]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/trace/ring_buffer.c
ring-buffer: Give NMIs a chance to lock the reader_lock
[karo-tx-linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418
419         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420                          "offset:0;\tsize:%u;\tsigned:%u;\n",
421                          (unsigned int)sizeof(field.time_stamp),
422                          (unsigned int)is_signed_type(u64));
423
424         trace_seq_printf(s, "\tfield: local_t commit;\t"
425                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
426                          (unsigned int)offsetof(typeof(field), commit),
427                          (unsigned int)sizeof(field.commit),
428                          (unsigned int)is_signed_type(long));
429
430         trace_seq_printf(s, "\tfield: int overwrite;\t"
431                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
432                          (unsigned int)offsetof(typeof(field), commit),
433                          1,
434                          (unsigned int)is_signed_type(long));
435
436         trace_seq_printf(s, "\tfield: char data;\t"
437                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
438                          (unsigned int)offsetof(typeof(field), data),
439                          (unsigned int)BUF_PAGE_SIZE,
440                          (unsigned int)is_signed_type(char));
441
442         return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446         struct irq_work                 work;
447         wait_queue_head_t               waiters;
448         wait_queue_head_t               full_waiters;
449         bool                            waiters_pending;
450         bool                            full_waiters_pending;
451         bool                            wakeup_full;
452 };
453
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458         int                             cpu;
459         atomic_t                        record_disabled;
460         struct ring_buffer              *buffer;
461         raw_spinlock_t                  reader_lock;    /* serialize readers */
462         arch_spinlock_t                 lock;
463         struct lock_class_key           lock_key;
464         unsigned int                    nr_pages;
465         unsigned int                    current_context;
466         struct list_head                *pages;
467         struct buffer_page              *head_page;     /* read from head */
468         struct buffer_page              *tail_page;     /* write to tail */
469         struct buffer_page              *commit_page;   /* committed pages */
470         struct buffer_page              *reader_page;
471         unsigned long                   lost_events;
472         unsigned long                   last_overrun;
473         local_t                         entries_bytes;
474         local_t                         entries;
475         local_t                         overrun;
476         local_t                         commit_overrun;
477         local_t                         dropped_events;
478         local_t                         committing;
479         local_t                         commits;
480         unsigned long                   read;
481         unsigned long                   read_bytes;
482         u64                             write_stamp;
483         u64                             read_stamp;
484         /* ring buffer pages to update, > 0 to add, < 0 to remove */
485         int                             nr_pages_to_update;
486         struct list_head                new_pages; /* new pages to add */
487         struct work_struct              update_pages_work;
488         struct completion               update_done;
489
490         struct rb_irq_work              irq_work;
491 };
492
493 struct ring_buffer {
494         unsigned                        flags;
495         int                             cpus;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         cpumask_var_t                   cpumask;
499
500         struct lock_class_key           *reader_lock_key;
501
502         struct mutex                    mutex;
503
504         struct ring_buffer_per_cpu      **buffers;
505
506 #ifdef CONFIG_HOTPLUG_CPU
507         struct notifier_block           cpu_notify;
508 #endif
509         u64                             (*clock)(void);
510
511         struct rb_irq_work              irq_work;
512 };
513
514 struct ring_buffer_iter {
515         struct ring_buffer_per_cpu      *cpu_buffer;
516         unsigned long                   head;
517         struct buffer_page              *head_page;
518         struct buffer_page              *cache_reader_page;
519         unsigned long                   cache_read;
520         u64                             read_stamp;
521 };
522
523 /*
524  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525  *
526  * Schedules a delayed work to wake up any task that is blocked on the
527  * ring buffer waiters queue.
528  */
529 static void rb_wake_up_waiters(struct irq_work *work)
530 {
531         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532
533         wake_up_all(&rbwork->waiters);
534         if (rbwork->wakeup_full) {
535                 rbwork->wakeup_full = false;
536                 wake_up_all(&rbwork->full_waiters);
537         }
538 }
539
540 /**
541  * ring_buffer_wait - wait for input to the ring buffer
542  * @buffer: buffer to wait on
543  * @cpu: the cpu buffer to wait on
544  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545  *
546  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547  * as data is added to any of the @buffer's cpu buffers. Otherwise
548  * it will wait for data to be added to a specific cpu buffer.
549  */
550 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551 {
552         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553         DEFINE_WAIT(wait);
554         struct rb_irq_work *work;
555         int ret = 0;
556
557         /*
558          * Depending on what the caller is waiting for, either any
559          * data in any cpu buffer, or a specific buffer, put the
560          * caller on the appropriate wait queue.
561          */
562         if (cpu == RING_BUFFER_ALL_CPUS) {
563                 work = &buffer->irq_work;
564                 /* Full only makes sense on per cpu reads */
565                 full = false;
566         } else {
567                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
568                         return -ENODEV;
569                 cpu_buffer = buffer->buffers[cpu];
570                 work = &cpu_buffer->irq_work;
571         }
572
573
574         while (true) {
575                 if (full)
576                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577                 else
578                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579
580                 /*
581                  * The events can happen in critical sections where
582                  * checking a work queue can cause deadlocks.
583                  * After adding a task to the queue, this flag is set
584                  * only to notify events to try to wake up the queue
585                  * using irq_work.
586                  *
587                  * We don't clear it even if the buffer is no longer
588                  * empty. The flag only causes the next event to run
589                  * irq_work to do the work queue wake up. The worse
590                  * that can happen if we race with !trace_empty() is that
591                  * an event will cause an irq_work to try to wake up
592                  * an empty queue.
593                  *
594                  * There's no reason to protect this flag either, as
595                  * the work queue and irq_work logic will do the necessary
596                  * synchronization for the wake ups. The only thing
597                  * that is necessary is that the wake up happens after
598                  * a task has been queued. It's OK for spurious wake ups.
599                  */
600                 if (full)
601                         work->full_waiters_pending = true;
602                 else
603                         work->waiters_pending = true;
604
605                 if (signal_pending(current)) {
606                         ret = -EINTR;
607                         break;
608                 }
609
610                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611                         break;
612
613                 if (cpu != RING_BUFFER_ALL_CPUS &&
614                     !ring_buffer_empty_cpu(buffer, cpu)) {
615                         unsigned long flags;
616                         bool pagebusy;
617
618                         if (!full)
619                                 break;
620
621                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624
625                         if (!pagebusy)
626                                 break;
627                 }
628
629                 schedule();
630         }
631
632         if (full)
633                 finish_wait(&work->full_waiters, &wait);
634         else
635                 finish_wait(&work->waiters, &wait);
636
637         return ret;
638 }
639
640 /**
641  * ring_buffer_poll_wait - poll on buffer input
642  * @buffer: buffer to wait on
643  * @cpu: the cpu buffer to wait on
644  * @filp: the file descriptor
645  * @poll_table: The poll descriptor
646  *
647  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648  * as data is added to any of the @buffer's cpu buffers. Otherwise
649  * it will wait for data to be added to a specific cpu buffer.
650  *
651  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652  * zero otherwise.
653  */
654 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655                           struct file *filp, poll_table *poll_table)
656 {
657         struct ring_buffer_per_cpu *cpu_buffer;
658         struct rb_irq_work *work;
659
660         if (cpu == RING_BUFFER_ALL_CPUS)
661                 work = &buffer->irq_work;
662         else {
663                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
664                         return -EINVAL;
665
666                 cpu_buffer = buffer->buffers[cpu];
667                 work = &cpu_buffer->irq_work;
668         }
669
670         poll_wait(filp, &work->waiters, poll_table);
671         work->waiters_pending = true;
672         /*
673          * There's a tight race between setting the waiters_pending and
674          * checking if the ring buffer is empty.  Once the waiters_pending bit
675          * is set, the next event will wake the task up, but we can get stuck
676          * if there's only a single event in.
677          *
678          * FIXME: Ideally, we need a memory barrier on the writer side as well,
679          * but adding a memory barrier to all events will cause too much of a
680          * performance hit in the fast path.  We only need a memory barrier when
681          * the buffer goes from empty to having content.  But as this race is
682          * extremely small, and it's not a problem if another event comes in, we
683          * will fix it later.
684          */
685         smp_mb();
686
687         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689                 return POLLIN | POLLRDNORM;
690         return 0;
691 }
692
693 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
694 #define RB_WARN_ON(b, cond)                                             \
695         ({                                                              \
696                 int _____ret = unlikely(cond);                          \
697                 if (_____ret) {                                         \
698                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699                                 struct ring_buffer_per_cpu *__b =       \
700                                         (void *)b;                      \
701                                 atomic_inc(&__b->buffer->record_disabled); \
702                         } else                                          \
703                                 atomic_inc(&b->record_disabled);        \
704                         WARN_ON(1);                                     \
705                 }                                                       \
706                 _____ret;                                               \
707         })
708
709 /* Up this if you want to test the TIME_EXTENTS and normalization */
710 #define DEBUG_SHIFT 0
711
712 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713 {
714         /* shift to debug/test normalization and TIME_EXTENTS */
715         return buffer->clock() << DEBUG_SHIFT;
716 }
717
718 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719 {
720         u64 time;
721
722         preempt_disable_notrace();
723         time = rb_time_stamp(buffer);
724         preempt_enable_no_resched_notrace();
725
726         return time;
727 }
728 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729
730 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731                                       int cpu, u64 *ts)
732 {
733         /* Just stupid testing the normalize function and deltas */
734         *ts >>= DEBUG_SHIFT;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737
738 /*
739  * Making the ring buffer lockless makes things tricky.
740  * Although writes only happen on the CPU that they are on,
741  * and they only need to worry about interrupts. Reads can
742  * happen on any CPU.
743  *
744  * The reader page is always off the ring buffer, but when the
745  * reader finishes with a page, it needs to swap its page with
746  * a new one from the buffer. The reader needs to take from
747  * the head (writes go to the tail). But if a writer is in overwrite
748  * mode and wraps, it must push the head page forward.
749  *
750  * Here lies the problem.
751  *
752  * The reader must be careful to replace only the head page, and
753  * not another one. As described at the top of the file in the
754  * ASCII art, the reader sets its old page to point to the next
755  * page after head. It then sets the page after head to point to
756  * the old reader page. But if the writer moves the head page
757  * during this operation, the reader could end up with the tail.
758  *
759  * We use cmpxchg to help prevent this race. We also do something
760  * special with the page before head. We set the LSB to 1.
761  *
762  * When the writer must push the page forward, it will clear the
763  * bit that points to the head page, move the head, and then set
764  * the bit that points to the new head page.
765  *
766  * We also don't want an interrupt coming in and moving the head
767  * page on another writer. Thus we use the second LSB to catch
768  * that too. Thus:
769  *
770  * head->list->prev->next        bit 1          bit 0
771  *                              -------        -------
772  * Normal page                     0              0
773  * Points to head page             0              1
774  * New head page                   1              0
775  *
776  * Note we can not trust the prev pointer of the head page, because:
777  *
778  * +----+       +-----+        +-----+
779  * |    |------>|  T  |---X--->|  N  |
780  * |    |<------|     |        |     |
781  * +----+       +-----+        +-----+
782  *   ^                           ^ |
783  *   |          +-----+          | |
784  *   +----------|  R  |----------+ |
785  *              |     |<-----------+
786  *              +-----+
787  *
788  * Key:  ---X-->  HEAD flag set in pointer
789  *         T      Tail page
790  *         R      Reader page
791  *         N      Next page
792  *
793  * (see __rb_reserve_next() to see where this happens)
794  *
795  *  What the above shows is that the reader just swapped out
796  *  the reader page with a page in the buffer, but before it
797  *  could make the new header point back to the new page added
798  *  it was preempted by a writer. The writer moved forward onto
799  *  the new page added by the reader and is about to move forward
800  *  again.
801  *
802  *  You can see, it is legitimate for the previous pointer of
803  *  the head (or any page) not to point back to itself. But only
804  *  temporarially.
805  */
806
807 #define RB_PAGE_NORMAL          0UL
808 #define RB_PAGE_HEAD            1UL
809 #define RB_PAGE_UPDATE          2UL
810
811
812 #define RB_FLAG_MASK            3UL
813
814 /* PAGE_MOVED is not part of the mask */
815 #define RB_PAGE_MOVED           4UL
816
817 /*
818  * rb_list_head - remove any bit
819  */
820 static struct list_head *rb_list_head(struct list_head *list)
821 {
822         unsigned long val = (unsigned long)list;
823
824         return (struct list_head *)(val & ~RB_FLAG_MASK);
825 }
826
827 /*
828  * rb_is_head_page - test if the given page is the head page
829  *
830  * Because the reader may move the head_page pointer, we can
831  * not trust what the head page is (it may be pointing to
832  * the reader page). But if the next page is a header page,
833  * its flags will be non zero.
834  */
835 static inline int
836 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837                 struct buffer_page *page, struct list_head *list)
838 {
839         unsigned long val;
840
841         val = (unsigned long)list->next;
842
843         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844                 return RB_PAGE_MOVED;
845
846         return val & RB_FLAG_MASK;
847 }
848
849 /*
850  * rb_is_reader_page
851  *
852  * The unique thing about the reader page, is that, if the
853  * writer is ever on it, the previous pointer never points
854  * back to the reader page.
855  */
856 static int rb_is_reader_page(struct buffer_page *page)
857 {
858         struct list_head *list = page->list.prev;
859
860         return rb_list_head(list->next) != &page->list;
861 }
862
863 /*
864  * rb_set_list_to_head - set a list_head to be pointing to head.
865  */
866 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867                                 struct list_head *list)
868 {
869         unsigned long *ptr;
870
871         ptr = (unsigned long *)&list->next;
872         *ptr |= RB_PAGE_HEAD;
873         *ptr &= ~RB_PAGE_UPDATE;
874 }
875
876 /*
877  * rb_head_page_activate - sets up head page
878  */
879 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881         struct buffer_page *head;
882
883         head = cpu_buffer->head_page;
884         if (!head)
885                 return;
886
887         /*
888          * Set the previous list pointer to have the HEAD flag.
889          */
890         rb_set_list_to_head(cpu_buffer, head->list.prev);
891 }
892
893 static void rb_list_head_clear(struct list_head *list)
894 {
895         unsigned long *ptr = (unsigned long *)&list->next;
896
897         *ptr &= ~RB_FLAG_MASK;
898 }
899
900 /*
901  * rb_head_page_dactivate - clears head page ptr (for free list)
902  */
903 static void
904 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905 {
906         struct list_head *hd;
907
908         /* Go through the whole list and clear any pointers found. */
909         rb_list_head_clear(cpu_buffer->pages);
910
911         list_for_each(hd, cpu_buffer->pages)
912                 rb_list_head_clear(hd);
913 }
914
915 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916                             struct buffer_page *head,
917                             struct buffer_page *prev,
918                             int old_flag, int new_flag)
919 {
920         struct list_head *list;
921         unsigned long val = (unsigned long)&head->list;
922         unsigned long ret;
923
924         list = &prev->list;
925
926         val &= ~RB_FLAG_MASK;
927
928         ret = cmpxchg((unsigned long *)&list->next,
929                       val | old_flag, val | new_flag);
930
931         /* check if the reader took the page */
932         if ((ret & ~RB_FLAG_MASK) != val)
933                 return RB_PAGE_MOVED;
934
935         return ret & RB_FLAG_MASK;
936 }
937
938 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939                                    struct buffer_page *head,
940                                    struct buffer_page *prev,
941                                    int old_flag)
942 {
943         return rb_head_page_set(cpu_buffer, head, prev,
944                                 old_flag, RB_PAGE_UPDATE);
945 }
946
947 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948                                  struct buffer_page *head,
949                                  struct buffer_page *prev,
950                                  int old_flag)
951 {
952         return rb_head_page_set(cpu_buffer, head, prev,
953                                 old_flag, RB_PAGE_HEAD);
954 }
955
956 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957                                    struct buffer_page *head,
958                                    struct buffer_page *prev,
959                                    int old_flag)
960 {
961         return rb_head_page_set(cpu_buffer, head, prev,
962                                 old_flag, RB_PAGE_NORMAL);
963 }
964
965 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966                                struct buffer_page **bpage)
967 {
968         struct list_head *p = rb_list_head((*bpage)->list.next);
969
970         *bpage = list_entry(p, struct buffer_page, list);
971 }
972
973 static struct buffer_page *
974 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975 {
976         struct buffer_page *head;
977         struct buffer_page *page;
978         struct list_head *list;
979         int i;
980
981         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982                 return NULL;
983
984         /* sanity check */
985         list = cpu_buffer->pages;
986         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987                 return NULL;
988
989         page = head = cpu_buffer->head_page;
990         /*
991          * It is possible that the writer moves the header behind
992          * where we started, and we miss in one loop.
993          * A second loop should grab the header, but we'll do
994          * three loops just because I'm paranoid.
995          */
996         for (i = 0; i < 3; i++) {
997                 do {
998                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999                                 cpu_buffer->head_page = page;
1000                                 return page;
1001                         }
1002                         rb_inc_page(cpu_buffer, &page);
1003                 } while (page != head);
1004         }
1005
1006         RB_WARN_ON(cpu_buffer, 1);
1007
1008         return NULL;
1009 }
1010
1011 static int rb_head_page_replace(struct buffer_page *old,
1012                                 struct buffer_page *new)
1013 {
1014         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015         unsigned long val;
1016         unsigned long ret;
1017
1018         val = *ptr & ~RB_FLAG_MASK;
1019         val |= RB_PAGE_HEAD;
1020
1021         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022
1023         return ret == val;
1024 }
1025
1026 /*
1027  * rb_tail_page_update - move the tail page forward
1028  *
1029  * Returns 1 if moved tail page, 0 if someone else did.
1030  */
1031 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032                                struct buffer_page *tail_page,
1033                                struct buffer_page *next_page)
1034 {
1035         struct buffer_page *old_tail;
1036         unsigned long old_entries;
1037         unsigned long old_write;
1038         int ret = 0;
1039
1040         /*
1041          * The tail page now needs to be moved forward.
1042          *
1043          * We need to reset the tail page, but without messing
1044          * with possible erasing of data brought in by interrupts
1045          * that have moved the tail page and are currently on it.
1046          *
1047          * We add a counter to the write field to denote this.
1048          */
1049         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051
1052         /*
1053          * Just make sure we have seen our old_write and synchronize
1054          * with any interrupts that come in.
1055          */
1056         barrier();
1057
1058         /*
1059          * If the tail page is still the same as what we think
1060          * it is, then it is up to us to update the tail
1061          * pointer.
1062          */
1063         if (tail_page == cpu_buffer->tail_page) {
1064                 /* Zero the write counter */
1065                 unsigned long val = old_write & ~RB_WRITE_MASK;
1066                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067
1068                 /*
1069                  * This will only succeed if an interrupt did
1070                  * not come in and change it. In which case, we
1071                  * do not want to modify it.
1072                  *
1073                  * We add (void) to let the compiler know that we do not care
1074                  * about the return value of these functions. We use the
1075                  * cmpxchg to only update if an interrupt did not already
1076                  * do it for us. If the cmpxchg fails, we don't care.
1077                  */
1078                 (void)local_cmpxchg(&next_page->write, old_write, val);
1079                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080
1081                 /*
1082                  * No need to worry about races with clearing out the commit.
1083                  * it only can increment when a commit takes place. But that
1084                  * only happens in the outer most nested commit.
1085                  */
1086                 local_set(&next_page->page->commit, 0);
1087
1088                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1089                                    tail_page, next_page);
1090
1091                 if (old_tail == tail_page)
1092                         ret = 1;
1093         }
1094
1095         return ret;
1096 }
1097
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099                           struct buffer_page *bpage)
1100 {
1101         unsigned long val = (unsigned long)bpage;
1102
1103         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104                 return 1;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113                          struct list_head *list)
1114 {
1115         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116                 return 1;
1117         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118                 return 1;
1119         return 0;
1120 }
1121
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131         struct list_head *head = cpu_buffer->pages;
1132         struct buffer_page *bpage, *tmp;
1133
1134         /* Reset the head page if it exists */
1135         if (cpu_buffer->head_page)
1136                 rb_set_head_page(cpu_buffer);
1137
1138         rb_head_page_deactivate(cpu_buffer);
1139
1140         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141                 return -1;
1142         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143                 return -1;
1144
1145         if (rb_check_list(cpu_buffer, head))
1146                 return -1;
1147
1148         list_for_each_entry_safe(bpage, tmp, head, list) {
1149                 if (RB_WARN_ON(cpu_buffer,
1150                                bpage->list.next->prev != &bpage->list))
1151                         return -1;
1152                 if (RB_WARN_ON(cpu_buffer,
1153                                bpage->list.prev->next != &bpage->list))
1154                         return -1;
1155                 if (rb_check_list(cpu_buffer, &bpage->list))
1156                         return -1;
1157         }
1158
1159         rb_head_page_activate(cpu_buffer);
1160
1161         return 0;
1162 }
1163
1164 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1165 {
1166         int i;
1167         struct buffer_page *bpage, *tmp;
1168
1169         for (i = 0; i < nr_pages; i++) {
1170                 struct page *page;
1171                 /*
1172                  * __GFP_NORETRY flag makes sure that the allocation fails
1173                  * gracefully without invoking oom-killer and the system is
1174                  * not destabilized.
1175                  */
1176                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177                                     GFP_KERNEL | __GFP_NORETRY,
1178                                     cpu_to_node(cpu));
1179                 if (!bpage)
1180                         goto free_pages;
1181
1182                 list_add(&bpage->list, pages);
1183
1184                 page = alloc_pages_node(cpu_to_node(cpu),
1185                                         GFP_KERNEL | __GFP_NORETRY, 0);
1186                 if (!page)
1187                         goto free_pages;
1188                 bpage->page = page_address(page);
1189                 rb_init_page(bpage->page);
1190         }
1191
1192         return 0;
1193
1194 free_pages:
1195         list_for_each_entry_safe(bpage, tmp, pages, list) {
1196                 list_del_init(&bpage->list);
1197                 free_buffer_page(bpage);
1198         }
1199
1200         return -ENOMEM;
1201 }
1202
1203 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204                              unsigned nr_pages)
1205 {
1206         LIST_HEAD(pages);
1207
1208         WARN_ON(!nr_pages);
1209
1210         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211                 return -ENOMEM;
1212
1213         /*
1214          * The ring buffer page list is a circular list that does not
1215          * start and end with a list head. All page list items point to
1216          * other pages.
1217          */
1218         cpu_buffer->pages = pages.next;
1219         list_del(&pages);
1220
1221         cpu_buffer->nr_pages = nr_pages;
1222
1223         rb_check_pages(cpu_buffer);
1224
1225         return 0;
1226 }
1227
1228 static struct ring_buffer_per_cpu *
1229 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1230 {
1231         struct ring_buffer_per_cpu *cpu_buffer;
1232         struct buffer_page *bpage;
1233         struct page *page;
1234         int ret;
1235
1236         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237                                   GFP_KERNEL, cpu_to_node(cpu));
1238         if (!cpu_buffer)
1239                 return NULL;
1240
1241         cpu_buffer->cpu = cpu;
1242         cpu_buffer->buffer = buffer;
1243         raw_spin_lock_init(&cpu_buffer->reader_lock);
1244         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247         init_completion(&cpu_buffer->update_done);
1248         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251
1252         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253                             GFP_KERNEL, cpu_to_node(cpu));
1254         if (!bpage)
1255                 goto fail_free_buffer;
1256
1257         rb_check_bpage(cpu_buffer, bpage);
1258
1259         cpu_buffer->reader_page = bpage;
1260         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261         if (!page)
1262                 goto fail_free_reader;
1263         bpage->page = page_address(page);
1264         rb_init_page(bpage->page);
1265
1266         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268
1269         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270         if (ret < 0)
1271                 goto fail_free_reader;
1272
1273         cpu_buffer->head_page
1274                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1275         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276
1277         rb_head_page_activate(cpu_buffer);
1278
1279         return cpu_buffer;
1280
1281  fail_free_reader:
1282         free_buffer_page(cpu_buffer->reader_page);
1283
1284  fail_free_buffer:
1285         kfree(cpu_buffer);
1286         return NULL;
1287 }
1288
1289 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290 {
1291         struct list_head *head = cpu_buffer->pages;
1292         struct buffer_page *bpage, *tmp;
1293
1294         free_buffer_page(cpu_buffer->reader_page);
1295
1296         rb_head_page_deactivate(cpu_buffer);
1297
1298         if (head) {
1299                 list_for_each_entry_safe(bpage, tmp, head, list) {
1300                         list_del_init(&bpage->list);
1301                         free_buffer_page(bpage);
1302                 }
1303                 bpage = list_entry(head, struct buffer_page, list);
1304                 free_buffer_page(bpage);
1305         }
1306
1307         kfree(cpu_buffer);
1308 }
1309
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 static int rb_cpu_notify(struct notifier_block *self,
1312                          unsigned long action, void *hcpu);
1313 #endif
1314
1315 /**
1316  * __ring_buffer_alloc - allocate a new ring_buffer
1317  * @size: the size in bytes per cpu that is needed.
1318  * @flags: attributes to set for the ring buffer.
1319  *
1320  * Currently the only flag that is available is the RB_FL_OVERWRITE
1321  * flag. This flag means that the buffer will overwrite old data
1322  * when the buffer wraps. If this flag is not set, the buffer will
1323  * drop data when the tail hits the head.
1324  */
1325 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326                                         struct lock_class_key *key)
1327 {
1328         struct ring_buffer *buffer;
1329         int bsize;
1330         int cpu, nr_pages;
1331
1332         /* keep it in its own cache line */
1333         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1334                          GFP_KERNEL);
1335         if (!buffer)
1336                 return NULL;
1337
1338         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1339                 goto fail_free_buffer;
1340
1341         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1342         buffer->flags = flags;
1343         buffer->clock = trace_clock_local;
1344         buffer->reader_lock_key = key;
1345
1346         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1347         init_waitqueue_head(&buffer->irq_work.waiters);
1348
1349         /* need at least two pages */
1350         if (nr_pages < 2)
1351                 nr_pages = 2;
1352
1353         /*
1354          * In case of non-hotplug cpu, if the ring-buffer is allocated
1355          * in early initcall, it will not be notified of secondary cpus.
1356          * In that off case, we need to allocate for all possible cpus.
1357          */
1358 #ifdef CONFIG_HOTPLUG_CPU
1359         cpu_notifier_register_begin();
1360         cpumask_copy(buffer->cpumask, cpu_online_mask);
1361 #else
1362         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1363 #endif
1364         buffer->cpus = nr_cpu_ids;
1365
1366         bsize = sizeof(void *) * nr_cpu_ids;
1367         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1368                                   GFP_KERNEL);
1369         if (!buffer->buffers)
1370                 goto fail_free_cpumask;
1371
1372         for_each_buffer_cpu(buffer, cpu) {
1373                 buffer->buffers[cpu] =
1374                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1375                 if (!buffer->buffers[cpu])
1376                         goto fail_free_buffers;
1377         }
1378
1379 #ifdef CONFIG_HOTPLUG_CPU
1380         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1381         buffer->cpu_notify.priority = 0;
1382         __register_cpu_notifier(&buffer->cpu_notify);
1383         cpu_notifier_register_done();
1384 #endif
1385
1386         mutex_init(&buffer->mutex);
1387
1388         return buffer;
1389
1390  fail_free_buffers:
1391         for_each_buffer_cpu(buffer, cpu) {
1392                 if (buffer->buffers[cpu])
1393                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1394         }
1395         kfree(buffer->buffers);
1396
1397  fail_free_cpumask:
1398         free_cpumask_var(buffer->cpumask);
1399 #ifdef CONFIG_HOTPLUG_CPU
1400         cpu_notifier_register_done();
1401 #endif
1402
1403  fail_free_buffer:
1404         kfree(buffer);
1405         return NULL;
1406 }
1407 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1408
1409 /**
1410  * ring_buffer_free - free a ring buffer.
1411  * @buffer: the buffer to free.
1412  */
1413 void
1414 ring_buffer_free(struct ring_buffer *buffer)
1415 {
1416         int cpu;
1417
1418 #ifdef CONFIG_HOTPLUG_CPU
1419         cpu_notifier_register_begin();
1420         __unregister_cpu_notifier(&buffer->cpu_notify);
1421 #endif
1422
1423         for_each_buffer_cpu(buffer, cpu)
1424                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1425
1426 #ifdef CONFIG_HOTPLUG_CPU
1427         cpu_notifier_register_done();
1428 #endif
1429
1430         kfree(buffer->buffers);
1431         free_cpumask_var(buffer->cpumask);
1432
1433         kfree(buffer);
1434 }
1435 EXPORT_SYMBOL_GPL(ring_buffer_free);
1436
1437 void ring_buffer_set_clock(struct ring_buffer *buffer,
1438                            u64 (*clock)(void))
1439 {
1440         buffer->clock = clock;
1441 }
1442
1443 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1444
1445 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1446 {
1447         return local_read(&bpage->entries) & RB_WRITE_MASK;
1448 }
1449
1450 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1451 {
1452         return local_read(&bpage->write) & RB_WRITE_MASK;
1453 }
1454
1455 static int
1456 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1457 {
1458         struct list_head *tail_page, *to_remove, *next_page;
1459         struct buffer_page *to_remove_page, *tmp_iter_page;
1460         struct buffer_page *last_page, *first_page;
1461         unsigned int nr_removed;
1462         unsigned long head_bit;
1463         int page_entries;
1464
1465         head_bit = 0;
1466
1467         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1468         atomic_inc(&cpu_buffer->record_disabled);
1469         /*
1470          * We don't race with the readers since we have acquired the reader
1471          * lock. We also don't race with writers after disabling recording.
1472          * This makes it easy to figure out the first and the last page to be
1473          * removed from the list. We unlink all the pages in between including
1474          * the first and last pages. This is done in a busy loop so that we
1475          * lose the least number of traces.
1476          * The pages are freed after we restart recording and unlock readers.
1477          */
1478         tail_page = &cpu_buffer->tail_page->list;
1479
1480         /*
1481          * tail page might be on reader page, we remove the next page
1482          * from the ring buffer
1483          */
1484         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1485                 tail_page = rb_list_head(tail_page->next);
1486         to_remove = tail_page;
1487
1488         /* start of pages to remove */
1489         first_page = list_entry(rb_list_head(to_remove->next),
1490                                 struct buffer_page, list);
1491
1492         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1493                 to_remove = rb_list_head(to_remove)->next;
1494                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1495         }
1496
1497         next_page = rb_list_head(to_remove)->next;
1498
1499         /*
1500          * Now we remove all pages between tail_page and next_page.
1501          * Make sure that we have head_bit value preserved for the
1502          * next page
1503          */
1504         tail_page->next = (struct list_head *)((unsigned long)next_page |
1505                                                 head_bit);
1506         next_page = rb_list_head(next_page);
1507         next_page->prev = tail_page;
1508
1509         /* make sure pages points to a valid page in the ring buffer */
1510         cpu_buffer->pages = next_page;
1511
1512         /* update head page */
1513         if (head_bit)
1514                 cpu_buffer->head_page = list_entry(next_page,
1515                                                 struct buffer_page, list);
1516
1517         /*
1518          * change read pointer to make sure any read iterators reset
1519          * themselves
1520          */
1521         cpu_buffer->read = 0;
1522
1523         /* pages are removed, resume tracing and then free the pages */
1524         atomic_dec(&cpu_buffer->record_disabled);
1525         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1526
1527         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1528
1529         /* last buffer page to remove */
1530         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1531                                 list);
1532         tmp_iter_page = first_page;
1533
1534         do {
1535                 to_remove_page = tmp_iter_page;
1536                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1537
1538                 /* update the counters */
1539                 page_entries = rb_page_entries(to_remove_page);
1540                 if (page_entries) {
1541                         /*
1542                          * If something was added to this page, it was full
1543                          * since it is not the tail page. So we deduct the
1544                          * bytes consumed in ring buffer from here.
1545                          * Increment overrun to account for the lost events.
1546                          */
1547                         local_add(page_entries, &cpu_buffer->overrun);
1548                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1549                 }
1550
1551                 /*
1552                  * We have already removed references to this list item, just
1553                  * free up the buffer_page and its page
1554                  */
1555                 free_buffer_page(to_remove_page);
1556                 nr_removed--;
1557
1558         } while (to_remove_page != last_page);
1559
1560         RB_WARN_ON(cpu_buffer, nr_removed);
1561
1562         return nr_removed == 0;
1563 }
1564
1565 static int
1566 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1567 {
1568         struct list_head *pages = &cpu_buffer->new_pages;
1569         int retries, success;
1570
1571         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1572         /*
1573          * We are holding the reader lock, so the reader page won't be swapped
1574          * in the ring buffer. Now we are racing with the writer trying to
1575          * move head page and the tail page.
1576          * We are going to adapt the reader page update process where:
1577          * 1. We first splice the start and end of list of new pages between
1578          *    the head page and its previous page.
1579          * 2. We cmpxchg the prev_page->next to point from head page to the
1580          *    start of new pages list.
1581          * 3. Finally, we update the head->prev to the end of new list.
1582          *
1583          * We will try this process 10 times, to make sure that we don't keep
1584          * spinning.
1585          */
1586         retries = 10;
1587         success = 0;
1588         while (retries--) {
1589                 struct list_head *head_page, *prev_page, *r;
1590                 struct list_head *last_page, *first_page;
1591                 struct list_head *head_page_with_bit;
1592
1593                 head_page = &rb_set_head_page(cpu_buffer)->list;
1594                 if (!head_page)
1595                         break;
1596                 prev_page = head_page->prev;
1597
1598                 first_page = pages->next;
1599                 last_page  = pages->prev;
1600
1601                 head_page_with_bit = (struct list_head *)
1602                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1603
1604                 last_page->next = head_page_with_bit;
1605                 first_page->prev = prev_page;
1606
1607                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1608
1609                 if (r == head_page_with_bit) {
1610                         /*
1611                          * yay, we replaced the page pointer to our new list,
1612                          * now, we just have to update to head page's prev
1613                          * pointer to point to end of list
1614                          */
1615                         head_page->prev = last_page;
1616                         success = 1;
1617                         break;
1618                 }
1619         }
1620
1621         if (success)
1622                 INIT_LIST_HEAD(pages);
1623         /*
1624          * If we weren't successful in adding in new pages, warn and stop
1625          * tracing
1626          */
1627         RB_WARN_ON(cpu_buffer, !success);
1628         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1629
1630         /* free pages if they weren't inserted */
1631         if (!success) {
1632                 struct buffer_page *bpage, *tmp;
1633                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1634                                          list) {
1635                         list_del_init(&bpage->list);
1636                         free_buffer_page(bpage);
1637                 }
1638         }
1639         return success;
1640 }
1641
1642 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1643 {
1644         int success;
1645
1646         if (cpu_buffer->nr_pages_to_update > 0)
1647                 success = rb_insert_pages(cpu_buffer);
1648         else
1649                 success = rb_remove_pages(cpu_buffer,
1650                                         -cpu_buffer->nr_pages_to_update);
1651
1652         if (success)
1653                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1654 }
1655
1656 static void update_pages_handler(struct work_struct *work)
1657 {
1658         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1659                         struct ring_buffer_per_cpu, update_pages_work);
1660         rb_update_pages(cpu_buffer);
1661         complete(&cpu_buffer->update_done);
1662 }
1663
1664 /**
1665  * ring_buffer_resize - resize the ring buffer
1666  * @buffer: the buffer to resize.
1667  * @size: the new size.
1668  * @cpu_id: the cpu buffer to resize
1669  *
1670  * Minimum size is 2 * BUF_PAGE_SIZE.
1671  *
1672  * Returns 0 on success and < 0 on failure.
1673  */
1674 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1675                         int cpu_id)
1676 {
1677         struct ring_buffer_per_cpu *cpu_buffer;
1678         unsigned nr_pages;
1679         int cpu, err = 0;
1680
1681         /*
1682          * Always succeed at resizing a non-existent buffer:
1683          */
1684         if (!buffer)
1685                 return size;
1686
1687         /* Make sure the requested buffer exists */
1688         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1689             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1690                 return size;
1691
1692         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1693         size *= BUF_PAGE_SIZE;
1694
1695         /* we need a minimum of two pages */
1696         if (size < BUF_PAGE_SIZE * 2)
1697                 size = BUF_PAGE_SIZE * 2;
1698
1699         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1700
1701         /*
1702          * Don't succeed if resizing is disabled, as a reader might be
1703          * manipulating the ring buffer and is expecting a sane state while
1704          * this is true.
1705          */
1706         if (atomic_read(&buffer->resize_disabled))
1707                 return -EBUSY;
1708
1709         /* prevent another thread from changing buffer sizes */
1710         mutex_lock(&buffer->mutex);
1711
1712         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713                 /* calculate the pages to update */
1714                 for_each_buffer_cpu(buffer, cpu) {
1715                         cpu_buffer = buffer->buffers[cpu];
1716
1717                         cpu_buffer->nr_pages_to_update = nr_pages -
1718                                                         cpu_buffer->nr_pages;
1719                         /*
1720                          * nothing more to do for removing pages or no update
1721                          */
1722                         if (cpu_buffer->nr_pages_to_update <= 0)
1723                                 continue;
1724                         /*
1725                          * to add pages, make sure all new pages can be
1726                          * allocated without receiving ENOMEM
1727                          */
1728                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730                                                 &cpu_buffer->new_pages, cpu)) {
1731                                 /* not enough memory for new pages */
1732                                 err = -ENOMEM;
1733                                 goto out_err;
1734                         }
1735                 }
1736
1737                 get_online_cpus();
1738                 /*
1739                  * Fire off all the required work handlers
1740                  * We can't schedule on offline CPUs, but it's not necessary
1741                  * since we can change their buffer sizes without any race.
1742                  */
1743                 for_each_buffer_cpu(buffer, cpu) {
1744                         cpu_buffer = buffer->buffers[cpu];
1745                         if (!cpu_buffer->nr_pages_to_update)
1746                                 continue;
1747
1748                         /* Can't run something on an offline CPU. */
1749                         if (!cpu_online(cpu)) {
1750                                 rb_update_pages(cpu_buffer);
1751                                 cpu_buffer->nr_pages_to_update = 0;
1752                         } else {
1753                                 schedule_work_on(cpu,
1754                                                 &cpu_buffer->update_pages_work);
1755                         }
1756                 }
1757
1758                 /* wait for all the updates to complete */
1759                 for_each_buffer_cpu(buffer, cpu) {
1760                         cpu_buffer = buffer->buffers[cpu];
1761                         if (!cpu_buffer->nr_pages_to_update)
1762                                 continue;
1763
1764                         if (cpu_online(cpu))
1765                                 wait_for_completion(&cpu_buffer->update_done);
1766                         cpu_buffer->nr_pages_to_update = 0;
1767                 }
1768
1769                 put_online_cpus();
1770         } else {
1771                 /* Make sure this CPU has been intitialized */
1772                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773                         goto out;
1774
1775                 cpu_buffer = buffer->buffers[cpu_id];
1776
1777                 if (nr_pages == cpu_buffer->nr_pages)
1778                         goto out;
1779
1780                 cpu_buffer->nr_pages_to_update = nr_pages -
1781                                                 cpu_buffer->nr_pages;
1782
1783                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784                 if (cpu_buffer->nr_pages_to_update > 0 &&
1785                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786                                             &cpu_buffer->new_pages, cpu_id)) {
1787                         err = -ENOMEM;
1788                         goto out_err;
1789                 }
1790
1791                 get_online_cpus();
1792
1793                 /* Can't run something on an offline CPU. */
1794                 if (!cpu_online(cpu_id))
1795                         rb_update_pages(cpu_buffer);
1796                 else {
1797                         schedule_work_on(cpu_id,
1798                                          &cpu_buffer->update_pages_work);
1799                         wait_for_completion(&cpu_buffer->update_done);
1800                 }
1801
1802                 cpu_buffer->nr_pages_to_update = 0;
1803                 put_online_cpus();
1804         }
1805
1806  out:
1807         /*
1808          * The ring buffer resize can happen with the ring buffer
1809          * enabled, so that the update disturbs the tracing as little
1810          * as possible. But if the buffer is disabled, we do not need
1811          * to worry about that, and we can take the time to verify
1812          * that the buffer is not corrupt.
1813          */
1814         if (atomic_read(&buffer->record_disabled)) {
1815                 atomic_inc(&buffer->record_disabled);
1816                 /*
1817                  * Even though the buffer was disabled, we must make sure
1818                  * that it is truly disabled before calling rb_check_pages.
1819                  * There could have been a race between checking
1820                  * record_disable and incrementing it.
1821                  */
1822                 synchronize_sched();
1823                 for_each_buffer_cpu(buffer, cpu) {
1824                         cpu_buffer = buffer->buffers[cpu];
1825                         rb_check_pages(cpu_buffer);
1826                 }
1827                 atomic_dec(&buffer->record_disabled);
1828         }
1829
1830         mutex_unlock(&buffer->mutex);
1831         return size;
1832
1833  out_err:
1834         for_each_buffer_cpu(buffer, cpu) {
1835                 struct buffer_page *bpage, *tmp;
1836
1837                 cpu_buffer = buffer->buffers[cpu];
1838                 cpu_buffer->nr_pages_to_update = 0;
1839
1840                 if (list_empty(&cpu_buffer->new_pages))
1841                         continue;
1842
1843                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844                                         list) {
1845                         list_del_init(&bpage->list);
1846                         free_buffer_page(bpage);
1847                 }
1848         }
1849         mutex_unlock(&buffer->mutex);
1850         return err;
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853
1854 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855 {
1856         mutex_lock(&buffer->mutex);
1857         if (val)
1858                 buffer->flags |= RB_FL_OVERWRITE;
1859         else
1860                 buffer->flags &= ~RB_FL_OVERWRITE;
1861         mutex_unlock(&buffer->mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864
1865 static inline void *
1866 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867 {
1868         return bpage->data + index;
1869 }
1870
1871 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872 {
1873         return bpage->page->data + index;
1874 }
1875
1876 static inline struct ring_buffer_event *
1877 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879         return __rb_page_index(cpu_buffer->reader_page,
1880                                cpu_buffer->reader_page->read);
1881 }
1882
1883 static inline struct ring_buffer_event *
1884 rb_iter_head_event(struct ring_buffer_iter *iter)
1885 {
1886         return __rb_page_index(iter->head_page, iter->head);
1887 }
1888
1889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890 {
1891         return local_read(&bpage->page->commit);
1892 }
1893
1894 /* Size is determined by what has been committed */
1895 static inline unsigned rb_page_size(struct buffer_page *bpage)
1896 {
1897         return rb_page_commit(bpage);
1898 }
1899
1900 static inline unsigned
1901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902 {
1903         return rb_page_commit(cpu_buffer->commit_page);
1904 }
1905
1906 static inline unsigned
1907 rb_event_index(struct ring_buffer_event *event)
1908 {
1909         unsigned long addr = (unsigned long)event;
1910
1911         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912 }
1913
1914 static inline int
1915 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916                    struct ring_buffer_event *event)
1917 {
1918         unsigned long addr = (unsigned long)event;
1919         unsigned long index;
1920
1921         index = rb_event_index(event);
1922         addr &= PAGE_MASK;
1923
1924         return cpu_buffer->commit_page->page == (void *)addr &&
1925                 rb_commit_index(cpu_buffer) == index;
1926 }
1927
1928 static void
1929 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931         unsigned long max_count;
1932
1933         /*
1934          * We only race with interrupts and NMIs on this CPU.
1935          * If we own the commit event, then we can commit
1936          * all others that interrupted us, since the interruptions
1937          * are in stack format (they finish before they come
1938          * back to us). This allows us to do a simple loop to
1939          * assign the commit to the tail.
1940          */
1941  again:
1942         max_count = cpu_buffer->nr_pages * 100;
1943
1944         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946                         return;
1947                 if (RB_WARN_ON(cpu_buffer,
1948                                rb_is_reader_page(cpu_buffer->tail_page)))
1949                         return;
1950                 local_set(&cpu_buffer->commit_page->page->commit,
1951                           rb_page_write(cpu_buffer->commit_page));
1952                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953                 cpu_buffer->write_stamp =
1954                         cpu_buffer->commit_page->page->time_stamp;
1955                 /* add barrier to keep gcc from optimizing too much */
1956                 barrier();
1957         }
1958         while (rb_commit_index(cpu_buffer) !=
1959                rb_page_write(cpu_buffer->commit_page)) {
1960
1961                 local_set(&cpu_buffer->commit_page->page->commit,
1962                           rb_page_write(cpu_buffer->commit_page));
1963                 RB_WARN_ON(cpu_buffer,
1964                            local_read(&cpu_buffer->commit_page->page->commit) &
1965                            ~RB_WRITE_MASK);
1966                 barrier();
1967         }
1968
1969         /* again, keep gcc from optimizing */
1970         barrier();
1971
1972         /*
1973          * If an interrupt came in just after the first while loop
1974          * and pushed the tail page forward, we will be left with
1975          * a dangling commit that will never go forward.
1976          */
1977         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978                 goto again;
1979 }
1980
1981 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982 {
1983         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984         cpu_buffer->reader_page->read = 0;
1985 }
1986
1987 static void rb_inc_iter(struct ring_buffer_iter *iter)
1988 {
1989         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990
1991         /*
1992          * The iterator could be on the reader page (it starts there).
1993          * But the head could have moved, since the reader was
1994          * found. Check for this case and assign the iterator
1995          * to the head page instead of next.
1996          */
1997         if (iter->head_page == cpu_buffer->reader_page)
1998                 iter->head_page = rb_set_head_page(cpu_buffer);
1999         else
2000                 rb_inc_page(cpu_buffer, &iter->head_page);
2001
2002         iter->read_stamp = iter->head_page->page->time_stamp;
2003         iter->head = 0;
2004 }
2005
2006 /* Slow path, do not inline */
2007 static noinline struct ring_buffer_event *
2008 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009 {
2010         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011
2012         /* Not the first event on the page? */
2013         if (rb_event_index(event)) {
2014                 event->time_delta = delta & TS_MASK;
2015                 event->array[0] = delta >> TS_SHIFT;
2016         } else {
2017                 /* nope, just zero it */
2018                 event->time_delta = 0;
2019                 event->array[0] = 0;
2020         }
2021
2022         return skip_time_extend(event);
2023 }
2024
2025 /**
2026  * rb_update_event - update event type and data
2027  * @event: the event to update
2028  * @type: the type of event
2029  * @length: the size of the event field in the ring buffer
2030  *
2031  * Update the type and data fields of the event. The length
2032  * is the actual size that is written to the ring buffer,
2033  * and with this, we can determine what to place into the
2034  * data field.
2035  */
2036 static void
2037 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038                 struct ring_buffer_event *event, unsigned length,
2039                 int add_timestamp, u64 delta)
2040 {
2041         /* Only a commit updates the timestamp */
2042         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043                 delta = 0;
2044
2045         /*
2046          * If we need to add a timestamp, then we
2047          * add it to the start of the resevered space.
2048          */
2049         if (unlikely(add_timestamp)) {
2050                 event = rb_add_time_stamp(event, delta);
2051                 length -= RB_LEN_TIME_EXTEND;
2052                 delta = 0;
2053         }
2054
2055         event->time_delta = delta;
2056         length -= RB_EVNT_HDR_SIZE;
2057         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058                 event->type_len = 0;
2059                 event->array[0] = length;
2060         } else
2061                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062 }
2063
2064 /*
2065  * rb_handle_head_page - writer hit the head page
2066  *
2067  * Returns: +1 to retry page
2068  *           0 to continue
2069  *          -1 on error
2070  */
2071 static int
2072 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073                     struct buffer_page *tail_page,
2074                     struct buffer_page *next_page)
2075 {
2076         struct buffer_page *new_head;
2077         int entries;
2078         int type;
2079         int ret;
2080
2081         entries = rb_page_entries(next_page);
2082
2083         /*
2084          * The hard part is here. We need to move the head
2085          * forward, and protect against both readers on
2086          * other CPUs and writers coming in via interrupts.
2087          */
2088         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089                                        RB_PAGE_HEAD);
2090
2091         /*
2092          * type can be one of four:
2093          *  NORMAL - an interrupt already moved it for us
2094          *  HEAD   - we are the first to get here.
2095          *  UPDATE - we are the interrupt interrupting
2096          *           a current move.
2097          *  MOVED  - a reader on another CPU moved the next
2098          *           pointer to its reader page. Give up
2099          *           and try again.
2100          */
2101
2102         switch (type) {
2103         case RB_PAGE_HEAD:
2104                 /*
2105                  * We changed the head to UPDATE, thus
2106                  * it is our responsibility to update
2107                  * the counters.
2108                  */
2109                 local_add(entries, &cpu_buffer->overrun);
2110                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111
2112                 /*
2113                  * The entries will be zeroed out when we move the
2114                  * tail page.
2115                  */
2116
2117                 /* still more to do */
2118                 break;
2119
2120         case RB_PAGE_UPDATE:
2121                 /*
2122                  * This is an interrupt that interrupt the
2123                  * previous update. Still more to do.
2124                  */
2125                 break;
2126         case RB_PAGE_NORMAL:
2127                 /*
2128                  * An interrupt came in before the update
2129                  * and processed this for us.
2130                  * Nothing left to do.
2131                  */
2132                 return 1;
2133         case RB_PAGE_MOVED:
2134                 /*
2135                  * The reader is on another CPU and just did
2136                  * a swap with our next_page.
2137                  * Try again.
2138                  */
2139                 return 1;
2140         default:
2141                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142                 return -1;
2143         }
2144
2145         /*
2146          * Now that we are here, the old head pointer is
2147          * set to UPDATE. This will keep the reader from
2148          * swapping the head page with the reader page.
2149          * The reader (on another CPU) will spin till
2150          * we are finished.
2151          *
2152          * We just need to protect against interrupts
2153          * doing the job. We will set the next pointer
2154          * to HEAD. After that, we set the old pointer
2155          * to NORMAL, but only if it was HEAD before.
2156          * otherwise we are an interrupt, and only
2157          * want the outer most commit to reset it.
2158          */
2159         new_head = next_page;
2160         rb_inc_page(cpu_buffer, &new_head);
2161
2162         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163                                     RB_PAGE_NORMAL);
2164
2165         /*
2166          * Valid returns are:
2167          *  HEAD   - an interrupt came in and already set it.
2168          *  NORMAL - One of two things:
2169          *            1) We really set it.
2170          *            2) A bunch of interrupts came in and moved
2171          *               the page forward again.
2172          */
2173         switch (ret) {
2174         case RB_PAGE_HEAD:
2175         case RB_PAGE_NORMAL:
2176                 /* OK */
2177                 break;
2178         default:
2179                 RB_WARN_ON(cpu_buffer, 1);
2180                 return -1;
2181         }
2182
2183         /*
2184          * It is possible that an interrupt came in,
2185          * set the head up, then more interrupts came in
2186          * and moved it again. When we get back here,
2187          * the page would have been set to NORMAL but we
2188          * just set it back to HEAD.
2189          *
2190          * How do you detect this? Well, if that happened
2191          * the tail page would have moved.
2192          */
2193         if (ret == RB_PAGE_NORMAL) {
2194                 /*
2195                  * If the tail had moved passed next, then we need
2196                  * to reset the pointer.
2197                  */
2198                 if (cpu_buffer->tail_page != tail_page &&
2199                     cpu_buffer->tail_page != next_page)
2200                         rb_head_page_set_normal(cpu_buffer, new_head,
2201                                                 next_page,
2202                                                 RB_PAGE_HEAD);
2203         }
2204
2205         /*
2206          * If this was the outer most commit (the one that
2207          * changed the original pointer from HEAD to UPDATE),
2208          * then it is up to us to reset it to NORMAL.
2209          */
2210         if (type == RB_PAGE_HEAD) {
2211                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212                                               tail_page,
2213                                               RB_PAGE_UPDATE);
2214                 if (RB_WARN_ON(cpu_buffer,
2215                                ret != RB_PAGE_UPDATE))
2216                         return -1;
2217         }
2218
2219         return 0;
2220 }
2221
2222 static unsigned rb_calculate_event_length(unsigned length)
2223 {
2224         struct ring_buffer_event event; /* Used only for sizeof array */
2225
2226         /* zero length can cause confusions */
2227         if (!length)
2228                 length = 1;
2229
2230         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231                 length += sizeof(event.array[0]);
2232
2233         length += RB_EVNT_HDR_SIZE;
2234         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235
2236         return length;
2237 }
2238
2239 static inline void
2240 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241               struct buffer_page *tail_page,
2242               unsigned long tail, unsigned long length)
2243 {
2244         struct ring_buffer_event *event;
2245
2246         /*
2247          * Only the event that crossed the page boundary
2248          * must fill the old tail_page with padding.
2249          */
2250         if (tail >= BUF_PAGE_SIZE) {
2251                 /*
2252                  * If the page was filled, then we still need
2253                  * to update the real_end. Reset it to zero
2254                  * and the reader will ignore it.
2255                  */
2256                 if (tail == BUF_PAGE_SIZE)
2257                         tail_page->real_end = 0;
2258
2259                 local_sub(length, &tail_page->write);
2260                 return;
2261         }
2262
2263         event = __rb_page_index(tail_page, tail);
2264         kmemcheck_annotate_bitfield(event, bitfield);
2265
2266         /* account for padding bytes */
2267         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268
2269         /*
2270          * Save the original length to the meta data.
2271          * This will be used by the reader to add lost event
2272          * counter.
2273          */
2274         tail_page->real_end = tail;
2275
2276         /*
2277          * If this event is bigger than the minimum size, then
2278          * we need to be careful that we don't subtract the
2279          * write counter enough to allow another writer to slip
2280          * in on this page.
2281          * We put in a discarded commit instead, to make sure
2282          * that this space is not used again.
2283          *
2284          * If we are less than the minimum size, we don't need to
2285          * worry about it.
2286          */
2287         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288                 /* No room for any events */
2289
2290                 /* Mark the rest of the page with padding */
2291                 rb_event_set_padding(event);
2292
2293                 /* Set the write back to the previous setting */
2294                 local_sub(length, &tail_page->write);
2295                 return;
2296         }
2297
2298         /* Put in a discarded event */
2299         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300         event->type_len = RINGBUF_TYPE_PADDING;
2301         /* time delta must be non zero */
2302         event->time_delta = 1;
2303
2304         /* Set write to end of buffer */
2305         length = (tail + length) - BUF_PAGE_SIZE;
2306         local_sub(length, &tail_page->write);
2307 }
2308
2309 /*
2310  * This is the slow path, force gcc not to inline it.
2311  */
2312 static noinline struct ring_buffer_event *
2313 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314              unsigned long length, unsigned long tail,
2315              struct buffer_page *tail_page, u64 ts)
2316 {
2317         struct buffer_page *commit_page = cpu_buffer->commit_page;
2318         struct ring_buffer *buffer = cpu_buffer->buffer;
2319         struct buffer_page *next_page;
2320         int ret;
2321
2322         next_page = tail_page;
2323
2324         rb_inc_page(cpu_buffer, &next_page);
2325
2326         /*
2327          * If for some reason, we had an interrupt storm that made
2328          * it all the way around the buffer, bail, and warn
2329          * about it.
2330          */
2331         if (unlikely(next_page == commit_page)) {
2332                 local_inc(&cpu_buffer->commit_overrun);
2333                 goto out_reset;
2334         }
2335
2336         /*
2337          * This is where the fun begins!
2338          *
2339          * We are fighting against races between a reader that
2340          * could be on another CPU trying to swap its reader
2341          * page with the buffer head.
2342          *
2343          * We are also fighting against interrupts coming in and
2344          * moving the head or tail on us as well.
2345          *
2346          * If the next page is the head page then we have filled
2347          * the buffer, unless the commit page is still on the
2348          * reader page.
2349          */
2350         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351
2352                 /*
2353                  * If the commit is not on the reader page, then
2354                  * move the header page.
2355                  */
2356                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357                         /*
2358                          * If we are not in overwrite mode,
2359                          * this is easy, just stop here.
2360                          */
2361                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362                                 local_inc(&cpu_buffer->dropped_events);
2363                                 goto out_reset;
2364                         }
2365
2366                         ret = rb_handle_head_page(cpu_buffer,
2367                                                   tail_page,
2368                                                   next_page);
2369                         if (ret < 0)
2370                                 goto out_reset;
2371                         if (ret)
2372                                 goto out_again;
2373                 } else {
2374                         /*
2375                          * We need to be careful here too. The
2376                          * commit page could still be on the reader
2377                          * page. We could have a small buffer, and
2378                          * have filled up the buffer with events
2379                          * from interrupts and such, and wrapped.
2380                          *
2381                          * Note, if the tail page is also the on the
2382                          * reader_page, we let it move out.
2383                          */
2384                         if (unlikely((cpu_buffer->commit_page !=
2385                                       cpu_buffer->tail_page) &&
2386                                      (cpu_buffer->commit_page ==
2387                                       cpu_buffer->reader_page))) {
2388                                 local_inc(&cpu_buffer->commit_overrun);
2389                                 goto out_reset;
2390                         }
2391                 }
2392         }
2393
2394         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395         if (ret) {
2396                 /*
2397                  * Nested commits always have zero deltas, so
2398                  * just reread the time stamp
2399                  */
2400                 ts = rb_time_stamp(buffer);
2401                 next_page->page->time_stamp = ts;
2402         }
2403
2404  out_again:
2405
2406         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407
2408         /* fail and let the caller try again */
2409         return ERR_PTR(-EAGAIN);
2410
2411  out_reset:
2412         /* reset write */
2413         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414
2415         return NULL;
2416 }
2417
2418 static struct ring_buffer_event *
2419 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420                   unsigned long length, u64 ts,
2421                   u64 delta, int add_timestamp)
2422 {
2423         struct buffer_page *tail_page;
2424         struct ring_buffer_event *event;
2425         unsigned long tail, write;
2426
2427         /*
2428          * If the time delta since the last event is too big to
2429          * hold in the time field of the event, then we append a
2430          * TIME EXTEND event ahead of the data event.
2431          */
2432         if (unlikely(add_timestamp))
2433                 length += RB_LEN_TIME_EXTEND;
2434
2435         tail_page = cpu_buffer->tail_page;
2436         write = local_add_return(length, &tail_page->write);
2437
2438         /* set write to only the index of the write */
2439         write &= RB_WRITE_MASK;
2440         tail = write - length;
2441
2442         /*
2443          * If this is the first commit on the page, then it has the same
2444          * timestamp as the page itself.
2445          */
2446         if (!tail)
2447                 delta = 0;
2448
2449         /* See if we shot pass the end of this buffer page */
2450         if (unlikely(write > BUF_PAGE_SIZE))
2451                 return rb_move_tail(cpu_buffer, length, tail,
2452                                     tail_page, ts);
2453
2454         /* We reserved something on the buffer */
2455
2456         event = __rb_page_index(tail_page, tail);
2457         kmemcheck_annotate_bitfield(event, bitfield);
2458         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459
2460         local_inc(&tail_page->entries);
2461
2462         /*
2463          * If this is the first commit on the page, then update
2464          * its timestamp.
2465          */
2466         if (!tail)
2467                 tail_page->page->time_stamp = ts;
2468
2469         /* account for these added bytes */
2470         local_add(length, &cpu_buffer->entries_bytes);
2471
2472         return event;
2473 }
2474
2475 static inline int
2476 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477                   struct ring_buffer_event *event)
2478 {
2479         unsigned long new_index, old_index;
2480         struct buffer_page *bpage;
2481         unsigned long index;
2482         unsigned long addr;
2483
2484         new_index = rb_event_index(event);
2485         old_index = new_index + rb_event_ts_length(event);
2486         addr = (unsigned long)event;
2487         addr &= PAGE_MASK;
2488
2489         bpage = cpu_buffer->tail_page;
2490
2491         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492                 unsigned long write_mask =
2493                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2494                 unsigned long event_length = rb_event_length(event);
2495                 /*
2496                  * This is on the tail page. It is possible that
2497                  * a write could come in and move the tail page
2498                  * and write to the next page. That is fine
2499                  * because we just shorten what is on this page.
2500                  */
2501                 old_index += write_mask;
2502                 new_index += write_mask;
2503                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2504                 if (index == old_index) {
2505                         /* update counters */
2506                         local_sub(event_length, &cpu_buffer->entries_bytes);
2507                         return 1;
2508                 }
2509         }
2510
2511         /* could not discard */
2512         return 0;
2513 }
2514
2515 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517         local_inc(&cpu_buffer->committing);
2518         local_inc(&cpu_buffer->commits);
2519 }
2520
2521 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522 {
2523         unsigned long commits;
2524
2525         if (RB_WARN_ON(cpu_buffer,
2526                        !local_read(&cpu_buffer->committing)))
2527                 return;
2528
2529  again:
2530         commits = local_read(&cpu_buffer->commits);
2531         /* synchronize with interrupts */
2532         barrier();
2533         if (local_read(&cpu_buffer->committing) == 1)
2534                 rb_set_commit_to_write(cpu_buffer);
2535
2536         local_dec(&cpu_buffer->committing);
2537
2538         /* synchronize with interrupts */
2539         barrier();
2540
2541         /*
2542          * Need to account for interrupts coming in between the
2543          * updating of the commit page and the clearing of the
2544          * committing counter.
2545          */
2546         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547             !local_read(&cpu_buffer->committing)) {
2548                 local_inc(&cpu_buffer->committing);
2549                 goto again;
2550         }
2551 }
2552
2553 static struct ring_buffer_event *
2554 rb_reserve_next_event(struct ring_buffer *buffer,
2555                       struct ring_buffer_per_cpu *cpu_buffer,
2556                       unsigned long length)
2557 {
2558         struct ring_buffer_event *event;
2559         u64 ts, delta;
2560         int nr_loops = 0;
2561         int add_timestamp;
2562         u64 diff;
2563
2564         rb_start_commit(cpu_buffer);
2565
2566 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567         /*
2568          * Due to the ability to swap a cpu buffer from a buffer
2569          * it is possible it was swapped before we committed.
2570          * (committing stops a swap). We check for it here and
2571          * if it happened, we have to fail the write.
2572          */
2573         barrier();
2574         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575                 local_dec(&cpu_buffer->committing);
2576                 local_dec(&cpu_buffer->commits);
2577                 return NULL;
2578         }
2579 #endif
2580
2581         length = rb_calculate_event_length(length);
2582  again:
2583         add_timestamp = 0;
2584         delta = 0;
2585
2586         /*
2587          * We allow for interrupts to reenter here and do a trace.
2588          * If one does, it will cause this original code to loop
2589          * back here. Even with heavy interrupts happening, this
2590          * should only happen a few times in a row. If this happens
2591          * 1000 times in a row, there must be either an interrupt
2592          * storm or we have something buggy.
2593          * Bail!
2594          */
2595         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596                 goto out_fail;
2597
2598         ts = rb_time_stamp(cpu_buffer->buffer);
2599         diff = ts - cpu_buffer->write_stamp;
2600
2601         /* make sure this diff is calculated here */
2602         barrier();
2603
2604         /* Did the write stamp get updated already? */
2605         if (likely(ts >= cpu_buffer->write_stamp)) {
2606                 delta = diff;
2607                 if (unlikely(test_time_stamp(delta))) {
2608                         int local_clock_stable = 1;
2609 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610                         local_clock_stable = sched_clock_stable();
2611 #endif
2612                         WARN_ONCE(delta > (1ULL << 59),
2613                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614                                   (unsigned long long)delta,
2615                                   (unsigned long long)ts,
2616                                   (unsigned long long)cpu_buffer->write_stamp,
2617                                   local_clock_stable ? "" :
2618                                   "If you just came from a suspend/resume,\n"
2619                                   "please switch to the trace global clock:\n"
2620                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621                         add_timestamp = 1;
2622                 }
2623         }
2624
2625         event = __rb_reserve_next(cpu_buffer, length, ts,
2626                                   delta, add_timestamp);
2627         if (unlikely(PTR_ERR(event) == -EAGAIN))
2628                 goto again;
2629
2630         if (!event)
2631                 goto out_fail;
2632
2633         return event;
2634
2635  out_fail:
2636         rb_end_commit(cpu_buffer);
2637         return NULL;
2638 }
2639
2640 /*
2641  * The lock and unlock are done within a preempt disable section.
2642  * The current_context per_cpu variable can only be modified
2643  * by the current task between lock and unlock. But it can
2644  * be modified more than once via an interrupt. To pass this
2645  * information from the lock to the unlock without having to
2646  * access the 'in_interrupt()' functions again (which do show
2647  * a bit of overhead in something as critical as function tracing,
2648  * we use a bitmask trick.
2649  *
2650  *  bit 0 =  NMI context
2651  *  bit 1 =  IRQ context
2652  *  bit 2 =  SoftIRQ context
2653  *  bit 3 =  normal context.
2654  *
2655  * This works because this is the order of contexts that can
2656  * preempt other contexts. A SoftIRQ never preempts an IRQ
2657  * context.
2658  *
2659  * When the context is determined, the corresponding bit is
2660  * checked and set (if it was set, then a recursion of that context
2661  * happened).
2662  *
2663  * On unlock, we need to clear this bit. To do so, just subtract
2664  * 1 from the current_context and AND it to itself.
2665  *
2666  * (binary)
2667  *  101 - 1 = 100
2668  *  101 & 100 = 100 (clearing bit zero)
2669  *
2670  *  1010 - 1 = 1001
2671  *  1010 & 1001 = 1000 (clearing bit 1)
2672  *
2673  * The least significant bit can be cleared this way, and it
2674  * just so happens that it is the same bit corresponding to
2675  * the current context.
2676  */
2677
2678 static __always_inline int
2679 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2680 {
2681         unsigned int val = cpu_buffer->current_context;
2682         int bit;
2683
2684         if (in_interrupt()) {
2685                 if (in_nmi())
2686                         bit = 0;
2687                 else if (in_irq())
2688                         bit = 1;
2689                 else
2690                         bit = 2;
2691         } else
2692                 bit = 3;
2693
2694         if (unlikely(val & (1 << bit)))
2695                 return 1;
2696
2697         val |= (1 << bit);
2698         cpu_buffer->current_context = val;
2699
2700         return 0;
2701 }
2702
2703 static __always_inline void
2704 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2705 {
2706         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2707 }
2708
2709 /**
2710  * ring_buffer_lock_reserve - reserve a part of the buffer
2711  * @buffer: the ring buffer to reserve from
2712  * @length: the length of the data to reserve (excluding event header)
2713  *
2714  * Returns a reseverd event on the ring buffer to copy directly to.
2715  * The user of this interface will need to get the body to write into
2716  * and can use the ring_buffer_event_data() interface.
2717  *
2718  * The length is the length of the data needed, not the event length
2719  * which also includes the event header.
2720  *
2721  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2722  * If NULL is returned, then nothing has been allocated or locked.
2723  */
2724 struct ring_buffer_event *
2725 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2726 {
2727         struct ring_buffer_per_cpu *cpu_buffer;
2728         struct ring_buffer_event *event;
2729         int cpu;
2730
2731         if (ring_buffer_flags != RB_BUFFERS_ON)
2732                 return NULL;
2733
2734         /* If we are tracing schedule, we don't want to recurse */
2735         preempt_disable_notrace();
2736
2737         if (unlikely(atomic_read(&buffer->record_disabled)))
2738                 goto out;
2739
2740         cpu = raw_smp_processor_id();
2741
2742         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2743                 goto out;
2744
2745         cpu_buffer = buffer->buffers[cpu];
2746
2747         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2748                 goto out;
2749
2750         if (unlikely(length > BUF_MAX_DATA_SIZE))
2751                 goto out;
2752
2753         if (unlikely(trace_recursive_lock(cpu_buffer)))
2754                 goto out;
2755
2756         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2757         if (!event)
2758                 goto out_unlock;
2759
2760         return event;
2761
2762  out_unlock:
2763         trace_recursive_unlock(cpu_buffer);
2764  out:
2765         preempt_enable_notrace();
2766         return NULL;
2767 }
2768 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2769
2770 static void
2771 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2772                       struct ring_buffer_event *event)
2773 {
2774         u64 delta;
2775
2776         /*
2777          * The event first in the commit queue updates the
2778          * time stamp.
2779          */
2780         if (rb_event_is_commit(cpu_buffer, event)) {
2781                 /*
2782                  * A commit event that is first on a page
2783                  * updates the write timestamp with the page stamp
2784                  */
2785                 if (!rb_event_index(event))
2786                         cpu_buffer->write_stamp =
2787                                 cpu_buffer->commit_page->page->time_stamp;
2788                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2789                         delta = event->array[0];
2790                         delta <<= TS_SHIFT;
2791                         delta += event->time_delta;
2792                         cpu_buffer->write_stamp += delta;
2793                 } else
2794                         cpu_buffer->write_stamp += event->time_delta;
2795         }
2796 }
2797
2798 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2799                       struct ring_buffer_event *event)
2800 {
2801         local_inc(&cpu_buffer->entries);
2802         rb_update_write_stamp(cpu_buffer, event);
2803         rb_end_commit(cpu_buffer);
2804 }
2805
2806 static __always_inline void
2807 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2808 {
2809         bool pagebusy;
2810
2811         if (buffer->irq_work.waiters_pending) {
2812                 buffer->irq_work.waiters_pending = false;
2813                 /* irq_work_queue() supplies it's own memory barriers */
2814                 irq_work_queue(&buffer->irq_work.work);
2815         }
2816
2817         if (cpu_buffer->irq_work.waiters_pending) {
2818                 cpu_buffer->irq_work.waiters_pending = false;
2819                 /* irq_work_queue() supplies it's own memory barriers */
2820                 irq_work_queue(&cpu_buffer->irq_work.work);
2821         }
2822
2823         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2824
2825         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2826                 cpu_buffer->irq_work.wakeup_full = true;
2827                 cpu_buffer->irq_work.full_waiters_pending = false;
2828                 /* irq_work_queue() supplies it's own memory barriers */
2829                 irq_work_queue(&cpu_buffer->irq_work.work);
2830         }
2831 }
2832
2833 /**
2834  * ring_buffer_unlock_commit - commit a reserved
2835  * @buffer: The buffer to commit to
2836  * @event: The event pointer to commit.
2837  *
2838  * This commits the data to the ring buffer, and releases any locks held.
2839  *
2840  * Must be paired with ring_buffer_lock_reserve.
2841  */
2842 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2843                               struct ring_buffer_event *event)
2844 {
2845         struct ring_buffer_per_cpu *cpu_buffer;
2846         int cpu = raw_smp_processor_id();
2847
2848         cpu_buffer = buffer->buffers[cpu];
2849
2850         rb_commit(cpu_buffer, event);
2851
2852         rb_wakeups(buffer, cpu_buffer);
2853
2854         trace_recursive_unlock(cpu_buffer);
2855
2856         preempt_enable_notrace();
2857
2858         return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2861
2862 static inline void rb_event_discard(struct ring_buffer_event *event)
2863 {
2864         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2865                 event = skip_time_extend(event);
2866
2867         /* array[0] holds the actual length for the discarded event */
2868         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2869         event->type_len = RINGBUF_TYPE_PADDING;
2870         /* time delta must be non zero */
2871         if (!event->time_delta)
2872                 event->time_delta = 1;
2873 }
2874
2875 /*
2876  * Decrement the entries to the page that an event is on.
2877  * The event does not even need to exist, only the pointer
2878  * to the page it is on. This may only be called before the commit
2879  * takes place.
2880  */
2881 static inline void
2882 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2883                    struct ring_buffer_event *event)
2884 {
2885         unsigned long addr = (unsigned long)event;
2886         struct buffer_page *bpage = cpu_buffer->commit_page;
2887         struct buffer_page *start;
2888
2889         addr &= PAGE_MASK;
2890
2891         /* Do the likely case first */
2892         if (likely(bpage->page == (void *)addr)) {
2893                 local_dec(&bpage->entries);
2894                 return;
2895         }
2896
2897         /*
2898          * Because the commit page may be on the reader page we
2899          * start with the next page and check the end loop there.
2900          */
2901         rb_inc_page(cpu_buffer, &bpage);
2902         start = bpage;
2903         do {
2904                 if (bpage->page == (void *)addr) {
2905                         local_dec(&bpage->entries);
2906                         return;
2907                 }
2908                 rb_inc_page(cpu_buffer, &bpage);
2909         } while (bpage != start);
2910
2911         /* commit not part of this buffer?? */
2912         RB_WARN_ON(cpu_buffer, 1);
2913 }
2914
2915 /**
2916  * ring_buffer_commit_discard - discard an event that has not been committed
2917  * @buffer: the ring buffer
2918  * @event: non committed event to discard
2919  *
2920  * Sometimes an event that is in the ring buffer needs to be ignored.
2921  * This function lets the user discard an event in the ring buffer
2922  * and then that event will not be read later.
2923  *
2924  * This function only works if it is called before the the item has been
2925  * committed. It will try to free the event from the ring buffer
2926  * if another event has not been added behind it.
2927  *
2928  * If another event has been added behind it, it will set the event
2929  * up as discarded, and perform the commit.
2930  *
2931  * If this function is called, do not call ring_buffer_unlock_commit on
2932  * the event.
2933  */
2934 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2935                                 struct ring_buffer_event *event)
2936 {
2937         struct ring_buffer_per_cpu *cpu_buffer;
2938         int cpu;
2939
2940         /* The event is discarded regardless */
2941         rb_event_discard(event);
2942
2943         cpu = smp_processor_id();
2944         cpu_buffer = buffer->buffers[cpu];
2945
2946         /*
2947          * This must only be called if the event has not been
2948          * committed yet. Thus we can assume that preemption
2949          * is still disabled.
2950          */
2951         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2952
2953         rb_decrement_entry(cpu_buffer, event);
2954         if (rb_try_to_discard(cpu_buffer, event))
2955                 goto out;
2956
2957         /*
2958          * The commit is still visible by the reader, so we
2959          * must still update the timestamp.
2960          */
2961         rb_update_write_stamp(cpu_buffer, event);
2962  out:
2963         rb_end_commit(cpu_buffer);
2964
2965         trace_recursive_unlock(cpu_buffer);
2966
2967         preempt_enable_notrace();
2968
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2971
2972 /**
2973  * ring_buffer_write - write data to the buffer without reserving
2974  * @buffer: The ring buffer to write to.
2975  * @length: The length of the data being written (excluding the event header)
2976  * @data: The data to write to the buffer.
2977  *
2978  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2979  * one function. If you already have the data to write to the buffer, it
2980  * may be easier to simply call this function.
2981  *
2982  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2983  * and not the length of the event which would hold the header.
2984  */
2985 int ring_buffer_write(struct ring_buffer *buffer,
2986                       unsigned long length,
2987                       void *data)
2988 {
2989         struct ring_buffer_per_cpu *cpu_buffer;
2990         struct ring_buffer_event *event;
2991         void *body;
2992         int ret = -EBUSY;
2993         int cpu;
2994
2995         if (ring_buffer_flags != RB_BUFFERS_ON)
2996                 return -EBUSY;
2997
2998         preempt_disable_notrace();
2999
3000         if (atomic_read(&buffer->record_disabled))
3001                 goto out;
3002
3003         cpu = raw_smp_processor_id();
3004
3005         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3006                 goto out;
3007
3008         cpu_buffer = buffer->buffers[cpu];
3009
3010         if (atomic_read(&cpu_buffer->record_disabled))
3011                 goto out;
3012
3013         if (length > BUF_MAX_DATA_SIZE)
3014                 goto out;
3015
3016         if (unlikely(trace_recursive_lock(cpu_buffer)))
3017                 goto out;
3018
3019         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3020         if (!event)
3021                 goto out_unlock;
3022
3023         body = rb_event_data(event);
3024
3025         memcpy(body, data, length);
3026
3027         rb_commit(cpu_buffer, event);
3028
3029         rb_wakeups(buffer, cpu_buffer);
3030
3031         ret = 0;
3032
3033  out_unlock:
3034         trace_recursive_unlock(cpu_buffer);
3035
3036  out:
3037         preempt_enable_notrace();
3038
3039         return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(ring_buffer_write);
3042
3043 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3044 {
3045         struct buffer_page *reader = cpu_buffer->reader_page;
3046         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3047         struct buffer_page *commit = cpu_buffer->commit_page;
3048
3049         /* In case of error, head will be NULL */
3050         if (unlikely(!head))
3051                 return 1;
3052
3053         return reader->read == rb_page_commit(reader) &&
3054                 (commit == reader ||
3055                  (commit == head &&
3056                   head->read == rb_page_commit(commit)));
3057 }
3058
3059 /**
3060  * ring_buffer_record_disable - stop all writes into the buffer
3061  * @buffer: The ring buffer to stop writes to.
3062  *
3063  * This prevents all writes to the buffer. Any attempt to write
3064  * to the buffer after this will fail and return NULL.
3065  *
3066  * The caller should call synchronize_sched() after this.
3067  */
3068 void ring_buffer_record_disable(struct ring_buffer *buffer)
3069 {
3070         atomic_inc(&buffer->record_disabled);
3071 }
3072 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3073
3074 /**
3075  * ring_buffer_record_enable - enable writes to the buffer
3076  * @buffer: The ring buffer to enable writes
3077  *
3078  * Note, multiple disables will need the same number of enables
3079  * to truly enable the writing (much like preempt_disable).
3080  */
3081 void ring_buffer_record_enable(struct ring_buffer *buffer)
3082 {
3083         atomic_dec(&buffer->record_disabled);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3086
3087 /**
3088  * ring_buffer_record_off - stop all writes into the buffer
3089  * @buffer: The ring buffer to stop writes to.
3090  *
3091  * This prevents all writes to the buffer. Any attempt to write
3092  * to the buffer after this will fail and return NULL.
3093  *
3094  * This is different than ring_buffer_record_disable() as
3095  * it works like an on/off switch, where as the disable() version
3096  * must be paired with a enable().
3097  */
3098 void ring_buffer_record_off(struct ring_buffer *buffer)
3099 {
3100         unsigned int rd;
3101         unsigned int new_rd;
3102
3103         do {
3104                 rd = atomic_read(&buffer->record_disabled);
3105                 new_rd = rd | RB_BUFFER_OFF;
3106         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3109
3110 /**
3111  * ring_buffer_record_on - restart writes into the buffer
3112  * @buffer: The ring buffer to start writes to.
3113  *
3114  * This enables all writes to the buffer that was disabled by
3115  * ring_buffer_record_off().
3116  *
3117  * This is different than ring_buffer_record_enable() as
3118  * it works like an on/off switch, where as the enable() version
3119  * must be paired with a disable().
3120  */
3121 void ring_buffer_record_on(struct ring_buffer *buffer)
3122 {
3123         unsigned int rd;
3124         unsigned int new_rd;
3125
3126         do {
3127                 rd = atomic_read(&buffer->record_disabled);
3128                 new_rd = rd & ~RB_BUFFER_OFF;
3129         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3130 }
3131 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3132
3133 /**
3134  * ring_buffer_record_is_on - return true if the ring buffer can write
3135  * @buffer: The ring buffer to see if write is enabled
3136  *
3137  * Returns true if the ring buffer is in a state that it accepts writes.
3138  */
3139 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3140 {
3141         return !atomic_read(&buffer->record_disabled);
3142 }
3143
3144 /**
3145  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3146  * @buffer: The ring buffer to stop writes to.
3147  * @cpu: The CPU buffer to stop
3148  *
3149  * This prevents all writes to the buffer. Any attempt to write
3150  * to the buffer after this will fail and return NULL.
3151  *
3152  * The caller should call synchronize_sched() after this.
3153  */
3154 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3155 {
3156         struct ring_buffer_per_cpu *cpu_buffer;
3157
3158         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159                 return;
3160
3161         cpu_buffer = buffer->buffers[cpu];
3162         atomic_inc(&cpu_buffer->record_disabled);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3165
3166 /**
3167  * ring_buffer_record_enable_cpu - enable writes to the buffer
3168  * @buffer: The ring buffer to enable writes
3169  * @cpu: The CPU to enable.
3170  *
3171  * Note, multiple disables will need the same number of enables
3172  * to truly enable the writing (much like preempt_disable).
3173  */
3174 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3175 {
3176         struct ring_buffer_per_cpu *cpu_buffer;
3177
3178         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3179                 return;
3180
3181         cpu_buffer = buffer->buffers[cpu];
3182         atomic_dec(&cpu_buffer->record_disabled);
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3185
3186 /*
3187  * The total entries in the ring buffer is the running counter
3188  * of entries entered into the ring buffer, minus the sum of
3189  * the entries read from the ring buffer and the number of
3190  * entries that were overwritten.
3191  */
3192 static inline unsigned long
3193 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3194 {
3195         return local_read(&cpu_buffer->entries) -
3196                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3197 }
3198
3199 /**
3200  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3201  * @buffer: The ring buffer
3202  * @cpu: The per CPU buffer to read from.
3203  */
3204 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3205 {
3206         unsigned long flags;
3207         struct ring_buffer_per_cpu *cpu_buffer;
3208         struct buffer_page *bpage;
3209         u64 ret = 0;
3210
3211         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3212                 return 0;
3213
3214         cpu_buffer = buffer->buffers[cpu];
3215         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3216         /*
3217          * if the tail is on reader_page, oldest time stamp is on the reader
3218          * page
3219          */
3220         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3221                 bpage = cpu_buffer->reader_page;
3222         else
3223                 bpage = rb_set_head_page(cpu_buffer);
3224         if (bpage)
3225                 ret = bpage->page->time_stamp;
3226         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3227
3228         return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3231
3232 /**
3233  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3234  * @buffer: The ring buffer
3235  * @cpu: The per CPU buffer to read from.
3236  */
3237 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239         struct ring_buffer_per_cpu *cpu_buffer;
3240         unsigned long ret;
3241
3242         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243                 return 0;
3244
3245         cpu_buffer = buffer->buffers[cpu];
3246         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3247
3248         return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3251
3252 /**
3253  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3254  * @buffer: The ring buffer
3255  * @cpu: The per CPU buffer to get the entries from.
3256  */
3257 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3258 {
3259         struct ring_buffer_per_cpu *cpu_buffer;
3260
3261         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262                 return 0;
3263
3264         cpu_buffer = buffer->buffers[cpu];
3265
3266         return rb_num_of_entries(cpu_buffer);
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3269
3270 /**
3271  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3272  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3273  * @buffer: The ring buffer
3274  * @cpu: The per CPU buffer to get the number of overruns from
3275  */
3276 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278         struct ring_buffer_per_cpu *cpu_buffer;
3279         unsigned long ret;
3280
3281         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282                 return 0;
3283
3284         cpu_buffer = buffer->buffers[cpu];
3285         ret = local_read(&cpu_buffer->overrun);
3286
3287         return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3290
3291 /**
3292  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3293  * commits failing due to the buffer wrapping around while there are uncommitted
3294  * events, such as during an interrupt storm.
3295  * @buffer: The ring buffer
3296  * @cpu: The per CPU buffer to get the number of overruns from
3297  */
3298 unsigned long
3299 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3300 {
3301         struct ring_buffer_per_cpu *cpu_buffer;
3302         unsigned long ret;
3303
3304         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3305                 return 0;
3306
3307         cpu_buffer = buffer->buffers[cpu];
3308         ret = local_read(&cpu_buffer->commit_overrun);
3309
3310         return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3313
3314 /**
3315  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3316  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3317  * @buffer: The ring buffer
3318  * @cpu: The per CPU buffer to get the number of overruns from
3319  */
3320 unsigned long
3321 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3322 {
3323         struct ring_buffer_per_cpu *cpu_buffer;
3324         unsigned long ret;
3325
3326         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327                 return 0;
3328
3329         cpu_buffer = buffer->buffers[cpu];
3330         ret = local_read(&cpu_buffer->dropped_events);
3331
3332         return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3335
3336 /**
3337  * ring_buffer_read_events_cpu - get the number of events successfully read
3338  * @buffer: The ring buffer
3339  * @cpu: The per CPU buffer to get the number of events read
3340  */
3341 unsigned long
3342 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3343 {
3344         struct ring_buffer_per_cpu *cpu_buffer;
3345
3346         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347                 return 0;
3348
3349         cpu_buffer = buffer->buffers[cpu];
3350         return cpu_buffer->read;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3353
3354 /**
3355  * ring_buffer_entries - get the number of entries in a buffer
3356  * @buffer: The ring buffer
3357  *
3358  * Returns the total number of entries in the ring buffer
3359  * (all CPU entries)
3360  */
3361 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer;
3364         unsigned long entries = 0;
3365         int cpu;
3366
3367         /* if you care about this being correct, lock the buffer */
3368         for_each_buffer_cpu(buffer, cpu) {
3369                 cpu_buffer = buffer->buffers[cpu];
3370                 entries += rb_num_of_entries(cpu_buffer);
3371         }
3372
3373         return entries;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3376
3377 /**
3378  * ring_buffer_overruns - get the number of overruns in buffer
3379  * @buffer: The ring buffer
3380  *
3381  * Returns the total number of overruns in the ring buffer
3382  * (all CPU entries)
3383  */
3384 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3385 {
3386         struct ring_buffer_per_cpu *cpu_buffer;
3387         unsigned long overruns = 0;
3388         int cpu;
3389
3390         /* if you care about this being correct, lock the buffer */
3391         for_each_buffer_cpu(buffer, cpu) {
3392                 cpu_buffer = buffer->buffers[cpu];
3393                 overruns += local_read(&cpu_buffer->overrun);
3394         }
3395
3396         return overruns;
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3399
3400 static void rb_iter_reset(struct ring_buffer_iter *iter)
3401 {
3402         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3403
3404         /* Iterator usage is expected to have record disabled */
3405         iter->head_page = cpu_buffer->reader_page;
3406         iter->head = cpu_buffer->reader_page->read;
3407
3408         iter->cache_reader_page = iter->head_page;
3409         iter->cache_read = cpu_buffer->read;
3410
3411         if (iter->head)
3412                 iter->read_stamp = cpu_buffer->read_stamp;
3413         else
3414                 iter->read_stamp = iter->head_page->page->time_stamp;
3415 }
3416
3417 /**
3418  * ring_buffer_iter_reset - reset an iterator
3419  * @iter: The iterator to reset
3420  *
3421  * Resets the iterator, so that it will start from the beginning
3422  * again.
3423  */
3424 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3425 {
3426         struct ring_buffer_per_cpu *cpu_buffer;
3427         unsigned long flags;
3428
3429         if (!iter)
3430                 return;
3431
3432         cpu_buffer = iter->cpu_buffer;
3433
3434         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3435         rb_iter_reset(iter);
3436         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3439
3440 /**
3441  * ring_buffer_iter_empty - check if an iterator has no more to read
3442  * @iter: The iterator to check
3443  */
3444 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3445 {
3446         struct ring_buffer_per_cpu *cpu_buffer;
3447
3448         cpu_buffer = iter->cpu_buffer;
3449
3450         return iter->head_page == cpu_buffer->commit_page &&
3451                 iter->head == rb_commit_index(cpu_buffer);
3452 }
3453 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3454
3455 static void
3456 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3457                      struct ring_buffer_event *event)
3458 {
3459         u64 delta;
3460
3461         switch (event->type_len) {
3462         case RINGBUF_TYPE_PADDING:
3463                 return;
3464
3465         case RINGBUF_TYPE_TIME_EXTEND:
3466                 delta = event->array[0];
3467                 delta <<= TS_SHIFT;
3468                 delta += event->time_delta;
3469                 cpu_buffer->read_stamp += delta;
3470                 return;
3471
3472         case RINGBUF_TYPE_TIME_STAMP:
3473                 /* FIXME: not implemented */
3474                 return;
3475
3476         case RINGBUF_TYPE_DATA:
3477                 cpu_buffer->read_stamp += event->time_delta;
3478                 return;
3479
3480         default:
3481                 BUG();
3482         }
3483         return;
3484 }
3485
3486 static void
3487 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3488                           struct ring_buffer_event *event)
3489 {
3490         u64 delta;
3491
3492         switch (event->type_len) {
3493         case RINGBUF_TYPE_PADDING:
3494                 return;
3495
3496         case RINGBUF_TYPE_TIME_EXTEND:
3497                 delta = event->array[0];
3498                 delta <<= TS_SHIFT;
3499                 delta += event->time_delta;
3500                 iter->read_stamp += delta;
3501                 return;
3502
3503         case RINGBUF_TYPE_TIME_STAMP:
3504                 /* FIXME: not implemented */
3505                 return;
3506
3507         case RINGBUF_TYPE_DATA:
3508                 iter->read_stamp += event->time_delta;
3509                 return;
3510
3511         default:
3512                 BUG();
3513         }
3514         return;
3515 }
3516
3517 static struct buffer_page *
3518 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3519 {
3520         struct buffer_page *reader = NULL;
3521         unsigned long overwrite;
3522         unsigned long flags;
3523         int nr_loops = 0;
3524         int ret;
3525
3526         local_irq_save(flags);
3527         arch_spin_lock(&cpu_buffer->lock);
3528
3529  again:
3530         /*
3531          * This should normally only loop twice. But because the
3532          * start of the reader inserts an empty page, it causes
3533          * a case where we will loop three times. There should be no
3534          * reason to loop four times (that I know of).
3535          */
3536         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3537                 reader = NULL;
3538                 goto out;
3539         }
3540
3541         reader = cpu_buffer->reader_page;
3542
3543         /* If there's more to read, return this page */
3544         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3545                 goto out;
3546
3547         /* Never should we have an index greater than the size */
3548         if (RB_WARN_ON(cpu_buffer,
3549                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3550                 goto out;
3551
3552         /* check if we caught up to the tail */
3553         reader = NULL;
3554         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3555                 goto out;
3556
3557         /* Don't bother swapping if the ring buffer is empty */
3558         if (rb_num_of_entries(cpu_buffer) == 0)
3559                 goto out;
3560
3561         /*
3562          * Reset the reader page to size zero.
3563          */
3564         local_set(&cpu_buffer->reader_page->write, 0);
3565         local_set(&cpu_buffer->reader_page->entries, 0);
3566         local_set(&cpu_buffer->reader_page->page->commit, 0);
3567         cpu_buffer->reader_page->real_end = 0;
3568
3569  spin:
3570         /*
3571          * Splice the empty reader page into the list around the head.
3572          */
3573         reader = rb_set_head_page(cpu_buffer);
3574         if (!reader)
3575                 goto out;
3576         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3577         cpu_buffer->reader_page->list.prev = reader->list.prev;
3578
3579         /*
3580          * cpu_buffer->pages just needs to point to the buffer, it
3581          *  has no specific buffer page to point to. Lets move it out
3582          *  of our way so we don't accidentally swap it.
3583          */
3584         cpu_buffer->pages = reader->list.prev;
3585
3586         /* The reader page will be pointing to the new head */
3587         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3588
3589         /*
3590          * We want to make sure we read the overruns after we set up our
3591          * pointers to the next object. The writer side does a
3592          * cmpxchg to cross pages which acts as the mb on the writer
3593          * side. Note, the reader will constantly fail the swap
3594          * while the writer is updating the pointers, so this
3595          * guarantees that the overwrite recorded here is the one we
3596          * want to compare with the last_overrun.
3597          */
3598         smp_mb();
3599         overwrite = local_read(&(cpu_buffer->overrun));
3600
3601         /*
3602          * Here's the tricky part.
3603          *
3604          * We need to move the pointer past the header page.
3605          * But we can only do that if a writer is not currently
3606          * moving it. The page before the header page has the
3607          * flag bit '1' set if it is pointing to the page we want.
3608          * but if the writer is in the process of moving it
3609          * than it will be '2' or already moved '0'.
3610          */
3611
3612         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3613
3614         /*
3615          * If we did not convert it, then we must try again.
3616          */
3617         if (!ret)
3618                 goto spin;
3619
3620         /*
3621          * Yeah! We succeeded in replacing the page.
3622          *
3623          * Now make the new head point back to the reader page.
3624          */
3625         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3626         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3627
3628         /* Finally update the reader page to the new head */
3629         cpu_buffer->reader_page = reader;
3630         rb_reset_reader_page(cpu_buffer);
3631
3632         if (overwrite != cpu_buffer->last_overrun) {
3633                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3634                 cpu_buffer->last_overrun = overwrite;
3635         }
3636
3637         goto again;
3638
3639  out:
3640         arch_spin_unlock(&cpu_buffer->lock);
3641         local_irq_restore(flags);
3642
3643         return reader;
3644 }
3645
3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647 {
3648         struct ring_buffer_event *event;
3649         struct buffer_page *reader;
3650         unsigned length;
3651
3652         reader = rb_get_reader_page(cpu_buffer);
3653
3654         /* This function should not be called when buffer is empty */
3655         if (RB_WARN_ON(cpu_buffer, !reader))
3656                 return;
3657
3658         event = rb_reader_event(cpu_buffer);
3659
3660         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3661                 cpu_buffer->read++;
3662
3663         rb_update_read_stamp(cpu_buffer, event);
3664
3665         length = rb_event_length(event);
3666         cpu_buffer->reader_page->read += length;
3667 }
3668
3669 static void rb_advance_iter(struct ring_buffer_iter *iter)
3670 {
3671         struct ring_buffer_per_cpu *cpu_buffer;
3672         struct ring_buffer_event *event;
3673         unsigned length;
3674
3675         cpu_buffer = iter->cpu_buffer;
3676
3677         /*
3678          * Check if we are at the end of the buffer.
3679          */
3680         if (iter->head >= rb_page_size(iter->head_page)) {
3681                 /* discarded commits can make the page empty */
3682                 if (iter->head_page == cpu_buffer->commit_page)
3683                         return;
3684                 rb_inc_iter(iter);
3685                 return;
3686         }
3687
3688         event = rb_iter_head_event(iter);
3689
3690         length = rb_event_length(event);
3691
3692         /*
3693          * This should not be called to advance the header if we are
3694          * at the tail of the buffer.
3695          */
3696         if (RB_WARN_ON(cpu_buffer,
3697                        (iter->head_page == cpu_buffer->commit_page) &&
3698                        (iter->head + length > rb_commit_index(cpu_buffer))))
3699                 return;
3700
3701         rb_update_iter_read_stamp(iter, event);
3702
3703         iter->head += length;
3704
3705         /* check for end of page padding */
3706         if ((iter->head >= rb_page_size(iter->head_page)) &&
3707             (iter->head_page != cpu_buffer->commit_page))
3708                 rb_inc_iter(iter);
3709 }
3710
3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712 {
3713         return cpu_buffer->lost_events;
3714 }
3715
3716 static struct ring_buffer_event *
3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718                unsigned long *lost_events)
3719 {
3720         struct ring_buffer_event *event;
3721         struct buffer_page *reader;
3722         int nr_loops = 0;
3723
3724  again:
3725         /*
3726          * We repeat when a time extend is encountered.
3727          * Since the time extend is always attached to a data event,
3728          * we should never loop more than once.
3729          * (We never hit the following condition more than twice).
3730          */
3731         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3732                 return NULL;
3733
3734         reader = rb_get_reader_page(cpu_buffer);
3735         if (!reader)
3736                 return NULL;
3737
3738         event = rb_reader_event(cpu_buffer);
3739
3740         switch (event->type_len) {
3741         case RINGBUF_TYPE_PADDING:
3742                 if (rb_null_event(event))
3743                         RB_WARN_ON(cpu_buffer, 1);
3744                 /*
3745                  * Because the writer could be discarding every
3746                  * event it creates (which would probably be bad)
3747                  * if we were to go back to "again" then we may never
3748                  * catch up, and will trigger the warn on, or lock
3749                  * the box. Return the padding, and we will release
3750                  * the current locks, and try again.
3751                  */
3752                 return event;
3753
3754         case RINGBUF_TYPE_TIME_EXTEND:
3755                 /* Internal data, OK to advance */
3756                 rb_advance_reader(cpu_buffer);
3757                 goto again;
3758
3759         case RINGBUF_TYPE_TIME_STAMP:
3760                 /* FIXME: not implemented */
3761                 rb_advance_reader(cpu_buffer);
3762                 goto again;
3763
3764         case RINGBUF_TYPE_DATA:
3765                 if (ts) {
3766                         *ts = cpu_buffer->read_stamp + event->time_delta;
3767                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3768                                                          cpu_buffer->cpu, ts);
3769                 }
3770                 if (lost_events)
3771                         *lost_events = rb_lost_events(cpu_buffer);
3772                 return event;
3773
3774         default:
3775                 BUG();
3776         }
3777
3778         return NULL;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3781
3782 static struct ring_buffer_event *
3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3784 {
3785         struct ring_buffer *buffer;
3786         struct ring_buffer_per_cpu *cpu_buffer;
3787         struct ring_buffer_event *event;
3788         int nr_loops = 0;
3789
3790         cpu_buffer = iter->cpu_buffer;
3791         buffer = cpu_buffer->buffer;
3792
3793         /*
3794          * Check if someone performed a consuming read to
3795          * the buffer. A consuming read invalidates the iterator
3796          * and we need to reset the iterator in this case.
3797          */
3798         if (unlikely(iter->cache_read != cpu_buffer->read ||
3799                      iter->cache_reader_page != cpu_buffer->reader_page))
3800                 rb_iter_reset(iter);
3801
3802  again:
3803         if (ring_buffer_iter_empty(iter))
3804                 return NULL;
3805
3806         /*
3807          * We repeat when a time extend is encountered or we hit
3808          * the end of the page. Since the time extend is always attached
3809          * to a data event, we should never loop more than three times.
3810          * Once for going to next page, once on time extend, and
3811          * finally once to get the event.
3812          * (We never hit the following condition more than thrice).
3813          */
3814         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3815                 return NULL;
3816
3817         if (rb_per_cpu_empty(cpu_buffer))
3818                 return NULL;
3819
3820         if (iter->head >= rb_page_size(iter->head_page)) {
3821                 rb_inc_iter(iter);
3822                 goto again;
3823         }
3824
3825         event = rb_iter_head_event(iter);
3826
3827         switch (event->type_len) {
3828         case RINGBUF_TYPE_PADDING:
3829                 if (rb_null_event(event)) {
3830                         rb_inc_iter(iter);
3831                         goto again;
3832                 }
3833                 rb_advance_iter(iter);
3834                 return event;
3835
3836         case RINGBUF_TYPE_TIME_EXTEND:
3837                 /* Internal data, OK to advance */
3838                 rb_advance_iter(iter);
3839                 goto again;
3840
3841         case RINGBUF_TYPE_TIME_STAMP:
3842                 /* FIXME: not implemented */
3843                 rb_advance_iter(iter);
3844                 goto again;
3845
3846         case RINGBUF_TYPE_DATA:
3847                 if (ts) {
3848                         *ts = iter->read_stamp + event->time_delta;
3849                         ring_buffer_normalize_time_stamp(buffer,
3850                                                          cpu_buffer->cpu, ts);
3851                 }
3852                 return event;
3853
3854         default:
3855                 BUG();
3856         }
3857
3858         return NULL;
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3861
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3863 {
3864         if (likely(!in_nmi())) {
3865                 raw_spin_lock(&cpu_buffer->reader_lock);
3866                 return true;
3867         }
3868
3869         /*
3870          * If an NMI die dumps out the content of the ring buffer
3871          * trylock must be used to prevent a deadlock if the NMI
3872          * preempted a task that holds the ring buffer locks. If
3873          * we get the lock then all is fine, if not, then continue
3874          * to do the read, but this can corrupt the ring buffer,
3875          * so it must be permanently disabled from future writes.
3876          * Reading from NMI is a oneshot deal.
3877          */
3878         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879                 return true;
3880
3881         /* Continue without locking, but disable the ring buffer */
3882         atomic_inc(&cpu_buffer->record_disabled);
3883         return false;
3884 }
3885
3886 static inline void
3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888 {
3889         if (likely(locked))
3890                 raw_spin_unlock(&cpu_buffer->reader_lock);
3891         return;
3892 }
3893
3894 /**
3895  * ring_buffer_peek - peek at the next event to be read
3896  * @buffer: The ring buffer to read
3897  * @cpu: The cpu to peak at
3898  * @ts: The timestamp counter of this event.
3899  * @lost_events: a variable to store if events were lost (may be NULL)
3900  *
3901  * This will return the event that will be read next, but does
3902  * not consume the data.
3903  */
3904 struct ring_buffer_event *
3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906                  unsigned long *lost_events)
3907 {
3908         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3909         struct ring_buffer_event *event;
3910         unsigned long flags;
3911         bool dolock;
3912
3913         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3914                 return NULL;
3915
3916  again:
3917         local_irq_save(flags);
3918         dolock = rb_reader_lock(cpu_buffer);
3919         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921                 rb_advance_reader(cpu_buffer);
3922         rb_reader_unlock(cpu_buffer, dolock);
3923         local_irq_restore(flags);
3924
3925         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3926                 goto again;
3927
3928         return event;
3929 }
3930
3931 /**
3932  * ring_buffer_iter_peek - peek at the next event to be read
3933  * @iter: The ring buffer iterator
3934  * @ts: The timestamp counter of this event.
3935  *
3936  * This will return the event that will be read next, but does
3937  * not increment the iterator.
3938  */
3939 struct ring_buffer_event *
3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941 {
3942         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943         struct ring_buffer_event *event;
3944         unsigned long flags;
3945
3946  again:
3947         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3948         event = rb_iter_peek(iter, ts);
3949         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3950
3951         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3952                 goto again;
3953
3954         return event;
3955 }
3956
3957 /**
3958  * ring_buffer_consume - return an event and consume it
3959  * @buffer: The ring buffer to get the next event from
3960  * @cpu: the cpu to read the buffer from
3961  * @ts: a variable to store the timestamp (may be NULL)
3962  * @lost_events: a variable to store if events were lost (may be NULL)
3963  *
3964  * Returns the next event in the ring buffer, and that event is consumed.
3965  * Meaning, that sequential reads will keep returning a different event,
3966  * and eventually empty the ring buffer if the producer is slower.
3967  */
3968 struct ring_buffer_event *
3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970                     unsigned long *lost_events)
3971 {
3972         struct ring_buffer_per_cpu *cpu_buffer;
3973         struct ring_buffer_event *event = NULL;
3974         unsigned long flags;
3975         bool dolock;
3976
3977  again:
3978         /* might be called in atomic */
3979         preempt_disable();
3980
3981         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982                 goto out;
3983
3984         cpu_buffer = buffer->buffers[cpu];
3985         local_irq_save(flags);
3986         dolock = rb_reader_lock(cpu_buffer);
3987
3988         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989         if (event) {
3990                 cpu_buffer->lost_events = 0;
3991                 rb_advance_reader(cpu_buffer);
3992         }
3993
3994         rb_reader_unlock(cpu_buffer, dolock);
3995         local_irq_restore(flags);
3996
3997  out:
3998         preempt_enable();
3999
4000         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4001                 goto again;
4002
4003         return event;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4006
4007 /**
4008  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009  * @buffer: The ring buffer to read from
4010  * @cpu: The cpu buffer to iterate over
4011  *
4012  * This performs the initial preparations necessary to iterate
4013  * through the buffer.  Memory is allocated, buffer recording
4014  * is disabled, and the iterator pointer is returned to the caller.
4015  *
4016  * Disabling buffer recordng prevents the reading from being
4017  * corrupted. This is not a consuming read, so a producer is not
4018  * expected.
4019  *
4020  * After a sequence of ring_buffer_read_prepare calls, the user is
4021  * expected to make at least one call to ring_buffer_read_prepare_sync.
4022  * Afterwards, ring_buffer_read_start is invoked to get things going
4023  * for real.
4024  *
4025  * This overall must be paired with ring_buffer_read_finish.
4026  */
4027 struct ring_buffer_iter *
4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4029 {
4030         struct ring_buffer_per_cpu *cpu_buffer;
4031         struct ring_buffer_iter *iter;
4032
4033         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4034                 return NULL;
4035
4036         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037         if (!iter)
4038                 return NULL;
4039
4040         cpu_buffer = buffer->buffers[cpu];
4041
4042         iter->cpu_buffer = cpu_buffer;
4043
4044         atomic_inc(&buffer->resize_disabled);
4045         atomic_inc(&cpu_buffer->record_disabled);
4046
4047         return iter;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050
4051 /**
4052  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053  *
4054  * All previously invoked ring_buffer_read_prepare calls to prepare
4055  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4056  * calls on those iterators are allowed.
4057  */
4058 void
4059 ring_buffer_read_prepare_sync(void)
4060 {
4061         synchronize_sched();
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064
4065 /**
4066  * ring_buffer_read_start - start a non consuming read of the buffer
4067  * @iter: The iterator returned by ring_buffer_read_prepare
4068  *
4069  * This finalizes the startup of an iteration through the buffer.
4070  * The iterator comes from a call to ring_buffer_read_prepare and
4071  * an intervening ring_buffer_read_prepare_sync must have been
4072  * performed.
4073  *
4074  * Must be paired with ring_buffer_read_finish.
4075  */
4076 void
4077 ring_buffer_read_start(struct ring_buffer_iter *iter)
4078 {
4079         struct ring_buffer_per_cpu *cpu_buffer;
4080         unsigned long flags;
4081
4082         if (!iter)
4083                 return;
4084
4085         cpu_buffer = iter->cpu_buffer;
4086
4087         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088         arch_spin_lock(&cpu_buffer->lock);
4089         rb_iter_reset(iter);
4090         arch_spin_unlock(&cpu_buffer->lock);
4091         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4094
4095 /**
4096  * ring_buffer_read_finish - finish reading the iterator of the buffer
4097  * @iter: The iterator retrieved by ring_buffer_start
4098  *
4099  * This re-enables the recording to the buffer, and frees the
4100  * iterator.
4101  */
4102 void
4103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104 {
4105         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106         unsigned long flags;
4107
4108         /*
4109          * Ring buffer is disabled from recording, here's a good place
4110          * to check the integrity of the ring buffer.
4111          * Must prevent readers from trying to read, as the check
4112          * clears the HEAD page and readers require it.
4113          */
4114         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115         rb_check_pages(cpu_buffer);
4116         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118         atomic_dec(&cpu_buffer->record_disabled);
4119         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4120         kfree(iter);
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4123
4124 /**
4125  * ring_buffer_read - read the next item in the ring buffer by the iterator
4126  * @iter: The ring buffer iterator
4127  * @ts: The time stamp of the event read.
4128  *
4129  * This reads the next event in the ring buffer and increments the iterator.
4130  */
4131 struct ring_buffer_event *
4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133 {
4134         struct ring_buffer_event *event;
4135         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136         unsigned long flags;
4137
4138         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139  again:
4140         event = rb_iter_peek(iter, ts);
4141         if (!event)
4142                 goto out;
4143
4144         if (event->type_len == RINGBUF_TYPE_PADDING)
4145                 goto again;
4146
4147         rb_advance_iter(iter);
4148  out:
4149         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150
4151         return event;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_read);
4154
4155 /**
4156  * ring_buffer_size - return the size of the ring buffer (in bytes)
4157  * @buffer: The ring buffer.
4158  */
4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4160 {
4161         /*
4162          * Earlier, this method returned
4163          *      BUF_PAGE_SIZE * buffer->nr_pages
4164          * Since the nr_pages field is now removed, we have converted this to
4165          * return the per cpu buffer value.
4166          */
4167         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168                 return 0;
4169
4170         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_size);
4173
4174 static void
4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176 {
4177         rb_head_page_deactivate(cpu_buffer);
4178
4179         cpu_buffer->head_page
4180                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4181         local_set(&cpu_buffer->head_page->write, 0);
4182         local_set(&cpu_buffer->head_page->entries, 0);
4183         local_set(&cpu_buffer->head_page->page->commit, 0);
4184
4185         cpu_buffer->head_page->read = 0;
4186
4187         cpu_buffer->tail_page = cpu_buffer->head_page;
4188         cpu_buffer->commit_page = cpu_buffer->head_page;
4189
4190         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4191         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4192         local_set(&cpu_buffer->reader_page->write, 0);
4193         local_set(&cpu_buffer->reader_page->entries, 0);
4194         local_set(&cpu_buffer->reader_page->page->commit, 0);
4195         cpu_buffer->reader_page->read = 0;
4196
4197         local_set(&cpu_buffer->entries_bytes, 0);
4198         local_set(&cpu_buffer->overrun, 0);
4199         local_set(&cpu_buffer->commit_overrun, 0);
4200         local_set(&cpu_buffer->dropped_events, 0);
4201         local_set(&cpu_buffer->entries, 0);
4202         local_set(&cpu_buffer->committing, 0);
4203         local_set(&cpu_buffer->commits, 0);
4204         cpu_buffer->read = 0;
4205         cpu_buffer->read_bytes = 0;
4206
4207         cpu_buffer->write_stamp = 0;
4208         cpu_buffer->read_stamp = 0;
4209
4210         cpu_buffer->lost_events = 0;
4211         cpu_buffer->last_overrun = 0;
4212
4213         rb_head_page_activate(cpu_buffer);
4214 }
4215
4216 /**
4217  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218  * @buffer: The ring buffer to reset a per cpu buffer of
4219  * @cpu: The CPU buffer to be reset
4220  */
4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222 {
4223         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224         unsigned long flags;
4225
4226         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227                 return;
4228
4229         atomic_inc(&buffer->resize_disabled);
4230         atomic_inc(&cpu_buffer->record_disabled);
4231
4232         /* Make sure all commits have finished */
4233         synchronize_sched();
4234
4235         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4236
4237         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238                 goto out;
4239
4240         arch_spin_lock(&cpu_buffer->lock);
4241
4242         rb_reset_cpu(cpu_buffer);
4243
4244         arch_spin_unlock(&cpu_buffer->lock);
4245
4246  out:
4247         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248
4249         atomic_dec(&cpu_buffer->record_disabled);
4250         atomic_dec(&buffer->resize_disabled);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4253
4254 /**
4255  * ring_buffer_reset - reset a ring buffer
4256  * @buffer: The ring buffer to reset all cpu buffers
4257  */
4258 void ring_buffer_reset(struct ring_buffer *buffer)
4259 {
4260         int cpu;
4261
4262         for_each_buffer_cpu(buffer, cpu)
4263                 ring_buffer_reset_cpu(buffer, cpu);
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4266
4267 /**
4268  * rind_buffer_empty - is the ring buffer empty?
4269  * @buffer: The ring buffer to test
4270  */
4271 int ring_buffer_empty(struct ring_buffer *buffer)
4272 {
4273         struct ring_buffer_per_cpu *cpu_buffer;
4274         unsigned long flags;
4275         bool dolock;
4276         int cpu;
4277         int ret;
4278
4279         /* yes this is racy, but if you don't like the race, lock the buffer */
4280         for_each_buffer_cpu(buffer, cpu) {
4281                 cpu_buffer = buffer->buffers[cpu];
4282                 local_irq_save(flags);
4283                 dolock = rb_reader_lock(cpu_buffer);
4284                 ret = rb_per_cpu_empty(cpu_buffer);
4285                 rb_reader_unlock(cpu_buffer, dolock);
4286                 local_irq_restore(flags);
4287
4288                 if (!ret)
4289                         return 0;
4290         }
4291
4292         return 1;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4295
4296 /**
4297  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298  * @buffer: The ring buffer
4299  * @cpu: The CPU buffer to test
4300  */
4301 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4302 {
4303         struct ring_buffer_per_cpu *cpu_buffer;
4304         unsigned long flags;
4305         bool dolock;
4306         int ret;
4307
4308         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4309                 return 1;
4310
4311         cpu_buffer = buffer->buffers[cpu];
4312         local_irq_save(flags);
4313         dolock = rb_reader_lock(cpu_buffer);
4314         ret = rb_per_cpu_empty(cpu_buffer);
4315         rb_reader_unlock(cpu_buffer, dolock);
4316         local_irq_restore(flags);
4317
4318         return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325  * @buffer_a: One buffer to swap with
4326  * @buffer_b: The other buffer to swap with
4327  *
4328  * This function is useful for tracers that want to take a "snapshot"
4329  * of a CPU buffer and has another back up buffer lying around.
4330  * it is expected that the tracer handles the cpu buffer not being
4331  * used at the moment.
4332  */
4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334                          struct ring_buffer *buffer_b, int cpu)
4335 {
4336         struct ring_buffer_per_cpu *cpu_buffer_a;
4337         struct ring_buffer_per_cpu *cpu_buffer_b;
4338         int ret = -EINVAL;
4339
4340         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342                 goto out;
4343
4344         cpu_buffer_a = buffer_a->buffers[cpu];
4345         cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347         /* At least make sure the two buffers are somewhat the same */
4348         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349                 goto out;
4350
4351         ret = -EAGAIN;
4352
4353         if (ring_buffer_flags != RB_BUFFERS_ON)
4354                 goto out;
4355
4356         if (atomic_read(&buffer_a->record_disabled))
4357                 goto out;
4358
4359         if (atomic_read(&buffer_b->record_disabled))
4360                 goto out;
4361
4362         if (atomic_read(&cpu_buffer_a->record_disabled))
4363                 goto out;
4364
4365         if (atomic_read(&cpu_buffer_b->record_disabled))
4366                 goto out;
4367
4368         /*
4369          * We can't do a synchronize_sched here because this
4370          * function can be called in atomic context.
4371          * Normally this will be called from the same CPU as cpu.
4372          * If not it's up to the caller to protect this.
4373          */
4374         atomic_inc(&cpu_buffer_a->record_disabled);
4375         atomic_inc(&cpu_buffer_b->record_disabled);
4376
4377         ret = -EBUSY;
4378         if (local_read(&cpu_buffer_a->committing))
4379                 goto out_dec;
4380         if (local_read(&cpu_buffer_b->committing))
4381                 goto out_dec;
4382
4383         buffer_a->buffers[cpu] = cpu_buffer_b;
4384         buffer_b->buffers[cpu] = cpu_buffer_a;
4385
4386         cpu_buffer_b->buffer = buffer_a;
4387         cpu_buffer_a->buffer = buffer_b;
4388
4389         ret = 0;
4390
4391 out_dec:
4392         atomic_dec(&cpu_buffer_a->record_disabled);
4393         atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395         return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399
4400 /**
4401  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402  * @buffer: the buffer to allocate for.
4403  * @cpu: the cpu buffer to allocate.
4404  *
4405  * This function is used in conjunction with ring_buffer_read_page.
4406  * When reading a full page from the ring buffer, these functions
4407  * can be used to speed up the process. The calling function should
4408  * allocate a few pages first with this function. Then when it
4409  * needs to get pages from the ring buffer, it passes the result
4410  * of this function into ring_buffer_read_page, which will swap
4411  * the page that was allocated, with the read page of the buffer.
4412  *
4413  * Returns:
4414  *  The page allocated, or NULL on error.
4415  */
4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418         struct buffer_data_page *bpage;
4419         struct page *page;
4420
4421         page = alloc_pages_node(cpu_to_node(cpu),
4422                                 GFP_KERNEL | __GFP_NORETRY, 0);
4423         if (!page)
4424                 return NULL;
4425
4426         bpage = page_address(page);
4427
4428         rb_init_page(bpage);
4429
4430         return bpage;
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4433
4434 /**
4435  * ring_buffer_free_read_page - free an allocated read page
4436  * @buffer: the buffer the page was allocate for
4437  * @data: the page to free
4438  *
4439  * Free a page allocated from ring_buffer_alloc_read_page.
4440  */
4441 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4442 {
4443         free_page((unsigned long)data);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4446
4447 /**
4448  * ring_buffer_read_page - extract a page from the ring buffer
4449  * @buffer: buffer to extract from
4450  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4451  * @len: amount to extract
4452  * @cpu: the cpu of the buffer to extract
4453  * @full: should the extraction only happen when the page is full.
4454  *
4455  * This function will pull out a page from the ring buffer and consume it.
4456  * @data_page must be the address of the variable that was returned
4457  * from ring_buffer_alloc_read_page. This is because the page might be used
4458  * to swap with a page in the ring buffer.
4459  *
4460  * for example:
4461  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4462  *      if (!rpage)
4463  *              return error;
4464  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4465  *      if (ret >= 0)
4466  *              process_page(rpage, ret);
4467  *
4468  * When @full is set, the function will not return true unless
4469  * the writer is off the reader page.
4470  *
4471  * Note: it is up to the calling functions to handle sleeps and wakeups.
4472  *  The ring buffer can be used anywhere in the kernel and can not
4473  *  blindly call wake_up. The layer that uses the ring buffer must be
4474  *  responsible for that.
4475  *
4476  * Returns:
4477  *  >=0 if data has been transferred, returns the offset of consumed data.
4478  *  <0 if no data has been transferred.
4479  */
4480 int ring_buffer_read_page(struct ring_buffer *buffer,
4481                           void **data_page, size_t len, int cpu, int full)
4482 {
4483         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4484         struct ring_buffer_event *event;
4485         struct buffer_data_page *bpage;
4486         struct buffer_page *reader;
4487         unsigned long missed_events;
4488         unsigned long flags;
4489         unsigned int commit;
4490         unsigned int read;
4491         u64 save_timestamp;
4492         int ret = -1;
4493
4494         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4495                 goto out;
4496
4497         /*
4498          * If len is not big enough to hold the page header, then
4499          * we can not copy anything.
4500          */
4501         if (len <= BUF_PAGE_HDR_SIZE)
4502                 goto out;
4503
4504         len -= BUF_PAGE_HDR_SIZE;
4505
4506         if (!data_page)
4507                 goto out;
4508
4509         bpage = *data_page;
4510         if (!bpage)
4511                 goto out;
4512
4513         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4514
4515         reader = rb_get_reader_page(cpu_buffer);
4516         if (!reader)
4517                 goto out_unlock;
4518
4519         event = rb_reader_event(cpu_buffer);
4520
4521         read = reader->read;
4522         commit = rb_page_commit(reader);
4523
4524         /* Check if any events were dropped */
4525         missed_events = cpu_buffer->lost_events;
4526
4527         /*
4528          * If this page has been partially read or
4529          * if len is not big enough to read the rest of the page or
4530          * a writer is still on the page, then
4531          * we must copy the data from the page to the buffer.
4532          * Otherwise, we can simply swap the page with the one passed in.
4533          */
4534         if (read || (len < (commit - read)) ||
4535             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4536                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4537                 unsigned int rpos = read;
4538                 unsigned int pos = 0;
4539                 unsigned int size;
4540
4541                 if (full)
4542                         goto out_unlock;
4543
4544                 if (len > (commit - read))
4545                         len = (commit - read);
4546
4547                 /* Always keep the time extend and data together */
4548                 size = rb_event_ts_length(event);
4549
4550                 if (len < size)
4551                         goto out_unlock;
4552
4553                 /* save the current timestamp, since the user will need it */
4554                 save_timestamp = cpu_buffer->read_stamp;
4555
4556                 /* Need to copy one event at a time */
4557                 do {
4558                         /* We need the size of one event, because
4559                          * rb_advance_reader only advances by one event,
4560                          * whereas rb_event_ts_length may include the size of
4561                          * one or two events.
4562                          * We have already ensured there's enough space if this
4563                          * is a time extend. */
4564                         size = rb_event_length(event);
4565                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4566
4567                         len -= size;
4568
4569                         rb_advance_reader(cpu_buffer);
4570                         rpos = reader->read;
4571                         pos += size;
4572
4573                         if (rpos >= commit)
4574                                 break;
4575
4576                         event = rb_reader_event(cpu_buffer);
4577                         /* Always keep the time extend and data together */
4578                         size = rb_event_ts_length(event);
4579                 } while (len >= size);
4580
4581                 /* update bpage */
4582                 local_set(&bpage->commit, pos);
4583                 bpage->time_stamp = save_timestamp;
4584
4585                 /* we copied everything to the beginning */
4586                 read = 0;
4587         } else {
4588                 /* update the entry counter */
4589                 cpu_buffer->read += rb_page_entries(reader);
4590                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4591
4592                 /* swap the pages */
4593                 rb_init_page(bpage);
4594                 bpage = reader->page;
4595                 reader->page = *data_page;
4596                 local_set(&reader->write, 0);
4597                 local_set(&reader->entries, 0);
4598                 reader->read = 0;
4599                 *data_page = bpage;
4600
4601                 /*
4602                  * Use the real_end for the data size,
4603                  * This gives us a chance to store the lost events
4604                  * on the page.
4605                  */
4606                 if (reader->real_end)
4607                         local_set(&bpage->commit, reader->real_end);
4608         }
4609         ret = read;
4610
4611         cpu_buffer->lost_events = 0;
4612
4613         commit = local_read(&bpage->commit);
4614         /*
4615          * Set a flag in the commit field if we lost events
4616          */
4617         if (missed_events) {
4618                 /* If there is room at the end of the page to save the
4619                  * missed events, then record it there.
4620                  */
4621                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4622                         memcpy(&bpage->data[commit], &missed_events,
4623                                sizeof(missed_events));
4624                         local_add(RB_MISSED_STORED, &bpage->commit);
4625                         commit += sizeof(missed_events);
4626                 }
4627                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4628         }
4629
4630         /*
4631          * This page may be off to user land. Zero it out here.
4632          */
4633         if (commit < BUF_PAGE_SIZE)
4634                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4635
4636  out_unlock:
4637         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4638
4639  out:
4640         return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4643
4644 #ifdef CONFIG_HOTPLUG_CPU
4645 static int rb_cpu_notify(struct notifier_block *self,
4646                          unsigned long action, void *hcpu)
4647 {
4648         struct ring_buffer *buffer =
4649                 container_of(self, struct ring_buffer, cpu_notify);
4650         long cpu = (long)hcpu;
4651         int cpu_i, nr_pages_same;
4652         unsigned int nr_pages;
4653
4654         switch (action) {
4655         case CPU_UP_PREPARE:
4656         case CPU_UP_PREPARE_FROZEN:
4657                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4658                         return NOTIFY_OK;
4659
4660                 nr_pages = 0;
4661                 nr_pages_same = 1;
4662                 /* check if all cpu sizes are same */
4663                 for_each_buffer_cpu(buffer, cpu_i) {
4664                         /* fill in the size from first enabled cpu */
4665                         if (nr_pages == 0)
4666                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4667                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4668                                 nr_pages_same = 0;
4669                                 break;
4670                         }
4671                 }
4672                 /* allocate minimum pages, user can later expand it */
4673                 if (!nr_pages_same)
4674                         nr_pages = 2;
4675                 buffer->buffers[cpu] =
4676                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4677                 if (!buffer->buffers[cpu]) {
4678                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4679                              cpu);
4680                         return NOTIFY_OK;
4681                 }
4682                 smp_wmb();
4683                 cpumask_set_cpu(cpu, buffer->cpumask);
4684                 break;
4685         case CPU_DOWN_PREPARE:
4686         case CPU_DOWN_PREPARE_FROZEN:
4687                 /*
4688                  * Do nothing.
4689                  *  If we were to free the buffer, then the user would
4690                  *  lose any trace that was in the buffer.
4691                  */
4692                 break;
4693         default:
4694                 break;
4695         }
4696         return NOTIFY_OK;
4697 }
4698 #endif
4699
4700 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4701 /*
4702  * This is a basic integrity check of the ring buffer.
4703  * Late in the boot cycle this test will run when configured in.
4704  * It will kick off a thread per CPU that will go into a loop
4705  * writing to the per cpu ring buffer various sizes of data.
4706  * Some of the data will be large items, some small.
4707  *
4708  * Another thread is created that goes into a spin, sending out
4709  * IPIs to the other CPUs to also write into the ring buffer.
4710  * this is to test the nesting ability of the buffer.
4711  *
4712  * Basic stats are recorded and reported. If something in the
4713  * ring buffer should happen that's not expected, a big warning
4714  * is displayed and all ring buffers are disabled.
4715  */
4716 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4717
4718 struct rb_test_data {
4719         struct ring_buffer      *buffer;
4720         unsigned long           events;
4721         unsigned long           bytes_written;
4722         unsigned long           bytes_alloc;
4723         unsigned long           bytes_dropped;
4724         unsigned long           events_nested;
4725         unsigned long           bytes_written_nested;
4726         unsigned long           bytes_alloc_nested;
4727         unsigned long           bytes_dropped_nested;
4728         int                     min_size_nested;
4729         int                     max_size_nested;
4730         int                     max_size;
4731         int                     min_size;
4732         int                     cpu;
4733         int                     cnt;
4734 };
4735
4736 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4737
4738 /* 1 meg per cpu */
4739 #define RB_TEST_BUFFER_SIZE     1048576
4740
4741 static char rb_string[] __initdata =
4742         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4743         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4744         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4745
4746 static bool rb_test_started __initdata;
4747
4748 struct rb_item {
4749         int size;
4750         char str[];
4751 };
4752
4753 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4754 {
4755         struct ring_buffer_event *event;
4756         struct rb_item *item;
4757         bool started;
4758         int event_len;
4759         int size;
4760         int len;
4761         int cnt;
4762
4763         /* Have nested writes different that what is written */
4764         cnt = data->cnt + (nested ? 27 : 0);
4765
4766         /* Multiply cnt by ~e, to make some unique increment */
4767         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4768
4769         len = size + sizeof(struct rb_item);
4770
4771         started = rb_test_started;
4772         /* read rb_test_started before checking buffer enabled */
4773         smp_rmb();
4774
4775         event = ring_buffer_lock_reserve(data->buffer, len);
4776         if (!event) {
4777                 /* Ignore dropped events before test starts. */
4778                 if (started) {
4779                         if (nested)
4780                                 data->bytes_dropped += len;
4781                         else
4782                                 data->bytes_dropped_nested += len;
4783                 }
4784                 return len;
4785         }
4786
4787         event_len = ring_buffer_event_length(event);
4788
4789         if (RB_WARN_ON(data->buffer, event_len < len))
4790                 goto out;
4791
4792         item = ring_buffer_event_data(event);
4793         item->size = size;
4794         memcpy(item->str, rb_string, size);
4795
4796         if (nested) {
4797                 data->bytes_alloc_nested += event_len;
4798                 data->bytes_written_nested += len;
4799                 data->events_nested++;
4800                 if (!data->min_size_nested || len < data->min_size_nested)
4801                         data->min_size_nested = len;
4802                 if (len > data->max_size_nested)
4803                         data->max_size_nested = len;
4804         } else {
4805                 data->bytes_alloc += event_len;
4806                 data->bytes_written += len;
4807                 data->events++;
4808                 if (!data->min_size || len < data->min_size)
4809                         data->max_size = len;
4810                 if (len > data->max_size)
4811                         data->max_size = len;
4812         }
4813
4814  out:
4815         ring_buffer_unlock_commit(data->buffer, event);
4816
4817         return 0;
4818 }
4819
4820 static __init int rb_test(void *arg)
4821 {
4822         struct rb_test_data *data = arg;
4823
4824         while (!kthread_should_stop()) {
4825                 rb_write_something(data, false);
4826                 data->cnt++;
4827
4828                 set_current_state(TASK_INTERRUPTIBLE);
4829                 /* Now sleep between a min of 100-300us and a max of 1ms */
4830                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4831         }
4832
4833         return 0;
4834 }
4835
4836 static __init void rb_ipi(void *ignore)
4837 {
4838         struct rb_test_data *data;
4839         int cpu = smp_processor_id();
4840
4841         data = &rb_data[cpu];
4842         rb_write_something(data, true);
4843 }
4844
4845 static __init int rb_hammer_test(void *arg)
4846 {
4847         while (!kthread_should_stop()) {
4848
4849                 /* Send an IPI to all cpus to write data! */
4850                 smp_call_function(rb_ipi, NULL, 1);
4851                 /* No sleep, but for non preempt, let others run */
4852                 schedule();
4853         }
4854
4855         return 0;
4856 }
4857
4858 static __init int test_ringbuffer(void)
4859 {
4860         struct task_struct *rb_hammer;
4861         struct ring_buffer *buffer;
4862         int cpu;
4863         int ret = 0;
4864
4865         pr_info("Running ring buffer tests...\n");
4866
4867         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4868         if (WARN_ON(!buffer))
4869                 return 0;
4870
4871         /* Disable buffer so that threads can't write to it yet */
4872         ring_buffer_record_off(buffer);
4873
4874         for_each_online_cpu(cpu) {
4875                 rb_data[cpu].buffer = buffer;
4876                 rb_data[cpu].cpu = cpu;
4877                 rb_data[cpu].cnt = cpu;
4878                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4879                                                  "rbtester/%d", cpu);
4880                 if (WARN_ON(!rb_threads[cpu])) {
4881                         pr_cont("FAILED\n");
4882                         ret = -1;
4883                         goto out_free;
4884                 }
4885
4886                 kthread_bind(rb_threads[cpu], cpu);
4887                 wake_up_process(rb_threads[cpu]);
4888         }
4889
4890         /* Now create the rb hammer! */
4891         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4892         if (WARN_ON(!rb_hammer)) {
4893                 pr_cont("FAILED\n");
4894                 ret = -1;
4895                 goto out_free;
4896         }
4897
4898         ring_buffer_record_on(buffer);
4899         /*
4900          * Show buffer is enabled before setting rb_test_started.
4901          * Yes there's a small race window where events could be
4902          * dropped and the thread wont catch it. But when a ring
4903          * buffer gets enabled, there will always be some kind of
4904          * delay before other CPUs see it. Thus, we don't care about
4905          * those dropped events. We care about events dropped after
4906          * the threads see that the buffer is active.
4907          */
4908         smp_wmb();
4909         rb_test_started = true;
4910
4911         set_current_state(TASK_INTERRUPTIBLE);
4912         /* Just run for 10 seconds */;
4913         schedule_timeout(10 * HZ);
4914
4915         kthread_stop(rb_hammer);
4916
4917  out_free:
4918         for_each_online_cpu(cpu) {
4919                 if (!rb_threads[cpu])
4920                         break;
4921                 kthread_stop(rb_threads[cpu]);
4922         }
4923         if (ret) {
4924                 ring_buffer_free(buffer);
4925                 return ret;
4926         }
4927
4928         /* Report! */
4929         pr_info("finished\n");
4930         for_each_online_cpu(cpu) {
4931                 struct ring_buffer_event *event;
4932                 struct rb_test_data *data = &rb_data[cpu];
4933                 struct rb_item *item;
4934                 unsigned long total_events;
4935                 unsigned long total_dropped;
4936                 unsigned long total_written;
4937                 unsigned long total_alloc;
4938                 unsigned long total_read = 0;
4939                 unsigned long total_size = 0;
4940                 unsigned long total_len = 0;
4941                 unsigned long total_lost = 0;
4942                 unsigned long lost;
4943                 int big_event_size;
4944                 int small_event_size;
4945
4946                 ret = -1;
4947
4948                 total_events = data->events + data->events_nested;
4949                 total_written = data->bytes_written + data->bytes_written_nested;
4950                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4951                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4952
4953                 big_event_size = data->max_size + data->max_size_nested;
4954                 small_event_size = data->min_size + data->min_size_nested;
4955
4956                 pr_info("CPU %d:\n", cpu);
4957                 pr_info("              events:    %ld\n", total_events);
4958                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4959                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4960                 pr_info("       written bytes:    %ld\n", total_written);
4961                 pr_info("       biggest event:    %d\n", big_event_size);
4962                 pr_info("      smallest event:    %d\n", small_event_size);
4963
4964                 if (RB_WARN_ON(buffer, total_dropped))
4965                         break;
4966
4967                 ret = 0;
4968
4969                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4970                         total_lost += lost;
4971                         item = ring_buffer_event_data(event);
4972                         total_len += ring_buffer_event_length(event);
4973                         total_size += item->size + sizeof(struct rb_item);
4974                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4975                                 pr_info("FAILED!\n");
4976                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4977                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4978                                 RB_WARN_ON(buffer, 1);
4979                                 ret = -1;
4980                                 break;
4981                         }
4982                         total_read++;
4983                 }
4984                 if (ret)
4985                         break;
4986
4987                 ret = -1;
4988
4989                 pr_info("         read events:   %ld\n", total_read);
4990                 pr_info("         lost events:   %ld\n", total_lost);
4991                 pr_info("        total events:   %ld\n", total_lost + total_read);
4992                 pr_info("  recorded len bytes:   %ld\n", total_len);
4993                 pr_info(" recorded size bytes:   %ld\n", total_size);
4994                 if (total_lost)
4995                         pr_info(" With dropped events, record len and size may not match\n"
4996                                 " alloced and written from above\n");
4997                 if (!total_lost) {
4998                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4999                                        total_size != total_written))
5000                                 break;
5001                 }
5002                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5003                         break;
5004
5005                 ret = 0;
5006         }
5007         if (!ret)
5008                 pr_info("Ring buffer PASSED!\n");
5009
5010         ring_buffer_free(buffer);
5011         return 0;
5012 }
5013
5014 late_initcall(test_ringbuffer);
5015 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */