]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/trace/ring_buffer.c
tracing: add same level recursion detection
[mv-sheeva.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "\ttype        :    2 bits\n");
32         ret = trace_seq_printf(s, "\tlen         :    3 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata        : type == %d\n",
41                                RINGBUF_TYPE_DATA);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       28
208
209 enum {
210         RB_LEN_TIME_EXTEND = 8,
211         RB_LEN_TIME_STAMP = 16,
212 };
213
214 static inline int rb_null_event(struct ring_buffer_event *event)
215 {
216         return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
217 }
218
219 static inline int rb_discarded_event(struct ring_buffer_event *event)
220 {
221         return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
222 }
223
224 static void rb_event_set_padding(struct ring_buffer_event *event)
225 {
226         event->type = RINGBUF_TYPE_PADDING;
227         event->time_delta = 0;
228 }
229
230 static unsigned
231 rb_event_data_length(struct ring_buffer_event *event)
232 {
233         unsigned length;
234
235         if (event->len)
236                 length = event->len * RB_ALIGNMENT;
237         else
238                 length = event->array[0];
239         return length + RB_EVNT_HDR_SIZE;
240 }
241
242 /* inline for ring buffer fast paths */
243 static unsigned
244 rb_event_length(struct ring_buffer_event *event)
245 {
246         switch (event->type) {
247         case RINGBUF_TYPE_PADDING:
248                 if (rb_null_event(event))
249                         /* undefined */
250                         return -1;
251                 return rb_event_data_length(event);
252
253         case RINGBUF_TYPE_TIME_EXTEND:
254                 return RB_LEN_TIME_EXTEND;
255
256         case RINGBUF_TYPE_TIME_STAMP:
257                 return RB_LEN_TIME_STAMP;
258
259         case RINGBUF_TYPE_DATA:
260                 return rb_event_data_length(event);
261         default:
262                 BUG();
263         }
264         /* not hit */
265         return 0;
266 }
267
268 /**
269  * ring_buffer_event_length - return the length of the event
270  * @event: the event to get the length of
271  */
272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274         unsigned length = rb_event_length(event);
275         if (event->type != RINGBUF_TYPE_DATA)
276                 return length;
277         length -= RB_EVNT_HDR_SIZE;
278         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280         return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288         BUG_ON(event->type != RINGBUF_TYPE_DATA);
289         /* If length is in len field, then array[0] has the data */
290         if (event->len)
291                 return (void *)&event->array[0];
292         /* Otherwise length is in array[0] and array[1] has the data */
293         return (void *)&event->array[1];
294 }
295
296 /**
297  * ring_buffer_event_data - return the data of the event
298  * @event: the event to get the data from
299  */
300 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 {
302         return rb_event_data(event);
303 }
304 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305
306 #define for_each_buffer_cpu(buffer, cpu)                \
307         for_each_cpu(cpu, buffer->cpumask)
308
309 #define TS_SHIFT        27
310 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
311 #define TS_DELTA_TEST   (~TS_MASK)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[];        /* data of buffer page */
317 };
318
319 struct buffer_page {
320         local_t          write;         /* index for next write */
321         unsigned         read;          /* index for next read */
322         struct list_head list;          /* list of free pages */
323         struct buffer_data_page *page;  /* Actual data page */
324 };
325
326 static void rb_init_page(struct buffer_data_page *bpage)
327 {
328         local_set(&bpage->commit, 0);
329 }
330
331 /**
332  * ring_buffer_page_len - the size of data on the page.
333  * @page: The page to read
334  *
335  * Returns the amount of data on the page, including buffer page header.
336  */
337 size_t ring_buffer_page_len(void *page)
338 {
339         return local_read(&((struct buffer_data_page *)page)->commit)
340                 + BUF_PAGE_HDR_SIZE;
341 }
342
343 /*
344  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
345  * this issue out.
346  */
347 static void free_buffer_page(struct buffer_page *bpage)
348 {
349         free_page((unsigned long)bpage->page);
350         kfree(bpage);
351 }
352
353 /*
354  * We need to fit the time_stamp delta into 27 bits.
355  */
356 static inline int test_time_stamp(u64 delta)
357 {
358         if (delta & TS_DELTA_TEST)
359                 return 1;
360         return 0;
361 }
362
363 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
364
365 int ring_buffer_print_page_header(struct trace_seq *s)
366 {
367         struct buffer_data_page field;
368         int ret;
369
370         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
371                                "offset:0;\tsize:%u;\n",
372                                (unsigned int)sizeof(field.time_stamp));
373
374         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
375                                "offset:%u;\tsize:%u;\n",
376                                (unsigned int)offsetof(typeof(field), commit),
377                                (unsigned int)sizeof(field.commit));
378
379         ret = trace_seq_printf(s, "\tfield: char data;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), data),
382                                (unsigned int)BUF_PAGE_SIZE);
383
384         return ret;
385 }
386
387 /*
388  * head_page == tail_page && head == tail then buffer is empty.
389  */
390 struct ring_buffer_per_cpu {
391         int                             cpu;
392         struct ring_buffer              *buffer;
393         spinlock_t                      reader_lock; /* serialize readers */
394         raw_spinlock_t                  lock;
395         struct lock_class_key           lock_key;
396         struct list_head                pages;
397         struct buffer_page              *head_page;     /* read from head */
398         struct buffer_page              *tail_page;     /* write to tail */
399         struct buffer_page              *commit_page;   /* committed pages */
400         struct buffer_page              *reader_page;
401         unsigned long                   overrun;
402         unsigned long                   entries;
403         u64                             write_stamp;
404         u64                             read_stamp;
405         atomic_t                        record_disabled;
406 };
407
408 struct ring_buffer {
409         unsigned                        pages;
410         unsigned                        flags;
411         int                             cpus;
412         atomic_t                        record_disabled;
413         cpumask_var_t                   cpumask;
414
415         struct mutex                    mutex;
416
417         struct ring_buffer_per_cpu      **buffers;
418
419 #ifdef CONFIG_HOTPLUG_CPU
420         struct notifier_block           cpu_notify;
421 #endif
422         u64                             (*clock)(void);
423 };
424
425 struct ring_buffer_iter {
426         struct ring_buffer_per_cpu      *cpu_buffer;
427         unsigned long                   head;
428         struct buffer_page              *head_page;
429         u64                             read_stamp;
430 };
431
432 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
433 #define RB_WARN_ON(buffer, cond)                                \
434         ({                                                      \
435                 int _____ret = unlikely(cond);                  \
436                 if (_____ret) {                                 \
437                         atomic_inc(&buffer->record_disabled);   \
438                         WARN_ON(1);                             \
439                 }                                               \
440                 _____ret;                                       \
441         })
442
443 /* Up this if you want to test the TIME_EXTENTS and normalization */
444 #define DEBUG_SHIFT 0
445
446 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
447 {
448         u64 time;
449
450         preempt_disable_notrace();
451         /* shift to debug/test normalization and TIME_EXTENTS */
452         time = buffer->clock() << DEBUG_SHIFT;
453         preempt_enable_no_resched_notrace();
454
455         return time;
456 }
457 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
458
459 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
460                                       int cpu, u64 *ts)
461 {
462         /* Just stupid testing the normalize function and deltas */
463         *ts >>= DEBUG_SHIFT;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
466
467 /**
468  * check_pages - integrity check of buffer pages
469  * @cpu_buffer: CPU buffer with pages to test
470  *
471  * As a safety measure we check to make sure the data pages have not
472  * been corrupted.
473  */
474 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
475 {
476         struct list_head *head = &cpu_buffer->pages;
477         struct buffer_page *bpage, *tmp;
478
479         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
480                 return -1;
481         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
482                 return -1;
483
484         list_for_each_entry_safe(bpage, tmp, head, list) {
485                 if (RB_WARN_ON(cpu_buffer,
486                                bpage->list.next->prev != &bpage->list))
487                         return -1;
488                 if (RB_WARN_ON(cpu_buffer,
489                                bpage->list.prev->next != &bpage->list))
490                         return -1;
491         }
492
493         return 0;
494 }
495
496 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
497                              unsigned nr_pages)
498 {
499         struct list_head *head = &cpu_buffer->pages;
500         struct buffer_page *bpage, *tmp;
501         unsigned long addr;
502         LIST_HEAD(pages);
503         unsigned i;
504
505         for (i = 0; i < nr_pages; i++) {
506                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
507                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
508                 if (!bpage)
509                         goto free_pages;
510                 list_add(&bpage->list, &pages);
511
512                 addr = __get_free_page(GFP_KERNEL);
513                 if (!addr)
514                         goto free_pages;
515                 bpage->page = (void *)addr;
516                 rb_init_page(bpage->page);
517         }
518
519         list_splice(&pages, head);
520
521         rb_check_pages(cpu_buffer);
522
523         return 0;
524
525  free_pages:
526         list_for_each_entry_safe(bpage, tmp, &pages, list) {
527                 list_del_init(&bpage->list);
528                 free_buffer_page(bpage);
529         }
530         return -ENOMEM;
531 }
532
533 static struct ring_buffer_per_cpu *
534 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
535 {
536         struct ring_buffer_per_cpu *cpu_buffer;
537         struct buffer_page *bpage;
538         unsigned long addr;
539         int ret;
540
541         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
542                                   GFP_KERNEL, cpu_to_node(cpu));
543         if (!cpu_buffer)
544                 return NULL;
545
546         cpu_buffer->cpu = cpu;
547         cpu_buffer->buffer = buffer;
548         spin_lock_init(&cpu_buffer->reader_lock);
549         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
550         INIT_LIST_HEAD(&cpu_buffer->pages);
551
552         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
553                             GFP_KERNEL, cpu_to_node(cpu));
554         if (!bpage)
555                 goto fail_free_buffer;
556
557         cpu_buffer->reader_page = bpage;
558         addr = __get_free_page(GFP_KERNEL);
559         if (!addr)
560                 goto fail_free_reader;
561         bpage->page = (void *)addr;
562         rb_init_page(bpage->page);
563
564         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
565
566         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
567         if (ret < 0)
568                 goto fail_free_reader;
569
570         cpu_buffer->head_page
571                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
572         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
573
574         return cpu_buffer;
575
576  fail_free_reader:
577         free_buffer_page(cpu_buffer->reader_page);
578
579  fail_free_buffer:
580         kfree(cpu_buffer);
581         return NULL;
582 }
583
584 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
585 {
586         struct list_head *head = &cpu_buffer->pages;
587         struct buffer_page *bpage, *tmp;
588
589         free_buffer_page(cpu_buffer->reader_page);
590
591         list_for_each_entry_safe(bpage, tmp, head, list) {
592                 list_del_init(&bpage->list);
593                 free_buffer_page(bpage);
594         }
595         kfree(cpu_buffer);
596 }
597
598 /*
599  * Causes compile errors if the struct buffer_page gets bigger
600  * than the struct page.
601  */
602 extern int ring_buffer_page_too_big(void);
603
604 #ifdef CONFIG_HOTPLUG_CPU
605 static int rb_cpu_notify(struct notifier_block *self,
606                          unsigned long action, void *hcpu);
607 #endif
608
609 /**
610  * ring_buffer_alloc - allocate a new ring_buffer
611  * @size: the size in bytes per cpu that is needed.
612  * @flags: attributes to set for the ring buffer.
613  *
614  * Currently the only flag that is available is the RB_FL_OVERWRITE
615  * flag. This flag means that the buffer will overwrite old data
616  * when the buffer wraps. If this flag is not set, the buffer will
617  * drop data when the tail hits the head.
618  */
619 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
620 {
621         struct ring_buffer *buffer;
622         int bsize;
623         int cpu;
624
625         /* Paranoid! Optimizes out when all is well */
626         if (sizeof(struct buffer_page) > sizeof(struct page))
627                 ring_buffer_page_too_big();
628
629
630         /* keep it in its own cache line */
631         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
632                          GFP_KERNEL);
633         if (!buffer)
634                 return NULL;
635
636         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
637                 goto fail_free_buffer;
638
639         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
640         buffer->flags = flags;
641         buffer->clock = trace_clock_local;
642
643         /* need at least two pages */
644         if (buffer->pages == 1)
645                 buffer->pages++;
646
647         /*
648          * In case of non-hotplug cpu, if the ring-buffer is allocated
649          * in early initcall, it will not be notified of secondary cpus.
650          * In that off case, we need to allocate for all possible cpus.
651          */
652 #ifdef CONFIG_HOTPLUG_CPU
653         get_online_cpus();
654         cpumask_copy(buffer->cpumask, cpu_online_mask);
655 #else
656         cpumask_copy(buffer->cpumask, cpu_possible_mask);
657 #endif
658         buffer->cpus = nr_cpu_ids;
659
660         bsize = sizeof(void *) * nr_cpu_ids;
661         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
662                                   GFP_KERNEL);
663         if (!buffer->buffers)
664                 goto fail_free_cpumask;
665
666         for_each_buffer_cpu(buffer, cpu) {
667                 buffer->buffers[cpu] =
668                         rb_allocate_cpu_buffer(buffer, cpu);
669                 if (!buffer->buffers[cpu])
670                         goto fail_free_buffers;
671         }
672
673 #ifdef CONFIG_HOTPLUG_CPU
674         buffer->cpu_notify.notifier_call = rb_cpu_notify;
675         buffer->cpu_notify.priority = 0;
676         register_cpu_notifier(&buffer->cpu_notify);
677 #endif
678
679         put_online_cpus();
680         mutex_init(&buffer->mutex);
681
682         return buffer;
683
684  fail_free_buffers:
685         for_each_buffer_cpu(buffer, cpu) {
686                 if (buffer->buffers[cpu])
687                         rb_free_cpu_buffer(buffer->buffers[cpu]);
688         }
689         kfree(buffer->buffers);
690
691  fail_free_cpumask:
692         free_cpumask_var(buffer->cpumask);
693         put_online_cpus();
694
695  fail_free_buffer:
696         kfree(buffer);
697         return NULL;
698 }
699 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
700
701 /**
702  * ring_buffer_free - free a ring buffer.
703  * @buffer: the buffer to free.
704  */
705 void
706 ring_buffer_free(struct ring_buffer *buffer)
707 {
708         int cpu;
709
710         get_online_cpus();
711
712 #ifdef CONFIG_HOTPLUG_CPU
713         unregister_cpu_notifier(&buffer->cpu_notify);
714 #endif
715
716         for_each_buffer_cpu(buffer, cpu)
717                 rb_free_cpu_buffer(buffer->buffers[cpu]);
718
719         put_online_cpus();
720
721         free_cpumask_var(buffer->cpumask);
722
723         kfree(buffer);
724 }
725 EXPORT_SYMBOL_GPL(ring_buffer_free);
726
727 void ring_buffer_set_clock(struct ring_buffer *buffer,
728                            u64 (*clock)(void))
729 {
730         buffer->clock = clock;
731 }
732
733 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
734
735 static void
736 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
737 {
738         struct buffer_page *bpage;
739         struct list_head *p;
740         unsigned i;
741
742         atomic_inc(&cpu_buffer->record_disabled);
743         synchronize_sched();
744
745         for (i = 0; i < nr_pages; i++) {
746                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
747                         return;
748                 p = cpu_buffer->pages.next;
749                 bpage = list_entry(p, struct buffer_page, list);
750                 list_del_init(&bpage->list);
751                 free_buffer_page(bpage);
752         }
753         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
754                 return;
755
756         rb_reset_cpu(cpu_buffer);
757
758         rb_check_pages(cpu_buffer);
759
760         atomic_dec(&cpu_buffer->record_disabled);
761
762 }
763
764 static void
765 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
766                 struct list_head *pages, unsigned nr_pages)
767 {
768         struct buffer_page *bpage;
769         struct list_head *p;
770         unsigned i;
771
772         atomic_inc(&cpu_buffer->record_disabled);
773         synchronize_sched();
774
775         for (i = 0; i < nr_pages; i++) {
776                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
777                         return;
778                 p = pages->next;
779                 bpage = list_entry(p, struct buffer_page, list);
780                 list_del_init(&bpage->list);
781                 list_add_tail(&bpage->list, &cpu_buffer->pages);
782         }
783         rb_reset_cpu(cpu_buffer);
784
785         rb_check_pages(cpu_buffer);
786
787         atomic_dec(&cpu_buffer->record_disabled);
788 }
789
790 /**
791  * ring_buffer_resize - resize the ring buffer
792  * @buffer: the buffer to resize.
793  * @size: the new size.
794  *
795  * The tracer is responsible for making sure that the buffer is
796  * not being used while changing the size.
797  * Note: We may be able to change the above requirement by using
798  *  RCU synchronizations.
799  *
800  * Minimum size is 2 * BUF_PAGE_SIZE.
801  *
802  * Returns -1 on failure.
803  */
804 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
805 {
806         struct ring_buffer_per_cpu *cpu_buffer;
807         unsigned nr_pages, rm_pages, new_pages;
808         struct buffer_page *bpage, *tmp;
809         unsigned long buffer_size;
810         unsigned long addr;
811         LIST_HEAD(pages);
812         int i, cpu;
813
814         /*
815          * Always succeed at resizing a non-existent buffer:
816          */
817         if (!buffer)
818                 return size;
819
820         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
821         size *= BUF_PAGE_SIZE;
822         buffer_size = buffer->pages * BUF_PAGE_SIZE;
823
824         /* we need a minimum of two pages */
825         if (size < BUF_PAGE_SIZE * 2)
826                 size = BUF_PAGE_SIZE * 2;
827
828         if (size == buffer_size)
829                 return size;
830
831         mutex_lock(&buffer->mutex);
832         get_online_cpus();
833
834         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
835
836         if (size < buffer_size) {
837
838                 /* easy case, just free pages */
839                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
840                         goto out_fail;
841
842                 rm_pages = buffer->pages - nr_pages;
843
844                 for_each_buffer_cpu(buffer, cpu) {
845                         cpu_buffer = buffer->buffers[cpu];
846                         rb_remove_pages(cpu_buffer, rm_pages);
847                 }
848                 goto out;
849         }
850
851         /*
852          * This is a bit more difficult. We only want to add pages
853          * when we can allocate enough for all CPUs. We do this
854          * by allocating all the pages and storing them on a local
855          * link list. If we succeed in our allocation, then we
856          * add these pages to the cpu_buffers. Otherwise we just free
857          * them all and return -ENOMEM;
858          */
859         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
860                 goto out_fail;
861
862         new_pages = nr_pages - buffer->pages;
863
864         for_each_buffer_cpu(buffer, cpu) {
865                 for (i = 0; i < new_pages; i++) {
866                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
867                                                   cache_line_size()),
868                                             GFP_KERNEL, cpu_to_node(cpu));
869                         if (!bpage)
870                                 goto free_pages;
871                         list_add(&bpage->list, &pages);
872                         addr = __get_free_page(GFP_KERNEL);
873                         if (!addr)
874                                 goto free_pages;
875                         bpage->page = (void *)addr;
876                         rb_init_page(bpage->page);
877                 }
878         }
879
880         for_each_buffer_cpu(buffer, cpu) {
881                 cpu_buffer = buffer->buffers[cpu];
882                 rb_insert_pages(cpu_buffer, &pages, new_pages);
883         }
884
885         if (RB_WARN_ON(buffer, !list_empty(&pages)))
886                 goto out_fail;
887
888  out:
889         buffer->pages = nr_pages;
890         put_online_cpus();
891         mutex_unlock(&buffer->mutex);
892
893         return size;
894
895  free_pages:
896         list_for_each_entry_safe(bpage, tmp, &pages, list) {
897                 list_del_init(&bpage->list);
898                 free_buffer_page(bpage);
899         }
900         put_online_cpus();
901         mutex_unlock(&buffer->mutex);
902         return -ENOMEM;
903
904         /*
905          * Something went totally wrong, and we are too paranoid
906          * to even clean up the mess.
907          */
908  out_fail:
909         put_online_cpus();
910         mutex_unlock(&buffer->mutex);
911         return -1;
912 }
913 EXPORT_SYMBOL_GPL(ring_buffer_resize);
914
915 static inline void *
916 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
917 {
918         return bpage->data + index;
919 }
920
921 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
922 {
923         return bpage->page->data + index;
924 }
925
926 static inline struct ring_buffer_event *
927 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
928 {
929         return __rb_page_index(cpu_buffer->reader_page,
930                                cpu_buffer->reader_page->read);
931 }
932
933 static inline struct ring_buffer_event *
934 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
935 {
936         return __rb_page_index(cpu_buffer->head_page,
937                                cpu_buffer->head_page->read);
938 }
939
940 static inline struct ring_buffer_event *
941 rb_iter_head_event(struct ring_buffer_iter *iter)
942 {
943         return __rb_page_index(iter->head_page, iter->head);
944 }
945
946 static inline unsigned rb_page_write(struct buffer_page *bpage)
947 {
948         return local_read(&bpage->write);
949 }
950
951 static inline unsigned rb_page_commit(struct buffer_page *bpage)
952 {
953         return local_read(&bpage->page->commit);
954 }
955
956 /* Size is determined by what has been commited */
957 static inline unsigned rb_page_size(struct buffer_page *bpage)
958 {
959         return rb_page_commit(bpage);
960 }
961
962 static inline unsigned
963 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
964 {
965         return rb_page_commit(cpu_buffer->commit_page);
966 }
967
968 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
969 {
970         return rb_page_commit(cpu_buffer->head_page);
971 }
972
973 /*
974  * When the tail hits the head and the buffer is in overwrite mode,
975  * the head jumps to the next page and all content on the previous
976  * page is discarded. But before doing so, we update the overrun
977  * variable of the buffer.
978  */
979 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
980 {
981         struct ring_buffer_event *event;
982         unsigned long head;
983
984         for (head = 0; head < rb_head_size(cpu_buffer);
985              head += rb_event_length(event)) {
986
987                 event = __rb_page_index(cpu_buffer->head_page, head);
988                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
989                         return;
990                 /* Only count data entries */
991                 if (event->type != RINGBUF_TYPE_DATA)
992                         continue;
993                 cpu_buffer->overrun++;
994                 cpu_buffer->entries--;
995         }
996 }
997
998 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
999                                struct buffer_page **bpage)
1000 {
1001         struct list_head *p = (*bpage)->list.next;
1002
1003         if (p == &cpu_buffer->pages)
1004                 p = p->next;
1005
1006         *bpage = list_entry(p, struct buffer_page, list);
1007 }
1008
1009 static inline unsigned
1010 rb_event_index(struct ring_buffer_event *event)
1011 {
1012         unsigned long addr = (unsigned long)event;
1013
1014         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015 }
1016
1017 static int
1018 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019              struct ring_buffer_event *event)
1020 {
1021         unsigned long addr = (unsigned long)event;
1022         unsigned long index;
1023
1024         index = rb_event_index(event);
1025         addr &= PAGE_MASK;
1026
1027         return cpu_buffer->commit_page->page == (void *)addr &&
1028                 rb_commit_index(cpu_buffer) == index;
1029 }
1030
1031 static void
1032 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033                     struct ring_buffer_event *event)
1034 {
1035         unsigned long addr = (unsigned long)event;
1036         unsigned long index;
1037
1038         index = rb_event_index(event);
1039         addr &= PAGE_MASK;
1040
1041         while (cpu_buffer->commit_page->page != (void *)addr) {
1042                 if (RB_WARN_ON(cpu_buffer,
1043                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1044                         return;
1045                 cpu_buffer->commit_page->page->commit =
1046                         cpu_buffer->commit_page->write;
1047                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1048                 cpu_buffer->write_stamp =
1049                         cpu_buffer->commit_page->page->time_stamp;
1050         }
1051
1052         /* Now set the commit to the event's index */
1053         local_set(&cpu_buffer->commit_page->page->commit, index);
1054 }
1055
1056 static void
1057 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1058 {
1059         /*
1060          * We only race with interrupts and NMIs on this CPU.
1061          * If we own the commit event, then we can commit
1062          * all others that interrupted us, since the interruptions
1063          * are in stack format (they finish before they come
1064          * back to us). This allows us to do a simple loop to
1065          * assign the commit to the tail.
1066          */
1067  again:
1068         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1069                 cpu_buffer->commit_page->page->commit =
1070                         cpu_buffer->commit_page->write;
1071                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1072                 cpu_buffer->write_stamp =
1073                         cpu_buffer->commit_page->page->time_stamp;
1074                 /* add barrier to keep gcc from optimizing too much */
1075                 barrier();
1076         }
1077         while (rb_commit_index(cpu_buffer) !=
1078                rb_page_write(cpu_buffer->commit_page)) {
1079                 cpu_buffer->commit_page->page->commit =
1080                         cpu_buffer->commit_page->write;
1081                 barrier();
1082         }
1083
1084         /* again, keep gcc from optimizing */
1085         barrier();
1086
1087         /*
1088          * If an interrupt came in just after the first while loop
1089          * and pushed the tail page forward, we will be left with
1090          * a dangling commit that will never go forward.
1091          */
1092         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093                 goto again;
1094 }
1095
1096 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1099         cpu_buffer->reader_page->read = 0;
1100 }
1101
1102 static void rb_inc_iter(struct ring_buffer_iter *iter)
1103 {
1104         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106         /*
1107          * The iterator could be on the reader page (it starts there).
1108          * But the head could have moved, since the reader was
1109          * found. Check for this case and assign the iterator
1110          * to the head page instead of next.
1111          */
1112         if (iter->head_page == cpu_buffer->reader_page)
1113                 iter->head_page = cpu_buffer->head_page;
1114         else
1115                 rb_inc_page(cpu_buffer, &iter->head_page);
1116
1117         iter->read_stamp = iter->head_page->page->time_stamp;
1118         iter->head = 0;
1119 }
1120
1121 /**
1122  * ring_buffer_update_event - update event type and data
1123  * @event: the even to update
1124  * @type: the type of event
1125  * @length: the size of the event field in the ring buffer
1126  *
1127  * Update the type and data fields of the event. The length
1128  * is the actual size that is written to the ring buffer,
1129  * and with this, we can determine what to place into the
1130  * data field.
1131  */
1132 static void
1133 rb_update_event(struct ring_buffer_event *event,
1134                          unsigned type, unsigned length)
1135 {
1136         event->type = type;
1137
1138         switch (type) {
1139
1140         case RINGBUF_TYPE_PADDING:
1141                 break;
1142
1143         case RINGBUF_TYPE_TIME_EXTEND:
1144                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1145                 break;
1146
1147         case RINGBUF_TYPE_TIME_STAMP:
1148                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1149                 break;
1150
1151         case RINGBUF_TYPE_DATA:
1152                 length -= RB_EVNT_HDR_SIZE;
1153                 if (length > RB_MAX_SMALL_DATA) {
1154                         event->len = 0;
1155                         event->array[0] = length;
1156                 } else
1157                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1158                 break;
1159         default:
1160                 BUG();
1161         }
1162 }
1163
1164 static unsigned rb_calculate_event_length(unsigned length)
1165 {
1166         struct ring_buffer_event event; /* Used only for sizeof array */
1167
1168         /* zero length can cause confusions */
1169         if (!length)
1170                 length = 1;
1171
1172         if (length > RB_MAX_SMALL_DATA)
1173                 length += sizeof(event.array[0]);
1174
1175         length += RB_EVNT_HDR_SIZE;
1176         length = ALIGN(length, RB_ALIGNMENT);
1177
1178         return length;
1179 }
1180
1181 static struct ring_buffer_event *
1182 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1183                   unsigned type, unsigned long length, u64 *ts)
1184 {
1185         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1186         unsigned long tail, write;
1187         struct ring_buffer *buffer = cpu_buffer->buffer;
1188         struct ring_buffer_event *event;
1189         unsigned long flags;
1190         bool lock_taken = false;
1191
1192         commit_page = cpu_buffer->commit_page;
1193         /* we just need to protect against interrupts */
1194         barrier();
1195         tail_page = cpu_buffer->tail_page;
1196         write = local_add_return(length, &tail_page->write);
1197         tail = write - length;
1198
1199         /* See if we shot pass the end of this buffer page */
1200         if (write > BUF_PAGE_SIZE) {
1201                 struct buffer_page *next_page = tail_page;
1202
1203                 local_irq_save(flags);
1204                 /*
1205                  * Since the write to the buffer is still not
1206                  * fully lockless, we must be careful with NMIs.
1207                  * The locks in the writers are taken when a write
1208                  * crosses to a new page. The locks protect against
1209                  * races with the readers (this will soon be fixed
1210                  * with a lockless solution).
1211                  *
1212                  * Because we can not protect against NMIs, and we
1213                  * want to keep traces reentrant, we need to manage
1214                  * what happens when we are in an NMI.
1215                  *
1216                  * NMIs can happen after we take the lock.
1217                  * If we are in an NMI, only take the lock
1218                  * if it is not already taken. Otherwise
1219                  * simply fail.
1220                  */
1221                 if (unlikely(in_nmi())) {
1222                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1223                                 goto out_reset;
1224                 } else
1225                         __raw_spin_lock(&cpu_buffer->lock);
1226
1227                 lock_taken = true;
1228
1229                 rb_inc_page(cpu_buffer, &next_page);
1230
1231                 head_page = cpu_buffer->head_page;
1232                 reader_page = cpu_buffer->reader_page;
1233
1234                 /* we grabbed the lock before incrementing */
1235                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1236                         goto out_reset;
1237
1238                 /*
1239                  * If for some reason, we had an interrupt storm that made
1240                  * it all the way around the buffer, bail, and warn
1241                  * about it.
1242                  */
1243                 if (unlikely(next_page == commit_page)) {
1244                         WARN_ON_ONCE(1);
1245                         goto out_reset;
1246                 }
1247
1248                 if (next_page == head_page) {
1249                         if (!(buffer->flags & RB_FL_OVERWRITE))
1250                                 goto out_reset;
1251
1252                         /* tail_page has not moved yet? */
1253                         if (tail_page == cpu_buffer->tail_page) {
1254                                 /* count overflows */
1255                                 rb_update_overflow(cpu_buffer);
1256
1257                                 rb_inc_page(cpu_buffer, &head_page);
1258                                 cpu_buffer->head_page = head_page;
1259                                 cpu_buffer->head_page->read = 0;
1260                         }
1261                 }
1262
1263                 /*
1264                  * If the tail page is still the same as what we think
1265                  * it is, then it is up to us to update the tail
1266                  * pointer.
1267                  */
1268                 if (tail_page == cpu_buffer->tail_page) {
1269                         local_set(&next_page->write, 0);
1270                         local_set(&next_page->page->commit, 0);
1271                         cpu_buffer->tail_page = next_page;
1272
1273                         /* reread the time stamp */
1274                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1275                         cpu_buffer->tail_page->page->time_stamp = *ts;
1276                 }
1277
1278                 /*
1279                  * The actual tail page has moved forward.
1280                  */
1281                 if (tail < BUF_PAGE_SIZE) {
1282                         /* Mark the rest of the page with padding */
1283                         event = __rb_page_index(tail_page, tail);
1284                         rb_event_set_padding(event);
1285                 }
1286
1287                 if (tail <= BUF_PAGE_SIZE)
1288                         /* Set the write back to the previous setting */
1289                         local_set(&tail_page->write, tail);
1290
1291                 /*
1292                  * If this was a commit entry that failed,
1293                  * increment that too
1294                  */
1295                 if (tail_page == cpu_buffer->commit_page &&
1296                     tail == rb_commit_index(cpu_buffer)) {
1297                         rb_set_commit_to_write(cpu_buffer);
1298                 }
1299
1300                 __raw_spin_unlock(&cpu_buffer->lock);
1301                 local_irq_restore(flags);
1302
1303                 /* fail and let the caller try again */
1304                 return ERR_PTR(-EAGAIN);
1305         }
1306
1307         /* We reserved something on the buffer */
1308
1309         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1310                 return NULL;
1311
1312         event = __rb_page_index(tail_page, tail);
1313         rb_update_event(event, type, length);
1314
1315         /*
1316          * If this is a commit and the tail is zero, then update
1317          * this page's time stamp.
1318          */
1319         if (!tail && rb_is_commit(cpu_buffer, event))
1320                 cpu_buffer->commit_page->page->time_stamp = *ts;
1321
1322         return event;
1323
1324  out_reset:
1325         /* reset write */
1326         if (tail <= BUF_PAGE_SIZE)
1327                 local_set(&tail_page->write, tail);
1328
1329         if (likely(lock_taken))
1330                 __raw_spin_unlock(&cpu_buffer->lock);
1331         local_irq_restore(flags);
1332         return NULL;
1333 }
1334
1335 static int
1336 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1337                   u64 *ts, u64 *delta)
1338 {
1339         struct ring_buffer_event *event;
1340         static int once;
1341         int ret;
1342
1343         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1344                 printk(KERN_WARNING "Delta way too big! %llu"
1345                        " ts=%llu write stamp = %llu\n",
1346                        (unsigned long long)*delta,
1347                        (unsigned long long)*ts,
1348                        (unsigned long long)cpu_buffer->write_stamp);
1349                 WARN_ON(1);
1350         }
1351
1352         /*
1353          * The delta is too big, we to add a
1354          * new timestamp.
1355          */
1356         event = __rb_reserve_next(cpu_buffer,
1357                                   RINGBUF_TYPE_TIME_EXTEND,
1358                                   RB_LEN_TIME_EXTEND,
1359                                   ts);
1360         if (!event)
1361                 return -EBUSY;
1362
1363         if (PTR_ERR(event) == -EAGAIN)
1364                 return -EAGAIN;
1365
1366         /* Only a commited time event can update the write stamp */
1367         if (rb_is_commit(cpu_buffer, event)) {
1368                 /*
1369                  * If this is the first on the page, then we need to
1370                  * update the page itself, and just put in a zero.
1371                  */
1372                 if (rb_event_index(event)) {
1373                         event->time_delta = *delta & TS_MASK;
1374                         event->array[0] = *delta >> TS_SHIFT;
1375                 } else {
1376                         cpu_buffer->commit_page->page->time_stamp = *ts;
1377                         event->time_delta = 0;
1378                         event->array[0] = 0;
1379                 }
1380                 cpu_buffer->write_stamp = *ts;
1381                 /* let the caller know this was the commit */
1382                 ret = 1;
1383         } else {
1384                 /* Darn, this is just wasted space */
1385                 event->time_delta = 0;
1386                 event->array[0] = 0;
1387                 ret = 0;
1388         }
1389
1390         *delta = 0;
1391
1392         return ret;
1393 }
1394
1395 static struct ring_buffer_event *
1396 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1397                       unsigned type, unsigned long length)
1398 {
1399         struct ring_buffer_event *event;
1400         u64 ts, delta;
1401         int commit = 0;
1402         int nr_loops = 0;
1403
1404  again:
1405         /*
1406          * We allow for interrupts to reenter here and do a trace.
1407          * If one does, it will cause this original code to loop
1408          * back here. Even with heavy interrupts happening, this
1409          * should only happen a few times in a row. If this happens
1410          * 1000 times in a row, there must be either an interrupt
1411          * storm or we have something buggy.
1412          * Bail!
1413          */
1414         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1415                 return NULL;
1416
1417         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1418
1419         /*
1420          * Only the first commit can update the timestamp.
1421          * Yes there is a race here. If an interrupt comes in
1422          * just after the conditional and it traces too, then it
1423          * will also check the deltas. More than one timestamp may
1424          * also be made. But only the entry that did the actual
1425          * commit will be something other than zero.
1426          */
1427         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1428             rb_page_write(cpu_buffer->tail_page) ==
1429             rb_commit_index(cpu_buffer)) {
1430
1431                 delta = ts - cpu_buffer->write_stamp;
1432
1433                 /* make sure this delta is calculated here */
1434                 barrier();
1435
1436                 /* Did the write stamp get updated already? */
1437                 if (unlikely(ts < cpu_buffer->write_stamp))
1438                         delta = 0;
1439
1440                 if (test_time_stamp(delta)) {
1441
1442                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1443
1444                         if (commit == -EBUSY)
1445                                 return NULL;
1446
1447                         if (commit == -EAGAIN)
1448                                 goto again;
1449
1450                         RB_WARN_ON(cpu_buffer, commit < 0);
1451                 }
1452         } else
1453                 /* Non commits have zero deltas */
1454                 delta = 0;
1455
1456         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1457         if (PTR_ERR(event) == -EAGAIN)
1458                 goto again;
1459
1460         if (!event) {
1461                 if (unlikely(commit))
1462                         /*
1463                          * Ouch! We needed a timestamp and it was commited. But
1464                          * we didn't get our event reserved.
1465                          */
1466                         rb_set_commit_to_write(cpu_buffer);
1467                 return NULL;
1468         }
1469
1470         /*
1471          * If the timestamp was commited, make the commit our entry
1472          * now so that we will update it when needed.
1473          */
1474         if (commit)
1475                 rb_set_commit_event(cpu_buffer, event);
1476         else if (!rb_is_commit(cpu_buffer, event))
1477                 delta = 0;
1478
1479         event->time_delta = delta;
1480
1481         return event;
1482 }
1483
1484 static int trace_irq_level(void)
1485 {
1486         return hardirq_count() + softirq_count() + in_nmi();
1487 }
1488
1489 static int trace_recursive_lock(void)
1490 {
1491         int level;
1492
1493         level = trace_irq_level();
1494
1495         if (unlikely(current->trace_recursion & (1 << level))) {
1496                 /* Disable all tracing before we do anything else */
1497                 tracing_off_permanent();
1498                 WARN_ON_ONCE(1);
1499                 return -1;
1500         }
1501
1502         current->trace_recursion |= 1 << level;
1503
1504         return 0;
1505 }
1506
1507 static void trace_recursive_unlock(void)
1508 {
1509         int level;
1510
1511         level = trace_irq_level();
1512
1513         WARN_ON_ONCE(!current->trace_recursion & (1 << level));
1514
1515         current->trace_recursion &= ~(1 << level);
1516 }
1517
1518 static DEFINE_PER_CPU(int, rb_need_resched);
1519
1520 /**
1521  * ring_buffer_lock_reserve - reserve a part of the buffer
1522  * @buffer: the ring buffer to reserve from
1523  * @length: the length of the data to reserve (excluding event header)
1524  *
1525  * Returns a reseverd event on the ring buffer to copy directly to.
1526  * The user of this interface will need to get the body to write into
1527  * and can use the ring_buffer_event_data() interface.
1528  *
1529  * The length is the length of the data needed, not the event length
1530  * which also includes the event header.
1531  *
1532  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1533  * If NULL is returned, then nothing has been allocated or locked.
1534  */
1535 struct ring_buffer_event *
1536 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1537 {
1538         struct ring_buffer_per_cpu *cpu_buffer;
1539         struct ring_buffer_event *event;
1540         int cpu, resched;
1541
1542         if (ring_buffer_flags != RB_BUFFERS_ON)
1543                 return NULL;
1544
1545         if (atomic_read(&buffer->record_disabled))
1546                 return NULL;
1547
1548         /* If we are tracing schedule, we don't want to recurse */
1549         resched = ftrace_preempt_disable();
1550
1551         if (trace_recursive_lock())
1552                 goto out_nocheck;
1553
1554         cpu = raw_smp_processor_id();
1555
1556         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1557                 goto out;
1558
1559         cpu_buffer = buffer->buffers[cpu];
1560
1561         if (atomic_read(&cpu_buffer->record_disabled))
1562                 goto out;
1563
1564         length = rb_calculate_event_length(length);
1565         if (length > BUF_PAGE_SIZE)
1566                 goto out;
1567
1568         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1569         if (!event)
1570                 goto out;
1571
1572         /*
1573          * Need to store resched state on this cpu.
1574          * Only the first needs to.
1575          */
1576
1577         if (preempt_count() == 1)
1578                 per_cpu(rb_need_resched, cpu) = resched;
1579
1580         return event;
1581
1582  out:
1583         trace_recursive_unlock();
1584
1585  out_nocheck:
1586         ftrace_preempt_enable(resched);
1587         return NULL;
1588 }
1589 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1590
1591 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1592                       struct ring_buffer_event *event)
1593 {
1594         cpu_buffer->entries++;
1595
1596         /* Only process further if we own the commit */
1597         if (!rb_is_commit(cpu_buffer, event))
1598                 return;
1599
1600         cpu_buffer->write_stamp += event->time_delta;
1601
1602         rb_set_commit_to_write(cpu_buffer);
1603 }
1604
1605 /**
1606  * ring_buffer_unlock_commit - commit a reserved
1607  * @buffer: The buffer to commit to
1608  * @event: The event pointer to commit.
1609  *
1610  * This commits the data to the ring buffer, and releases any locks held.
1611  *
1612  * Must be paired with ring_buffer_lock_reserve.
1613  */
1614 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1615                               struct ring_buffer_event *event)
1616 {
1617         struct ring_buffer_per_cpu *cpu_buffer;
1618         int cpu = raw_smp_processor_id();
1619
1620         cpu_buffer = buffer->buffers[cpu];
1621
1622         rb_commit(cpu_buffer, event);
1623
1624         trace_recursive_unlock();
1625
1626         /*
1627          * Only the last preempt count needs to restore preemption.
1628          */
1629         if (preempt_count() == 1)
1630                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1631         else
1632                 preempt_enable_no_resched_notrace();
1633
1634         return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1637
1638 /**
1639  * ring_buffer_event_discard - discard any event in the ring buffer
1640  * @event: the event to discard
1641  *
1642  * Sometimes a event that is in the ring buffer needs to be ignored.
1643  * This function lets the user discard an event in the ring buffer
1644  * and then that event will not be read later.
1645  *
1646  * Note, it is up to the user to be careful with this, and protect
1647  * against races. If the user discards an event that has been consumed
1648  * it is possible that it could corrupt the ring buffer.
1649  */
1650 void ring_buffer_event_discard(struct ring_buffer_event *event)
1651 {
1652         event->type = RINGBUF_TYPE_PADDING;
1653         /* time delta must be non zero */
1654         if (!event->time_delta)
1655                 event->time_delta = 1;
1656 }
1657 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1658
1659 /**
1660  * ring_buffer_commit_discard - discard an event that has not been committed
1661  * @buffer: the ring buffer
1662  * @event: non committed event to discard
1663  *
1664  * This is similar to ring_buffer_event_discard but must only be
1665  * performed on an event that has not been committed yet. The difference
1666  * is that this will also try to free the event from the ring buffer
1667  * if another event has not been added behind it.
1668  *
1669  * If another event has been added behind it, it will set the event
1670  * up as discarded, and perform the commit.
1671  *
1672  * If this function is called, do not call ring_buffer_unlock_commit on
1673  * the event.
1674  */
1675 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1676                                 struct ring_buffer_event *event)
1677 {
1678         struct ring_buffer_per_cpu *cpu_buffer;
1679         unsigned long new_index, old_index;
1680         struct buffer_page *bpage;
1681         unsigned long index;
1682         unsigned long addr;
1683         int cpu;
1684
1685         /* The event is discarded regardless */
1686         ring_buffer_event_discard(event);
1687
1688         /*
1689          * This must only be called if the event has not been
1690          * committed yet. Thus we can assume that preemption
1691          * is still disabled.
1692          */
1693         RB_WARN_ON(buffer, !preempt_count());
1694
1695         cpu = smp_processor_id();
1696         cpu_buffer = buffer->buffers[cpu];
1697
1698         new_index = rb_event_index(event);
1699         old_index = new_index + rb_event_length(event);
1700         addr = (unsigned long)event;
1701         addr &= PAGE_MASK;
1702
1703         bpage = cpu_buffer->tail_page;
1704
1705         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1706                 /*
1707                  * This is on the tail page. It is possible that
1708                  * a write could come in and move the tail page
1709                  * and write to the next page. That is fine
1710                  * because we just shorten what is on this page.
1711                  */
1712                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1713                 if (index == old_index)
1714                         goto out;
1715         }
1716
1717         /*
1718          * The commit is still visible by the reader, so we
1719          * must increment entries.
1720          */
1721         cpu_buffer->entries++;
1722  out:
1723         /*
1724          * If a write came in and pushed the tail page
1725          * we still need to update the commit pointer
1726          * if we were the commit.
1727          */
1728         if (rb_is_commit(cpu_buffer, event))
1729                 rb_set_commit_to_write(cpu_buffer);
1730
1731         /*
1732          * Only the last preempt count needs to restore preemption.
1733          */
1734         if (preempt_count() == 1)
1735                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1736         else
1737                 preempt_enable_no_resched_notrace();
1738
1739 }
1740 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1741
1742 /**
1743  * ring_buffer_write - write data to the buffer without reserving
1744  * @buffer: The ring buffer to write to.
1745  * @length: The length of the data being written (excluding the event header)
1746  * @data: The data to write to the buffer.
1747  *
1748  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1749  * one function. If you already have the data to write to the buffer, it
1750  * may be easier to simply call this function.
1751  *
1752  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1753  * and not the length of the event which would hold the header.
1754  */
1755 int ring_buffer_write(struct ring_buffer *buffer,
1756                         unsigned long length,
1757                         void *data)
1758 {
1759         struct ring_buffer_per_cpu *cpu_buffer;
1760         struct ring_buffer_event *event;
1761         unsigned long event_length;
1762         void *body;
1763         int ret = -EBUSY;
1764         int cpu, resched;
1765
1766         if (ring_buffer_flags != RB_BUFFERS_ON)
1767                 return -EBUSY;
1768
1769         if (atomic_read(&buffer->record_disabled))
1770                 return -EBUSY;
1771
1772         resched = ftrace_preempt_disable();
1773
1774         cpu = raw_smp_processor_id();
1775
1776         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1777                 goto out;
1778
1779         cpu_buffer = buffer->buffers[cpu];
1780
1781         if (atomic_read(&cpu_buffer->record_disabled))
1782                 goto out;
1783
1784         event_length = rb_calculate_event_length(length);
1785         event = rb_reserve_next_event(cpu_buffer,
1786                                       RINGBUF_TYPE_DATA, event_length);
1787         if (!event)
1788                 goto out;
1789
1790         body = rb_event_data(event);
1791
1792         memcpy(body, data, length);
1793
1794         rb_commit(cpu_buffer, event);
1795
1796         ret = 0;
1797  out:
1798         ftrace_preempt_enable(resched);
1799
1800         return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(ring_buffer_write);
1803
1804 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1805 {
1806         struct buffer_page *reader = cpu_buffer->reader_page;
1807         struct buffer_page *head = cpu_buffer->head_page;
1808         struct buffer_page *commit = cpu_buffer->commit_page;
1809
1810         return reader->read == rb_page_commit(reader) &&
1811                 (commit == reader ||
1812                  (commit == head &&
1813                   head->read == rb_page_commit(commit)));
1814 }
1815
1816 /**
1817  * ring_buffer_record_disable - stop all writes into the buffer
1818  * @buffer: The ring buffer to stop writes to.
1819  *
1820  * This prevents all writes to the buffer. Any attempt to write
1821  * to the buffer after this will fail and return NULL.
1822  *
1823  * The caller should call synchronize_sched() after this.
1824  */
1825 void ring_buffer_record_disable(struct ring_buffer *buffer)
1826 {
1827         atomic_inc(&buffer->record_disabled);
1828 }
1829 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1830
1831 /**
1832  * ring_buffer_record_enable - enable writes to the buffer
1833  * @buffer: The ring buffer to enable writes
1834  *
1835  * Note, multiple disables will need the same number of enables
1836  * to truely enable the writing (much like preempt_disable).
1837  */
1838 void ring_buffer_record_enable(struct ring_buffer *buffer)
1839 {
1840         atomic_dec(&buffer->record_disabled);
1841 }
1842 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1843
1844 /**
1845  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1846  * @buffer: The ring buffer to stop writes to.
1847  * @cpu: The CPU buffer to stop
1848  *
1849  * This prevents all writes to the buffer. Any attempt to write
1850  * to the buffer after this will fail and return NULL.
1851  *
1852  * The caller should call synchronize_sched() after this.
1853  */
1854 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1855 {
1856         struct ring_buffer_per_cpu *cpu_buffer;
1857
1858         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1859                 return;
1860
1861         cpu_buffer = buffer->buffers[cpu];
1862         atomic_inc(&cpu_buffer->record_disabled);
1863 }
1864 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1865
1866 /**
1867  * ring_buffer_record_enable_cpu - enable writes to the buffer
1868  * @buffer: The ring buffer to enable writes
1869  * @cpu: The CPU to enable.
1870  *
1871  * Note, multiple disables will need the same number of enables
1872  * to truely enable the writing (much like preempt_disable).
1873  */
1874 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1875 {
1876         struct ring_buffer_per_cpu *cpu_buffer;
1877
1878         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1879                 return;
1880
1881         cpu_buffer = buffer->buffers[cpu];
1882         atomic_dec(&cpu_buffer->record_disabled);
1883 }
1884 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1885
1886 /**
1887  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1888  * @buffer: The ring buffer
1889  * @cpu: The per CPU buffer to get the entries from.
1890  */
1891 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1892 {
1893         struct ring_buffer_per_cpu *cpu_buffer;
1894         unsigned long ret;
1895
1896         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1897                 return 0;
1898
1899         cpu_buffer = buffer->buffers[cpu];
1900         ret = cpu_buffer->entries;
1901
1902         return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1905
1906 /**
1907  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1908  * @buffer: The ring buffer
1909  * @cpu: The per CPU buffer to get the number of overruns from
1910  */
1911 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1912 {
1913         struct ring_buffer_per_cpu *cpu_buffer;
1914         unsigned long ret;
1915
1916         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1917                 return 0;
1918
1919         cpu_buffer = buffer->buffers[cpu];
1920         ret = cpu_buffer->overrun;
1921
1922         return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1925
1926 /**
1927  * ring_buffer_entries - get the number of entries in a buffer
1928  * @buffer: The ring buffer
1929  *
1930  * Returns the total number of entries in the ring buffer
1931  * (all CPU entries)
1932  */
1933 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1934 {
1935         struct ring_buffer_per_cpu *cpu_buffer;
1936         unsigned long entries = 0;
1937         int cpu;
1938
1939         /* if you care about this being correct, lock the buffer */
1940         for_each_buffer_cpu(buffer, cpu) {
1941                 cpu_buffer = buffer->buffers[cpu];
1942                 entries += cpu_buffer->entries;
1943         }
1944
1945         return entries;
1946 }
1947 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1948
1949 /**
1950  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1951  * @buffer: The ring buffer
1952  *
1953  * Returns the total number of overruns in the ring buffer
1954  * (all CPU entries)
1955  */
1956 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1957 {
1958         struct ring_buffer_per_cpu *cpu_buffer;
1959         unsigned long overruns = 0;
1960         int cpu;
1961
1962         /* if you care about this being correct, lock the buffer */
1963         for_each_buffer_cpu(buffer, cpu) {
1964                 cpu_buffer = buffer->buffers[cpu];
1965                 overruns += cpu_buffer->overrun;
1966         }
1967
1968         return overruns;
1969 }
1970 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1971
1972 static void rb_iter_reset(struct ring_buffer_iter *iter)
1973 {
1974         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1975
1976         /* Iterator usage is expected to have record disabled */
1977         if (list_empty(&cpu_buffer->reader_page->list)) {
1978                 iter->head_page = cpu_buffer->head_page;
1979                 iter->head = cpu_buffer->head_page->read;
1980         } else {
1981                 iter->head_page = cpu_buffer->reader_page;
1982                 iter->head = cpu_buffer->reader_page->read;
1983         }
1984         if (iter->head)
1985                 iter->read_stamp = cpu_buffer->read_stamp;
1986         else
1987                 iter->read_stamp = iter->head_page->page->time_stamp;
1988 }
1989
1990 /**
1991  * ring_buffer_iter_reset - reset an iterator
1992  * @iter: The iterator to reset
1993  *
1994  * Resets the iterator, so that it will start from the beginning
1995  * again.
1996  */
1997 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1998 {
1999         struct ring_buffer_per_cpu *cpu_buffer;
2000         unsigned long flags;
2001
2002         if (!iter)
2003                 return;
2004
2005         cpu_buffer = iter->cpu_buffer;
2006
2007         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2008         rb_iter_reset(iter);
2009         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2010 }
2011 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2012
2013 /**
2014  * ring_buffer_iter_empty - check if an iterator has no more to read
2015  * @iter: The iterator to check
2016  */
2017 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2018 {
2019         struct ring_buffer_per_cpu *cpu_buffer;
2020
2021         cpu_buffer = iter->cpu_buffer;
2022
2023         return iter->head_page == cpu_buffer->commit_page &&
2024                 iter->head == rb_commit_index(cpu_buffer);
2025 }
2026 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2027
2028 static void
2029 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2030                      struct ring_buffer_event *event)
2031 {
2032         u64 delta;
2033
2034         switch (event->type) {
2035         case RINGBUF_TYPE_PADDING:
2036                 return;
2037
2038         case RINGBUF_TYPE_TIME_EXTEND:
2039                 delta = event->array[0];
2040                 delta <<= TS_SHIFT;
2041                 delta += event->time_delta;
2042                 cpu_buffer->read_stamp += delta;
2043                 return;
2044
2045         case RINGBUF_TYPE_TIME_STAMP:
2046                 /* FIXME: not implemented */
2047                 return;
2048
2049         case RINGBUF_TYPE_DATA:
2050                 cpu_buffer->read_stamp += event->time_delta;
2051                 return;
2052
2053         default:
2054                 BUG();
2055         }
2056         return;
2057 }
2058
2059 static void
2060 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2061                           struct ring_buffer_event *event)
2062 {
2063         u64 delta;
2064
2065         switch (event->type) {
2066         case RINGBUF_TYPE_PADDING:
2067                 return;
2068
2069         case RINGBUF_TYPE_TIME_EXTEND:
2070                 delta = event->array[0];
2071                 delta <<= TS_SHIFT;
2072                 delta += event->time_delta;
2073                 iter->read_stamp += delta;
2074                 return;
2075
2076         case RINGBUF_TYPE_TIME_STAMP:
2077                 /* FIXME: not implemented */
2078                 return;
2079
2080         case RINGBUF_TYPE_DATA:
2081                 iter->read_stamp += event->time_delta;
2082                 return;
2083
2084         default:
2085                 BUG();
2086         }
2087         return;
2088 }
2089
2090 static struct buffer_page *
2091 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2092 {
2093         struct buffer_page *reader = NULL;
2094         unsigned long flags;
2095         int nr_loops = 0;
2096
2097         local_irq_save(flags);
2098         __raw_spin_lock(&cpu_buffer->lock);
2099
2100  again:
2101         /*
2102          * This should normally only loop twice. But because the
2103          * start of the reader inserts an empty page, it causes
2104          * a case where we will loop three times. There should be no
2105          * reason to loop four times (that I know of).
2106          */
2107         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2108                 reader = NULL;
2109                 goto out;
2110         }
2111
2112         reader = cpu_buffer->reader_page;
2113
2114         /* If there's more to read, return this page */
2115         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2116                 goto out;
2117
2118         /* Never should we have an index greater than the size */
2119         if (RB_WARN_ON(cpu_buffer,
2120                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2121                 goto out;
2122
2123         /* check if we caught up to the tail */
2124         reader = NULL;
2125         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2126                 goto out;
2127
2128         /*
2129          * Splice the empty reader page into the list around the head.
2130          * Reset the reader page to size zero.
2131          */
2132
2133         reader = cpu_buffer->head_page;
2134         cpu_buffer->reader_page->list.next = reader->list.next;
2135         cpu_buffer->reader_page->list.prev = reader->list.prev;
2136
2137         local_set(&cpu_buffer->reader_page->write, 0);
2138         local_set(&cpu_buffer->reader_page->page->commit, 0);
2139
2140         /* Make the reader page now replace the head */
2141         reader->list.prev->next = &cpu_buffer->reader_page->list;
2142         reader->list.next->prev = &cpu_buffer->reader_page->list;
2143
2144         /*
2145          * If the tail is on the reader, then we must set the head
2146          * to the inserted page, otherwise we set it one before.
2147          */
2148         cpu_buffer->head_page = cpu_buffer->reader_page;
2149
2150         if (cpu_buffer->commit_page != reader)
2151                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2152
2153         /* Finally update the reader page to the new head */
2154         cpu_buffer->reader_page = reader;
2155         rb_reset_reader_page(cpu_buffer);
2156
2157         goto again;
2158
2159  out:
2160         __raw_spin_unlock(&cpu_buffer->lock);
2161         local_irq_restore(flags);
2162
2163         return reader;
2164 }
2165
2166 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2167 {
2168         struct ring_buffer_event *event;
2169         struct buffer_page *reader;
2170         unsigned length;
2171
2172         reader = rb_get_reader_page(cpu_buffer);
2173
2174         /* This function should not be called when buffer is empty */
2175         if (RB_WARN_ON(cpu_buffer, !reader))
2176                 return;
2177
2178         event = rb_reader_event(cpu_buffer);
2179
2180         if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event))
2181                 cpu_buffer->entries--;
2182
2183         rb_update_read_stamp(cpu_buffer, event);
2184
2185         length = rb_event_length(event);
2186         cpu_buffer->reader_page->read += length;
2187 }
2188
2189 static void rb_advance_iter(struct ring_buffer_iter *iter)
2190 {
2191         struct ring_buffer *buffer;
2192         struct ring_buffer_per_cpu *cpu_buffer;
2193         struct ring_buffer_event *event;
2194         unsigned length;
2195
2196         cpu_buffer = iter->cpu_buffer;
2197         buffer = cpu_buffer->buffer;
2198
2199         /*
2200          * Check if we are at the end of the buffer.
2201          */
2202         if (iter->head >= rb_page_size(iter->head_page)) {
2203                 if (RB_WARN_ON(buffer,
2204                                iter->head_page == cpu_buffer->commit_page))
2205                         return;
2206                 rb_inc_iter(iter);
2207                 return;
2208         }
2209
2210         event = rb_iter_head_event(iter);
2211
2212         length = rb_event_length(event);
2213
2214         /*
2215          * This should not be called to advance the header if we are
2216          * at the tail of the buffer.
2217          */
2218         if (RB_WARN_ON(cpu_buffer,
2219                        (iter->head_page == cpu_buffer->commit_page) &&
2220                        (iter->head + length > rb_commit_index(cpu_buffer))))
2221                 return;
2222
2223         rb_update_iter_read_stamp(iter, event);
2224
2225         iter->head += length;
2226
2227         /* check for end of page padding */
2228         if ((iter->head >= rb_page_size(iter->head_page)) &&
2229             (iter->head_page != cpu_buffer->commit_page))
2230                 rb_advance_iter(iter);
2231 }
2232
2233 static struct ring_buffer_event *
2234 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2235 {
2236         struct ring_buffer_per_cpu *cpu_buffer;
2237         struct ring_buffer_event *event;
2238         struct buffer_page *reader;
2239         int nr_loops = 0;
2240
2241         cpu_buffer = buffer->buffers[cpu];
2242
2243  again:
2244         /*
2245          * We repeat when a timestamp is encountered. It is possible
2246          * to get multiple timestamps from an interrupt entering just
2247          * as one timestamp is about to be written. The max times
2248          * that this can happen is the number of nested interrupts we
2249          * can have.  Nesting 10 deep of interrupts is clearly
2250          * an anomaly.
2251          */
2252         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2253                 return NULL;
2254
2255         reader = rb_get_reader_page(cpu_buffer);
2256         if (!reader)
2257                 return NULL;
2258
2259         event = rb_reader_event(cpu_buffer);
2260
2261         switch (event->type) {
2262         case RINGBUF_TYPE_PADDING:
2263                 if (rb_null_event(event))
2264                         RB_WARN_ON(cpu_buffer, 1);
2265                 /*
2266                  * Because the writer could be discarding every
2267                  * event it creates (which would probably be bad)
2268                  * if we were to go back to "again" then we may never
2269                  * catch up, and will trigger the warn on, or lock
2270                  * the box. Return the padding, and we will release
2271                  * the current locks, and try again.
2272                  */
2273                 rb_advance_reader(cpu_buffer);
2274                 return event;
2275
2276         case RINGBUF_TYPE_TIME_EXTEND:
2277                 /* Internal data, OK to advance */
2278                 rb_advance_reader(cpu_buffer);
2279                 goto again;
2280
2281         case RINGBUF_TYPE_TIME_STAMP:
2282                 /* FIXME: not implemented */
2283                 rb_advance_reader(cpu_buffer);
2284                 goto again;
2285
2286         case RINGBUF_TYPE_DATA:
2287                 if (ts) {
2288                         *ts = cpu_buffer->read_stamp + event->time_delta;
2289                         ring_buffer_normalize_time_stamp(buffer,
2290                                                          cpu_buffer->cpu, ts);
2291                 }
2292                 return event;
2293
2294         default:
2295                 BUG();
2296         }
2297
2298         return NULL;
2299 }
2300 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2301
2302 static struct ring_buffer_event *
2303 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2304 {
2305         struct ring_buffer *buffer;
2306         struct ring_buffer_per_cpu *cpu_buffer;
2307         struct ring_buffer_event *event;
2308         int nr_loops = 0;
2309
2310         if (ring_buffer_iter_empty(iter))
2311                 return NULL;
2312
2313         cpu_buffer = iter->cpu_buffer;
2314         buffer = cpu_buffer->buffer;
2315
2316  again:
2317         /*
2318          * We repeat when a timestamp is encountered. It is possible
2319          * to get multiple timestamps from an interrupt entering just
2320          * as one timestamp is about to be written. The max times
2321          * that this can happen is the number of nested interrupts we
2322          * can have. Nesting 10 deep of interrupts is clearly
2323          * an anomaly.
2324          */
2325         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2326                 return NULL;
2327
2328         if (rb_per_cpu_empty(cpu_buffer))
2329                 return NULL;
2330
2331         event = rb_iter_head_event(iter);
2332
2333         switch (event->type) {
2334         case RINGBUF_TYPE_PADDING:
2335                 if (rb_null_event(event)) {
2336                         rb_inc_iter(iter);
2337                         goto again;
2338                 }
2339                 rb_advance_iter(iter);
2340                 return event;
2341
2342         case RINGBUF_TYPE_TIME_EXTEND:
2343                 /* Internal data, OK to advance */
2344                 rb_advance_iter(iter);
2345                 goto again;
2346
2347         case RINGBUF_TYPE_TIME_STAMP:
2348                 /* FIXME: not implemented */
2349                 rb_advance_iter(iter);
2350                 goto again;
2351
2352         case RINGBUF_TYPE_DATA:
2353                 if (ts) {
2354                         *ts = iter->read_stamp + event->time_delta;
2355                         ring_buffer_normalize_time_stamp(buffer,
2356                                                          cpu_buffer->cpu, ts);
2357                 }
2358                 return event;
2359
2360         default:
2361                 BUG();
2362         }
2363
2364         return NULL;
2365 }
2366 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2367
2368 /**
2369  * ring_buffer_peek - peek at the next event to be read
2370  * @buffer: The ring buffer to read
2371  * @cpu: The cpu to peak at
2372  * @ts: The timestamp counter of this event.
2373  *
2374  * This will return the event that will be read next, but does
2375  * not consume the data.
2376  */
2377 struct ring_buffer_event *
2378 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2379 {
2380         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2381         struct ring_buffer_event *event;
2382         unsigned long flags;
2383
2384         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2385                 return NULL;
2386
2387  again:
2388         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2389         event = rb_buffer_peek(buffer, cpu, ts);
2390         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2391
2392         if (event && event->type == RINGBUF_TYPE_PADDING) {
2393                 cpu_relax();
2394                 goto again;
2395         }
2396
2397         return event;
2398 }
2399
2400 /**
2401  * ring_buffer_iter_peek - peek at the next event to be read
2402  * @iter: The ring buffer iterator
2403  * @ts: The timestamp counter of this event.
2404  *
2405  * This will return the event that will be read next, but does
2406  * not increment the iterator.
2407  */
2408 struct ring_buffer_event *
2409 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2410 {
2411         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2412         struct ring_buffer_event *event;
2413         unsigned long flags;
2414
2415  again:
2416         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2417         event = rb_iter_peek(iter, ts);
2418         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2419
2420         if (event && event->type == RINGBUF_TYPE_PADDING) {
2421                 cpu_relax();
2422                 goto again;
2423         }
2424
2425         return event;
2426 }
2427
2428 /**
2429  * ring_buffer_consume - return an event and consume it
2430  * @buffer: The ring buffer to get the next event from
2431  *
2432  * Returns the next event in the ring buffer, and that event is consumed.
2433  * Meaning, that sequential reads will keep returning a different event,
2434  * and eventually empty the ring buffer if the producer is slower.
2435  */
2436 struct ring_buffer_event *
2437 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2438 {
2439         struct ring_buffer_per_cpu *cpu_buffer;
2440         struct ring_buffer_event *event = NULL;
2441         unsigned long flags;
2442
2443  again:
2444         /* might be called in atomic */
2445         preempt_disable();
2446
2447         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2448                 goto out;
2449
2450         cpu_buffer = buffer->buffers[cpu];
2451         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2452
2453         event = rb_buffer_peek(buffer, cpu, ts);
2454         if (!event)
2455                 goto out_unlock;
2456
2457         rb_advance_reader(cpu_buffer);
2458
2459  out_unlock:
2460         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2461
2462  out:
2463         preempt_enable();
2464
2465         if (event && event->type == RINGBUF_TYPE_PADDING) {
2466                 cpu_relax();
2467                 goto again;
2468         }
2469
2470         return event;
2471 }
2472 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2473
2474 /**
2475  * ring_buffer_read_start - start a non consuming read of the buffer
2476  * @buffer: The ring buffer to read from
2477  * @cpu: The cpu buffer to iterate over
2478  *
2479  * This starts up an iteration through the buffer. It also disables
2480  * the recording to the buffer until the reading is finished.
2481  * This prevents the reading from being corrupted. This is not
2482  * a consuming read, so a producer is not expected.
2483  *
2484  * Must be paired with ring_buffer_finish.
2485  */
2486 struct ring_buffer_iter *
2487 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2488 {
2489         struct ring_buffer_per_cpu *cpu_buffer;
2490         struct ring_buffer_iter *iter;
2491         unsigned long flags;
2492
2493         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2494                 return NULL;
2495
2496         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2497         if (!iter)
2498                 return NULL;
2499
2500         cpu_buffer = buffer->buffers[cpu];
2501
2502         iter->cpu_buffer = cpu_buffer;
2503
2504         atomic_inc(&cpu_buffer->record_disabled);
2505         synchronize_sched();
2506
2507         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2508         __raw_spin_lock(&cpu_buffer->lock);
2509         rb_iter_reset(iter);
2510         __raw_spin_unlock(&cpu_buffer->lock);
2511         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2512
2513         return iter;
2514 }
2515 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2516
2517 /**
2518  * ring_buffer_finish - finish reading the iterator of the buffer
2519  * @iter: The iterator retrieved by ring_buffer_start
2520  *
2521  * This re-enables the recording to the buffer, and frees the
2522  * iterator.
2523  */
2524 void
2525 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2526 {
2527         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2528
2529         atomic_dec(&cpu_buffer->record_disabled);
2530         kfree(iter);
2531 }
2532 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2533
2534 /**
2535  * ring_buffer_read - read the next item in the ring buffer by the iterator
2536  * @iter: The ring buffer iterator
2537  * @ts: The time stamp of the event read.
2538  *
2539  * This reads the next event in the ring buffer and increments the iterator.
2540  */
2541 struct ring_buffer_event *
2542 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2543 {
2544         struct ring_buffer_event *event;
2545         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2546         unsigned long flags;
2547
2548  again:
2549         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2550         event = rb_iter_peek(iter, ts);
2551         if (!event)
2552                 goto out;
2553
2554         rb_advance_iter(iter);
2555  out:
2556         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2557
2558         if (event && event->type == RINGBUF_TYPE_PADDING) {
2559                 cpu_relax();
2560                 goto again;
2561         }
2562
2563         return event;
2564 }
2565 EXPORT_SYMBOL_GPL(ring_buffer_read);
2566
2567 /**
2568  * ring_buffer_size - return the size of the ring buffer (in bytes)
2569  * @buffer: The ring buffer.
2570  */
2571 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2572 {
2573         return BUF_PAGE_SIZE * buffer->pages;
2574 }
2575 EXPORT_SYMBOL_GPL(ring_buffer_size);
2576
2577 static void
2578 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2579 {
2580         cpu_buffer->head_page
2581                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2582         local_set(&cpu_buffer->head_page->write, 0);
2583         local_set(&cpu_buffer->head_page->page->commit, 0);
2584
2585         cpu_buffer->head_page->read = 0;
2586
2587         cpu_buffer->tail_page = cpu_buffer->head_page;
2588         cpu_buffer->commit_page = cpu_buffer->head_page;
2589
2590         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2591         local_set(&cpu_buffer->reader_page->write, 0);
2592         local_set(&cpu_buffer->reader_page->page->commit, 0);
2593         cpu_buffer->reader_page->read = 0;
2594
2595         cpu_buffer->overrun = 0;
2596         cpu_buffer->entries = 0;
2597
2598         cpu_buffer->write_stamp = 0;
2599         cpu_buffer->read_stamp = 0;
2600 }
2601
2602 /**
2603  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2604  * @buffer: The ring buffer to reset a per cpu buffer of
2605  * @cpu: The CPU buffer to be reset
2606  */
2607 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2608 {
2609         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2610         unsigned long flags;
2611
2612         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2613                 return;
2614
2615         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2616
2617         __raw_spin_lock(&cpu_buffer->lock);
2618
2619         rb_reset_cpu(cpu_buffer);
2620
2621         __raw_spin_unlock(&cpu_buffer->lock);
2622
2623         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2624 }
2625 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2626
2627 /**
2628  * ring_buffer_reset - reset a ring buffer
2629  * @buffer: The ring buffer to reset all cpu buffers
2630  */
2631 void ring_buffer_reset(struct ring_buffer *buffer)
2632 {
2633         int cpu;
2634
2635         for_each_buffer_cpu(buffer, cpu)
2636                 ring_buffer_reset_cpu(buffer, cpu);
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2639
2640 /**
2641  * rind_buffer_empty - is the ring buffer empty?
2642  * @buffer: The ring buffer to test
2643  */
2644 int ring_buffer_empty(struct ring_buffer *buffer)
2645 {
2646         struct ring_buffer_per_cpu *cpu_buffer;
2647         int cpu;
2648
2649         /* yes this is racy, but if you don't like the race, lock the buffer */
2650         for_each_buffer_cpu(buffer, cpu) {
2651                 cpu_buffer = buffer->buffers[cpu];
2652                 if (!rb_per_cpu_empty(cpu_buffer))
2653                         return 0;
2654         }
2655
2656         return 1;
2657 }
2658 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2659
2660 /**
2661  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2662  * @buffer: The ring buffer
2663  * @cpu: The CPU buffer to test
2664  */
2665 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2666 {
2667         struct ring_buffer_per_cpu *cpu_buffer;
2668         int ret;
2669
2670         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2671                 return 1;
2672
2673         cpu_buffer = buffer->buffers[cpu];
2674         ret = rb_per_cpu_empty(cpu_buffer);
2675
2676
2677         return ret;
2678 }
2679 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2680
2681 /**
2682  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2683  * @buffer_a: One buffer to swap with
2684  * @buffer_b: The other buffer to swap with
2685  *
2686  * This function is useful for tracers that want to take a "snapshot"
2687  * of a CPU buffer and has another back up buffer lying around.
2688  * it is expected that the tracer handles the cpu buffer not being
2689  * used at the moment.
2690  */
2691 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2692                          struct ring_buffer *buffer_b, int cpu)
2693 {
2694         struct ring_buffer_per_cpu *cpu_buffer_a;
2695         struct ring_buffer_per_cpu *cpu_buffer_b;
2696         int ret = -EINVAL;
2697
2698         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2699             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2700                 goto out;
2701
2702         /* At least make sure the two buffers are somewhat the same */
2703         if (buffer_a->pages != buffer_b->pages)
2704                 goto out;
2705
2706         ret = -EAGAIN;
2707
2708         if (ring_buffer_flags != RB_BUFFERS_ON)
2709                 goto out;
2710
2711         if (atomic_read(&buffer_a->record_disabled))
2712                 goto out;
2713
2714         if (atomic_read(&buffer_b->record_disabled))
2715                 goto out;
2716
2717         cpu_buffer_a = buffer_a->buffers[cpu];
2718         cpu_buffer_b = buffer_b->buffers[cpu];
2719
2720         if (atomic_read(&cpu_buffer_a->record_disabled))
2721                 goto out;
2722
2723         if (atomic_read(&cpu_buffer_b->record_disabled))
2724                 goto out;
2725
2726         /*
2727          * We can't do a synchronize_sched here because this
2728          * function can be called in atomic context.
2729          * Normally this will be called from the same CPU as cpu.
2730          * If not it's up to the caller to protect this.
2731          */
2732         atomic_inc(&cpu_buffer_a->record_disabled);
2733         atomic_inc(&cpu_buffer_b->record_disabled);
2734
2735         buffer_a->buffers[cpu] = cpu_buffer_b;
2736         buffer_b->buffers[cpu] = cpu_buffer_a;
2737
2738         cpu_buffer_b->buffer = buffer_a;
2739         cpu_buffer_a->buffer = buffer_b;
2740
2741         atomic_dec(&cpu_buffer_a->record_disabled);
2742         atomic_dec(&cpu_buffer_b->record_disabled);
2743
2744         ret = 0;
2745 out:
2746         return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2749
2750 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2751                               struct buffer_data_page *bpage,
2752                               unsigned int offset)
2753 {
2754         struct ring_buffer_event *event;
2755         unsigned long head;
2756
2757         __raw_spin_lock(&cpu_buffer->lock);
2758         for (head = offset; head < local_read(&bpage->commit);
2759              head += rb_event_length(event)) {
2760
2761                 event = __rb_data_page_index(bpage, head);
2762                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2763                         return;
2764                 /* Only count data entries */
2765                 if (event->type != RINGBUF_TYPE_DATA)
2766                         continue;
2767                 cpu_buffer->entries--;
2768         }
2769         __raw_spin_unlock(&cpu_buffer->lock);
2770 }
2771
2772 /**
2773  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2774  * @buffer: the buffer to allocate for.
2775  *
2776  * This function is used in conjunction with ring_buffer_read_page.
2777  * When reading a full page from the ring buffer, these functions
2778  * can be used to speed up the process. The calling function should
2779  * allocate a few pages first with this function. Then when it
2780  * needs to get pages from the ring buffer, it passes the result
2781  * of this function into ring_buffer_read_page, which will swap
2782  * the page that was allocated, with the read page of the buffer.
2783  *
2784  * Returns:
2785  *  The page allocated, or NULL on error.
2786  */
2787 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2788 {
2789         struct buffer_data_page *bpage;
2790         unsigned long addr;
2791
2792         addr = __get_free_page(GFP_KERNEL);
2793         if (!addr)
2794                 return NULL;
2795
2796         bpage = (void *)addr;
2797
2798         rb_init_page(bpage);
2799
2800         return bpage;
2801 }
2802
2803 /**
2804  * ring_buffer_free_read_page - free an allocated read page
2805  * @buffer: the buffer the page was allocate for
2806  * @data: the page to free
2807  *
2808  * Free a page allocated from ring_buffer_alloc_read_page.
2809  */
2810 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2811 {
2812         free_page((unsigned long)data);
2813 }
2814
2815 /**
2816  * ring_buffer_read_page - extract a page from the ring buffer
2817  * @buffer: buffer to extract from
2818  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2819  * @len: amount to extract
2820  * @cpu: the cpu of the buffer to extract
2821  * @full: should the extraction only happen when the page is full.
2822  *
2823  * This function will pull out a page from the ring buffer and consume it.
2824  * @data_page must be the address of the variable that was returned
2825  * from ring_buffer_alloc_read_page. This is because the page might be used
2826  * to swap with a page in the ring buffer.
2827  *
2828  * for example:
2829  *      rpage = ring_buffer_alloc_read_page(buffer);
2830  *      if (!rpage)
2831  *              return error;
2832  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2833  *      if (ret >= 0)
2834  *              process_page(rpage, ret);
2835  *
2836  * When @full is set, the function will not return true unless
2837  * the writer is off the reader page.
2838  *
2839  * Note: it is up to the calling functions to handle sleeps and wakeups.
2840  *  The ring buffer can be used anywhere in the kernel and can not
2841  *  blindly call wake_up. The layer that uses the ring buffer must be
2842  *  responsible for that.
2843  *
2844  * Returns:
2845  *  >=0 if data has been transferred, returns the offset of consumed data.
2846  *  <0 if no data has been transferred.
2847  */
2848 int ring_buffer_read_page(struct ring_buffer *buffer,
2849                           void **data_page, size_t len, int cpu, int full)
2850 {
2851         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2852         struct ring_buffer_event *event;
2853         struct buffer_data_page *bpage;
2854         struct buffer_page *reader;
2855         unsigned long flags;
2856         unsigned int commit;
2857         unsigned int read;
2858         u64 save_timestamp;
2859         int ret = -1;
2860
2861         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2862                 goto out;
2863
2864         /*
2865          * If len is not big enough to hold the page header, then
2866          * we can not copy anything.
2867          */
2868         if (len <= BUF_PAGE_HDR_SIZE)
2869                 goto out;
2870
2871         len -= BUF_PAGE_HDR_SIZE;
2872
2873         if (!data_page)
2874                 goto out;
2875
2876         bpage = *data_page;
2877         if (!bpage)
2878                 goto out;
2879
2880         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2881
2882         reader = rb_get_reader_page(cpu_buffer);
2883         if (!reader)
2884                 goto out_unlock;
2885
2886         event = rb_reader_event(cpu_buffer);
2887
2888         read = reader->read;
2889         commit = rb_page_commit(reader);
2890
2891         /*
2892          * If this page has been partially read or
2893          * if len is not big enough to read the rest of the page or
2894          * a writer is still on the page, then
2895          * we must copy the data from the page to the buffer.
2896          * Otherwise, we can simply swap the page with the one passed in.
2897          */
2898         if (read || (len < (commit - read)) ||
2899             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2900                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2901                 unsigned int rpos = read;
2902                 unsigned int pos = 0;
2903                 unsigned int size;
2904
2905                 if (full)
2906                         goto out_unlock;
2907
2908                 if (len > (commit - read))
2909                         len = (commit - read);
2910
2911                 size = rb_event_length(event);
2912
2913                 if (len < size)
2914                         goto out_unlock;
2915
2916                 /* save the current timestamp, since the user will need it */
2917                 save_timestamp = cpu_buffer->read_stamp;
2918
2919                 /* Need to copy one event at a time */
2920                 do {
2921                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2922
2923                         len -= size;
2924
2925                         rb_advance_reader(cpu_buffer);
2926                         rpos = reader->read;
2927                         pos += size;
2928
2929                         event = rb_reader_event(cpu_buffer);
2930                         size = rb_event_length(event);
2931                 } while (len > size);
2932
2933                 /* update bpage */
2934                 local_set(&bpage->commit, pos);
2935                 bpage->time_stamp = save_timestamp;
2936
2937                 /* we copied everything to the beginning */
2938                 read = 0;
2939         } else {
2940                 /* swap the pages */
2941                 rb_init_page(bpage);
2942                 bpage = reader->page;
2943                 reader->page = *data_page;
2944                 local_set(&reader->write, 0);
2945                 reader->read = 0;
2946                 *data_page = bpage;
2947
2948                 /* update the entry counter */
2949                 rb_remove_entries(cpu_buffer, bpage, read);
2950         }
2951         ret = read;
2952
2953  out_unlock:
2954         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2955
2956  out:
2957         return ret;
2958 }
2959
2960 static ssize_t
2961 rb_simple_read(struct file *filp, char __user *ubuf,
2962                size_t cnt, loff_t *ppos)
2963 {
2964         unsigned long *p = filp->private_data;
2965         char buf[64];
2966         int r;
2967
2968         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2969                 r = sprintf(buf, "permanently disabled\n");
2970         else
2971                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2972
2973         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2974 }
2975
2976 static ssize_t
2977 rb_simple_write(struct file *filp, const char __user *ubuf,
2978                 size_t cnt, loff_t *ppos)
2979 {
2980         unsigned long *p = filp->private_data;
2981         char buf[64];
2982         unsigned long val;
2983         int ret;
2984
2985         if (cnt >= sizeof(buf))
2986                 return -EINVAL;
2987
2988         if (copy_from_user(&buf, ubuf, cnt))
2989                 return -EFAULT;
2990
2991         buf[cnt] = 0;
2992
2993         ret = strict_strtoul(buf, 10, &val);
2994         if (ret < 0)
2995                 return ret;
2996
2997         if (val)
2998                 set_bit(RB_BUFFERS_ON_BIT, p);
2999         else
3000                 clear_bit(RB_BUFFERS_ON_BIT, p);
3001
3002         (*ppos)++;
3003
3004         return cnt;
3005 }
3006
3007 static const struct file_operations rb_simple_fops = {
3008         .open           = tracing_open_generic,
3009         .read           = rb_simple_read,
3010         .write          = rb_simple_write,
3011 };
3012
3013
3014 static __init int rb_init_debugfs(void)
3015 {
3016         struct dentry *d_tracer;
3017
3018         d_tracer = tracing_init_dentry();
3019
3020         trace_create_file("tracing_on", 0644, d_tracer,
3021                             &ring_buffer_flags, &rb_simple_fops);
3022
3023         return 0;
3024 }
3025
3026 fs_initcall(rb_init_debugfs);
3027
3028 #ifdef CONFIG_HOTPLUG_CPU
3029 static int rb_cpu_notify(struct notifier_block *self,
3030                          unsigned long action, void *hcpu)
3031 {
3032         struct ring_buffer *buffer =
3033                 container_of(self, struct ring_buffer, cpu_notify);
3034         long cpu = (long)hcpu;
3035
3036         switch (action) {
3037         case CPU_UP_PREPARE:
3038         case CPU_UP_PREPARE_FROZEN:
3039                 if (cpu_isset(cpu, *buffer->cpumask))
3040                         return NOTIFY_OK;
3041
3042                 buffer->buffers[cpu] =
3043                         rb_allocate_cpu_buffer(buffer, cpu);
3044                 if (!buffer->buffers[cpu]) {
3045                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3046                              cpu);
3047                         return NOTIFY_OK;
3048                 }
3049                 smp_wmb();
3050                 cpu_set(cpu, *buffer->cpumask);
3051                 break;
3052         case CPU_DOWN_PREPARE:
3053         case CPU_DOWN_PREPARE_FROZEN:
3054                 /*
3055                  * Do nothing.
3056                  *  If we were to free the buffer, then the user would
3057                  *  lose any trace that was in the buffer.
3058                  */
3059                 break;
3060         default:
3061                 break;
3062         }
3063         return NOTIFY_OK;
3064 }
3065 #endif