1526                 struct list_head *head_page, *prev_page, *r;
1527                 struct list_head *last_page, *first_page;
1528                 struct list_head *head_page_with_bit;
1529
1530                 head_page = &rb_set_head_page(cpu_buffer)->list;
1531                 if (!head_page)
1532                         break;
1533                 prev_page = head_page->prev;
1534
1535                 first_page = pages->next;
1536                 last_page  = pages->prev;
1537
1538                 head_page_with_bit = (struct list_head *)
1539                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1540
1541                 last_page->next = head_page_with_bit;
1542                 first_page->prev = prev_page;
1543
1544                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1545
1546                 if (r == head_page_with_bit) {
1547                         /*
1548                          * yay, we replaced the page pointer to our new list,
1549                          * now, we just have to update to head page's prev
1550                          * pointer to point to end of list
1551                          */
1552                         head_page->prev = last_page;
1553                         success = 1;
1554                         break;
1555                 }
1556         }
1557
1558         if (success)
1559                 INIT_LIST_HEAD(pages);
1560         /*
1561          * If we weren't successful in adding in new pages, warn and stop
1562          * tracing
1563          */
1564         RB_WARN_ON(cpu_buffer, !success);
1565         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1566
1567         /* free pages if they weren't inserted */
1568         if (!success) {
1569                 struct buffer_page *bpage, *tmp;
1570                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1571                                          list) {
1572                         list_del_init(&bpage->list);
1573                         free_buffer_page(bpage);
1574                 }
1575         }
1576         return success;
1577 }
1578
1579 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581         int success;
1582
1583         if (cpu_buffer->nr_pages_to_update > 0)
1584                 success = rb_insert_pages(cpu_buffer);
1585         else
1586                 success = rb_remove_pages(cpu_buffer,
1587                                         -cpu_buffer->nr_pages_to_update);
1588
1589         if (success)
1590                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1591 }
1592
1593 static void update_pages_handler(struct work_struct *work)
1594 {
1595         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1596                         struct ring_buffer_per_cpu, update_pages_work);
1597         rb_update_pages(cpu_buffer);
1598         complete(&cpu_buffer->update_done);
1599 }
1600
1601 /**
1602  * ring_buffer_resize - resize the ring buffer
1603  * @buffer: the buffer to resize.
1604  * @size: the new size.
1605  * @cpu_id: the cpu buffer to resize
1606  *
1607  * Minimum size is 2 * BUF_PAGE_SIZE.
1608  *
1609  * Returns 0 on success and < 0 on failure.
1610  */
1611 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1612                         int cpu_id)
1613 {
1614         struct ring_buffer_per_cpu *cpu_buffer;
1615         unsigned long nr_pages;
1616         int cpu, err = 0;
1617
1618         /*
1619          * Always succeed at resizing a non-existent buffer:
1620          */
1621         if (!buffer)
1622                 return size;
1623
1624         /* Make sure the requested buffer exists */
1625         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1626             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1627                 return size;
1628
1629         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1630
1631         /* we need a minimum of two pages */
1632         if (nr_pages < 2)
1633                 nr_pages = 2;
1634
1635         size = nr_pages * BUF_PAGE_SIZE;
1636
1637         /*
1638          * Don't succeed if resizing is disabled, as a reader might be
1639          * manipulating the ring buffer and is expecting a sane state while
1640          * this is true.
1641          */
1642         if (atomic_read(&buffer->resize_disabled))
1643                 return -EBUSY;
1644
1645         /* prevent another thread from changing buffer sizes */
1646         mutex_lock(&buffer->mutex);
1647
1648         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1649                 /* calculate the pages to update */
1650                 for_each_buffer_cpu(buffer, cpu) {
1651                         cpu_buffer = buffer->buffers[cpu];
1652
1653                         cpu_buffer->nr_pages_to_update = nr_pages -
1654                                                         cpu_buffer->nr_pages;
1655                         /*
1656                          * nothing more to do for removing pages or no update
1657                          */
1658                         if (cpu_buffer->nr_pages_to_update <= 0)
1659                                 continue;
1660                         /*
1661                          * to add pages, make sure all new pages can be
1662                          * allocated without receiving ENOMEM
1663                          */
1664                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1665                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1666                                                 &cpu_buffer->new_pages, cpu)) {
1667                                 /* not enough memory for new pages */
1668                                 err = -ENOMEM;
1669                                 goto out_err;
1670                         }
1671                 }
1672
1673                 get_online_cpus();
1674                 /*
1675                  * Fire off all the required work handlers
1676                  * We can't schedule on offline CPUs, but it's not necessary
1677                  * since we can change their buffer sizes without any race.
1678                  */
1679                 for_each_buffer_cpu(buffer, cpu) {
1680                         cpu_buffer = buffer->buffers[cpu];
1681                         if (!cpu_buffer->nr_pages_to_update)
1682                                 continue;
1683
1684                         /* Can't run something on an offline CPU. */
1685                         if (!cpu_online(cpu)) {
1686                                 rb_update_pages(cpu_buffer);
1687                                 cpu_buffer->nr_pages_to_update = 0;
1688                         } else {
1689                                 schedule_work_on(cpu,
1690                                                 &cpu_buffer->update_pages_work);
1691                         }
1692                 }
1693
1694                 /* wait for all the updates to complete */
1695                 for_each_buffer_cpu(buffer, cpu) {
1696                         cpu_buffer = buffer->buffers[cpu];
1697                         if (!cpu_buffer->nr_pages_to_update)
1698                                 continue;
1699
1700                         if (cpu_online(cpu))
1701                                 wait_for_completion(&cpu_buffer->update_done);
1702                         cpu_buffer->nr_pages_to_update = 0;
1703                 }
1704
1705                 put_online_cpus();
1706         } else {
1707                 /* Make sure this CPU has been intitialized */
1708                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1709                         goto out;
1710
1711                 cpu_buffer = buffer->buffers[cpu_id];
1712
1713                 if (nr_pages == cpu_buffer->nr_pages)
1714                         goto out;
1715
1716                 cpu_buffer->nr_pages_to_update = nr_pages -
1717                                                 cpu_buffer->nr_pages;
1718
1719                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1720                 if (cpu_buffer->nr_pages_to_update > 0 &&
1721                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1722                                             &cpu_buffer->new_pages, cpu_id)) {
1723                         err = -ENOMEM;
1724                         goto out_err;
1725                 }
1726
1727                 get_online_cpus();
1728
1729                 /* Can't run something on an offline CPU. */
1730                 if (!cpu_online(cpu_id))
1731                         rb_update_pages(cpu_buffer);
1732                 else {
1733                         schedule_work_on(cpu_id,
1734                                          &cpu_buffer->update_pages_work);
1735                         wait_for_completion(&cpu_buffer->update_done);
1736                 }
1737
1738                 cpu_buffer->nr_pages_to_update = 0;
1739                 put_online_cpus();
1740         }
1741
1742  out:
1743         /*
1744          * The ring buffer resize can happen with the ring buffer
1745          * enabled, so that the update disturbs the tracing as little
1746          * as possible. But if the buffer is disabled, we do not need
1747          * to worry about that, and we can take the time to verify
1748          * that the buffer is not corrupt.
1749          */
1750         if (atomic_read(&buffer->record_disabled)) {
1751                 atomic_inc(&buffer->record_disabled);
1752                 /*
1753                  * Even though the buffer was disabled, we must make sure
1754                  * that it is truly disabled before calling rb_check_pages.
1755                  * There could have been a race between checking
1756                  * record_disable and incrementing it.
1757                  */
1758                 synchronize_sched();
1759                 for_each_buffer_cpu(buffer, cpu) {
1760                         cpu_buffer = buffer->buffers[cpu];
1761                         rb_check_pages(cpu_buffer);
1762                 }
1763                 atomic_dec(&buffer->record_disabled);
1764         }
1765
1766         mutex_unlock(&buffer->mutex);
1767         return size;
1768
1769  out_err:
1770         for_each_buffer_cpu(buffer, cpu) {
1771                 struct buffer_page *bpage, *tmp;
1772
1773                 cpu_buffer = buffer->buffers[cpu];
1774                 cpu_buffer->nr_pages_to_update = 0;
1775
1776                 if (list_empty(&cpu_buffer->new_pages))
1777                         continue;
1778
1779                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1780                                         list) {
1781                         list_del_init(&bpage->list);
1782                         free_buffer_page(bpage);
1783                 }
1784         }
1785         mutex_unlock(&buffer->mutex);
1786         return err;
1787 }
1788 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1789
1790 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1791 {
1792         mutex_lock(&buffer->mutex);
1793         if (val)
1794                 buffer->flags |= RB_FL_OVERWRITE;
1795         else
1796                 buffer->flags &= ~RB_FL_OVERWRITE;
1797         mutex_unlock(&buffer->mutex);
1798 }
1799 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1800
1801 static __always_inline void *
1802 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1803 {
1804         return bpage->data + index;
1805 }
1806
1807 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1808 {
1809         return bpage->page->data + index;
1810 }
1811
1812 static __always_inline struct ring_buffer_event *
1813 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1814 {
1815         return __rb_page_index(cpu_buffer->reader_page,
1816                                cpu_buffer->reader_page->read);
1817 }
1818
1819 static __always_inline struct ring_buffer_event *
1820 rb_iter_head_event(struct ring_buffer_iter *iter)
1821 {
1822         return __rb_page_index(iter->head_page, iter->head);
1823 }
1824
1825 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1826 {
1827         return local_read(&bpage->page->commit);
1828 }
1829
1830 /* Size is determined by what has been committed */
1831 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1832 {
1833         return rb_page_commit(bpage);
1834 }
1835
1836 static __always_inline unsigned
1837 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839         return rb_page_commit(cpu_buffer->commit_page);
1840 }
1841
1842 static __always_inline unsigned
1843 rb_event_index(struct ring_buffer_event *event)
1844 {
1845         unsigned long addr = (unsigned long)event;
1846
1847         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1848 }
1849
1850 static void rb_inc_iter(struct ring_buffer_iter *iter)
1851 {
1852         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1853
1854         /*
1855          * The iterator could be on the reader page (it starts there).
1856          * But the head could have moved, since the reader was
1857          * found. Check for this case and assign the iterator
1858          * to the head page instead of next.
1859          */
1860         if (iter->head_page == cpu_buffer->reader_page)
1861                 iter->head_page = rb_set_head_page(cpu_buffer);
1862         else
1863                 rb_inc_page(cpu_buffer, &iter->head_page);
1864
1865         iter->read_stamp = iter->head_page->page->time_stamp;
1866         iter->head = 0;
1867 }
1868
1869 /*
1870  * rb_handle_head_page - writer hit the head page
1871  *
1872  * Returns: +1 to retry page
1873  *           0 to continue
1874  *          -1 on error
1875  */
1876 static int
1877 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1878                     struct buffer_page *tail_page,
1879                     struct buffer_page *next_page)
1880 {
1881         struct buffer_page *new_head;
1882         int entries;
1883         int type;
1884         int ret;
1885
1886         entries = rb_page_entries(next_page);
1887
1888         /*
1889          * The hard part is here. We need to move the head
1890          * forward, and protect against both readers on
1891          * other CPUs and writers coming in via interrupts.
1892          */
1893         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1894                                        RB_PAGE_HEAD);
1895
1896         /*
1897          * type can be one of four:
1898          *  NORMAL - an interrupt already moved it for us
1899          *  HEAD   - we are the first to get here.
1900          *  UPDATE - we are the interrupt interrupting
1901          *           a current move.
1902          *  MOVED  - a reader on another CPU moved the next
1903          *           pointer to its reader page. Give up
1904          *           and try again.
1905          */
1906
1907         switch (type) {
1908         case RB_PAGE_HEAD:
1909                 /*
1910                  * We changed the head to UPDATE, thus
1911                  * it is our responsibility to update
1912                  * the counters.
1913                  */
1914                 local_add(entries, &cpu_buffer->overrun);
1915                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1916
1917                 /*
1918                  * The entries will be zeroed out when we move the
1919                  * tail page.
1920                  */
1921
1922                 /* still more to do */
1923                 break;
1924
1925         case RB_PAGE_UPDATE:
1926                 /*
1927                  * This is an interrupt that interrupt the
1928                  * previous update. Still more to do.
1929                  */
1930                 break;
1931         case RB_PAGE_NORMAL:
1932                 /*
1933                  * An interrupt came in before the update
1934                  * and processed this for us.
1935                  * Nothing left to do.
1936                  */
1937                 return 1;
1938         case RB_PAGE_MOVED:
1939                 /*
1940                  * The reader is on another CPU and just did
1941                  * a swap with our next_page.
1942                  * Try again.
1943                  */
1944                 return 1;
1945         default:
1946                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1947                 return -1;
1948         }
1949
1950         /*
1951          * Now that we are here, the old head pointer is
1952          * set to UPDATE. This will keep the reader from
1953          * swapping the head page with the reader page.
1954          * The reader (on another CPU) will spin till
1955          * we are finished.
1956          *
1957          * We just need to protect against interrupts
1958          * doing the job. We will set the next pointer
1959          * to HEAD. After that, we set the old pointer
1960          * to NORMAL, but only if it was HEAD before.
1961          * otherwise we are an interrupt, and only
1962          * want the outer most commit to reset it.
1963          */
1964         new_head = next_page;
1965         rb_inc_page(cpu_buffer, &new_head);
1966
1967         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1968                                     RB_PAGE_NORMAL);
1969
1970         /*
1971          * Valid returns are:
1972          *  HEAD   - an interrupt came in and already set it.
1973          *  NORMAL - One of two things:
1974          *            1) We really set it.
1975          *            2) A bunch of interrupts came in and moved
1976          *               the page forward again.
1977          */
1978         switch (ret) {
1979         case RB_PAGE_HEAD:
1980         case RB_PAGE_NORMAL:
1981                 /* OK */
1982                 break;
1983         default:
1984                 RB_WARN_ON(cpu_buffer, 1);
1985                 return -1;
1986         }
1987
1988         /*
1989          * It is possible that an interrupt came in,
1990          * set the head up, then more interrupts came in
1991          * and moved it again. When we get back here,
1992          * the page would have been set to NORMAL but we
1993          * just set it back to HEAD.
1994          *
1995          * How do you detect this? Well, if that happened
1996          * the tail page would have moved.
1997          */
1998         if (ret == RB_PAGE_NORMAL) {
1999                 struct buffer_page *buffer_tail_page;
2000
2001                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2002                 /*
2003                  * If the tail had moved passed next, then we need
2004                  * to reset the pointer.
2005                  */
2006                 if (buffer_tail_page != tail_page &&
2007                     buffer_tail_page != next_page)
2008                         rb_head_page_set_normal(cpu_buffer, new_head,
2009                                                 next_page,
2010                                                 RB_PAGE_HEAD);
2011         }
2012
2013         /*
2014          * If this was the outer most commit (the one that
2015          * changed the original pointer from HEAD to UPDATE),
2016          * then it is up to us to reset it to NORMAL.
2017          */
2018         if (type == RB_PAGE_HEAD) {
2019                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2020                                               tail_page,
2021                                               RB_PAGE_UPDATE);
2022                 if (RB_WARN_ON(cpu_buffer,
2023                                ret != RB_PAGE_UPDATE))
2024                         return -1;
2025         }
2026
2027         return 0;
2028 }
2029
2030 static inline void
2031 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2032               unsigned long tail, struct rb_event_info *info)
2033 {
2034         struct buffer_page *tail_page = info->tail_page;
2035         struct ring_buffer_event *event;
2036         unsigned long length = info->length;
2037
2038         /*
2039          * Only the event that crossed the page boundary
2040          * must fill the old tail_page with padding.
2041          */
2042         if (tail >= BUF_PAGE_SIZE) {
2043                 /*
2044                  * If the page was filled, then we still need
2045                  * to update the real_end. Reset it to zero
2046                  * and the reader will ignore it.
2047                  */
2048                 if (tail == BUF_PAGE_SIZE)
2049                         tail_page->real_end = 0;
2050
2051                 local_sub(length, &tail_page->write);
2052                 return;
2053         }
2054
2055         event = __rb_page_index(tail_page, tail);
2056         kmemcheck_annotate_bitfield(event, bitfield);
2057
2058         /* account for padding bytes */
2059         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060
2061         /*
2062          * Save the original length to the meta data.
2063          * This will be used by the reader to add lost event
2064          * counter.
2065          */
2066         tail_page->real_end = tail;
2067
2068         /*
2069          * If this event is bigger than the minimum size, then
2070          * we need to be careful that we don't subtract the
2071          * write counter enough to allow another writer to slip
2072          * in on this page.
2073          * We put in a discarded commit instead, to make sure
2074          * that this space is not used again.
2075          *
2076          * If we are less than the minimum size, we don't need to
2077          * worry about it.
2078          */
2079         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2080                 /* No room for any events */
2081
2082                 /* Mark the rest of the page with padding */
2083                 rb_event_set_padding(event);
2084
2085                 /* Set the write back to the previous setting */
2086                 local_sub(length, &tail_page->write);
2087                 return;
2088         }
2089
2090         /* Put in a discarded event */
2091         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2092         event->type_len = RINGBUF_TYPE_PADDING;
2093         /* time delta must be non zero */
2094         event->time_delta = 1;
2095
2096         /* Set write to end of buffer */
2097         length = (tail + length) - BUF_PAGE_SIZE;
2098         local_sub(length, &tail_page->write);
2099 }
2100
2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102
2103 /*
2104  * This is the slow path, force gcc not to inline it.
2105  */
2106 static noinline struct ring_buffer_event *
2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108              unsigned long tail, struct rb_event_info *info)
2109 {
2110         struct buffer_page *tail_page = info->tail_page;
2111         struct buffer_page *commit_page = cpu_buffer->commit_page;
2112         struct ring_buffer *buffer = cpu_buffer->buffer;
2113         struct buffer_page *next_page;
2114         int ret;
2115
2116         next_page = tail_page;
2117
2118         rb_inc_page(cpu_buffer, &next_page);
2119
2120         /*
2121          * If for some reason, we had an interrupt storm that made
2122          * it all the way around the buffer, bail, and warn
2123          * about it.
2124          */
2125         if (unlikely(next_page == commit_page)) {
2126                 local_inc(&cpu_buffer->commit_overrun);
2127                 goto out_reset;
2128         }
2129
2130         /*
2131          * This is where the fun begins!
2132          *
2133          * We are fighting against races between a reader that
2134          * could be on another CPU trying to swap its reader
2135          * page with the buffer head.
2136          *
2137          * We are also fighting against interrupts coming in and
2138          * moving the head or tail on us as well.
2139          *
2140          * If the next page is the head page then we have filled
2141          * the buffer, unless the commit page is still on the
2142          * reader page.
2143          */
2144         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145
2146                 /*
2147                  * If the commit is not on the reader page, then
2148                  * move the header page.
2149                  */
2150                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151                         /*
2152                          * If we are not in overwrite mode,
2153                          * this is easy, just stop here.
2154                          */
2155                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2156                                 local_inc(&cpu_buffer->dropped_events);
2157                                 goto out_reset;
2158                         }
2159
2160                         ret = rb_handle_head_page(cpu_buffer,
2161                                                   tail_page,
2162                                                   next_page);
2163                         if (ret < 0)
2164                                 goto out_reset;
2165                         if (ret)
2166                                 goto out_again;
2167                 } else {
2168                         /*
2169                          * We need to be careful here too. The
2170                          * commit page could still be on the reader
2171                          * page. We could have a small buffer, and
2172                          * have filled up the buffer with events
2173                          * from interrupts and such, and wrapped.
2174                          *
2175                          * Note, if the tail page is also the on the
2176                          * reader_page, we let it move out.
2177                          */
2178                         if (unlikely((cpu_buffer->commit_page !=
2179                                       cpu_buffer->tail_page) &&
2180                                      (cpu_buffer->commit_page ==
2181                                       cpu_buffer->reader_page))) {
2182                                 local_inc(&cpu_buffer->commit_overrun);
2183                                 goto out_reset;
2184                         }
2185                 }
2186         }
2187
2188         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2189
2190  out_again:
2191
2192         rb_reset_tail(cpu_buffer, tail, info);
2193
2194         /* Commit what we have for now. */
2195         rb_end_commit(cpu_buffer);
2196         /* rb_end_commit() decs committing */
2197         local_inc(&cpu_buffer->committing);
2198
2199         /* fail and let the caller try again */
2200         return ERR_PTR(-EAGAIN);
2201
2202  out_reset:
2203         /* reset write */
2204         rb_reset_tail(cpu_buffer, tail, info);
2205
2206         return NULL;
2207 }
2208
2209 /* Slow path, do not inline */
2210 static noinline struct ring_buffer_event *
2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2212 {
2213         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2214
2215         /* Not the first event on the page? */
2216         if (rb_event_index(event)) {
2217                 event->time_delta = delta & TS_MASK;
2218                 event->array[0] = delta >> TS_SHIFT;
2219         } else {
2220                 /* nope, just zero it */
2221                 event->time_delta = 0;
2222                 event->array[0] = 0;
2223         }
2224
2225         return skip_time_extend(event);
2226 }
2227
2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2229                                      struct ring_buffer_event *event);
2230
2231 /**
2232  * rb_update_event - update event type and data
2233  * @event: the event to update
2234  * @type: the type of event
2235  * @length: the size of the event field in the ring buffer
2236  *
2237  * Update the type and data fields of the event. The length
2238  * is the actual size that is written to the ring buffer,
2239  * and with this, we can determine what to place into the
2240  * data field.
2241  */
2242 static void
2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2244                 struct ring_buffer_event *event,
2245                 struct rb_event_info *info)
2246 {
2247         unsigned length = info->length;
2248         u64 delta = info->delta;
2249
2250         /* Only a commit updates the timestamp */
2251         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2252                 delta = 0;
2253
2254         /*
2255          * If we need to add a timestamp, then we
2256          * add it to the start of the resevered space.
2257          */
2258         if (unlikely(info->add_timestamp)) {
2259                 event = rb_add_time_stamp(event, delta);
2260                 length -= RB_LEN_TIME_EXTEND;
2261                 delta = 0;
2262         }
2263
2264         event->time_delta = delta;
2265         length -= RB_EVNT_HDR_SIZE;
2266         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2267                 event->type_len = 0;
2268                 event->array[0] = length;
2269         } else
2270                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271 }
2272
2273 static unsigned rb_calculate_event_length(unsigned length)
2274 {
2275         struct ring_buffer_event event; /* Used only for sizeof array */
2276
2277         /* zero length can cause confusions */
2278         if (!length)
2279                 length++;
2280
2281         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2282                 length += sizeof(event.array[0]);
2283
2284         length += RB_EVNT_HDR_SIZE;
2285         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286
2287         /*
2288          * In case the time delta is larger than the 27 bits for it
2289          * in the header, we need to add a timestamp. If another
2290          * event comes in when trying to discard this one to increase
2291          * the length, then the timestamp will be added in the allocated
2292          * space of this event. If length is bigger than the size needed
2293          * for the TIME_EXTEND, then padding has to be used. The events
2294          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296          * As length is a multiple of 4, we only need to worry if it
2297          * is 12 (RB_LEN_TIME_EXTEND + 4).
2298          */
2299         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2300                 length += RB_ALIGNMENT;
2301
2302         return length;
2303 }
2304
2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306 static inline bool sched_clock_stable(void)
2307 {
2308         return true;
2309 }
2310 #endif
2311
2312 static inline int
2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2314                   struct ring_buffer_event *event)
2315 {
2316         unsigned long new_index, old_index;
2317         struct buffer_page *bpage;
2318         unsigned long index;
2319         unsigned long addr;
2320
2321         new_index = rb_event_index(event);
2322         old_index = new_index + rb_event_ts_length(event);
2323         addr = (unsigned long)event;
2324         addr &= PAGE_MASK;
2325
2326         bpage = READ_ONCE(cpu_buffer->tail_page);
2327
2328         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2329                 unsigned long write_mask =
2330                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2331                 unsigned long event_length = rb_event_length(event);
2332                 /*
2333                  * This is on the tail page. It is possible that
2334                  * a write could come in and move the tail page
2335                  * and write to the next page. That is fine
2336                  * because we just shorten what is on this page.
2337                  */
2338                 old_index += write_mask;
2339                 new_index += write_mask;
2340                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2341                 if (index == old_index) {
2342                         /* update counters */
2343                         local_sub(event_length, &cpu_buffer->entries_bytes);
2344                         return 1;
2345                 }
2346         }
2347
2348         /* could not discard */
2349         return 0;
2350 }
2351
2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2353 {
2354         local_inc(&cpu_buffer->committing);
2355         local_inc(&cpu_buffer->commits);
2356 }
2357
2358 static __always_inline void
2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2360 {
2361         unsigned long max_count;
2362
2363         /*
2364          * We only race with interrupts and NMIs on this CPU.
2365          * If we own the commit event, then we can commit
2366          * all others that interrupted us, since the interruptions
2367          * are in stack format (they finish before they come
2368          * back to us). This allows us to do a simple loop to
2369          * assign the commit to the tail.
2370          */
2371  again:
2372         max_count = cpu_buffer->nr_pages * 100;
2373
2374         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2375                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2376                         return;
2377                 if (RB_WARN_ON(cpu_buffer,
2378                                rb_is_reader_page(cpu_buffer->tail_page)))
2379                         return;
2380                 local_set(&cpu_buffer->commit_page->page->commit,
2381                           rb_page_write(cpu_buffer->commit_page));
2382                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2383                 /* Only update the write stamp if the page has an event */
2384                 if (rb_page_write(cpu_buffer->commit_page))
2385                         cpu_buffer->write_stamp =
2386                                 cpu_buffer->commit_page->page->time_stamp;
2387                 /* add barrier to keep gcc from optimizing too much */
2388                 barrier();
2389         }
2390         while (rb_commit_index(cpu_buffer) !=
2391                rb_page_write(cpu_buffer->commit_page)) {
2392
2393                 local_set(&cpu_buffer->commit_page->page->commit,
2394                           rb_page_write(cpu_buffer->commit_page));
2395                 RB_WARN_ON(cpu_buffer,
2396                            local_read(&cpu_buffer->commit_page->page->commit) &
2397                            ~RB_WRITE_MASK);
2398                 barrier();
2399         }
2400
2401         /* again, keep gcc from optimizing */
2402         barrier();
2403
2404         /*
2405          * If an interrupt came in just after the first while loop
2406          * and pushed the tail page forward, we will be left with
2407          * a dangling commit that will never go forward.
2408          */
2409         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2410                 goto again;
2411 }
2412
2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2414 {
2415         unsigned long commits;
2416
2417         if (RB_WARN_ON(cpu_buffer,
2418                        !local_read(&cpu_buffer->committing)))
2419                 return;
2420
2421  again:
2422         commits = local_read(&cpu_buffer->commits);
2423         /* synchronize with interrupts */
2424         barrier();
2425         if (local_read(&cpu_buffer->committing) == 1)
2426                 rb_set_commit_to_write(cpu_buffer);
2427
2428         local_dec(&cpu_buffer->committing);
2429
2430         /* synchronize with interrupts */
2431         barrier();
2432
2433         /*
2434          * Need to account for interrupts coming in between the
2435          * updating of the commit page and the clearing of the
2436          * committing counter.
2437          */
2438         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2439             !local_read(&cpu_buffer->committing)) {
2440                 local_inc(&cpu_buffer->committing);
2441                 goto again;
2442         }
2443 }
2444
2445 static inline void rb_event_discard(struct ring_buffer_event *event)
2446 {
2447         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2448                 event = skip_time_extend(event);
2449
2450         /* array[0] holds the actual length for the discarded event */
2451         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2452         event->type_len = RINGBUF_TYPE_PADDING;
2453         /* time delta must be non zero */
2454         if (!event->time_delta)
2455                 event->time_delta = 1;
2456 }
2457
2458 static __always_inline bool
2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2460                    struct ring_buffer_event *event)
2461 {
2462         unsigned long addr = (unsigned long)event;
2463         unsigned long index;
2464
2465         index = rb_event_index(event);
2466         addr &= PAGE_MASK;
2467
2468         return cpu_buffer->commit_page->page == (void *)addr &&
2469                 rb_commit_index(cpu_buffer) == index;
2470 }
2471
2472 static __always_inline void
2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2474                       struct ring_buffer_event *event)
2475 {
2476         u64 delta;
2477
2478         /*
2479          * The event first in the commit queue updates the
2480          * time stamp.
2481          */
2482         if (rb_event_is_commit(cpu_buffer, event)) {
2483                 /*
2484                  * A commit event that is first on a page
2485                  * updates the write timestamp with the page stamp
2486                  */
2487                 if (!rb_event_index(event))
2488                         cpu_buffer->write_stamp =
2489                                 cpu_buffer->commit_page->page->time_stamp;
2490                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2491                         delta = event->array[0];
2492                         delta <<= TS_SHIFT;
2493                         delta += event->time_delta;
2494                         cpu_buffer->write_stamp += delta;
2495                 } else
2496                         cpu_buffer->write_stamp += event->time_delta;
2497         }
2498 }
2499
2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501                       struct ring_buffer_event *event)
2502 {
2503         local_inc(&cpu_buffer->entries);
2504         rb_update_write_stamp(cpu_buffer, event);
2505         rb_end_commit(cpu_buffer);
2506 }
2507
2508 static __always_inline void
2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2510 {
2511         bool pagebusy;
2512
2513         if (buffer->irq_work.waiters_pending) {
2514                 buffer->irq_work.waiters_pending = false;
2515                 /* irq_work_queue() supplies it's own memory barriers */
2516                 irq_work_queue(&buffer->irq_work.work);
2517         }
2518
2519         if (cpu_buffer->irq_work.waiters_pending) {
2520                 cpu_buffer->irq_work.waiters_pending = false;
2521                 /* irq_work_queue() supplies it's own memory barriers */
2522                 irq_work_queue(&cpu_buffer->irq_work.work);
2523         }
2524
2525         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2526
2527         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2528                 cpu_buffer->irq_work.wakeup_full = true;
2529                 cpu_buffer->irq_work.full_waiters_pending = false;
2530                 /* irq_work_queue() supplies it's own memory barriers */
2531                 irq_work_queue(&cpu_buffer->irq_work.work);
2532         }
2533 }
2534
2535 /*
2536  * The lock and unlock are done within a preempt disable section.
2537  * The current_context per_cpu variable can only be modified
2538  * by the current task between lock and unlock. But it can
2539  * be modified more than once via an interrupt. To pass this
2540  * information from the lock to the unlock without having to
2541  * access the 'in_interrupt()' functions again (which do show
2542  * a bit of overhead in something as critical as function tracing,
2543  * we use a bitmask trick.
2544  *
2545  *  bit 0 =  NMI context
2546  *  bit 1 =  IRQ context
2547  *  bit 2 =  SoftIRQ context
2548  *  bit 3 =  normal context.
2549  *
2550  * This works because this is the order of contexts that can
2551  * preempt other contexts. A SoftIRQ never preempts an IRQ
2552  * context.
2553  *
2554  * When the context is determined, the corresponding bit is
2555  * checked and set (if it was set, then a recursion of that context
2556  * happened).
2557  *
2558  * On unlock, we need to clear this bit. To do so, just subtract
2559  * 1 from the current_context and AND it to itself.
2560  *
2561  * (binary)
2562  *  101 - 1 = 100
2563  *  101 & 100 = 100 (clearing bit zero)
2564  *
2565  *  1010 - 1 = 1001
2566  *  1010 & 1001 = 1000 (clearing bit 1)
2567  *
2568  * The least significant bit can be cleared this way, and it
2569  * just so happens that it is the same bit corresponding to
2570  * the current context.
2571  */
2572
2573 static __always_inline int
2574 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2575 {
2576         unsigned int val = cpu_buffer->current_context;
2577         int bit;
2578
2579         if (in_interrupt()) {
2580                 if (in_nmi())
2581                         bit = RB_CTX_NMI;
2582                 else if (in_irq())
2583                         bit = RB_CTX_IRQ;
2584                 else
2585                         bit = RB_CTX_SOFTIRQ;
2586         } else
2587                 bit = RB_CTX_NORMAL;
2588
2589         if (unlikely(val & (1 << bit)))
2590                 return 1;
2591
2592         val |= (1 << bit);
2593         cpu_buffer->current_context = val;
2594
2595         return 0;
2596 }
2597
2598 static __always_inline void
2599 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2600 {
2601         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2602 }
2603
2604 /**
2605  * ring_buffer_unlock_commit - commit a reserved
2606  * @buffer: The buffer to commit to
2607  * @event: The event pointer to commit.
2608  *
2609  * This commits the data to the ring buffer, and releases any locks held.
2610  *
2611  * Must be paired with ring_buffer_lock_reserve.
2612  */
2613 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2614                               struct ring_buffer_event *event)
2615 {
2616         struct ring_buffer_per_cpu *cpu_buffer;
2617         int cpu = raw_smp_processor_id();
2618
2619         cpu_buffer = buffer->buffers[cpu];
2620
2621         rb_commit(cpu_buffer, event);
2622
2623         rb_wakeups(buffer, cpu_buffer);
2624
2625         trace_recursive_unlock(cpu_buffer);
2626
2627         preempt_enable_notrace();
2628
2629         return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2632
2633 static noinline void
2634 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2635                     struct rb_event_info *info)
2636 {
2637         WARN_ONCE(info->delta > (1ULL << 59),
2638                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639                   (unsigned long long)info->delta,
2640                   (unsigned long long)info->ts,
2641                   (unsigned long long)cpu_buffer->write_stamp,
2642                   sched_clock_stable() ? "" :
2643                   "If you just came from a suspend/resume,\n"
2644                   "please switch to the trace global clock:\n"
2645                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646         info->add_timestamp = 1;
2647 }
2648
2649 static struct ring_buffer_event *
2650 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2651                   struct rb_event_info *info)
2652 {
2653         struct ring_buffer_event *event;
2654         struct buffer_page *tail_page;
2655         unsigned long tail, write;
2656
2657         /*
2658          * If the time delta since the last event is too big to
2659          * hold in the time field of the event, then we append a
2660          * TIME EXTEND event ahead of the data event.
2661          */
2662         if (unlikely(info->add_timestamp))
2663                 info->length += RB_LEN_TIME_EXTEND;
2664
2665         /* Don't let the compiler play games with cpu_buffer->tail_page */
2666         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2667         write = local_add_return(info->length, &tail_page->write);
2668
2669         /* set write to only the index of the write */
2670         write &= RB_WRITE_MASK;
2671         tail = write - info->length;
2672
2673         /*
2674          * If this is the first commit on the page, then it has the same
2675          * timestamp as the page itself.
2676          */
2677         if (!tail)
2678                 info->delta = 0;
2679
2680         /* See if we shot pass the end of this buffer page */
2681         if (unlikely(write > BUF_PAGE_SIZE))
2682                 return rb_move_tail(cpu_buffer, tail, info);
2683
2684         /* We reserved something on the buffer */
2685
2686         event = __rb_page_index(tail_page, tail);
2687         kmemcheck_annotate_bitfield(event, bitfield);
2688         rb_update_event(cpu_buffer, event, info);
2689
2690         local_inc(&tail_page->entries);
2691
2692         /*
2693          * If this is the first commit on the page, then update
2694          * its timestamp.
2695          */
2696         if (!tail)
2697                 tail_page->page->time_stamp = info->ts;
2698
2699         /* account for these added bytes */
2700         local_add(info->length, &cpu_buffer->entries_bytes);
2701
2702         return event;
2703 }
2704
2705 static __always_inline struct ring_buffer_event *
2706 rb_reserve_next_event(struct ring_buffer *buffer,
2707                       struct ring_buffer_per_cpu *cpu_buffer,
2708                       unsigned long length)
2709 {
2710         struct ring_buffer_event *event;
2711         struct rb_event_info info;
2712         int nr_loops = 0;
2713         u64 diff;
2714
2715         rb_start_commit(cpu_buffer);
2716
2717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2718         /*
2719          * Due to the ability to swap a cpu buffer from a buffer
2720          * it is possible it was swapped before we committed.
2721          * (committing stops a swap). We check for it here and
2722          * if it happened, we have to fail the write.
2723          */
2724         barrier();
2725         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2726                 local_dec(&cpu_buffer->committing);
2727                 local_dec(&cpu_buffer->commits);
2728                 return NULL;
2729         }
2730 #endif
2731
2732         info.length = rb_calculate_event_length(length);
2733  again:
2734         info.add_timestamp = 0;
2735         info.delta = 0;
2736
2737         /*
2738          * We allow for interrupts to reenter here and do a trace.
2739          * If one does, it will cause this original code to loop
2740          * back here. Even with heavy interrupts happening, this
2741          * should only happen a few times in a row. If this happens
2742          * 1000 times in a row, there must be either an interrupt
2743          * storm or we have something buggy.
2744          * Bail!
2745          */
2746         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2747                 goto out_fail;
2748
2749         info.ts = rb_time_stamp(cpu_buffer->buffer);
2750         diff = info.ts - cpu_buffer->write_stamp;
2751
2752         /* make sure this diff is calculated here */
2753         barrier();
2754
2755         /* Did the write stamp get updated already? */
2756         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2757                 info.delta = diff;
2758                 if (unlikely(test_time_stamp(info.delta)))
2759                         rb_handle_timestamp(cpu_buffer, &info);
2760         }
2761
2762         event = __rb_reserve_next(cpu_buffer, &info);
2763
2764         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2765                 if (info.add_timestamp)
2766                         info.length -= RB_LEN_TIME_EXTEND;
2767                 goto again;
2768         }
2769
2770         if (!event)
2771                 goto out_fail;
2772
2773         return event;
2774
2775  out_fail:
2776         rb_end_commit(cpu_buffer);
2777         return NULL;
2778 }
2779
2780 /**
2781  * ring_buffer_lock_reserve - reserve a part of the buffer
2782  * @buffer: the ring buffer to reserve from
2783  * @length: the length of the data to reserve (excluding event header)
2784  *
2785  * Returns a reseverd event on the ring buffer to copy directly to.
2786  * The user of this interface will need to get the body to write into
2787  * and can use the ring_buffer_event_data() interface.
2788  *
2789  * The length is the length of the data needed, not the event length
2790  * which also includes the event header.
2791  *
2792  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2793  * If NULL is returned, then nothing has been allocated or locked.
2794  */
2795 struct ring_buffer_event *
2796 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2797 {
2798         struct ring_buffer_per_cpu *cpu_buffer;
2799         struct ring_buffer_event *event;
2800         int cpu;
2801
2802         /* If we are tracing schedule, we don't want to recurse */
2803         preempt_disable_notrace();
2804
2805         if (unlikely(atomic_read(&buffer->record_disabled)))
2806                 goto out;
2807
2808         cpu = raw_smp_processor_id();
2809
2810         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2811                 goto out;
2812
2813         cpu_buffer = buffer->buffers[cpu];
2814
2815         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2816                 goto out;
2817
2818         if (unlikely(length > BUF_MAX_DATA_SIZE))
2819                 goto out;
2820
2821         if (unlikely(trace_recursive_lock(cpu_buffer)))
2822                 goto out;
2823
2824         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2825         if (!event)
2826                 goto out_unlock;
2827
2828         return event;
2829
2830  out_unlock:
2831         trace_recursive_unlock(cpu_buffer);
2832  out:
2833         preempt_enable_notrace();
2834         return NULL;
2835 }
2836 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2837
2838 /*
2839  * Decrement the entries to the page that an event is on.
2840  * The event does not even need to exist, only the pointer
2841  * to the page it is on. This may only be called before the commit
2842  * takes place.
2843  */
2844 static inline void
2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846                    struct ring_buffer_event *event)
2847 {
2848         unsigned long addr = (unsigned long)event;
2849         struct buffer_page *bpage = cpu_buffer->commit_page;
2850         struct buffer_page *start;
2851
2852         addr &= PAGE_MASK;
2853
2854         /* Do the likely case first */
2855         if (likely(bpage->page == (void *)addr)) {
2856                 local_dec(&bpage->entries);
2857                 return;
2858         }
2859
2860         /*
2861          * Because the commit page may be on the reader page we
2862          * start with the next page and check the end loop there.
2863          */
2864         rb_inc_page(cpu_buffer, &bpage);
2865         start = bpage;
2866         do {
2867                 if (bpage->page == (void *)addr) {
2868                         local_dec(&bpage->entries);
2869                         return;
2870                 }
2871                 rb_inc_page(cpu_buffer, &bpage);
2872         } while (bpage != start);
2873
2874         /* commit not part of this buffer?? */
2875         RB_WARN_ON(cpu_buffer, 1);
2876 }
2877
2878 /**
2879  * ring_buffer_commit_discard - discard an event that has not been committed
2880  * @buffer: the ring buffer
2881  * @event: non committed event to discard
2882  *
2883  * Sometimes an event that is in the ring buffer needs to be ignored.
2884  * This function lets the user discard an event in the ring buffer
2885  * and then that event will not be read later.
2886  *
2887  * This function only works if it is called before the the item has been
2888  * committed. It will try to free the event from the ring buffer
2889  * if another event has not been added behind it.
2890  *
2891  * If another event has been added behind it, it will set the event
2892  * up as discarded, and perform the commit.
2893  *
2894  * If this function is called, do not call ring_buffer_unlock_commit on
2895  * the event.
2896  */
2897 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898                                 struct ring_buffer_event *event)
2899 {
2900         struct ring_buffer_per_cpu *cpu_buffer;
2901         int cpu;
2902
2903         /* The event is discarded regardless */
2904         rb_event_discard(event);
2905
2906         cpu = smp_processor_id();
2907         cpu_buffer = buffer->buffers[cpu];
2908
2909         /*
2910          * This must only be called if the event has not been
2911          * committed yet. Thus we can assume that preemption
2912          * is still disabled.
2913          */
2914         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916         rb_decrement_entry(cpu_buffer, event);
2917         if (rb_try_to_discard(cpu_buffer, event))
2918                 goto out;
2919
2920         /*
2921          * The commit is still visible by the reader, so we
2922          * must still update the timestamp.
2923          */
2924         rb_update_write_stamp(cpu_buffer, event);
2925  out:
2926         rb_end_commit(cpu_buffer);
2927
2928         trace_recursive_unlock(cpu_buffer);
2929
2930         preempt_enable_notrace();
2931
2932 }
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935 /**
2936  * ring_buffer_write - write data to the buffer without reserving
2937  * @buffer: The ring buffer to write to.
2938  * @length: The length of the data being written (excluding the event header)
2939  * @data: The data to write to the buffer.
2940  *
2941  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942  * one function. If you already have the data to write to the buffer, it
2943  * may be easier to simply call this function.
2944  *
2945  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946  * and not the length of the event which would hold the header.
2947  */
2948 int ring_buffer_write(struct ring_buffer *buffer,
2949                       unsigned long length,
2950                       void *data)
2951 {
2952         struct ring_buffer_per_cpu *cpu_buffer;
2953         struct ring_buffer_event *event;
2954         void *body;
2955         int ret = -EBUSY;
2956         int cpu;
2957
2958         preempt_disable_notrace();
2959
2960         if (atomic_read(&buffer->record_disabled))
2961                 goto out;
2962
2963         cpu = raw_smp_processor_id();
2964
2965         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966                 goto out;
2967
2968         cpu_buffer = buffer->buffers[cpu];
2969
2970         if (atomic_read(&cpu_buffer->record_disabled))
2971                 goto out;
2972
2973         if (length > BUF_MAX_DATA_SIZE)
2974                 goto out;
2975
2976         if (unlikely(trace_recursive_lock(cpu_buffer)))
2977                 goto out;
2978
2979         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980         if (!event)
2981                 goto out_unlock;
2982
2983         body = rb_event_data(event);
2984
2985         memcpy(body, data, length);
2986
2987         rb_commit(cpu_buffer, event);
2988
2989         rb_wakeups(buffer, cpu_buffer);
2990
2991         ret = 0;
2992
2993  out_unlock:
2994         trace_recursive_unlock(cpu_buffer);
2995
2996  out:
2997         preempt_enable_notrace();
2998
2999         return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_write);
3002
3003 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3004 {
3005         struct buffer_page *reader = cpu_buffer->reader_page;
3006         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3007         struct buffer_page *commit = cpu_buffer->commit_page;
3008
3009         /* In case of error, head will be NULL */
3010         if (unlikely(!head))
3011                 return true;
3012
3013         return reader->read == rb_page_commit(reader) &&
3014                 (commit == reader ||
3015                  (commit == head &&
3016                   head->read == rb_page_commit(commit)));
3017 }
3018
3019 /**
3020  * ring_buffer_record_disable - stop all writes into the buffer
3021  * @buffer: The ring buffer to stop writes to.
3022  *
3023  * This prevents all writes to the buffer. Any attempt to write
3024  * to the buffer after this will fail and return NULL.
3025  *
3026  * The caller should call synchronize_sched() after this.
3027  */
3028 void ring_buffer_record_disable(struct ring_buffer *buffer)
3029 {
3030         atomic_inc(&buffer->record_disabled);
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3033
3034 /**
3035  * ring_buffer_record_enable - enable writes to the buffer
3036  * @buffer: The ring buffer to enable writes
3037  *
3038  * Note, multiple disables will need the same number of enables
3039  * to truly enable the writing (much like preempt_disable).
3040  */
3041 void ring_buffer_record_enable(struct ring_buffer *buffer)
3042 {
3043         atomic_dec(&buffer->record_disabled);
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3046
3047 /**
3048  * ring_buffer_record_off - stop all writes into the buffer
3049  * @buffer: The ring buffer to stop writes to.
3050  *
3051  * This prevents all writes to the buffer. Any attempt to write
3052  * to the buffer after this will fail and return NULL.
3053  *
3054  * This is different than ring_buffer_record_disable() as
3055  * it works like an on/off switch, where as the disable() version
3056  * must be paired with a enable().
3057  */
3058 void ring_buffer_record_off(struct ring_buffer *buffer)
3059 {
3060         unsigned int rd;
3061         unsigned int new_rd;
3062
3063         do {
3064                 rd = atomic_read(&buffer->record_disabled);
3065                 new_rd = rd | RB_BUFFER_OFF;
3066         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3067 }
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3069
3070 /**
3071  * ring_buffer_record_on - restart writes into the buffer
3072  * @buffer: The ring buffer to start writes to.
3073  *
3074  * This enables all writes to the buffer that was disabled by
3075  * ring_buffer_record_off().
3076  *
3077  * This is different than ring_buffer_record_enable() as
3078  * it works like an on/off switch, where as the enable() version
3079  * must be paired with a disable().
3080  */
3081 void ring_buffer_record_on(struct ring_buffer *buffer)
3082 {
3083         unsigned int rd;
3084         unsigned int new_rd;
3085
3086         do {
3087                 rd = atomic_read(&buffer->record_disabled);
3088                 new_rd = rd & ~RB_BUFFER_OFF;
3089         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3090 }
3091 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3092
3093 /**
3094  * ring_buffer_record_is_on - return true if the ring buffer can write
3095  * @buffer: The ring buffer to see if write is enabled
3096  *
3097  * Returns true if the ring buffer is in a state that it accepts writes.
3098  */
3099 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3100 {
3101         return !atomic_read(&buffer->record_disabled);
3102 }
3103
3104 /**
3105  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3106  * @buffer: The ring buffer to stop writes to.
3107  * @cpu: The CPU buffer to stop
3108  *
3109  * This prevents all writes to the buffer. Any attempt to write
3110  * to the buffer after this will fail and return NULL.
3111  *
3112  * The caller should call synchronize_sched() after this.
3113  */
3114 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3115 {
3116         struct ring_buffer_per_cpu *cpu_buffer;
3117
3118         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3119                 return;
3120
3121         cpu_buffer = buffer->buffers[cpu];
3122         atomic_inc(&cpu_buffer->record_disabled);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3125
3126 /**
3127  * ring_buffer_record_enable_cpu - enable writes to the buffer
3128  * @buffer: The ring buffer to enable writes
3129  * @cpu: The CPU to enable.
3130  *
3131  * Note, multiple disables will need the same number of enables
3132  * to truly enable the writing (much like preempt_disable).
3133  */
3134 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136         struct ring_buffer_per_cpu *cpu_buffer;
3137
3138         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139                 return;
3140
3141         cpu_buffer = buffer->buffers[cpu];
3142         atomic_dec(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3145
3146 /*
3147  * The total entries in the ring buffer is the running counter
3148  * of entries entered into the ring buffer, minus the sum of
3149  * the entries read from the ring buffer and the number of
3150  * entries that were overwritten.
3151  */
3152 static inline unsigned long
3153 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3154 {
3155         return local_read(&cpu_buffer->entries) -
3156                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3157 }
3158
3159 /**
3160  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3161  * @buffer: The ring buffer
3162  * @cpu: The per CPU buffer to read from.
3163  */
3164 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3165 {
3166         unsigned long flags;
3167         struct ring_buffer_per_cpu *cpu_buffer;
3168         struct buffer_page *bpage;
3169         u64 ret = 0;
3170
3171         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172                 return 0;
3173
3174         cpu_buffer = buffer->buffers[cpu];
3175         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3176         /*
3177          * if the tail is on reader_page, oldest time stamp is on the reader
3178          * page
3179          */
3180         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3181                 bpage = cpu_buffer->reader_page;
3182         else
3183                 bpage = rb_set_head_page(cpu_buffer);
3184         if (bpage)
3185                 ret = bpage->page->time_stamp;
3186         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3187
3188         return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3191
3192 /**
3193  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3194  * @buffer: The ring buffer
3195  * @cpu: The per CPU buffer to read from.
3196  */
3197 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3198 {
3199         struct ring_buffer_per_cpu *cpu_buffer;
3200         unsigned long ret;
3201
3202         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203                 return 0;
3204
3205         cpu_buffer = buffer->buffers[cpu];
3206         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3207
3208         return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3211
3212 /**
3213  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3214  * @buffer: The ring buffer
3215  * @cpu: The per CPU buffer to get the entries from.
3216  */
3217 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219         struct ring_buffer_per_cpu *cpu_buffer;
3220
3221         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222                 return 0;
3223
3224         cpu_buffer = buffer->buffers[cpu];
3225
3226         return rb_num_of_entries(cpu_buffer);
3227 }
3228 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3229
3230 /**
3231  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3232  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3233  * @buffer: The ring buffer
3234  * @cpu: The per CPU buffer to get the number of overruns from
3235  */
3236 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238         struct ring_buffer_per_cpu *cpu_buffer;
3239         unsigned long ret;
3240
3241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242                 return 0;
3243
3244         cpu_buffer = buffer->buffers[cpu];
3245         ret = local_read(&cpu_buffer->overrun);
3246
3247         return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3250
3251 /**
3252  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3253  * commits failing due to the buffer wrapping around while there are uncommitted
3254  * events, such as during an interrupt storm.
3255  * @buffer: The ring buffer
3256  * @cpu: The per CPU buffer to get the number of overruns from
3257  */
3258 unsigned long
3259 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261         struct ring_buffer_per_cpu *cpu_buffer;
3262         unsigned long ret;
3263
3264         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265                 return 0;
3266
3267         cpu_buffer = buffer->buffers[cpu];
3268         ret = local_read(&cpu_buffer->commit_overrun);
3269
3270         return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3273
3274 /**
3275  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3276  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3277  * @buffer: The ring buffer
3278  * @cpu: The per CPU buffer to get the number of overruns from
3279  */
3280 unsigned long
3281 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283         struct ring_buffer_per_cpu *cpu_buffer;
3284         unsigned long ret;
3285
3286         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287                 return 0;
3288
3289         cpu_buffer = buffer->buffers[cpu];
3290         ret = local_read(&cpu_buffer->dropped_events);
3291
3292         return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3295
3296 /**
3297  * ring_buffer_read_events_cpu - get the number of events successfully read
3298  * @buffer: The ring buffer
3299  * @cpu: The per CPU buffer to get the number of events read
3300  */
3301 unsigned long
3302 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3303 {
3304         struct ring_buffer_per_cpu *cpu_buffer;
3305
3306         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307                 return 0;
3308
3309         cpu_buffer = buffer->buffers[cpu];
3310         return cpu_buffer->read;
3311 }
3312 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3313
3314 /**
3315  * ring_buffer_entries - get the number of entries in a buffer
3316  * @buffer: The ring buffer
3317  *
3318  * Returns the total number of entries in the ring buffer
3319  * (all CPU entries)
3320  */
3321 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3322 {
3323         struct ring_buffer_per_cpu *cpu_buffer;
3324         unsigned long entries = 0;
3325         int cpu;
3326
3327         /* if you care about this being correct, lock the buffer */
3328         for_each_buffer_cpu(buffer, cpu) {
3329                 cpu_buffer = buffer->buffers[cpu];
3330                 entries += rb_num_of_entries(cpu_buffer);
3331         }
3332
3333         return entries;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3336
3337 /**
3338  * ring_buffer_overruns - get the number of overruns in buffer
3339  * @buffer: The ring buffer
3340  *
3341  * Returns the total number of overruns in the ring buffer
3342  * (all CPU entries)
3343  */
3344 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3345 {
3346         struct ring_buffer_per_cpu *cpu_buffer;
3347         unsigned long overruns = 0;
3348         int cpu;
3349
3350         /* if you care about this being correct, lock the buffer */
3351         for_each_buffer_cpu(buffer, cpu) {
3352                 cpu_buffer = buffer->buffers[cpu];
3353                 overruns += local_read(&cpu_buffer->overrun);
3354         }
3355
3356         return overruns;
3357 }
3358 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3359
3360 static void rb_iter_reset(struct ring_buffer_iter *iter)
3361 {
3362         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3363
3364         /* Iterator usage is expected to have record disabled */
3365         iter->head_page = cpu_buffer->reader_page;
3366         iter->head = cpu_buffer->reader_page->read;
3367
3368         iter->cache_reader_page = iter->head_page;
3369         iter->cache_read = cpu_buffer->read;
3370
3371         if (iter->head)
3372                 iter->read_stamp = cpu_buffer->read_stamp;
3373         else
3374                 iter->read_stamp = iter->head_page->page->time_stamp;
3375 }
3376
3377 /**
3378  * ring_buffer_iter_reset - reset an iterator
3379  * @iter: The iterator to reset
3380  *
3381  * Resets the iterator, so that it will start from the beginning
3382  * again.
3383  */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386         struct ring_buffer_per_cpu *cpu_buffer;
3387         unsigned long flags;
3388
3389         if (!iter)
3390                 return;
3391
3392         cpu_buffer = iter->cpu_buffer;
3393
3394         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395         rb_iter_reset(iter);
3396         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400 /**
3401  * ring_buffer_iter_empty - check if an iterator has no more to read
3402  * @iter: The iterator to check
3403  */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406         struct ring_buffer_per_cpu *cpu_buffer;
3407
3408         cpu_buffer = iter->cpu_buffer;
3409
3410         return iter->head_page == cpu_buffer->commit_page &&
3411                 iter->head == rb_commit_index(cpu_buffer);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414
3415 static void
3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417                      struct ring_buffer_event *event)
3418 {
3419         u64 delta;
3420
3421         switch (event->type_len) {
3422         case RINGBUF_TYPE_PADDING:
3423                 return;
3424
3425         case RINGBUF_TYPE_TIME_EXTEND:
3426                 delta = event->array[0];
3427                 delta <<= TS_SHIFT;
3428                 delta += event->time_delta;
3429                 cpu_buffer->read_stamp += delta;
3430                 return;
3431
3432         case RINGBUF_TYPE_TIME_STAMP:
3433                 /* FIXME: not implemented */
3434                 return;
3435
3436         case RINGBUF_TYPE_DATA:
3437                 cpu_buffer->read_stamp += event->time_delta;
3438                 return;
3439
3440         default:
3441                 BUG();
3442         }
3443         return;
3444 }
3445
3446 static void
3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448                           struct ring_buffer_event *event)
3449 {
3450         u64 delta;
3451
3452         switch (event->type_len) {
3453         case RINGBUF_TYPE_PADDING:
3454                 return;
3455
3456         case RINGBUF_TYPE_TIME_EXTEND:
3457                 delta = event->array[0];
3458                 delta <<= TS_SHIFT;
3459                 delta += event->time_delta;
3460                 iter->read_stamp += delta;
3461                 return;
3462
3463         case RINGBUF_TYPE_TIME_STAMP:
3464                 /* FIXME: not implemented */
3465                 return;
3466
3467         case RINGBUF_TYPE_DATA:
3468                 iter->read_stamp += event->time_delta;
3469                 return;
3470
3471         default:
3472                 BUG();
3473         }
3474         return;
3475 }
3476
3477 static struct buffer_page *
3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479 {
3480         struct buffer_page *reader = NULL;
3481         unsigned long overwrite;
3482         unsigned long flags;
3483         int nr_loops = 0;
3484         int ret;
3485
3486         local_irq_save(flags);
3487         arch_spin_lock(&cpu_buffer->lock);
3488
3489  again:
3490         /*
3491          * This should normally only loop twice. But because the
3492          * start of the reader inserts an empty page, it causes
3493          * a case where we will loop three times. There should be no
3494          * reason to loop four times (that I know of).
3495          */
3496         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497                 reader = NULL;
3498                 goto out;
3499         }
3500
3501         reader = cpu_buffer->reader_page;
3502
3503         /* If there's more to read, return this page */
3504         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505                 goto out;
3506
3507         /* Never should we have an index greater than the size */
3508         if (RB_WARN_ON(cpu_buffer,
3509                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3510                 goto out;
3511
3512         /* check if we caught up to the tail */
3513         reader = NULL;
3514         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515                 goto out;
3516
3517         /* Don't bother swapping if the ring buffer is empty */
3518         if (rb_num_of_entries(cpu_buffer) == 0)
3519                 goto out;
3520
3521         /*
3522          * Reset the reader page to size zero.
3523          */
3524         local_set(&cpu_buffer->reader_page->write, 0);
3525         local_set(&cpu_buffer->reader_page->entries, 0);
3526         local_set(&cpu_buffer->reader_page->page->commit, 0);
3527         cpu_buffer->reader_page->real_end = 0;
3528
3529  spin:
3530         /*
3531          * Splice the empty reader page into the list around the head.
3532          */
3533         reader = rb_set_head_page(cpu_buffer);
3534         if (!reader)
3535                 goto out;
3536         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537         cpu_buffer->reader_page->list.prev = reader->list.prev;
3538
3539         /*
3540          * cpu_buffer->pages just needs to point to the buffer, it
3541          *  has no specific buffer page to point to. Lets move it out
3542          *  of our way so we don't accidentally swap it.
3543          */
3544         cpu_buffer->pages = reader->list.prev;
3545
3546         /* The reader page will be pointing to the new head */
3547         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548
3549         /*
3550          * We want to make sure we read the overruns after we set up our
3551          * pointers to the next object. The writer side does a
3552          * cmpxchg to cross pages which acts as the mb on the writer
3553          * side. Note, the reader will constantly fail the swap
3554          * while the writer is updating the pointers, so this
3555          * guarantees that the overwrite recorded here is the one we
3556          * want to compare with the last_overrun.
3557          */
3558         smp_mb();
3559         overwrite = local_read(&(cpu_buffer->overrun));
3560
3561         /*
3562          * Here's the tricky part.
3563          *
3564          * We need to move the pointer past the header page.
3565          * But we can only do that if a writer is not currently
3566          * moving it. The page before the header page has the
3567          * flag bit '1' set if it is pointing to the page we want.
3568          * but if the writer is in the process of moving it
3569          * than it will be '2' or already moved '0'.
3570          */
3571
3572         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573
3574         /*
3575          * If we did not convert it, then we must try again.
3576          */
3577         if (!ret)
3578                 goto spin;
3579
3580         /*
3581          * Yeah! We succeeded in replacing the page.
3582          *
3583          * Now make the new head point back to the reader page.
3584          */
3585         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587
3588         /* Finally update the reader page to the new head */
3589         cpu_buffer->reader_page = reader;
3590         cpu_buffer->reader_page->read = 0;
3591
3592         if (overwrite != cpu_buffer->last_overrun) {
3593                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594                 cpu_buffer->last_overrun = overwrite;
3595         }
3596
3597         goto again;
3598
3599  out:
3600         /* Update the read_stamp on the first event */
3601         if (reader && reader->read == 0)
3602                 cpu_buffer->read_stamp = reader->page->time_stamp;
3603
3604         arch_spin_unlock(&cpu_buffer->lock);
3605         local_irq_restore(flags);
3606
3607         return reader;
3608 }
3609
3610 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3611 {
3612         struct ring_buffer_event *event;
3613         struct buffer_page *reader;
3614         unsigned length;
3615
3616         reader = rb_get_reader_page(cpu_buffer);
3617
3618         /* This function should not be called when buffer is empty */
3619         if (RB_WARN_ON(cpu_buffer, !reader))
3620                 return;
3621
3622         event = rb_reader_event(cpu_buffer);
3623
3624         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3625                 cpu_buffer->read++;
3626
3627         rb_update_read_stamp(cpu_buffer, event);
3628
3629         length = rb_event_length(event);
3630         cpu_buffer->reader_page->read += length;
3631 }
3632
3633 static void rb_advance_iter(struct ring_buffer_iter *iter)
3634 {
3635         struct ring_buffer_per_cpu *cpu_buffer;
3636         struct ring_buffer_event *event;
3637         unsigned length;
3638
3639         cpu_buffer = iter->cpu_buffer;
3640
3641         /*
3642          * Check if we are at the end of the buffer.
3643          */
3644         if (iter->head >= rb_page_size(iter->head_page)) {
3645                 /* discarded commits can make the page empty */
3646                 if (iter->head_page == cpu_buffer->commit_page)
3647                         return;
3648                 rb_inc_iter(iter);
3649                 return;
3650         }
3651
3652         event = rb_iter_head_event(iter);
3653
3654         length = rb_event_length(event);
3655
3656         /*
3657          * This should not be called to advance the header if we are
3658          * at the tail of the buffer.
3659          */
3660         if (RB_WARN_ON(cpu_buffer,
3661                        (iter->head_page == cpu_buffer->commit_page) &&
3662                        (iter->head + length > rb_commit_index(cpu_buffer))))
3663                 return;
3664
3665         rb_update_iter_read_stamp(iter, event);
3666
3667         iter->head += length;
3668
3669         /* check for end of page padding */
3670         if ((iter->head >= rb_page_size(iter->head_page)) &&
3671             (iter->head_page != cpu_buffer->commit_page))
3672                 rb_inc_iter(iter);
3673 }
3674
3675 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3676 {
3677         return cpu_buffer->lost_events;
3678 }
3679
3680 static struct ring_buffer_event *
3681 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3682                unsigned long *lost_events)
3683 {
3684         struct ring_buffer_event *event;
3685         struct buffer_page *reader;
3686         int nr_loops = 0;
3687
3688  again:
3689         /*
3690          * We repeat when a time extend is encountered.
3691          * Since the time extend is always attached to a data event,
3692          * we should never loop more than once.
3693          * (We never hit the following condition more than twice).
3694          */
3695         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3696                 return NULL;
3697
3698         reader = rb_get_reader_page(cpu_buffer);
3699         if (!reader)
3700                 return NULL;
3701
3702         event = rb_reader_event(cpu_buffer);
3703
3704         switch (event->type_len) {
3705         case RINGBUF_TYPE_PADDING:
3706                 if (rb_null_event(event))
3707                         RB_WARN_ON(cpu_buffer, 1);
3708                 /*
3709                  * Because the writer could be discarding every
3710                  * event it creates (which would probably be bad)
3711                  * if we were to go back to "again" then we may never
3712                  * catch up, and will trigger the warn on, or lock
3713                  * the box. Return the padding, and we will release
3714                  * the current locks, and try again.
3715                  */
3716                 return event;
3717
3718         case RINGBUF_TYPE_TIME_EXTEND:
3719                 /* Internal data, OK to advance */
3720                 rb_advance_reader(cpu_buffer);
3721                 goto again;
3722
3723         case RINGBUF_TYPE_TIME_STAMP:
3724                 /* FIXME: not implemented */
3725                 rb_advance_reader(cpu_buffer);
3726                 goto again;
3727
3728         case RINGBUF_TYPE_DATA:
3729                 if (ts) {
3730                         *ts = cpu_buffer->read_stamp + event->time_delta;
3731                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3732                                                          cpu_buffer->cpu, ts);
3733                 }
3734                 if (lost_events)
3735                         *lost_events = rb_lost_events(cpu_buffer);
3736                 return event;
3737
3738         default:
3739                 BUG();
3740         }
3741
3742         return NULL;
3743 }
3744 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3745
3746 static struct ring_buffer_event *
3747 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3748 {
3749         struct ring_buffer *buffer;
3750         struct ring_buffer_per_cpu *cpu_buffer;
3751         struct ring_buffer_event *event;
3752         int nr_loops = 0;
3753
3754         cpu_buffer = iter->cpu_buffer;
3755         buffer = cpu_buffer->buffer;
3756
3757         /*
3758          * Check if someone performed a consuming read to
3759          * the buffer. A consuming read invalidates the iterator
3760          * and we need to reset the iterator in this case.
3761          */
3762         if (unlikely(iter->cache_read != cpu_buffer->read ||
3763                      iter->cache_reader_page != cpu_buffer->reader_page))
3764                 rb_iter_reset(iter);
3765
3766  again:
3767         if (ring_buffer_iter_empty(iter))
3768                 return NULL;
3769
3770         /*
3771          * We repeat when a time extend is encountered or we hit
3772          * the end of the page. Since the time extend is always attached
3773          * to a data event, we should never loop more than three times.
3774          * Once for going to next page, once on time extend, and
3775          * finally once to get the event.
3776          * (We never hit the following condition more than thrice).
3777          */
3778         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3779                 return NULL;
3780
3781         if (rb_per_cpu_empty(cpu_buffer))
3782                 return NULL;
3783
3784         if (iter->head >= rb_page_size(iter->head_page)) {
3785                 rb_inc_iter(iter);
3786                 goto again;
3787         }
3788
3789         event = rb_iter_head_event(iter);
3790
3791         switch (event->type_len) {
3792         case RINGBUF_TYPE_PADDING:
3793                 if (rb_null_event(event)) {
3794                         rb_inc_iter(iter);
3795                         goto again;
3796                 }
3797                 rb_advance_iter(iter);
3798                 return event;
3799
3800         case RINGBUF_TYPE_TIME_EXTEND:
3801                 /* Internal data, OK to advance */
3802                 rb_advance_iter(iter);
3803                 goto again;
3804
3805         case RINGBUF_TYPE_TIME_STAMP:
3806                 /* FIXME: not implemented */
3807                 rb_advance_iter(iter);
3808                 goto again;
3809
3810         case RINGBUF_TYPE_DATA:
3811                 if (ts) {
3812                         *ts = iter->read_stamp + event->time_delta;
3813                         ring_buffer_normalize_time_stamp(buffer,
3814                                                          cpu_buffer->cpu, ts);
3815                 }
3816                 return event;
3817
3818         default:
3819                 BUG();
3820         }
3821
3822         return NULL;
3823 }
3824 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3825
3826 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3827 {
3828         if (likely(!in_nmi())) {
3829                 raw_spin_lock(&cpu_buffer->reader_lock);
3830                 return true;
3831         }
3832
3833         /*
3834          * If an NMI die dumps out the content of the ring buffer
3835          * trylock must be used to prevent a deadlock if the NMI
3836          * preempted a task that holds the ring buffer locks. If
3837          * we get the lock then all is fine, if not, then continue
3838          * to do the read, but this can corrupt the ring buffer,
3839          * so it must be permanently disabled from future writes.
3840          * Reading from NMI is a oneshot deal.
3841          */
3842         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3843                 return true;
3844
3845         /* Continue without locking, but disable the ring buffer */
3846         atomic_inc(&cpu_buffer->record_disabled);
3847         return false;
3848 }
3849
3850 static inline void
3851 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3852 {
3853         if (likely(locked))
3854                 raw_spin_unlock(&cpu_buffer->reader_lock);
3855         return;
3856 }
3857
3858 /**
3859  * ring_buffer_peek - peek at the next event to be read
3860  * @buffer: The ring buffer to read
3861  * @cpu: The cpu to peak at
3862  * @ts: The timestamp counter of this event.
3863  * @lost_events: a variable to store if events were lost (may be NULL)
3864  *
3865  * This will return the event that will be read next, but does
3866  * not consume the data.
3867  */
3868 struct ring_buffer_event *
3869 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3870                  unsigned long *lost_events)
3871 {
3872         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3873         struct ring_buffer_event *event;
3874         unsigned long flags;
3875         bool dolock;
3876
3877         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3878                 return NULL;
3879
3880  again:
3881         local_irq_save(flags);
3882         dolock = rb_reader_lock(cpu_buffer);
3883         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3884         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885                 rb_advance_reader(cpu_buffer);
3886         rb_reader_unlock(cpu_buffer, dolock);
3887         local_irq_restore(flags);
3888
3889         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3890                 goto again;
3891
3892         return event;
3893 }
3894
3895 /**
3896  * ring_buffer_iter_peek - peek at the next event to be read
3897  * @iter: The ring buffer iterator
3898  * @ts: The timestamp counter of this event.
3899  *
3900  * This will return the event that will be read next, but does
3901  * not increment the iterator.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3905 {
3906         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3907         struct ring_buffer_event *event;
3908         unsigned long flags;
3909
3910  again:
3911         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3912         event = rb_iter_peek(iter, ts);
3913         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914
3915         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916                 goto again;
3917
3918         return event;
3919 }
3920
3921 /**
3922  * ring_buffer_consume - return an event and consume it
3923  * @buffer: The ring buffer to get the next event from
3924  * @cpu: the cpu to read the buffer from
3925  * @ts: a variable to store the timestamp (may be NULL)
3926  * @lost_events: a variable to store if events were lost (may be NULL)
3927  *
3928  * Returns the next event in the ring buffer, and that event is consumed.
3929  * Meaning, that sequential reads will keep returning a different event,
3930  * and eventually empty the ring buffer if the producer is slower.
3931  */
3932 struct ring_buffer_event *
3933 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3934                     unsigned long *lost_events)
3935 {
3936         struct ring_buffer_per_cpu *cpu_buffer;
3937         struct ring_buffer_event *event = NULL;
3938         unsigned long flags;
3939         bool dolock;
3940
3941  again:
3942         /* might be called in atomic */
3943         preempt_disable();
3944
3945         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3946                 goto out;
3947
3948         cpu_buffer = buffer->buffers[cpu];
3949         local_irq_save(flags);
3950         dolock = rb_reader_lock(cpu_buffer);
3951
3952         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3953         if (event) {
3954                 cpu_buffer->lost_events = 0;
3955                 rb_advance_reader(cpu_buffer);
3956         }
3957
3958         rb_reader_unlock(cpu_buffer, dolock);
3959         local_irq_restore(flags);
3960
3961  out:
3962         preempt_enable();
3963
3964         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3965                 goto again;
3966
3967         return event;
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3970
3971 /**
3972  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3973  * @buffer: The ring buffer to read from
3974  * @cpu: The cpu buffer to iterate over
3975  *
3976  * This performs the initial preparations necessary to iterate
3977  * through the buffer.  Memory is allocated, buffer recording
3978  * is disabled, and the iterator pointer is returned to the caller.
3979  *
3980  * Disabling buffer recordng prevents the reading from being
3981  * corrupted. This is not a consuming read, so a producer is not
3982  * expected.
3983  *
3984  * After a sequence of ring_buffer_read_prepare calls, the user is
3985  * expected to make at least one call to ring_buffer_read_prepare_sync.
3986  * Afterwards, ring_buffer_read_start is invoked to get things going
3987  * for real.
3988  *
3989  * This overall must be paired with ring_buffer_read_finish.
3990  */
3991 struct ring_buffer_iter *
3992 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3993 {
3994         struct ring_buffer_per_cpu *cpu_buffer;
3995         struct ring_buffer_iter *iter;
3996
3997         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3998                 return NULL;
3999
4000         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4001         if (!iter)
4002                 return NULL;
4003
4004         cpu_buffer = buffer->buffers[cpu];
4005
4006         iter->cpu_buffer = cpu_buffer;
4007
4008         atomic_inc(&buffer->resize_disabled);
4009         atomic_inc(&cpu_buffer->record_disabled);
4010
4011         return iter;
4012 }
4013 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4014
4015 /**
4016  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4017  *
4018  * All previously invoked ring_buffer_read_prepare calls to prepare
4019  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4020  * calls on those iterators are allowed.
4021  */
4022 void
4023 ring_buffer_read_prepare_sync(void)
4024 {
4025         synchronize_sched();
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4028
4029 /**
4030  * ring_buffer_read_start - start a non consuming read of the buffer
4031  * @iter: The iterator returned by ring_buffer_read_prepare
4032  *
4033  * This finalizes the startup of an iteration through the buffer.
4034  * The iterator comes from a call to ring_buffer_read_prepare and
4035  * an intervening ring_buffer_read_prepare_sync must have been
4036  * performed.
4037  *
4038  * Must be paired with ring_buffer_read_finish.
4039  */
4040 void
4041 ring_buffer_read_start(struct ring_buffer_iter *iter)
4042 {
4043         struct ring_buffer_per_cpu *cpu_buffer;
4044         unsigned long flags;
4045
4046         if (!iter)
4047                 return;
4048
4049         cpu_buffer = iter->cpu_buffer;
4050
4051         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4052         arch_spin_lock(&cpu_buffer->lock);
4053         rb_iter_reset(iter);
4054         arch_spin_unlock(&cpu_buffer->lock);
4055         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056 }
4057 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4058
4059 /**
4060  * ring_buffer_read_finish - finish reading the iterator of the buffer
4061  * @iter: The iterator retrieved by ring_buffer_start
4062  *
4063  * This re-enables the recording to the buffer, and frees the
4064  * iterator.
4065  */
4066 void
4067 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4068 {
4069         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4070         unsigned long flags;
4071
4072         /*
4073          * Ring buffer is disabled from recording, here's a good place
4074          * to check the integrity of the ring buffer.
4075          * Must prevent readers from trying to read, as the check
4076          * clears the HEAD page and readers require it.
4077          */
4078         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079         rb_check_pages(cpu_buffer);
4080         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081
4082         atomic_dec(&cpu_buffer->record_disabled);
4083         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4084         kfree(iter);
4085 }
4086 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4087
4088 /**
4089  * ring_buffer_read - read the next item in the ring buffer by the iterator
4090  * @iter: The ring buffer iterator
4091  * @ts: The time stamp of the event read.
4092  *
4093  * This reads the next event in the ring buffer and increments the iterator.
4094  */
4095 struct ring_buffer_event *
4096 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4097 {
4098         struct ring_buffer_event *event;
4099         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4100         unsigned long flags;
4101
4102         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4103  again:
4104         event = rb_iter_peek(iter, ts);
4105         if (!event)
4106                 goto out;
4107
4108         if (event->type_len == RINGBUF_TYPE_PADDING)
4109                 goto again;
4110
4111         rb_advance_iter(iter);
4112  out:
4113         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4114
4115         return event;
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_read);
4118
4119 /**
4120  * ring_buffer_size - return the size of the ring buffer (in bytes)
4121  * @buffer: The ring buffer.
4122  */
4123 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4124 {
4125         /*
4126          * Earlier, this method returned
4127          *      BUF_PAGE_SIZE * buffer->nr_pages
4128          * Since the nr_pages field is now removed, we have converted this to
4129          * return the per cpu buffer value.
4130          */
4131         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4132                 return 0;
4133
4134         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_size);
4137
4138 static void
4139 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4140 {
4141         rb_head_page_deactivate(cpu_buffer);
4142
4143         cpu_buffer->head_page
4144                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4145         local_set(&cpu_buffer->head_page->write, 0);
4146         local_set(&cpu_buffer->head_page->entries, 0);
4147         local_set(&cpu_buffer->head_page->page->commit, 0);
4148
4149         cpu_buffer->head_page->read = 0;
4150
4151         cpu_buffer->tail_page = cpu_buffer->head_page;
4152         cpu_buffer->commit_page = cpu_buffer->head_page;
4153
4154         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4155         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4156         local_set(&cpu_buffer->reader_page->write, 0);
4157         local_set(&cpu_buffer->reader_page->entries, 0);
4158         local_set(&cpu_buffer->reader_page->page->commit, 0);
4159         cpu_buffer->reader_page->read = 0;
4160
4161         local_set(&cpu_buffer->entries_bytes, 0);
4162         local_set(&cpu_buffer->overrun, 0);
4163         local_set(&cpu_buffer->commit_overrun, 0);
4164         local_set(&cpu_buffer->dropped_events, 0);
4165         local_set(&cpu_buffer->entries, 0);
4166         local_set(&cpu_buffer->committing, 0);
4167         local_set(&cpu_buffer->commits, 0);
4168         cpu_buffer->read = 0;
4169         cpu_buffer->read_bytes = 0;
4170
4171         cpu_buffer->write_stamp = 0;
4172         cpu_buffer->read_stamp = 0;
4173
4174         cpu_buffer->lost_events = 0;
4175         cpu_buffer->last_overrun = 0;
4176
4177         rb_head_page_activate(cpu_buffer);
4178 }
4179
4180 /**
4181  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4182  * @buffer: The ring buffer to reset a per cpu buffer of
4183  * @cpu: The CPU buffer to be reset
4184  */
4185 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4186 {
4187         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4188         unsigned long flags;
4189
4190         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191                 return;
4192
4193         atomic_inc(&buffer->resize_disabled);
4194         atomic_inc(&cpu_buffer->record_disabled);
4195
4196         /* Make sure all commits have finished */
4197         synchronize_sched();
4198
4199         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4200
4201         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4202                 goto out;
4203
4204         arch_spin_lock(&cpu_buffer->lock);
4205
4206         rb_reset_cpu(cpu_buffer);
4207
4208         arch_spin_unlock(&cpu_buffer->lock);
4209
4210  out:
4211         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4212
4213         atomic_dec(&cpu_buffer->record_disabled);
4214         atomic_dec(&buffer->resize_disabled);
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4217
4218 /**
4219  * ring_buffer_reset - reset a ring buffer
4220  * @buffer: The ring buffer to reset all cpu buffers
4221  */
4222 void ring_buffer_reset(struct ring_buffer *buffer)
4223 {
4224         int cpu;
4225
4226         for_each_buffer_cpu(buffer, cpu)
4227                 ring_buffer_reset_cpu(buffer, cpu);
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4230
4231 /**
4232  * rind_buffer_empty - is the ring buffer empty?
4233  * @buffer: The ring buffer to test
4234  */
4235 bool ring_buffer_empty(struct ring_buffer *buffer)
4236 {
4237         struct ring_buffer_per_cpu *cpu_buffer;
4238         unsigned long flags;
4239         bool dolock;
4240         int cpu;
4241         int ret;
4242
4243         /* yes this is racy, but if you don't like the race, lock the buffer */
4244         for_each_buffer_cpu(buffer, cpu) {
4245                 cpu_buffer = buffer->buffers[cpu];
4246                 local_irq_save(flags);
4247                 dolock = rb_reader_lock(cpu_buffer);
4248                 ret = rb_per_cpu_empty(cpu_buffer);
4249                 rb_reader_unlock(cpu_buffer, dolock);
4250                 local_irq_restore(flags);
4251
4252                 if (!ret)
4253                         return false;
4254         }
4255
4256         return true;
4257 }
4258 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4259
4260 /**
4261  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4262  * @buffer: The ring buffer
4263  * @cpu: The CPU buffer to test
4264  */
4265 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268         unsigned long flags;
4269         bool dolock;
4270         int ret;
4271
4272         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4273                 return true;
4274
4275         cpu_buffer = buffer->buffers[cpu];
4276         local_irq_save(flags);
4277         dolock = rb_reader_lock(cpu_buffer);
4278         ret = rb_per_cpu_empty(cpu_buffer);
4279         rb_reader_unlock(cpu_buffer, dolock);
4280         local_irq_restore(flags);
4281
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4285
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4287 /**
4288  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289  * @buffer_a: One buffer to swap with
4290  * @buffer_b: The other buffer to swap with
4291  *
4292  * This function is useful for tracers that want to take a "snapshot"
4293  * of a CPU buffer and has another back up buffer lying around.
4294  * it is expected that the tracer handles the cpu buffer not being
4295  * used at the moment.
4296  */
4297 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4298                          struct ring_buffer *buffer_b, int cpu)
4299 {
4300         struct ring_buffer_per_cpu *cpu_buffer_a;
4301         struct ring_buffer_per_cpu *cpu_buffer_b;
4302         int ret = -EINVAL;
4303
4304         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4305             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4306                 goto out;
4307
4308         cpu_buffer_a = buffer_a->buffers[cpu];
4309         cpu_buffer_b = buffer_b->buffers[cpu];
4310
4311         /* At least make sure the two buffers are somewhat the same */
4312         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4313                 goto out;
4314
4315         ret = -EAGAIN;
4316
4317         if (atomic_read(&buffer_a->record_disabled))
4318                 goto out;
4319
4320         if (atomic_read(&buffer_b->record_disabled))
4321                 goto out;
4322
4323         if (atomic_read(&cpu_buffer_a->record_disabled))
4324                 goto out;
4325
4326         if (atomic_read(&cpu_buffer_b->record_disabled))
4327                 goto out;
4328
4329         /*
4330          * We can't do a synchronize_sched here because this
4331          * function can be called in atomic context.
4332          * Normally this will be called from the same CPU as cpu.
4333          * If not it's up to the caller to protect this.
4334          */
4335         atomic_inc(&cpu_buffer_a->record_disabled);
4336         atomic_inc(&cpu_buffer_b->record_disabled);
4337
4338         ret = -EBUSY;
4339         if (local_read(&cpu_buffer_a->committing))
4340                 goto out_dec;
4341         if (local_read(&cpu_buffer_b->committing))
4342                 goto out_dec;
4343
4344         buffer_a->buffers[cpu] = cpu_buffer_b;
4345         buffer_b->buffers[cpu] = cpu_buffer_a;
4346
4347         cpu_buffer_b->buffer = buffer_a;
4348         cpu_buffer_a->buffer = buffer_b;
4349
4350         ret = 0;
4351
4352 out_dec:
4353         atomic_dec(&cpu_buffer_a->record_disabled);
4354         atomic_dec(&cpu_buffer_b->record_disabled);
4355 out:
4356         return ret;
4357 }
4358 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4359 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4360
4361 /**
4362  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4363  * @buffer: the buffer to allocate for.
4364  * @cpu: the cpu buffer to allocate.
4365  *
4366  * This function is used in conjunction with ring_buffer_read_page.
4367  * When reading a full page from the ring buffer, these functions
4368  * can be used to speed up the process. The calling function should
4369  * allocate a few pages first with this function. Then when it
4370  * needs to get pages from the ring buffer, it passes the result
4371  * of this function into ring_buffer_read_page, which will swap
4372  * the page that was allocated, with the read page of the buffer.
4373  *
4374  * Returns:
4375  *  The page allocated, or NULL on error.
4376  */
4377 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4378 {
4379         struct buffer_data_page *bpage;
4380         struct page *page;
4381
4382         page = alloc_pages_node(cpu_to_node(cpu),
4383                                 GFP_KERNEL | __GFP_NORETRY, 0);
4384         if (!page)
4385                 return NULL;
4386
4387         bpage = page_address(page);
4388
4389         rb_init_page(bpage);
4390
4391         return bpage;
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4394
4395 /**
4396  * ring_buffer_free_read_page - free an allocated read page
4397  * @buffer: the buffer the page was allocate for
4398  * @data: the page to free
4399  *
4400  * Free a page allocated from ring_buffer_alloc_read_page.
4401  */
4402 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4403 {
4404         free_page((unsigned long)data);
4405 }
4406 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4407
4408 /**
4409  * ring_buffer_read_page - extract a page from the ring buffer
4410  * @buffer: buffer to extract from
4411  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4412  * @len: amount to extract
4413  * @cpu: the cpu of the buffer to extract
4414  * @full: should the extraction only happen when the page is full.
4415  *
4416  * This function will pull out a page from the ring buffer and consume it.
4417  * @data_page must be the address of the variable that was returned
4418  * from ring_buffer_alloc_read_page. This is because the page might be used
4419  * to swap with a page in the ring buffer.
4420  *
4421  * for example:
4422  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4423  *      if (!rpage)
4424  *              return error;
4425  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4426  *      if (ret >= 0)
4427  *              process_page(rpage, ret);
4428  *
4429  * When @full is set, the function will not return true unless
4430  * the writer is off the reader page.
4431  *
4432  * Note: it is up to the calling functions to handle sleeps and wakeups.
4433  *  The ring buffer can be used anywhere in the kernel and can not
4434  *  blindly call wake_up. The layer that uses the ring buffer must be
4435  *  responsible for that.
4436  *
4437  * Returns:
4438  *  >=0 if data has been transferred, returns the offset of consumed data.
4439  *  <0 if no data has been transferred.
4440  */
4441 int ring_buffer_read_page(struct ring_buffer *buffer,
4442                           void **data_page, size_t len, int cpu, int full)
4443 {
4444         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4445         struct ring_buffer_event *event;
4446         struct buffer_data_page *bpage;
4447         struct buffer_page *reader;
4448         unsigned long missed_events;
4449         unsigned long flags;
4450         unsigned int commit;
4451         unsigned int read;
4452         u64 save_timestamp;
4453         int ret = -1;
4454
4455         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4456                 goto out;
4457
4458         /*
4459          * If len is not big enough to hold the page header, then
4460          * we can not copy anything.
4461          */
4462         if (len <= BUF_PAGE_HDR_SIZE)
4463                 goto out;
4464
4465         len -= BUF_PAGE_HDR_SIZE;
4466
4467         if (!data_page)
4468                 goto out;
4469
4470         bpage = *data_page;
4471         if (!bpage)
4472                 goto out;
4473
4474         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4475
4476         reader = rb_get_reader_page(cpu_buffer);
4477         if (!reader)
4478                 goto out_unlock;
4479
4480         event = rb_reader_event(cpu_buffer);
4481
4482         read = reader->read;
4483         commit = rb_page_commit(reader);
4484
4485         /* Check if any events were dropped */
4486         missed_events = cpu_buffer->lost_events;
4487
4488         /*
4489          * If this page has been partially read or
4490          * if len is not big enough to read the rest of the page or
4491          * a writer is still on the page, then
4492          * we must copy the data from the page to the buffer.
4493          * Otherwise, we can simply swap the page with the one passed in.
4494          */
4495         if (read || (len < (commit - read)) ||
4496             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4497                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4498                 unsigned int rpos = read;
4499                 unsigned int pos = 0;
4500                 unsigned int size;
4501
4502                 if (full)
4503                         goto out_unlock;
4504
4505                 if (len > (commit - read))
4506                         len = (commit - read);
4507
4508                 /* Always keep the time extend and data together */
4509                 size = rb_event_ts_length(event);
4510
4511                 if (len < size)
4512                         goto out_unlock;
4513
4514                 /* save the current timestamp, since the user will need it */
4515                 save_timestamp = cpu_buffer->read_stamp;
4516
4517                 /* Need to copy one event at a time */
4518                 do {
4519                         /* We need the size of one event, because
4520                          * rb_advance_reader only advances by one event,
4521                          * whereas rb_event_ts_length may include the size of
4522                          * one or two events.
4523                          * We have already ensured there's enough space if this
4524                          * is a time extend. */
4525                         size = rb_event_length(event);
4526                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4527
4528                         len -= size;
4529
4530                         rb_advance_reader(cpu_buffer);
4531                         rpos = reader->read;
4532                         pos += size;
4533
4534                         if (rpos >= commit)
4535                                 break;
4536
4537                         event = rb_reader_event(cpu_buffer);
4538                         /* Always keep the time extend and data together */
4539                         size = rb_event_ts_length(event);
4540                 } while (len >= size);
4541
4542                 /* update bpage */
4543                 local_set(&bpage->commit, pos);
4544                 bpage->time_stamp = save_timestamp;
4545
4546                 /* we copied everything to the beginning */
4547                 read = 0;
4548         } else {
4549                 /* update the entry counter */
4550                 cpu_buffer->read += rb_page_entries(reader);
4551                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4552
4553                 /* swap the pages */
4554                 rb_init_page(bpage);
4555                 bpage = reader->page;
4556                 reader->page = *data_page;
4557                 local_set(&reader->write, 0);
4558                 local_set(&reader->entries, 0);
4559                 reader->read = 0;
4560                 *data_page = bpage;
4561
4562                 /*
4563                  * Use the real_end for the data size,
4564                  * This gives us a chance to store the lost events
4565                  * on the page.
4566                  */
4567                 if (reader->real_end)
4568                         local_set(&bpage->commit, reader->real_end);
4569         }
4570         ret = read;
4571
4572         cpu_buffer->lost_events = 0;
4573
4574         commit = local_read(&bpage->commit);
4575         /*
4576          * Set a flag in the commit field if we lost events
4577          */
4578         if (missed_events) {
4579                 /* If there is room at the end of the page to save the
4580                  * missed events, then record it there.
4581                  */
4582                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4583                         memcpy(&bpage->data[commit], &missed_events,
4584                                sizeof(missed_events));
4585                         local_add(RB_MISSED_STORED, &bpage->commit);
4586                         commit += sizeof(missed_events);
4587                 }
4588                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4589         }
4590
4591         /*
4592          * This page may be off to user land. Zero it out here.
4593          */
4594         if (commit < BUF_PAGE_SIZE)
4595                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4596
4597  out_unlock:
4598         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4599
4600  out:
4601         return ret;
4602 }
4603 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4604
4605 /*
4606  * We only allocate new buffers, never free them if the CPU goes down.
4607  * If we were to free the buffer, then the user would lose any trace that was in
4608  * the buffer.
4609  */
4610 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4611 {
4612         struct ring_buffer *buffer;
4613         long nr_pages_same;
4614         int cpu_i;
4615         unsigned long nr_pages;
4616
4617         buffer = container_of(node, struct ring_buffer, node);
4618         if (cpumask_test_cpu(cpu, buffer->cpumask))
4619                 return 0;
4620
4621         nr_pages = 0;
4622         nr_pages_same = 1;
4623         /* check if all cpu sizes are same */
4624         for_each_buffer_cpu(buffer, cpu_i) {
4625                 /* fill in the size from first enabled cpu */
4626                 if (nr_pages == 0)
4627                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4628                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4629                         nr_pages_same = 0;
4630                         break;
4631                 }
4632         }
4633         /* allocate minimum pages, user can later expand it */
4634         if (!nr_pages_same)
4635                 nr_pages = 2;
4636         buffer->buffers[cpu] =
4637                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4638         if (!buffer->buffers[cpu]) {
4639                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4640                      cpu);
4641                 return -ENOMEM;
4642         }
4643         smp_wmb();
4644         cpumask_set_cpu(cpu, buffer->cpumask);
4645         return 0;
4646 }
4647
4648 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4649 /*
4650  * This is a basic integrity check of the ring buffer.
4651  * Late in the boot cycle this test will run when configured in.
4652  * It will kick off a thread per CPU that will go into a loop
4653  * writing to the per cpu ring buffer various sizes of data.
4654  * Some of the data will be large items, some small.
4655  *
4656  * Another thread is created that goes into a spin, sending out
4657  * IPIs to the other CPUs to also write into the ring buffer.
4658  * this is to test the nesting ability of the buffer.
4659  *
4660  * Basic stats are recorded and reported. If something in the
4661  * ring buffer should happen that's not expected, a big warning
4662  * is displayed and all ring buffers are disabled.
4663  */
4664 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4665
4666 struct rb_test_data {
4667         struct ring_buffer      *buffer;
4668         unsigned long           events;
4669         unsigned long           bytes_written;
4670         unsigned long           bytes_alloc;
4671         unsigned long           bytes_dropped;
4672         unsigned long           events_nested;
4673         unsigned long           bytes_written_nested;
4674         unsigned long           bytes_alloc_nested;
4675         unsigned long           bytes_dropped_nested;
4676         int                     min_size_nested;
4677         int                     max_size_nested;
4678         int                     max_size;
4679         int                     min_size;
4680         int                     cpu;
4681         int                     cnt;
4682 };
4683
4684 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4685
4686 /* 1 meg per cpu */
4687 #define RB_TEST_BUFFER_SIZE     1048576
4688
4689 static char rb_string[] __initdata =
4690         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4691         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4692         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4693
4694 static bool rb_test_started __initdata;
4695
4696 struct rb_item {
4697         int size;
4698         char str[];
4699 };
4700
4701 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4702 {
4703         struct ring_buffer_event *event;
4704         struct rb_item *item;
4705         bool started;
4706         int event_len;
4707         int size;
4708         int len;
4709         int cnt;
4710
4711         /* Have nested writes different that what is written */
4712         cnt = data->cnt + (nested ? 27 : 0);
4713
4714         /* Multiply cnt by ~e, to make some unique increment */
4715         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4716
4717         len = size + sizeof(struct rb_item);
4718
4719         started = rb_test_started;
4720         /* read rb_test_started before checking buffer enabled */
4721         smp_rmb();
4722
4723         event = ring_buffer_lock_reserve(data->buffer, len);
4724         if (!event) {
4725                 /* Ignore dropped events before test starts. */
4726                 if (started) {
4727                         if (nested)
4728                                 data->bytes_dropped += len;
4729                         else
4730                                 data->bytes_dropped_nested += len;
4731                 }
4732                 return len;
4733         }
4734
4735         event_len = ring_buffer_event_length(event);
4736
4737         if (RB_WARN_ON(data->buffer, event_len < len))
4738                 goto out;
4739
4740         item = ring_buffer_event_data(event);
4741         item->size = size;
4742         memcpy(item->str, rb_string, size);
4743
4744         if (nested) {
4745                 data->bytes_alloc_nested += event_len;
4746                 data->bytes_written_nested += len;
4747                 data->events_nested++;
4748                 if (!data->min_size_nested || len < data->min_size_nested)
4749                         data->min_size_nested = len;
4750                 if (len > data->max_size_nested)
4751                         data->max_size_nested = len;
4752         } else {
4753                 data->bytes_alloc += event_len;
4754                 data->bytes_written += len;
4755                 data->events++;
4756                 if (!data->min_size || len < data->min_size)
4757                         data->max_size = len;
4758                 if (len > data->max_size)
4759                         data->max_size = len;
4760         }
4761
4762  out:
4763         ring_buffer_unlock_commit(data->buffer, event);
4764
4765         return 0;
4766 }
4767
4768 static __init int rb_test(void *arg)
4769 {
4770         struct rb_test_data *data = arg;
4771
4772         while (!kthread_should_stop()) {
4773                 rb_write_something(data, false);
4774                 data->cnt++;
4775
4776                 set_current_state(TASK_INTERRUPTIBLE);
4777                 /* Now sleep between a min of 100-300us and a max of 1ms */
4778                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4779         }
4780
4781         return 0;
4782 }
4783
4784 static __init void rb_ipi(void *ignore)
4785 {
4786         struct rb_test_data *data;
4787         int cpu = smp_processor_id();
4788
4789         data = &rb_data[cpu];
4790         rb_write_something(data, true);
4791 }
4792
4793 static __init int rb_hammer_test(void *arg)
4794 {
4795         while (!kthread_should_stop()) {
4796
4797                 /* Send an IPI to all cpus to write data! */
4798                 smp_call_function(rb_ipi, NULL, 1);
4799                 /* No sleep, but for non preempt, let others run */
4800                 schedule();
4801         }
4802
4803         return 0;
4804 }
4805
4806 static __init int test_ringbuffer(void)
4807 {
4808         struct task_struct *rb_hammer;
4809         struct ring_buffer *buffer;
4810         int cpu;
4811         int ret = 0;
4812
4813         pr_info("Running ring buffer tests...\n");
4814
4815         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4816         if (WARN_ON(!buffer))
4817                 return 0;
4818
4819         /* Disable buffer so that threads can't write to it yet */
4820         ring_buffer_record_off(buffer);
4821
4822         for_each_online_cpu(cpu) {
4823                 rb_data[cpu].buffer = buffer;
4824                 rb_data[cpu].cpu = cpu;
4825                 rb_data[cpu].cnt = cpu;
4826                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4827                                                  "rbtester/%d", cpu);
4828                 if (WARN_ON(!rb_threads[cpu])) {
4829                         pr_cont("FAILED\n");
4830                         ret = -1;
4831                         goto out_free;
4832                 }
4833
4834                 kthread_bind(rb_threads[cpu], cpu);
4835                 wake_up_process(rb_threads[cpu]);
4836         }
4837
4838         /* Now create the rb hammer! */
4839         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4840         if (WARN_ON(!rb_hammer)) {
4841                 pr_cont("FAILED\n");
4842                 ret = -1;
4843                 goto out_free;
4844         }
4845
4846         ring_buffer_record_on(buffer);
4847         /*
4848          * Show buffer is enabled before setting rb_test_started.
4849          * Yes there's a small race window where events could be
4850          * dropped and the thread wont catch it. But when a ring
4851          * buffer gets enabled, there will always be some kind of
4852          * delay before other CPUs see it. Thus, we don't care about
4853          * those dropped events. We care about events dropped after
4854          * the threads see that the buffer is active.
4855          */
4856         smp_wmb();
4857         rb_test_started = true;
4858
4859         set_current_state(TASK_INTERRUPTIBLE);
4860         /* Just run for 10 seconds */;
4861         schedule_timeout(10 * HZ);
4862
4863         kthread_stop(rb_hammer);
4864
4865  out_free:
4866         for_each_online_cpu(cpu) {
4867                 if (!rb_threads[cpu])
4868                         break;
4869                 kthread_stop(rb_threads[cpu]);
4870         }
4871         if (ret) {
4872                 ring_buffer_free(buffer);
4873                 return ret;
4874         }
4875
4876         /* Report! */
4877         pr_info("finished\n");
4878         for_each_online_cpu(cpu) {
4879                 struct ring_buffer_event *event;
4880                 struct rb_test_data *data = &rb_data[cpu];
4881                 struct rb_item *item;
4882                 unsigned long total_events;
4883                 unsigned long total_dropped;
4884                 unsigned long total_written;
4885                 unsigned long total_alloc;
4886                 unsigned long total_read = 0;
4887                 unsigned long total_size = 0;
4888                 unsigned long total_len = 0;
4889                 unsigned long total_lost = 0;
4890                 unsigned long lost;
4891                 int big_event_size;
4892                 int small_event_size;
4893
4894                 ret = -1;
4895
4896                 total_events = data->events + data->events_nested;
4897                 total_written = data->bytes_written + data->bytes_written_nested;
4898                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4899                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4900
4901                 big_event_size = data->max_size + data->max_size_nested;
4902                 small_event_size = data->min_size + data->min_size_nested;
4903
4904                 pr_info("CPU %d:\n", cpu);
4905                 pr_info("              events:    %ld\n", total_events);
4906                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4907                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4908                 pr_info("       written bytes:    %ld\n", total_written);
4909                 pr_info("       biggest event:    %d\n", big_event_size);
4910                 pr_info("      smallest event:    %d\n", small_event_size);
4911
4912                 if (RB_WARN_ON(buffer, total_dropped))
4913                         break;
4914
4915                 ret = 0;
4916
4917                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4918                         total_lost += lost;
4919                         item = ring_buffer_event_data(event);
4920                         total_len += ring_buffer_event_length(event);
4921                         total_size += item->size + sizeof(struct rb_item);
4922                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4923                                 pr_info("FAILED!\n");
4924                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4925                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4926                                 RB_WARN_ON(buffer, 1);
4927                                 ret = -1;
4928                                 break;
4929                         }
4930                         total_read++;
4931                 }
4932                 if (ret)
4933                         break;
4934
4935                 ret = -1;
4936
4937                 pr_info("         read events:   %ld\n", total_read);
4938                 pr_info("         lost events:   %ld\n", total_lost);
4939                 pr_info("        total events:   %ld\n", total_lost + total_read);
4940                 pr_info("  recorded len bytes:   %ld\n", total_len);
4941                 pr_info(" recorded size bytes:   %ld\n", total_size);
4942                 if (total_lost)
4943                         pr_info(" With dropped events, record len and size may not match\n"
4944                                 " alloced and written from above\n");
4945                 if (!total_lost) {
4946                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4947                                        total_size != total_written))
4948                                 break;
4949                 }
4950                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4951                         break;
4952
4953                 ret = 0;
4954         }
4955         if (!ret)
4956                 pr_info("Ring buffer PASSED!\n");
4957
4958         ring_buffer_free(buffer);
4959         return 0;
4960 }
4961
4962 late_initcall(test_ringbuffer);
4963 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */