]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/trace/ring_buffer.c
ring-buffer: Allways do the trace_recursive checks
[karo-tx-linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418
419         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420                          "offset:0;\tsize:%u;\tsigned:%u;\n",
421                          (unsigned int)sizeof(field.time_stamp),
422                          (unsigned int)is_signed_type(u64));
423
424         trace_seq_printf(s, "\tfield: local_t commit;\t"
425                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
426                          (unsigned int)offsetof(typeof(field), commit),
427                          (unsigned int)sizeof(field.commit),
428                          (unsigned int)is_signed_type(long));
429
430         trace_seq_printf(s, "\tfield: int overwrite;\t"
431                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
432                          (unsigned int)offsetof(typeof(field), commit),
433                          1,
434                          (unsigned int)is_signed_type(long));
435
436         trace_seq_printf(s, "\tfield: char data;\t"
437                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
438                          (unsigned int)offsetof(typeof(field), data),
439                          (unsigned int)BUF_PAGE_SIZE,
440                          (unsigned int)is_signed_type(char));
441
442         return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446         struct irq_work                 work;
447         wait_queue_head_t               waiters;
448         wait_queue_head_t               full_waiters;
449         bool                            waiters_pending;
450         bool                            full_waiters_pending;
451         bool                            wakeup_full;
452 };
453
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458         int                             cpu;
459         atomic_t                        record_disabled;
460         struct ring_buffer              *buffer;
461         raw_spinlock_t                  reader_lock;    /* serialize readers */
462         arch_spinlock_t                 lock;
463         struct lock_class_key           lock_key;
464         unsigned int                    nr_pages;
465         unsigned int                    current_context;
466         struct list_head                *pages;
467         struct buffer_page              *head_page;     /* read from head */
468         struct buffer_page              *tail_page;     /* write to tail */
469         struct buffer_page              *commit_page;   /* committed pages */
470         struct buffer_page              *reader_page;
471         unsigned long                   lost_events;
472         unsigned long                   last_overrun;
473         local_t                         entries_bytes;
474         local_t                         entries;
475         local_t                         overrun;
476         local_t                         commit_overrun;
477         local_t                         dropped_events;
478         local_t                         committing;
479         local_t                         commits;
480         unsigned long                   read;
481         unsigned long                   read_bytes;
482         u64                             write_stamp;
483         u64                             read_stamp;
484         /* ring buffer pages to update, > 0 to add, < 0 to remove */
485         int                             nr_pages_to_update;
486         struct list_head                new_pages; /* new pages to add */
487         struct work_struct              update_pages_work;
488         struct completion               update_done;
489
490         struct rb_irq_work              irq_work;
491 };
492
493 struct ring_buffer {
494         unsigned                        flags;
495         int                             cpus;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         cpumask_var_t                   cpumask;
499
500         struct lock_class_key           *reader_lock_key;
501
502         struct mutex                    mutex;
503
504         struct ring_buffer_per_cpu      **buffers;
505
506 #ifdef CONFIG_HOTPLUG_CPU
507         struct notifier_block           cpu_notify;
508 #endif
509         u64                             (*clock)(void);
510
511         struct rb_irq_work              irq_work;
512 };
513
514 struct ring_buffer_iter {
515         struct ring_buffer_per_cpu      *cpu_buffer;
516         unsigned long                   head;
517         struct buffer_page              *head_page;
518         struct buffer_page              *cache_reader_page;
519         unsigned long                   cache_read;
520         u64                             read_stamp;
521 };
522
523 /*
524  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525  *
526  * Schedules a delayed work to wake up any task that is blocked on the
527  * ring buffer waiters queue.
528  */
529 static void rb_wake_up_waiters(struct irq_work *work)
530 {
531         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532
533         wake_up_all(&rbwork->waiters);
534         if (rbwork->wakeup_full) {
535                 rbwork->wakeup_full = false;
536                 wake_up_all(&rbwork->full_waiters);
537         }
538 }
539
540 /**
541  * ring_buffer_wait - wait for input to the ring buffer
542  * @buffer: buffer to wait on
543  * @cpu: the cpu buffer to wait on
544  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545  *
546  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547  * as data is added to any of the @buffer's cpu buffers. Otherwise
548  * it will wait for data to be added to a specific cpu buffer.
549  */
550 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551 {
552         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553         DEFINE_WAIT(wait);
554         struct rb_irq_work *work;
555         int ret = 0;
556
557         /*
558          * Depending on what the caller is waiting for, either any
559          * data in any cpu buffer, or a specific buffer, put the
560          * caller on the appropriate wait queue.
561          */
562         if (cpu == RING_BUFFER_ALL_CPUS) {
563                 work = &buffer->irq_work;
564                 /* Full only makes sense on per cpu reads */
565                 full = false;
566         } else {
567                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
568                         return -ENODEV;
569                 cpu_buffer = buffer->buffers[cpu];
570                 work = &cpu_buffer->irq_work;
571         }
572
573
574         while (true) {
575                 if (full)
576                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577                 else
578                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579
580                 /*
581                  * The events can happen in critical sections where
582                  * checking a work queue can cause deadlocks.
583                  * After adding a task to the queue, this flag is set
584                  * only to notify events to try to wake up the queue
585                  * using irq_work.
586                  *
587                  * We don't clear it even if the buffer is no longer
588                  * empty. The flag only causes the next event to run
589                  * irq_work to do the work queue wake up. The worse
590                  * that can happen if we race with !trace_empty() is that
591                  * an event will cause an irq_work to try to wake up
592                  * an empty queue.
593                  *
594                  * There's no reason to protect this flag either, as
595                  * the work queue and irq_work logic will do the necessary
596                  * synchronization for the wake ups. The only thing
597                  * that is necessary is that the wake up happens after
598                  * a task has been queued. It's OK for spurious wake ups.
599                  */
600                 if (full)
601                         work->full_waiters_pending = true;
602                 else
603                         work->waiters_pending = true;
604
605                 if (signal_pending(current)) {
606                         ret = -EINTR;
607                         break;
608                 }
609
610                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611                         break;
612
613                 if (cpu != RING_BUFFER_ALL_CPUS &&
614                     !ring_buffer_empty_cpu(buffer, cpu)) {
615                         unsigned long flags;
616                         bool pagebusy;
617
618                         if (!full)
619                                 break;
620
621                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624
625                         if (!pagebusy)
626                                 break;
627                 }
628
629                 schedule();
630         }
631
632         if (full)
633                 finish_wait(&work->full_waiters, &wait);
634         else
635                 finish_wait(&work->waiters, &wait);
636
637         return ret;
638 }
639
640 /**
641  * ring_buffer_poll_wait - poll on buffer input
642  * @buffer: buffer to wait on
643  * @cpu: the cpu buffer to wait on
644  * @filp: the file descriptor
645  * @poll_table: The poll descriptor
646  *
647  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648  * as data is added to any of the @buffer's cpu buffers. Otherwise
649  * it will wait for data to be added to a specific cpu buffer.
650  *
651  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652  * zero otherwise.
653  */
654 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655                           struct file *filp, poll_table *poll_table)
656 {
657         struct ring_buffer_per_cpu *cpu_buffer;
658         struct rb_irq_work *work;
659
660         if (cpu == RING_BUFFER_ALL_CPUS)
661                 work = &buffer->irq_work;
662         else {
663                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
664                         return -EINVAL;
665
666                 cpu_buffer = buffer->buffers[cpu];
667                 work = &cpu_buffer->irq_work;
668         }
669
670         poll_wait(filp, &work->waiters, poll_table);
671         work->waiters_pending = true;
672         /*
673          * There's a tight race between setting the waiters_pending and
674          * checking if the ring buffer is empty.  Once the waiters_pending bit
675          * is set, the next event will wake the task up, but we can get stuck
676          * if there's only a single event in.
677          *
678          * FIXME: Ideally, we need a memory barrier on the writer side as well,
679          * but adding a memory barrier to all events will cause too much of a
680          * performance hit in the fast path.  We only need a memory barrier when
681          * the buffer goes from empty to having content.  But as this race is
682          * extremely small, and it's not a problem if another event comes in, we
683          * will fix it later.
684          */
685         smp_mb();
686
687         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689                 return POLLIN | POLLRDNORM;
690         return 0;
691 }
692
693 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
694 #define RB_WARN_ON(b, cond)                                             \
695         ({                                                              \
696                 int _____ret = unlikely(cond);                          \
697                 if (_____ret) {                                         \
698                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699                                 struct ring_buffer_per_cpu *__b =       \
700                                         (void *)b;                      \
701                                 atomic_inc(&__b->buffer->record_disabled); \
702                         } else                                          \
703                                 atomic_inc(&b->record_disabled);        \
704                         WARN_ON(1);                                     \
705                 }                                                       \
706                 _____ret;                                               \
707         })
708
709 /* Up this if you want to test the TIME_EXTENTS and normalization */
710 #define DEBUG_SHIFT 0
711
712 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713 {
714         /* shift to debug/test normalization and TIME_EXTENTS */
715         return buffer->clock() << DEBUG_SHIFT;
716 }
717
718 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719 {
720         u64 time;
721
722         preempt_disable_notrace();
723         time = rb_time_stamp(buffer);
724         preempt_enable_no_resched_notrace();
725
726         return time;
727 }
728 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729
730 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731                                       int cpu, u64 *ts)
732 {
733         /* Just stupid testing the normalize function and deltas */
734         *ts >>= DEBUG_SHIFT;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737
738 /*
739  * Making the ring buffer lockless makes things tricky.
740  * Although writes only happen on the CPU that they are on,
741  * and they only need to worry about interrupts. Reads can
742  * happen on any CPU.
743  *
744  * The reader page is always off the ring buffer, but when the
745  * reader finishes with a page, it needs to swap its page with
746  * a new one from the buffer. The reader needs to take from
747  * the head (writes go to the tail). But if a writer is in overwrite
748  * mode and wraps, it must push the head page forward.
749  *
750  * Here lies the problem.
751  *
752  * The reader must be careful to replace only the head page, and
753  * not another one. As described at the top of the file in the
754  * ASCII art, the reader sets its old page to point to the next
755  * page after head. It then sets the page after head to point to
756  * the old reader page. But if the writer moves the head page
757  * during this operation, the reader could end up with the tail.
758  *
759  * We use cmpxchg to help prevent this race. We also do something
760  * special with the page before head. We set the LSB to 1.
761  *
762  * When the writer must push the page forward, it will clear the
763  * bit that points to the head page, move the head, and then set
764  * the bit that points to the new head page.
765  *
766  * We also don't want an interrupt coming in and moving the head
767  * page on another writer. Thus we use the second LSB to catch
768  * that too. Thus:
769  *
770  * head->list->prev->next        bit 1          bit 0
771  *                              -------        -------
772  * Normal page                     0              0
773  * Points to head page             0              1
774  * New head page                   1              0
775  *
776  * Note we can not trust the prev pointer of the head page, because:
777  *
778  * +----+       +-----+        +-----+
779  * |    |------>|  T  |---X--->|  N  |
780  * |    |<------|     |        |     |
781  * +----+       +-----+        +-----+
782  *   ^                           ^ |
783  *   |          +-----+          | |
784  *   +----------|  R  |----------+ |
785  *              |     |<-----------+
786  *              +-----+
787  *
788  * Key:  ---X-->  HEAD flag set in pointer
789  *         T      Tail page
790  *         R      Reader page
791  *         N      Next page
792  *
793  * (see __rb_reserve_next() to see where this happens)
794  *
795  *  What the above shows is that the reader just swapped out
796  *  the reader page with a page in the buffer, but before it
797  *  could make the new header point back to the new page added
798  *  it was preempted by a writer. The writer moved forward onto
799  *  the new page added by the reader and is about to move forward
800  *  again.
801  *
802  *  You can see, it is legitimate for the previous pointer of
803  *  the head (or any page) not to point back to itself. But only
804  *  temporarially.
805  */
806
807 #define RB_PAGE_NORMAL          0UL
808 #define RB_PAGE_HEAD            1UL
809 #define RB_PAGE_UPDATE          2UL
810
811
812 #define RB_FLAG_MASK            3UL
813
814 /* PAGE_MOVED is not part of the mask */
815 #define RB_PAGE_MOVED           4UL
816
817 /*
818  * rb_list_head - remove any bit
819  */
820 static struct list_head *rb_list_head(struct list_head *list)
821 {
822         unsigned long val = (unsigned long)list;
823
824         return (struct list_head *)(val & ~RB_FLAG_MASK);
825 }
826
827 /*
828  * rb_is_head_page - test if the given page is the head page
829  *
830  * Because the reader may move the head_page pointer, we can
831  * not trust what the head page is (it may be pointing to
832  * the reader page). But if the next page is a header page,
833  * its flags will be non zero.
834  */
835 static inline int
836 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837                 struct buffer_page *page, struct list_head *list)
838 {
839         unsigned long val;
840
841         val = (unsigned long)list->next;
842
843         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844                 return RB_PAGE_MOVED;
845
846         return val & RB_FLAG_MASK;
847 }
848
849 /*
850  * rb_is_reader_page
851  *
852  * The unique thing about the reader page, is that, if the
853  * writer is ever on it, the previous pointer never points
854  * back to the reader page.
855  */
856 static int rb_is_reader_page(struct buffer_page *page)
857 {
858         struct list_head *list = page->list.prev;
859
860         return rb_list_head(list->next) != &page->list;
861 }
862
863 /*
864  * rb_set_list_to_head - set a list_head to be pointing to head.
865  */
866 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867                                 struct list_head *list)
868 {
869         unsigned long *ptr;
870
871         ptr = (unsigned long *)&list->next;
872         *ptr |= RB_PAGE_HEAD;
873         *ptr &= ~RB_PAGE_UPDATE;
874 }
875
876 /*
877  * rb_head_page_activate - sets up head page
878  */
879 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881         struct buffer_page *head;
882
883         head = cpu_buffer->head_page;
884         if (!head)
885                 return;
886
887         /*
888          * Set the previous list pointer to have the HEAD flag.
889          */
890         rb_set_list_to_head(cpu_buffer, head->list.prev);
891 }
892
893 static void rb_list_head_clear(struct list_head *list)
894 {
895         unsigned long *ptr = (unsigned long *)&list->next;
896
897         *ptr &= ~RB_FLAG_MASK;
898 }
899
900 /*
901  * rb_head_page_dactivate - clears head page ptr (for free list)
902  */
903 static void
904 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905 {
906         struct list_head *hd;
907
908         /* Go through the whole list and clear any pointers found. */
909         rb_list_head_clear(cpu_buffer->pages);
910
911         list_for_each(hd, cpu_buffer->pages)
912                 rb_list_head_clear(hd);
913 }
914
915 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916                             struct buffer_page *head,
917                             struct buffer_page *prev,
918                             int old_flag, int new_flag)
919 {
920         struct list_head *list;
921         unsigned long val = (unsigned long)&head->list;
922         unsigned long ret;
923
924         list = &prev->list;
925
926         val &= ~RB_FLAG_MASK;
927
928         ret = cmpxchg((unsigned long *)&list->next,
929                       val | old_flag, val | new_flag);
930
931         /* check if the reader took the page */
932         if ((ret & ~RB_FLAG_MASK) != val)
933                 return RB_PAGE_MOVED;
934
935         return ret & RB_FLAG_MASK;
936 }
937
938 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939                                    struct buffer_page *head,
940                                    struct buffer_page *prev,
941                                    int old_flag)
942 {
943         return rb_head_page_set(cpu_buffer, head, prev,
944                                 old_flag, RB_PAGE_UPDATE);
945 }
946
947 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948                                  struct buffer_page *head,
949                                  struct buffer_page *prev,
950                                  int old_flag)
951 {
952         return rb_head_page_set(cpu_buffer, head, prev,
953                                 old_flag, RB_PAGE_HEAD);
954 }
955
956 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957                                    struct buffer_page *head,
958                                    struct buffer_page *prev,
959                                    int old_flag)
960 {
961         return rb_head_page_set(cpu_buffer, head, prev,
962                                 old_flag, RB_PAGE_NORMAL);
963 }
964
965 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966                                struct buffer_page **bpage)
967 {
968         struct list_head *p = rb_list_head((*bpage)->list.next);
969
970         *bpage = list_entry(p, struct buffer_page, list);
971 }
972
973 static struct buffer_page *
974 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975 {
976         struct buffer_page *head;
977         struct buffer_page *page;
978         struct list_head *list;
979         int i;
980
981         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982                 return NULL;
983
984         /* sanity check */
985         list = cpu_buffer->pages;
986         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987                 return NULL;
988
989         page = head = cpu_buffer->head_page;
990         /*
991          * It is possible that the writer moves the header behind
992          * where we started, and we miss in one loop.
993          * A second loop should grab the header, but we'll do
994          * three loops just because I'm paranoid.
995          */
996         for (i = 0; i < 3; i++) {
997                 do {
998                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999                                 cpu_buffer->head_page = page;
1000                                 return page;
1001                         }
1002                         rb_inc_page(cpu_buffer, &page);
1003                 } while (page != head);
1004         }
1005
1006         RB_WARN_ON(cpu_buffer, 1);
1007
1008         return NULL;
1009 }
1010
1011 static int rb_head_page_replace(struct buffer_page *old,
1012                                 struct buffer_page *new)
1013 {
1014         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015         unsigned long val;
1016         unsigned long ret;
1017
1018         val = *ptr & ~RB_FLAG_MASK;
1019         val |= RB_PAGE_HEAD;
1020
1021         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022
1023         return ret == val;
1024 }
1025
1026 /*
1027  * rb_tail_page_update - move the tail page forward
1028  *
1029  * Returns 1 if moved tail page, 0 if someone else did.
1030  */
1031 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032                                struct buffer_page *tail_page,
1033                                struct buffer_page *next_page)
1034 {
1035         struct buffer_page *old_tail;
1036         unsigned long old_entries;
1037         unsigned long old_write;
1038         int ret = 0;
1039
1040         /*
1041          * The tail page now needs to be moved forward.
1042          *
1043          * We need to reset the tail page, but without messing
1044          * with possible erasing of data brought in by interrupts
1045          * that have moved the tail page and are currently on it.
1046          *
1047          * We add a counter to the write field to denote this.
1048          */
1049         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051
1052         /*
1053          * Just make sure we have seen our old_write and synchronize
1054          * with any interrupts that come in.
1055          */
1056         barrier();
1057
1058         /*
1059          * If the tail page is still the same as what we think
1060          * it is, then it is up to us to update the tail
1061          * pointer.
1062          */
1063         if (tail_page == cpu_buffer->tail_page) {
1064                 /* Zero the write counter */
1065                 unsigned long val = old_write & ~RB_WRITE_MASK;
1066                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067
1068                 /*
1069                  * This will only succeed if an interrupt did
1070                  * not come in and change it. In which case, we
1071                  * do not want to modify it.
1072                  *
1073                  * We add (void) to let the compiler know that we do not care
1074                  * about the return value of these functions. We use the
1075                  * cmpxchg to only update if an interrupt did not already
1076                  * do it for us. If the cmpxchg fails, we don't care.
1077                  */
1078                 (void)local_cmpxchg(&next_page->write, old_write, val);
1079                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080
1081                 /*
1082                  * No need to worry about races with clearing out the commit.
1083                  * it only can increment when a commit takes place. But that
1084                  * only happens in the outer most nested commit.
1085                  */
1086                 local_set(&next_page->page->commit, 0);
1087
1088                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1089                                    tail_page, next_page);
1090
1091                 if (old_tail == tail_page)
1092                         ret = 1;
1093         }
1094
1095         return ret;
1096 }
1097
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099                           struct buffer_page *bpage)
1100 {
1101         unsigned long val = (unsigned long)bpage;
1102
1103         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104                 return 1;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113                          struct list_head *list)
1114 {
1115         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116                 return 1;
1117         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118                 return 1;
1119         return 0;
1120 }
1121
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131         struct list_head *head = cpu_buffer->pages;
1132         struct buffer_page *bpage, *tmp;
1133
1134         /* Reset the head page if it exists */
1135         if (cpu_buffer->head_page)
1136                 rb_set_head_page(cpu_buffer);
1137
1138         rb_head_page_deactivate(cpu_buffer);
1139
1140         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141                 return -1;
1142         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143                 return -1;
1144
1145         if (rb_check_list(cpu_buffer, head))
1146                 return -1;
1147
1148         list_for_each_entry_safe(bpage, tmp, head, list) {
1149                 if (RB_WARN_ON(cpu_buffer,
1150                                bpage->list.next->prev != &bpage->list))
1151                         return -1;
1152                 if (RB_WARN_ON(cpu_buffer,
1153                                bpage->list.prev->next != &bpage->list))
1154                         return -1;
1155                 if (rb_check_list(cpu_buffer, &bpage->list))
1156                         return -1;
1157         }
1158
1159         rb_head_page_activate(cpu_buffer);
1160
1161         return 0;
1162 }
1163
1164 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1165 {
1166         int i;
1167         struct buffer_page *bpage, *tmp;
1168
1169         for (i = 0; i < nr_pages; i++) {
1170                 struct page *page;
1171                 /*
1172                  * __GFP_NORETRY flag makes sure that the allocation fails
1173                  * gracefully without invoking oom-killer and the system is
1174                  * not destabilized.
1175                  */
1176                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177                                     GFP_KERNEL | __GFP_NORETRY,
1178                                     cpu_to_node(cpu));
1179                 if (!bpage)
1180                         goto free_pages;
1181
1182                 list_add(&bpage->list, pages);
1183
1184                 page = alloc_pages_node(cpu_to_node(cpu),
1185                                         GFP_KERNEL | __GFP_NORETRY, 0);
1186                 if (!page)
1187                         goto free_pages;
1188                 bpage->page = page_address(page);
1189                 rb_init_page(bpage->page);
1190         }
1191
1192         return 0;
1193
1194 free_pages:
1195         list_for_each_entry_safe(bpage, tmp, pages, list) {
1196                 list_del_init(&bpage->list);
1197                 free_buffer_page(bpage);
1198         }
1199
1200         return -ENOMEM;
1201 }
1202
1203 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204                              unsigned nr_pages)
1205 {
1206         LIST_HEAD(pages);
1207
1208         WARN_ON(!nr_pages);
1209
1210         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211                 return -ENOMEM;
1212
1213         /*
1214          * The ring buffer page list is a circular list that does not
1215          * start and end with a list head. All page list items point to
1216          * other pages.
1217          */
1218         cpu_buffer->pages = pages.next;
1219         list_del(&pages);
1220
1221         cpu_buffer->nr_pages = nr_pages;
1222
1223         rb_check_pages(cpu_buffer);
1224
1225         return 0;
1226 }
1227
1228 static struct ring_buffer_per_cpu *
1229 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1230 {
1231         struct ring_buffer_per_cpu *cpu_buffer;
1232         struct buffer_page *bpage;
1233         struct page *page;
1234         int ret;
1235
1236         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237                                   GFP_KERNEL, cpu_to_node(cpu));
1238         if (!cpu_buffer)
1239                 return NULL;
1240
1241         cpu_buffer->cpu = cpu;
1242         cpu_buffer->buffer = buffer;
1243         raw_spin_lock_init(&cpu_buffer->reader_lock);
1244         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247         init_completion(&cpu_buffer->update_done);
1248         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251
1252         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253                             GFP_KERNEL, cpu_to_node(cpu));
1254         if (!bpage)
1255                 goto fail_free_buffer;
1256
1257         rb_check_bpage(cpu_buffer, bpage);
1258
1259         cpu_buffer->reader_page = bpage;
1260         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261         if (!page)
1262                 goto fail_free_reader;
1263         bpage->page = page_address(page);
1264         rb_init_page(bpage->page);
1265
1266         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268
1269         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270         if (ret < 0)
1271                 goto fail_free_reader;
1272
1273         cpu_buffer->head_page
1274                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1275         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276
1277         rb_head_page_activate(cpu_buffer);
1278
1279         return cpu_buffer;
1280
1281  fail_free_reader:
1282         free_buffer_page(cpu_buffer->reader_page);
1283
1284  fail_free_buffer:
1285         kfree(cpu_buffer);
1286         return NULL;
1287 }
1288
1289 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290 {
1291         struct list_head *head = cpu_buffer->pages;
1292         struct buffer_page *bpage, *tmp;
1293
1294         free_buffer_page(cpu_buffer->reader_page);
1295
1296         rb_head_page_deactivate(cpu_buffer);
1297
1298         if (head) {
1299                 list_for_each_entry_safe(bpage, tmp, head, list) {
1300                         list_del_init(&bpage->list);
1301                         free_buffer_page(bpage);
1302                 }
1303                 bpage = list_entry(head, struct buffer_page, list);
1304                 free_buffer_page(bpage);
1305         }
1306
1307         kfree(cpu_buffer);
1308 }
1309
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 static int rb_cpu_notify(struct notifier_block *self,
1312                          unsigned long action, void *hcpu);
1313 #endif
1314
1315 /**
1316  * __ring_buffer_alloc - allocate a new ring_buffer
1317  * @size: the size in bytes per cpu that is needed.
1318  * @flags: attributes to set for the ring buffer.
1319  *
1320  * Currently the only flag that is available is the RB_FL_OVERWRITE
1321  * flag. This flag means that the buffer will overwrite old data
1322  * when the buffer wraps. If this flag is not set, the buffer will
1323  * drop data when the tail hits the head.
1324  */
1325 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326                                         struct lock_class_key *key)
1327 {
1328         struct ring_buffer *buffer;
1329         int bsize;
1330         int cpu, nr_pages;
1331
1332         /* keep it in its own cache line */
1333         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1334                          GFP_KERNEL);
1335         if (!buffer)
1336                 return NULL;
1337
1338         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1339                 goto fail_free_buffer;
1340
1341         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1342         buffer->flags = flags;
1343         buffer->clock = trace_clock_local;
1344         buffer->reader_lock_key = key;
1345
1346         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1347         init_waitqueue_head(&buffer->irq_work.waiters);
1348
1349         /* need at least two pages */
1350         if (nr_pages < 2)
1351                 nr_pages = 2;
1352
1353         /*
1354          * In case of non-hotplug cpu, if the ring-buffer is allocated
1355          * in early initcall, it will not be notified of secondary cpus.
1356          * In that off case, we need to allocate for all possible cpus.
1357          */
1358 #ifdef CONFIG_HOTPLUG_CPU
1359         cpu_notifier_register_begin();
1360         cpumask_copy(buffer->cpumask, cpu_online_mask);
1361 #else
1362         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1363 #endif
1364         buffer->cpus = nr_cpu_ids;
1365
1366         bsize = sizeof(void *) * nr_cpu_ids;
1367         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1368                                   GFP_KERNEL);
1369         if (!buffer->buffers)
1370                 goto fail_free_cpumask;
1371
1372         for_each_buffer_cpu(buffer, cpu) {
1373                 buffer->buffers[cpu] =
1374                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1375                 if (!buffer->buffers[cpu])
1376                         goto fail_free_buffers;
1377         }
1378
1379 #ifdef CONFIG_HOTPLUG_CPU
1380         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1381         buffer->cpu_notify.priority = 0;
1382         __register_cpu_notifier(&buffer->cpu_notify);
1383         cpu_notifier_register_done();
1384 #endif
1385
1386         mutex_init(&buffer->mutex);
1387
1388         return buffer;
1389
1390  fail_free_buffers:
1391         for_each_buffer_cpu(buffer, cpu) {
1392                 if (buffer->buffers[cpu])
1393                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1394         }
1395         kfree(buffer->buffers);
1396
1397  fail_free_cpumask:
1398         free_cpumask_var(buffer->cpumask);
1399 #ifdef CONFIG_HOTPLUG_CPU
1400         cpu_notifier_register_done();
1401 #endif
1402
1403  fail_free_buffer:
1404         kfree(buffer);
1405         return NULL;
1406 }
1407 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1408
1409 /**
1410  * ring_buffer_free - free a ring buffer.
1411  * @buffer: the buffer to free.
1412  */
1413 void
1414 ring_buffer_free(struct ring_buffer *buffer)
1415 {
1416         int cpu;
1417
1418 #ifdef CONFIG_HOTPLUG_CPU
1419         cpu_notifier_register_begin();
1420         __unregister_cpu_notifier(&buffer->cpu_notify);
1421 #endif
1422
1423         for_each_buffer_cpu(buffer, cpu)
1424                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1425
1426 #ifdef CONFIG_HOTPLUG_CPU
1427         cpu_notifier_register_done();
1428 #endif
1429
1430         kfree(buffer->buffers);
1431         free_cpumask_var(buffer->cpumask);
1432
1433         kfree(buffer);
1434 }
1435 EXPORT_SYMBOL_GPL(ring_buffer_free);
1436
1437 void ring_buffer_set_clock(struct ring_buffer *buffer,
1438                            u64 (*clock)(void))
1439 {
1440         buffer->clock = clock;
1441 }
1442
1443 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1444
1445 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1446 {
1447         return local_read(&bpage->entries) & RB_WRITE_MASK;
1448 }
1449
1450 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1451 {
1452         return local_read(&bpage->write) & RB_WRITE_MASK;
1453 }
1454
1455 static int
1456 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1457 {
1458         struct list_head *tail_page, *to_remove, *next_page;
1459         struct buffer_page *to_remove_page, *tmp_iter_page;
1460         struct buffer_page *last_page, *first_page;
1461         unsigned int nr_removed;
1462         unsigned long head_bit;
1463         int page_entries;
1464
1465         head_bit = 0;
1466
1467         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1468         atomic_inc(&cpu_buffer->record_disabled);
1469         /*
1470          * We don't race with the readers since we have acquired the reader
1471          * lock. We also don't race with writers after disabling recording.
1472          * This makes it easy to figure out the first and the last page to be
1473          * removed from the list. We unlink all the pages in between including
1474          * the first and last pages. This is done in a busy loop so that we
1475          * lose the least number of traces.
1476          * The pages are freed after we restart recording and unlock readers.
1477          */
1478         tail_page = &cpu_buffer->tail_page->list;
1479
1480         /*
1481          * tail page might be on reader page, we remove the next page
1482          * from the ring buffer
1483          */
1484         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1485                 tail_page = rb_list_head(tail_page->next);
1486         to_remove = tail_page;
1487
1488         /* start of pages to remove */
1489         first_page = list_entry(rb_list_head(to_remove->next),
1490                                 struct buffer_page, list);
1491
1492         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1493                 to_remove = rb_list_head(to_remove)->next;
1494                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1495         }
1496
1497         next_page = rb_list_head(to_remove)->next;
1498
1499         /*
1500          * Now we remove all pages between tail_page and next_page.
1501          * Make sure that we have head_bit value preserved for the
1502          * next page
1503          */
1504         tail_page->next = (struct list_head *)((unsigned long)next_page |
1505                                                 head_bit);
1506         next_page = rb_list_head(next_page);
1507         next_page->prev = tail_page;
1508
1509         /* make sure pages points to a valid page in the ring buffer */
1510         cpu_buffer->pages = next_page;
1511
1512         /* update head page */
1513         if (head_bit)
1514                 cpu_buffer->head_page = list_entry(next_page,
1515                                                 struct buffer_page, list);
1516
1517         /*
1518          * change read pointer to make sure any read iterators reset
1519          * themselves
1520          */
1521         cpu_buffer->read = 0;
1522
1523         /* pages are removed, resume tracing and then free the pages */
1524         atomic_dec(&cpu_buffer->record_disabled);
1525         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1526
1527         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1528
1529         /* last buffer page to remove */
1530         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1531                                 list);
1532         tmp_iter_page = first_page;
1533
1534         do {
1535                 to_remove_page = tmp_iter_page;
1536                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1537
1538                 /* update the counters */
1539                 page_entries = rb_page_entries(to_remove_page);
1540                 if (page_entries) {
1541                         /*
1542                          * If something was added to this page, it was full
1543                          * since it is not the tail page. So we deduct the
1544                          * bytes consumed in ring buffer from here.
1545                          * Increment overrun to account for the lost events.
1546                          */
1547                         local_add(page_entries, &cpu_buffer->overrun);
1548                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1549                 }
1550
1551                 /*
1552                  * We have already removed references to this list item, just
1553                  * free up the buffer_page and its page
1554                  */
1555                 free_buffer_page(to_remove_page);
1556                 nr_removed--;
1557
1558         } while (to_remove_page != last_page);
1559
1560         RB_WARN_ON(cpu_buffer, nr_removed);
1561
1562         return nr_removed == 0;
1563 }
1564
1565 static int
1566 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1567 {
1568         struct list_head *pages = &cpu_buffer->new_pages;
1569         int retries, success;
1570
1571         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1572         /*
1573          * We are holding the reader lock, so the reader page won't be swapped
1574          * in the ring buffer. Now we are racing with the writer trying to
1575          * move head page and the tail page.
1576          * We are going to adapt the reader page update process where:
1577          * 1. We first splice the start and end of list of new pages between
1578          *    the head page and its previous page.
1579          * 2. We cmpxchg the prev_page->next to point from head page to the
1580          *    start of new pages list.
1581          * 3. Finally, we update the head->prev to the end of new list.
1582          *
1583          * We will try this process 10 times, to make sure that we don't keep
1584          * spinning.
1585          */
1586         retries = 10;
1587         success = 0;
1588         while (retries--) {
1589                 struct list_head *head_page, *prev_page, *r;
1590                 struct list_head *last_page, *first_page;
1591                 struct list_head *head_page_with_bit;
1592
1593                 head_page = &rb_set_head_page(cpu_buffer)->list;
1594                 if (!head_page)
1595                         break;
1596                 prev_page = head_page->prev;
1597
1598                 first_page = pages->next;
1599                 last_page  = pages->prev;
1600
1601                 head_page_with_bit = (struct list_head *)
1602                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1603
1604                 last_page->next = head_page_with_bit;
1605                 first_page->prev = prev_page;
1606
1607                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1608
1609                 if (r == head_page_with_bit) {
1610                         /*
1611                          * yay, we replaced the page pointer to our new list,
1612                          * now, we just have to update to head page's prev
1613                          * pointer to point to end of list
1614                          */
1615                         head_page->prev = last_page;
1616                         success = 1;
1617                         break;
1618                 }
1619         }
1620
1621         if (success)
1622                 INIT_LIST_HEAD(pages);
1623         /*
1624          * If we weren't successful in adding in new pages, warn and stop
1625          * tracing
1626          */
1627         RB_WARN_ON(cpu_buffer, !success);
1628         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1629
1630         /* free pages if they weren't inserted */
1631         if (!success) {
1632                 struct buffer_page *bpage, *tmp;
1633                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1634                                          list) {
1635                         list_del_init(&bpage->list);
1636                         free_buffer_page(bpage);
1637                 }
1638         }
1639         return success;
1640 }
1641
1642 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1643 {
1644         int success;
1645
1646         if (cpu_buffer->nr_pages_to_update > 0)
1647                 success = rb_insert_pages(cpu_buffer);
1648         else
1649                 success = rb_remove_pages(cpu_buffer,
1650                                         -cpu_buffer->nr_pages_to_update);
1651
1652         if (success)
1653                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1654 }
1655
1656 static void update_pages_handler(struct work_struct *work)
1657 {
1658         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1659                         struct ring_buffer_per_cpu, update_pages_work);
1660         rb_update_pages(cpu_buffer);
1661         complete(&cpu_buffer->update_done);
1662 }
1663
1664 /**
1665  * ring_buffer_resize - resize the ring buffer
1666  * @buffer: the buffer to resize.
1667  * @size: the new size.
1668  * @cpu_id: the cpu buffer to resize
1669  *
1670  * Minimum size is 2 * BUF_PAGE_SIZE.
1671  *
1672  * Returns 0 on success and < 0 on failure.
1673  */
1674 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1675                         int cpu_id)
1676 {
1677         struct ring_buffer_per_cpu *cpu_buffer;
1678         unsigned nr_pages;
1679         int cpu, err = 0;
1680
1681         /*
1682          * Always succeed at resizing a non-existent buffer:
1683          */
1684         if (!buffer)
1685                 return size;
1686
1687         /* Make sure the requested buffer exists */
1688         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1689             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1690                 return size;
1691
1692         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1693         size *= BUF_PAGE_SIZE;
1694
1695         /* we need a minimum of two pages */
1696         if (size < BUF_PAGE_SIZE * 2)
1697                 size = BUF_PAGE_SIZE * 2;
1698
1699         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1700
1701         /*
1702          * Don't succeed if resizing is disabled, as a reader might be
1703          * manipulating the ring buffer and is expecting a sane state while
1704          * this is true.
1705          */
1706         if (atomic_read(&buffer->resize_disabled))
1707                 return -EBUSY;
1708
1709         /* prevent another thread from changing buffer sizes */
1710         mutex_lock(&buffer->mutex);
1711
1712         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713                 /* calculate the pages to update */
1714                 for_each_buffer_cpu(buffer, cpu) {
1715                         cpu_buffer = buffer->buffers[cpu];
1716
1717                         cpu_buffer->nr_pages_to_update = nr_pages -
1718                                                         cpu_buffer->nr_pages;
1719                         /*
1720                          * nothing more to do for removing pages or no update
1721                          */
1722                         if (cpu_buffer->nr_pages_to_update <= 0)
1723                                 continue;
1724                         /*
1725                          * to add pages, make sure all new pages can be
1726                          * allocated without receiving ENOMEM
1727                          */
1728                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730                                                 &cpu_buffer->new_pages, cpu)) {
1731                                 /* not enough memory for new pages */
1732                                 err = -ENOMEM;
1733                                 goto out_err;
1734                         }
1735                 }
1736
1737                 get_online_cpus();
1738                 /*
1739                  * Fire off all the required work handlers
1740                  * We can't schedule on offline CPUs, but it's not necessary
1741                  * since we can change their buffer sizes without any race.
1742                  */
1743                 for_each_buffer_cpu(buffer, cpu) {
1744                         cpu_buffer = buffer->buffers[cpu];
1745                         if (!cpu_buffer->nr_pages_to_update)
1746                                 continue;
1747
1748                         /* Can't run something on an offline CPU. */
1749                         if (!cpu_online(cpu)) {
1750                                 rb_update_pages(cpu_buffer);
1751                                 cpu_buffer->nr_pages_to_update = 0;
1752                         } else {
1753                                 schedule_work_on(cpu,
1754                                                 &cpu_buffer->update_pages_work);
1755                         }
1756                 }
1757
1758                 /* wait for all the updates to complete */
1759                 for_each_buffer_cpu(buffer, cpu) {
1760                         cpu_buffer = buffer->buffers[cpu];
1761                         if (!cpu_buffer->nr_pages_to_update)
1762                                 continue;
1763
1764                         if (cpu_online(cpu))
1765                                 wait_for_completion(&cpu_buffer->update_done);
1766                         cpu_buffer->nr_pages_to_update = 0;
1767                 }
1768
1769                 put_online_cpus();
1770         } else {
1771                 /* Make sure this CPU has been intitialized */
1772                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773                         goto out;
1774
1775                 cpu_buffer = buffer->buffers[cpu_id];
1776
1777                 if (nr_pages == cpu_buffer->nr_pages)
1778                         goto out;
1779
1780                 cpu_buffer->nr_pages_to_update = nr_pages -
1781                                                 cpu_buffer->nr_pages;
1782
1783                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784                 if (cpu_buffer->nr_pages_to_update > 0 &&
1785                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786                                             &cpu_buffer->new_pages, cpu_id)) {
1787                         err = -ENOMEM;
1788                         goto out_err;
1789                 }
1790
1791                 get_online_cpus();
1792
1793                 /* Can't run something on an offline CPU. */
1794                 if (!cpu_online(cpu_id))
1795                         rb_update_pages(cpu_buffer);
1796                 else {
1797                         schedule_work_on(cpu_id,
1798                                          &cpu_buffer->update_pages_work);
1799                         wait_for_completion(&cpu_buffer->update_done);
1800                 }
1801
1802                 cpu_buffer->nr_pages_to_update = 0;
1803                 put_online_cpus();
1804         }
1805
1806  out:
1807         /*
1808          * The ring buffer resize can happen with the ring buffer
1809          * enabled, so that the update disturbs the tracing as little
1810          * as possible. But if the buffer is disabled, we do not need
1811          * to worry about that, and we can take the time to verify
1812          * that the buffer is not corrupt.
1813          */
1814         if (atomic_read(&buffer->record_disabled)) {
1815                 atomic_inc(&buffer->record_disabled);
1816                 /*
1817                  * Even though the buffer was disabled, we must make sure
1818                  * that it is truly disabled before calling rb_check_pages.
1819                  * There could have been a race between checking
1820                  * record_disable and incrementing it.
1821                  */
1822                 synchronize_sched();
1823                 for_each_buffer_cpu(buffer, cpu) {
1824                         cpu_buffer = buffer->buffers[cpu];
1825                         rb_check_pages(cpu_buffer);
1826                 }
1827                 atomic_dec(&buffer->record_disabled);
1828         }
1829
1830         mutex_unlock(&buffer->mutex);
1831         return size;
1832
1833  out_err:
1834         for_each_buffer_cpu(buffer, cpu) {
1835                 struct buffer_page *bpage, *tmp;
1836
1837                 cpu_buffer = buffer->buffers[cpu];
1838                 cpu_buffer->nr_pages_to_update = 0;
1839
1840                 if (list_empty(&cpu_buffer->new_pages))
1841                         continue;
1842
1843                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844                                         list) {
1845                         list_del_init(&bpage->list);
1846                         free_buffer_page(bpage);
1847                 }
1848         }
1849         mutex_unlock(&buffer->mutex);
1850         return err;
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853
1854 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855 {
1856         mutex_lock(&buffer->mutex);
1857         if (val)
1858                 buffer->flags |= RB_FL_OVERWRITE;
1859         else
1860                 buffer->flags &= ~RB_FL_OVERWRITE;
1861         mutex_unlock(&buffer->mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864
1865 static inline void *
1866 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867 {
1868         return bpage->data + index;
1869 }
1870
1871 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872 {
1873         return bpage->page->data + index;
1874 }
1875
1876 static inline struct ring_buffer_event *
1877 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879         return __rb_page_index(cpu_buffer->reader_page,
1880                                cpu_buffer->reader_page->read);
1881 }
1882
1883 static inline struct ring_buffer_event *
1884 rb_iter_head_event(struct ring_buffer_iter *iter)
1885 {
1886         return __rb_page_index(iter->head_page, iter->head);
1887 }
1888
1889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890 {
1891         return local_read(&bpage->page->commit);
1892 }
1893
1894 /* Size is determined by what has been committed */
1895 static inline unsigned rb_page_size(struct buffer_page *bpage)
1896 {
1897         return rb_page_commit(bpage);
1898 }
1899
1900 static inline unsigned
1901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902 {
1903         return rb_page_commit(cpu_buffer->commit_page);
1904 }
1905
1906 static inline unsigned
1907 rb_event_index(struct ring_buffer_event *event)
1908 {
1909         unsigned long addr = (unsigned long)event;
1910
1911         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912 }
1913
1914 static inline int
1915 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916                    struct ring_buffer_event *event)
1917 {
1918         unsigned long addr = (unsigned long)event;
1919         unsigned long index;
1920
1921         index = rb_event_index(event);
1922         addr &= PAGE_MASK;
1923
1924         return cpu_buffer->commit_page->page == (void *)addr &&
1925                 rb_commit_index(cpu_buffer) == index;
1926 }
1927
1928 static void
1929 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931         unsigned long max_count;
1932
1933         /*
1934          * We only race with interrupts and NMIs on this CPU.
1935          * If we own the commit event, then we can commit
1936          * all others that interrupted us, since the interruptions
1937          * are in stack format (they finish before they come
1938          * back to us). This allows us to do a simple loop to
1939          * assign the commit to the tail.
1940          */
1941  again:
1942         max_count = cpu_buffer->nr_pages * 100;
1943
1944         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946                         return;
1947                 if (RB_WARN_ON(cpu_buffer,
1948                                rb_is_reader_page(cpu_buffer->tail_page)))
1949                         return;
1950                 local_set(&cpu_buffer->commit_page->page->commit,
1951                           rb_page_write(cpu_buffer->commit_page));
1952                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953                 cpu_buffer->write_stamp =
1954                         cpu_buffer->commit_page->page->time_stamp;
1955                 /* add barrier to keep gcc from optimizing too much */
1956                 barrier();
1957         }
1958         while (rb_commit_index(cpu_buffer) !=
1959                rb_page_write(cpu_buffer->commit_page)) {
1960
1961                 local_set(&cpu_buffer->commit_page->page->commit,
1962                           rb_page_write(cpu_buffer->commit_page));
1963                 RB_WARN_ON(cpu_buffer,
1964                            local_read(&cpu_buffer->commit_page->page->commit) &
1965                            ~RB_WRITE_MASK);
1966                 barrier();
1967         }
1968
1969         /* again, keep gcc from optimizing */
1970         barrier();
1971
1972         /*
1973          * If an interrupt came in just after the first while loop
1974          * and pushed the tail page forward, we will be left with
1975          * a dangling commit that will never go forward.
1976          */
1977         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978                 goto again;
1979 }
1980
1981 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982 {
1983         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984         cpu_buffer->reader_page->read = 0;
1985 }
1986
1987 static void rb_inc_iter(struct ring_buffer_iter *iter)
1988 {
1989         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990
1991         /*
1992          * The iterator could be on the reader page (it starts there).
1993          * But the head could have moved, since the reader was
1994          * found. Check for this case and assign the iterator
1995          * to the head page instead of next.
1996          */
1997         if (iter->head_page == cpu_buffer->reader_page)
1998                 iter->head_page = rb_set_head_page(cpu_buffer);
1999         else
2000                 rb_inc_page(cpu_buffer, &iter->head_page);
2001
2002         iter->read_stamp = iter->head_page->page->time_stamp;
2003         iter->head = 0;
2004 }
2005
2006 /* Slow path, do not inline */
2007 static noinline struct ring_buffer_event *
2008 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009 {
2010         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011
2012         /* Not the first event on the page? */
2013         if (rb_event_index(event)) {
2014                 event->time_delta = delta & TS_MASK;
2015                 event->array[0] = delta >> TS_SHIFT;
2016         } else {
2017                 /* nope, just zero it */
2018                 event->time_delta = 0;
2019                 event->array[0] = 0;
2020         }
2021
2022         return skip_time_extend(event);
2023 }
2024
2025 /**
2026  * rb_update_event - update event type and data
2027  * @event: the event to update
2028  * @type: the type of event
2029  * @length: the size of the event field in the ring buffer
2030  *
2031  * Update the type and data fields of the event. The length
2032  * is the actual size that is written to the ring buffer,
2033  * and with this, we can determine what to place into the
2034  * data field.
2035  */
2036 static void
2037 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038                 struct ring_buffer_event *event, unsigned length,
2039                 int add_timestamp, u64 delta)
2040 {
2041         /* Only a commit updates the timestamp */
2042         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043                 delta = 0;
2044
2045         /*
2046          * If we need to add a timestamp, then we
2047          * add it to the start of the resevered space.
2048          */
2049         if (unlikely(add_timestamp)) {
2050                 event = rb_add_time_stamp(event, delta);
2051                 length -= RB_LEN_TIME_EXTEND;
2052                 delta = 0;
2053         }
2054
2055         event->time_delta = delta;
2056         length -= RB_EVNT_HDR_SIZE;
2057         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058                 event->type_len = 0;
2059                 event->array[0] = length;
2060         } else
2061                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062 }
2063
2064 /*
2065  * rb_handle_head_page - writer hit the head page
2066  *
2067  * Returns: +1 to retry page
2068  *           0 to continue
2069  *          -1 on error
2070  */
2071 static int
2072 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073                     struct buffer_page *tail_page,
2074                     struct buffer_page *next_page)
2075 {
2076         struct buffer_page *new_head;
2077         int entries;
2078         int type;
2079         int ret;
2080
2081         entries = rb_page_entries(next_page);
2082
2083         /*
2084          * The hard part is here. We need to move the head
2085          * forward, and protect against both readers on
2086          * other CPUs and writers coming in via interrupts.
2087          */
2088         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089                                        RB_PAGE_HEAD);
2090
2091         /*
2092          * type can be one of four:
2093          *  NORMAL - an interrupt already moved it for us
2094          *  HEAD   - we are the first to get here.
2095          *  UPDATE - we are the interrupt interrupting
2096          *           a current move.
2097          *  MOVED  - a reader on another CPU moved the next
2098          *           pointer to its reader page. Give up
2099          *           and try again.
2100          */
2101
2102         switch (type) {
2103         case RB_PAGE_HEAD:
2104                 /*
2105                  * We changed the head to UPDATE, thus
2106                  * it is our responsibility to update
2107                  * the counters.
2108                  */
2109                 local_add(entries, &cpu_buffer->overrun);
2110                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111
2112                 /*
2113                  * The entries will be zeroed out when we move the
2114                  * tail page.
2115                  */
2116
2117                 /* still more to do */
2118                 break;
2119
2120         case RB_PAGE_UPDATE:
2121                 /*
2122                  * This is an interrupt that interrupt the
2123                  * previous update. Still more to do.
2124                  */
2125                 break;
2126         case RB_PAGE_NORMAL:
2127                 /*
2128                  * An interrupt came in before the update
2129                  * and processed this for us.
2130                  * Nothing left to do.
2131                  */
2132                 return 1;
2133         case RB_PAGE_MOVED:
2134                 /*
2135                  * The reader is on another CPU and just did
2136                  * a swap with our next_page.
2137                  * Try again.
2138                  */
2139                 return 1;
2140         default:
2141                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142                 return -1;
2143         }
2144
2145         /*
2146          * Now that we are here, the old head pointer is
2147          * set to UPDATE. This will keep the reader from
2148          * swapping the head page with the reader page.
2149          * The reader (on another CPU) will spin till
2150          * we are finished.
2151          *
2152          * We just need to protect against interrupts
2153          * doing the job. We will set the next pointer
2154          * to HEAD. After that, we set the old pointer
2155          * to NORMAL, but only if it was HEAD before.
2156          * otherwise we are an interrupt, and only
2157          * want the outer most commit to reset it.
2158          */
2159         new_head = next_page;
2160         rb_inc_page(cpu_buffer, &new_head);
2161
2162         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163                                     RB_PAGE_NORMAL);
2164
2165         /*
2166          * Valid returns are:
2167          *  HEAD   - an interrupt came in and already set it.
2168          *  NORMAL - One of two things:
2169          *            1) We really set it.
2170          *            2) A bunch of interrupts came in and moved
2171          *               the page forward again.
2172          */
2173         switch (ret) {
2174         case RB_PAGE_HEAD:
2175         case RB_PAGE_NORMAL:
2176                 /* OK */
2177                 break;
2178         default:
2179                 RB_WARN_ON(cpu_buffer, 1);
2180                 return -1;
2181         }
2182
2183         /*
2184          * It is possible that an interrupt came in,
2185          * set the head up, then more interrupts came in
2186          * and moved it again. When we get back here,
2187          * the page would have been set to NORMAL but we
2188          * just set it back to HEAD.
2189          *
2190          * How do you detect this? Well, if that happened
2191          * the tail page would have moved.
2192          */
2193         if (ret == RB_PAGE_NORMAL) {
2194                 /*
2195                  * If the tail had moved passed next, then we need
2196                  * to reset the pointer.
2197                  */
2198                 if (cpu_buffer->tail_page != tail_page &&
2199                     cpu_buffer->tail_page != next_page)
2200                         rb_head_page_set_normal(cpu_buffer, new_head,
2201                                                 next_page,
2202                                                 RB_PAGE_HEAD);
2203         }
2204
2205         /*
2206          * If this was the outer most commit (the one that
2207          * changed the original pointer from HEAD to UPDATE),
2208          * then it is up to us to reset it to NORMAL.
2209          */
2210         if (type == RB_PAGE_HEAD) {
2211                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212                                               tail_page,
2213                                               RB_PAGE_UPDATE);
2214                 if (RB_WARN_ON(cpu_buffer,
2215                                ret != RB_PAGE_UPDATE))
2216                         return -1;
2217         }
2218
2219         return 0;
2220 }
2221
2222 static unsigned rb_calculate_event_length(unsigned length)
2223 {
2224         struct ring_buffer_event event; /* Used only for sizeof array */
2225
2226         /* zero length can cause confusions */
2227         if (!length)
2228                 length = 1;
2229
2230         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231                 length += sizeof(event.array[0]);
2232
2233         length += RB_EVNT_HDR_SIZE;
2234         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235
2236         return length;
2237 }
2238
2239 static inline void
2240 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241               struct buffer_page *tail_page,
2242               unsigned long tail, unsigned long length)
2243 {
2244         struct ring_buffer_event *event;
2245
2246         /*
2247          * Only the event that crossed the page boundary
2248          * must fill the old tail_page with padding.
2249          */
2250         if (tail >= BUF_PAGE_SIZE) {
2251                 /*
2252                  * If the page was filled, then we still need
2253                  * to update the real_end. Reset it to zero
2254                  * and the reader will ignore it.
2255                  */
2256                 if (tail == BUF_PAGE_SIZE)
2257                         tail_page->real_end = 0;
2258
2259                 local_sub(length, &tail_page->write);
2260                 return;
2261         }
2262
2263         event = __rb_page_index(tail_page, tail);
2264         kmemcheck_annotate_bitfield(event, bitfield);
2265
2266         /* account for padding bytes */
2267         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268
2269         /*
2270          * Save the original length to the meta data.
2271          * This will be used by the reader to add lost event
2272          * counter.
2273          */
2274         tail_page->real_end = tail;
2275
2276         /*
2277          * If this event is bigger than the minimum size, then
2278          * we need to be careful that we don't subtract the
2279          * write counter enough to allow another writer to slip
2280          * in on this page.
2281          * We put in a discarded commit instead, to make sure
2282          * that this space is not used again.
2283          *
2284          * If we are less than the minimum size, we don't need to
2285          * worry about it.
2286          */
2287         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288                 /* No room for any events */
2289
2290                 /* Mark the rest of the page with padding */
2291                 rb_event_set_padding(event);
2292
2293                 /* Set the write back to the previous setting */
2294                 local_sub(length, &tail_page->write);
2295                 return;
2296         }
2297
2298         /* Put in a discarded event */
2299         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300         event->type_len = RINGBUF_TYPE_PADDING;
2301         /* time delta must be non zero */
2302         event->time_delta = 1;
2303
2304         /* Set write to end of buffer */
2305         length = (tail + length) - BUF_PAGE_SIZE;
2306         local_sub(length, &tail_page->write);
2307 }
2308
2309 /*
2310  * This is the slow path, force gcc not to inline it.
2311  */
2312 static noinline struct ring_buffer_event *
2313 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314              unsigned long length, unsigned long tail,
2315              struct buffer_page *tail_page, u64 ts)
2316 {
2317         struct buffer_page *commit_page = cpu_buffer->commit_page;
2318         struct ring_buffer *buffer = cpu_buffer->buffer;
2319         struct buffer_page *next_page;
2320         int ret;
2321
2322         next_page = tail_page;
2323
2324         rb_inc_page(cpu_buffer, &next_page);
2325
2326         /*
2327          * If for some reason, we had an interrupt storm that made
2328          * it all the way around the buffer, bail, and warn
2329          * about it.
2330          */
2331         if (unlikely(next_page == commit_page)) {
2332                 local_inc(&cpu_buffer->commit_overrun);
2333                 goto out_reset;
2334         }
2335
2336         /*
2337          * This is where the fun begins!
2338          *
2339          * We are fighting against races between a reader that
2340          * could be on another CPU trying to swap its reader
2341          * page with the buffer head.
2342          *
2343          * We are also fighting against interrupts coming in and
2344          * moving the head or tail on us as well.
2345          *
2346          * If the next page is the head page then we have filled
2347          * the buffer, unless the commit page is still on the
2348          * reader page.
2349          */
2350         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351
2352                 /*
2353                  * If the commit is not on the reader page, then
2354                  * move the header page.
2355                  */
2356                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357                         /*
2358                          * If we are not in overwrite mode,
2359                          * this is easy, just stop here.
2360                          */
2361                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362                                 local_inc(&cpu_buffer->dropped_events);
2363                                 goto out_reset;
2364                         }
2365
2366                         ret = rb_handle_head_page(cpu_buffer,
2367                                                   tail_page,
2368                                                   next_page);
2369                         if (ret < 0)
2370                                 goto out_reset;
2371                         if (ret)
2372                                 goto out_again;
2373                 } else {
2374                         /*
2375                          * We need to be careful here too. The
2376                          * commit page could still be on the reader
2377                          * page. We could have a small buffer, and
2378                          * have filled up the buffer with events
2379                          * from interrupts and such, and wrapped.
2380                          *
2381                          * Note, if the tail page is also the on the
2382                          * reader_page, we let it move out.
2383                          */
2384                         if (unlikely((cpu_buffer->commit_page !=
2385                                       cpu_buffer->tail_page) &&
2386                                      (cpu_buffer->commit_page ==
2387                                       cpu_buffer->reader_page))) {
2388                                 local_inc(&cpu_buffer->commit_overrun);
2389                                 goto out_reset;
2390                         }
2391                 }
2392         }
2393
2394         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395         if (ret) {
2396                 /*
2397                  * Nested commits always have zero deltas, so
2398                  * just reread the time stamp
2399                  */
2400                 ts = rb_time_stamp(buffer);
2401                 next_page->page->time_stamp = ts;
2402         }
2403
2404  out_again:
2405
2406         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407
2408         /* fail and let the caller try again */
2409         return ERR_PTR(-EAGAIN);
2410
2411  out_reset:
2412         /* reset write */
2413         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414
2415         return NULL;
2416 }
2417
2418 static struct ring_buffer_event *
2419 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420                   unsigned long length, u64 ts,
2421                   u64 delta, int add_timestamp)
2422 {
2423         struct buffer_page *tail_page;
2424         struct ring_buffer_event *event;
2425         unsigned long tail, write;
2426
2427         /*
2428          * If the time delta since the last event is too big to
2429          * hold in the time field of the event, then we append a
2430          * TIME EXTEND event ahead of the data event.
2431          */
2432         if (unlikely(add_timestamp))
2433                 length += RB_LEN_TIME_EXTEND;
2434
2435         tail_page = cpu_buffer->tail_page;
2436         write = local_add_return(length, &tail_page->write);
2437
2438         /* set write to only the index of the write */
2439         write &= RB_WRITE_MASK;
2440         tail = write - length;
2441
2442         /*
2443          * If this is the first commit on the page, then it has the same
2444          * timestamp as the page itself.
2445          */
2446         if (!tail)
2447                 delta = 0;
2448
2449         /* See if we shot pass the end of this buffer page */
2450         if (unlikely(write > BUF_PAGE_SIZE))
2451                 return rb_move_tail(cpu_buffer, length, tail,
2452                                     tail_page, ts);
2453
2454         /* We reserved something on the buffer */
2455
2456         event = __rb_page_index(tail_page, tail);
2457         kmemcheck_annotate_bitfield(event, bitfield);
2458         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459
2460         local_inc(&tail_page->entries);
2461
2462         /*
2463          * If this is the first commit on the page, then update
2464          * its timestamp.
2465          */
2466         if (!tail)
2467                 tail_page->page->time_stamp = ts;
2468
2469         /* account for these added bytes */
2470         local_add(length, &cpu_buffer->entries_bytes);
2471
2472         return event;
2473 }
2474
2475 static inline int
2476 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477                   struct ring_buffer_event *event)
2478 {
2479         unsigned long new_index, old_index;
2480         struct buffer_page *bpage;
2481         unsigned long index;
2482         unsigned long addr;
2483
2484         new_index = rb_event_index(event);
2485         old_index = new_index + rb_event_ts_length(event);
2486         addr = (unsigned long)event;
2487         addr &= PAGE_MASK;
2488
2489         bpage = cpu_buffer->tail_page;
2490
2491         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492                 unsigned long write_mask =
2493                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2494                 unsigned long event_length = rb_event_length(event);
2495                 /*
2496                  * This is on the tail page. It is possible that
2497                  * a write could come in and move the tail page
2498                  * and write to the next page. That is fine
2499                  * because we just shorten what is on this page.
2500                  */
2501                 old_index += write_mask;
2502                 new_index += write_mask;
2503                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2504                 if (index == old_index) {
2505                         /* update counters */
2506                         local_sub(event_length, &cpu_buffer->entries_bytes);
2507                         return 1;
2508                 }
2509         }
2510
2511         /* could not discard */
2512         return 0;
2513 }
2514
2515 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517         local_inc(&cpu_buffer->committing);
2518         local_inc(&cpu_buffer->commits);
2519 }
2520
2521 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522 {
2523         unsigned long commits;
2524
2525         if (RB_WARN_ON(cpu_buffer,
2526                        !local_read(&cpu_buffer->committing)))
2527                 return;
2528
2529  again:
2530         commits = local_read(&cpu_buffer->commits);
2531         /* synchronize with interrupts */
2532         barrier();
2533         if (local_read(&cpu_buffer->committing) == 1)
2534                 rb_set_commit_to_write(cpu_buffer);
2535
2536         local_dec(&cpu_buffer->committing);
2537
2538         /* synchronize with interrupts */
2539         barrier();
2540
2541         /*
2542          * Need to account for interrupts coming in between the
2543          * updating of the commit page and the clearing of the
2544          * committing counter.
2545          */
2546         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547             !local_read(&cpu_buffer->committing)) {
2548                 local_inc(&cpu_buffer->committing);
2549                 goto again;
2550         }
2551 }
2552
2553 static struct ring_buffer_event *
2554 rb_reserve_next_event(struct ring_buffer *buffer,
2555                       struct ring_buffer_per_cpu *cpu_buffer,
2556                       unsigned long length)
2557 {
2558         struct ring_buffer_event *event;
2559         u64 ts, delta;
2560         int nr_loops = 0;
2561         int add_timestamp;
2562         u64 diff;
2563
2564         rb_start_commit(cpu_buffer);
2565
2566 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567         /*
2568          * Due to the ability to swap a cpu buffer from a buffer
2569          * it is possible it was swapped before we committed.
2570          * (committing stops a swap). We check for it here and
2571          * if it happened, we have to fail the write.
2572          */
2573         barrier();
2574         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575                 local_dec(&cpu_buffer->committing);
2576                 local_dec(&cpu_buffer->commits);
2577                 return NULL;
2578         }
2579 #endif
2580
2581         length = rb_calculate_event_length(length);
2582  again:
2583         add_timestamp = 0;
2584         delta = 0;
2585
2586         /*
2587          * We allow for interrupts to reenter here and do a trace.
2588          * If one does, it will cause this original code to loop
2589          * back here. Even with heavy interrupts happening, this
2590          * should only happen a few times in a row. If this happens
2591          * 1000 times in a row, there must be either an interrupt
2592          * storm or we have something buggy.
2593          * Bail!
2594          */
2595         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596                 goto out_fail;
2597
2598         ts = rb_time_stamp(cpu_buffer->buffer);
2599         diff = ts - cpu_buffer->write_stamp;
2600
2601         /* make sure this diff is calculated here */
2602         barrier();
2603
2604         /* Did the write stamp get updated already? */
2605         if (likely(ts >= cpu_buffer->write_stamp)) {
2606                 delta = diff;
2607                 if (unlikely(test_time_stamp(delta))) {
2608                         int local_clock_stable = 1;
2609 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610                         local_clock_stable = sched_clock_stable();
2611 #endif
2612                         WARN_ONCE(delta > (1ULL << 59),
2613                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614                                   (unsigned long long)delta,
2615                                   (unsigned long long)ts,
2616                                   (unsigned long long)cpu_buffer->write_stamp,
2617                                   local_clock_stable ? "" :
2618                                   "If you just came from a suspend/resume,\n"
2619                                   "please switch to the trace global clock:\n"
2620                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621                         add_timestamp = 1;
2622                 }
2623         }
2624
2625         event = __rb_reserve_next(cpu_buffer, length, ts,
2626                                   delta, add_timestamp);
2627         if (unlikely(PTR_ERR(event) == -EAGAIN))
2628                 goto again;
2629
2630         if (!event)
2631                 goto out_fail;
2632
2633         return event;
2634
2635  out_fail:
2636         rb_end_commit(cpu_buffer);
2637         return NULL;
2638 }
2639
2640 /*
2641  * The lock and unlock are done within a preempt disable section.
2642  * The current_context per_cpu variable can only be modified
2643  * by the current task between lock and unlock. But it can
2644  * be modified more than once via an interrupt. To pass this
2645  * information from the lock to the unlock without having to
2646  * access the 'in_interrupt()' functions again (which do show
2647  * a bit of overhead in something as critical as function tracing,
2648  * we use a bitmask trick.
2649  *
2650  *  bit 0 =  NMI context
2651  *  bit 1 =  IRQ context
2652  *  bit 2 =  SoftIRQ context
2653  *  bit 3 =  normal context.
2654  *
2655  * This works because this is the order of contexts that can
2656  * preempt other contexts. A SoftIRQ never preempts an IRQ
2657  * context.
2658  *
2659  * When the context is determined, the corresponding bit is
2660  * checked and set (if it was set, then a recursion of that context
2661  * happened).
2662  *
2663  * On unlock, we need to clear this bit. To do so, just subtract
2664  * 1 from the current_context and AND it to itself.
2665  *
2666  * (binary)
2667  *  101 - 1 = 100
2668  *  101 & 100 = 100 (clearing bit zero)
2669  *
2670  *  1010 - 1 = 1001
2671  *  1010 & 1001 = 1000 (clearing bit 1)
2672  *
2673  * The least significant bit can be cleared this way, and it
2674  * just so happens that it is the same bit corresponding to
2675  * the current context.
2676  */
2677
2678 static __always_inline int
2679 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2680 {
2681         unsigned int val = cpu_buffer->current_context;
2682         int bit;
2683
2684         if (in_interrupt()) {
2685                 if (in_nmi())
2686                         bit = 0;
2687                 else if (in_irq())
2688                         bit = 1;
2689                 else
2690                         bit = 2;
2691         } else
2692                 bit = 3;
2693
2694         if (unlikely(val & (1 << bit)))
2695                 return 1;
2696
2697         val |= (1 << bit);
2698         cpu_buffer->current_context = val;
2699
2700         return 0;
2701 }
2702
2703 static __always_inline void
2704 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2705 {
2706         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2707 }
2708
2709 /**
2710  * ring_buffer_lock_reserve - reserve a part of the buffer
2711  * @buffer: the ring buffer to reserve from
2712  * @length: the length of the data to reserve (excluding event header)
2713  *
2714  * Returns a reseverd event on the ring buffer to copy directly to.
2715  * The user of this interface will need to get the body to write into
2716  * and can use the ring_buffer_event_data() interface.
2717  *
2718  * The length is the length of the data needed, not the event length
2719  * which also includes the event header.
2720  *
2721  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2722  * If NULL is returned, then nothing has been allocated or locked.
2723  */
2724 struct ring_buffer_event *
2725 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2726 {
2727         struct ring_buffer_per_cpu *cpu_buffer;
2728         struct ring_buffer_event *event;
2729         int cpu;
2730
2731         if (ring_buffer_flags != RB_BUFFERS_ON)
2732                 return NULL;
2733
2734         /* If we are tracing schedule, we don't want to recurse */
2735         preempt_disable_notrace();
2736
2737         if (unlikely(atomic_read(&buffer->record_disabled)))
2738                 goto out;
2739
2740         cpu = raw_smp_processor_id();
2741
2742         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2743                 goto out;
2744
2745         cpu_buffer = buffer->buffers[cpu];
2746
2747         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2748                 goto out;
2749
2750         if (unlikely(length > BUF_MAX_DATA_SIZE))
2751                 goto out;
2752
2753         if (unlikely(trace_recursive_lock(cpu_buffer)))
2754                 goto out;
2755
2756         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2757         if (!event)
2758                 goto out_unlock;
2759
2760         return event;
2761
2762  out_unlock:
2763         trace_recursive_unlock(cpu_buffer);
2764  out:
2765         preempt_enable_notrace();
2766         return NULL;
2767 }
2768 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2769
2770 static void
2771 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2772                       struct ring_buffer_event *event)
2773 {
2774         u64 delta;
2775
2776         /*
2777          * The event first in the commit queue updates the
2778          * time stamp.
2779          */
2780         if (rb_event_is_commit(cpu_buffer, event)) {
2781                 /*
2782                  * A commit event that is first on a page
2783                  * updates the write timestamp with the page stamp
2784                  */
2785                 if (!rb_event_index(event))
2786                         cpu_buffer->write_stamp =
2787                                 cpu_buffer->commit_page->page->time_stamp;
2788                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2789                         delta = event->array[0];
2790                         delta <<= TS_SHIFT;
2791                         delta += event->time_delta;
2792                         cpu_buffer->write_stamp += delta;
2793                 } else
2794                         cpu_buffer->write_stamp += event->time_delta;
2795         }
2796 }
2797
2798 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2799                       struct ring_buffer_event *event)
2800 {
2801         local_inc(&cpu_buffer->entries);
2802         rb_update_write_stamp(cpu_buffer, event);
2803         rb_end_commit(cpu_buffer);
2804 }
2805
2806 static __always_inline void
2807 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2808 {
2809         bool pagebusy;
2810
2811         if (buffer->irq_work.waiters_pending) {
2812                 buffer->irq_work.waiters_pending = false;
2813                 /* irq_work_queue() supplies it's own memory barriers */
2814                 irq_work_queue(&buffer->irq_work.work);
2815         }
2816
2817         if (cpu_buffer->irq_work.waiters_pending) {
2818                 cpu_buffer->irq_work.waiters_pending = false;
2819                 /* irq_work_queue() supplies it's own memory barriers */
2820                 irq_work_queue(&cpu_buffer->irq_work.work);
2821         }
2822
2823         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2824
2825         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2826                 cpu_buffer->irq_work.wakeup_full = true;
2827                 cpu_buffer->irq_work.full_waiters_pending = false;
2828                 /* irq_work_queue() supplies it's own memory barriers */
2829                 irq_work_queue(&cpu_buffer->irq_work.work);
2830         }
2831 }
2832
2833 /**
2834  * ring_buffer_unlock_commit - commit a reserved
2835  * @buffer: The buffer to commit to
2836  * @event: The event pointer to commit.
2837  *
2838  * This commits the data to the ring buffer, and releases any locks held.
2839  *
2840  * Must be paired with ring_buffer_lock_reserve.
2841  */
2842 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2843                               struct ring_buffer_event *event)
2844 {
2845         struct ring_buffer_per_cpu *cpu_buffer;
2846         int cpu = raw_smp_processor_id();
2847
2848         cpu_buffer = buffer->buffers[cpu];
2849
2850         rb_commit(cpu_buffer, event);
2851
2852         rb_wakeups(buffer, cpu_buffer);
2853
2854         trace_recursive_unlock(cpu_buffer);
2855
2856         preempt_enable_notrace();
2857
2858         return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2861
2862 static inline void rb_event_discard(struct ring_buffer_event *event)
2863 {
2864         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2865                 event = skip_time_extend(event);
2866
2867         /* array[0] holds the actual length for the discarded event */
2868         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2869         event->type_len = RINGBUF_TYPE_PADDING;
2870         /* time delta must be non zero */
2871         if (!event->time_delta)
2872                 event->time_delta = 1;
2873 }
2874
2875 /*
2876  * Decrement the entries to the page that an event is on.
2877  * The event does not even need to exist, only the pointer
2878  * to the page it is on. This may only be called before the commit
2879  * takes place.
2880  */
2881 static inline void
2882 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2883                    struct ring_buffer_event *event)
2884 {
2885         unsigned long addr = (unsigned long)event;
2886         struct buffer_page *bpage = cpu_buffer->commit_page;
2887         struct buffer_page *start;
2888
2889         addr &= PAGE_MASK;
2890
2891         /* Do the likely case first */
2892         if (likely(bpage->page == (void *)addr)) {
2893                 local_dec(&bpage->entries);
2894                 return;
2895         }
2896
2897         /*
2898          * Because the commit page may be on the reader page we
2899          * start with the next page and check the end loop there.
2900          */
2901         rb_inc_page(cpu_buffer, &bpage);
2902         start = bpage;
2903         do {
2904                 if (bpage->page == (void *)addr) {
2905                         local_dec(&bpage->entries);
2906                         return;
2907                 }
2908                 rb_inc_page(cpu_buffer, &bpage);
2909         } while (bpage != start);
2910
2911         /* commit not part of this buffer?? */
2912         RB_WARN_ON(cpu_buffer, 1);
2913 }
2914
2915 /**
2916  * ring_buffer_commit_discard - discard an event that has not been committed
2917  * @buffer: the ring buffer
2918  * @event: non committed event to discard
2919  *
2920  * Sometimes an event that is in the ring buffer needs to be ignored.
2921  * This function lets the user discard an event in the ring buffer
2922  * and then that event will not be read later.
2923  *
2924  * This function only works if it is called before the the item has been
2925  * committed. It will try to free the event from the ring buffer
2926  * if another event has not been added behind it.
2927  *
2928  * If another event has been added behind it, it will set the event
2929  * up as discarded, and perform the commit.
2930  *
2931  * If this function is called, do not call ring_buffer_unlock_commit on
2932  * the event.
2933  */
2934 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2935                                 struct ring_buffer_event *event)
2936 {
2937         struct ring_buffer_per_cpu *cpu_buffer;
2938         int cpu;
2939
2940         /* The event is discarded regardless */
2941         rb_event_discard(event);
2942
2943         cpu = smp_processor_id();
2944         cpu_buffer = buffer->buffers[cpu];
2945
2946         /*
2947          * This must only be called if the event has not been
2948          * committed yet. Thus we can assume that preemption
2949          * is still disabled.
2950          */
2951         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2952
2953         rb_decrement_entry(cpu_buffer, event);
2954         if (rb_try_to_discard(cpu_buffer, event))
2955                 goto out;
2956
2957         /*
2958          * The commit is still visible by the reader, so we
2959          * must still update the timestamp.
2960          */
2961         rb_update_write_stamp(cpu_buffer, event);
2962  out:
2963         rb_end_commit(cpu_buffer);
2964
2965         trace_recursive_unlock(cpu_buffer);
2966
2967         preempt_enable_notrace();
2968
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2971
2972 /**
2973  * ring_buffer_write - write data to the buffer without reserving
2974  * @buffer: The ring buffer to write to.
2975  * @length: The length of the data being written (excluding the event header)
2976  * @data: The data to write to the buffer.
2977  *
2978  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2979  * one function. If you already have the data to write to the buffer, it
2980  * may be easier to simply call this function.
2981  *
2982  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2983  * and not the length of the event which would hold the header.
2984  */
2985 int ring_buffer_write(struct ring_buffer *buffer,
2986                       unsigned long length,
2987                       void *data)
2988 {
2989         struct ring_buffer_per_cpu *cpu_buffer;
2990         struct ring_buffer_event *event;
2991         void *body;
2992         int ret = -EBUSY;
2993         int cpu;
2994
2995         if (ring_buffer_flags != RB_BUFFERS_ON)
2996                 return -EBUSY;
2997
2998         preempt_disable_notrace();
2999
3000         if (atomic_read(&buffer->record_disabled))
3001                 goto out;
3002
3003         cpu = raw_smp_processor_id();
3004
3005         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3006                 goto out;
3007
3008         cpu_buffer = buffer->buffers[cpu];
3009
3010         if (atomic_read(&cpu_buffer->record_disabled))
3011                 goto out;
3012
3013         if (length > BUF_MAX_DATA_SIZE)
3014                 goto out;
3015
3016         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3017         if (!event)
3018                 goto out;
3019
3020         body = rb_event_data(event);
3021
3022         memcpy(body, data, length);
3023
3024         rb_commit(cpu_buffer, event);
3025
3026         rb_wakeups(buffer, cpu_buffer);
3027
3028         ret = 0;
3029  out:
3030         preempt_enable_notrace();
3031
3032         return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(ring_buffer_write);
3035
3036 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3037 {
3038         struct buffer_page *reader = cpu_buffer->reader_page;
3039         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3040         struct buffer_page *commit = cpu_buffer->commit_page;
3041
3042         /* In case of error, head will be NULL */
3043         if (unlikely(!head))
3044                 return 1;
3045
3046         return reader->read == rb_page_commit(reader) &&
3047                 (commit == reader ||
3048                  (commit == head &&
3049                   head->read == rb_page_commit(commit)));
3050 }
3051
3052 /**
3053  * ring_buffer_record_disable - stop all writes into the buffer
3054  * @buffer: The ring buffer to stop writes to.
3055  *
3056  * This prevents all writes to the buffer. Any attempt to write
3057  * to the buffer after this will fail and return NULL.
3058  *
3059  * The caller should call synchronize_sched() after this.
3060  */
3061 void ring_buffer_record_disable(struct ring_buffer *buffer)
3062 {
3063         atomic_inc(&buffer->record_disabled);
3064 }
3065 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3066
3067 /**
3068  * ring_buffer_record_enable - enable writes to the buffer
3069  * @buffer: The ring buffer to enable writes
3070  *
3071  * Note, multiple disables will need the same number of enables
3072  * to truly enable the writing (much like preempt_disable).
3073  */
3074 void ring_buffer_record_enable(struct ring_buffer *buffer)
3075 {
3076         atomic_dec(&buffer->record_disabled);
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3079
3080 /**
3081  * ring_buffer_record_off - stop all writes into the buffer
3082  * @buffer: The ring buffer to stop writes to.
3083  *
3084  * This prevents all writes to the buffer. Any attempt to write
3085  * to the buffer after this will fail and return NULL.
3086  *
3087  * This is different than ring_buffer_record_disable() as
3088  * it works like an on/off switch, where as the disable() version
3089  * must be paired with a enable().
3090  */
3091 void ring_buffer_record_off(struct ring_buffer *buffer)
3092 {
3093         unsigned int rd;
3094         unsigned int new_rd;
3095
3096         do {
3097                 rd = atomic_read(&buffer->record_disabled);
3098                 new_rd = rd | RB_BUFFER_OFF;
3099         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3100 }
3101 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3102
3103 /**
3104  * ring_buffer_record_on - restart writes into the buffer
3105  * @buffer: The ring buffer to start writes to.
3106  *
3107  * This enables all writes to the buffer that was disabled by
3108  * ring_buffer_record_off().
3109  *
3110  * This is different than ring_buffer_record_enable() as
3111  * it works like an on/off switch, where as the enable() version
3112  * must be paired with a disable().
3113  */
3114 void ring_buffer_record_on(struct ring_buffer *buffer)
3115 {
3116         unsigned int rd;
3117         unsigned int new_rd;
3118
3119         do {
3120                 rd = atomic_read(&buffer->record_disabled);
3121                 new_rd = rd & ~RB_BUFFER_OFF;
3122         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3125
3126 /**
3127  * ring_buffer_record_is_on - return true if the ring buffer can write
3128  * @buffer: The ring buffer to see if write is enabled
3129  *
3130  * Returns true if the ring buffer is in a state that it accepts writes.
3131  */
3132 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3133 {
3134         return !atomic_read(&buffer->record_disabled);
3135 }
3136
3137 /**
3138  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3139  * @buffer: The ring buffer to stop writes to.
3140  * @cpu: The CPU buffer to stop
3141  *
3142  * This prevents all writes to the buffer. Any attempt to write
3143  * to the buffer after this will fail and return NULL.
3144  *
3145  * The caller should call synchronize_sched() after this.
3146  */
3147 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3148 {
3149         struct ring_buffer_per_cpu *cpu_buffer;
3150
3151         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3152                 return;
3153
3154         cpu_buffer = buffer->buffers[cpu];
3155         atomic_inc(&cpu_buffer->record_disabled);
3156 }
3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3158
3159 /**
3160  * ring_buffer_record_enable_cpu - enable writes to the buffer
3161  * @buffer: The ring buffer to enable writes
3162  * @cpu: The CPU to enable.
3163  *
3164  * Note, multiple disables will need the same number of enables
3165  * to truly enable the writing (much like preempt_disable).
3166  */
3167 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3168 {
3169         struct ring_buffer_per_cpu *cpu_buffer;
3170
3171         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172                 return;
3173
3174         cpu_buffer = buffer->buffers[cpu];
3175         atomic_dec(&cpu_buffer->record_disabled);
3176 }
3177 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3178
3179 /*
3180  * The total entries in the ring buffer is the running counter
3181  * of entries entered into the ring buffer, minus the sum of
3182  * the entries read from the ring buffer and the number of
3183  * entries that were overwritten.
3184  */
3185 static inline unsigned long
3186 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188         return local_read(&cpu_buffer->entries) -
3189                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3190 }
3191
3192 /**
3193  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3194  * @buffer: The ring buffer
3195  * @cpu: The per CPU buffer to read from.
3196  */
3197 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3198 {
3199         unsigned long flags;
3200         struct ring_buffer_per_cpu *cpu_buffer;
3201         struct buffer_page *bpage;
3202         u64 ret = 0;
3203
3204         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205                 return 0;
3206
3207         cpu_buffer = buffer->buffers[cpu];
3208         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3209         /*
3210          * if the tail is on reader_page, oldest time stamp is on the reader
3211          * page
3212          */
3213         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3214                 bpage = cpu_buffer->reader_page;
3215         else
3216                 bpage = rb_set_head_page(cpu_buffer);
3217         if (bpage)
3218                 ret = bpage->page->time_stamp;
3219         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3220
3221         return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3224
3225 /**
3226  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3227  * @buffer: The ring buffer
3228  * @cpu: The per CPU buffer to read from.
3229  */
3230 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3231 {
3232         struct ring_buffer_per_cpu *cpu_buffer;
3233         unsigned long ret;
3234
3235         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236                 return 0;
3237
3238         cpu_buffer = buffer->buffers[cpu];
3239         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3244
3245 /**
3246  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3247  * @buffer: The ring buffer
3248  * @cpu: The per CPU buffer to get the entries from.
3249  */
3250 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3251 {
3252         struct ring_buffer_per_cpu *cpu_buffer;
3253
3254         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3255                 return 0;
3256
3257         cpu_buffer = buffer->buffers[cpu];
3258
3259         return rb_num_of_entries(cpu_buffer);
3260 }
3261 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3262
3263 /**
3264  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3265  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3266  * @buffer: The ring buffer
3267  * @cpu: The per CPU buffer to get the number of overruns from
3268  */
3269 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3270 {
3271         struct ring_buffer_per_cpu *cpu_buffer;
3272         unsigned long ret;
3273
3274         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3275                 return 0;
3276
3277         cpu_buffer = buffer->buffers[cpu];
3278         ret = local_read(&cpu_buffer->overrun);
3279
3280         return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3283
3284 /**
3285  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3286  * commits failing due to the buffer wrapping around while there are uncommitted
3287  * events, such as during an interrupt storm.
3288  * @buffer: The ring buffer
3289  * @cpu: The per CPU buffer to get the number of overruns from
3290  */
3291 unsigned long
3292 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3293 {
3294         struct ring_buffer_per_cpu *cpu_buffer;
3295         unsigned long ret;
3296
3297         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298                 return 0;
3299
3300         cpu_buffer = buffer->buffers[cpu];
3301         ret = local_read(&cpu_buffer->commit_overrun);
3302
3303         return ret;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3306
3307 /**
3308  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3309  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3310  * @buffer: The ring buffer
3311  * @cpu: The per CPU buffer to get the number of overruns from
3312  */
3313 unsigned long
3314 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3315 {
3316         struct ring_buffer_per_cpu *cpu_buffer;
3317         unsigned long ret;
3318
3319         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3320                 return 0;
3321
3322         cpu_buffer = buffer->buffers[cpu];
3323         ret = local_read(&cpu_buffer->dropped_events);
3324
3325         return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3328
3329 /**
3330  * ring_buffer_read_events_cpu - get the number of events successfully read
3331  * @buffer: The ring buffer
3332  * @cpu: The per CPU buffer to get the number of events read
3333  */
3334 unsigned long
3335 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3336 {
3337         struct ring_buffer_per_cpu *cpu_buffer;
3338
3339         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3340                 return 0;
3341
3342         cpu_buffer = buffer->buffers[cpu];
3343         return cpu_buffer->read;
3344 }
3345 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3346
3347 /**
3348  * ring_buffer_entries - get the number of entries in a buffer
3349  * @buffer: The ring buffer
3350  *
3351  * Returns the total number of entries in the ring buffer
3352  * (all CPU entries)
3353  */
3354 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3355 {
3356         struct ring_buffer_per_cpu *cpu_buffer;
3357         unsigned long entries = 0;
3358         int cpu;
3359
3360         /* if you care about this being correct, lock the buffer */
3361         for_each_buffer_cpu(buffer, cpu) {
3362                 cpu_buffer = buffer->buffers[cpu];
3363                 entries += rb_num_of_entries(cpu_buffer);
3364         }
3365
3366         return entries;
3367 }
3368 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3369
3370 /**
3371  * ring_buffer_overruns - get the number of overruns in buffer
3372  * @buffer: The ring buffer
3373  *
3374  * Returns the total number of overruns in the ring buffer
3375  * (all CPU entries)
3376  */
3377 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3378 {
3379         struct ring_buffer_per_cpu *cpu_buffer;
3380         unsigned long overruns = 0;
3381         int cpu;
3382
3383         /* if you care about this being correct, lock the buffer */
3384         for_each_buffer_cpu(buffer, cpu) {
3385                 cpu_buffer = buffer->buffers[cpu];
3386                 overruns += local_read(&cpu_buffer->overrun);
3387         }
3388
3389         return overruns;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3392
3393 static void rb_iter_reset(struct ring_buffer_iter *iter)
3394 {
3395         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3396
3397         /* Iterator usage is expected to have record disabled */
3398         iter->head_page = cpu_buffer->reader_page;
3399         iter->head = cpu_buffer->reader_page->read;
3400
3401         iter->cache_reader_page = iter->head_page;
3402         iter->cache_read = cpu_buffer->read;
3403
3404         if (iter->head)
3405                 iter->read_stamp = cpu_buffer->read_stamp;
3406         else
3407                 iter->read_stamp = iter->head_page->page->time_stamp;
3408 }
3409
3410 /**
3411  * ring_buffer_iter_reset - reset an iterator
3412  * @iter: The iterator to reset
3413  *
3414  * Resets the iterator, so that it will start from the beginning
3415  * again.
3416  */
3417 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3418 {
3419         struct ring_buffer_per_cpu *cpu_buffer;
3420         unsigned long flags;
3421
3422         if (!iter)
3423                 return;
3424
3425         cpu_buffer = iter->cpu_buffer;
3426
3427         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428         rb_iter_reset(iter);
3429         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3430 }
3431 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3432
3433 /**
3434  * ring_buffer_iter_empty - check if an iterator has no more to read
3435  * @iter: The iterator to check
3436  */
3437 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3438 {
3439         struct ring_buffer_per_cpu *cpu_buffer;
3440
3441         cpu_buffer = iter->cpu_buffer;
3442
3443         return iter->head_page == cpu_buffer->commit_page &&
3444                 iter->head == rb_commit_index(cpu_buffer);
3445 }
3446 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3447
3448 static void
3449 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3450                      struct ring_buffer_event *event)
3451 {
3452         u64 delta;
3453
3454         switch (event->type_len) {
3455         case RINGBUF_TYPE_PADDING:
3456                 return;
3457
3458         case RINGBUF_TYPE_TIME_EXTEND:
3459                 delta = event->array[0];
3460                 delta <<= TS_SHIFT;
3461                 delta += event->time_delta;
3462                 cpu_buffer->read_stamp += delta;
3463                 return;
3464
3465         case RINGBUF_TYPE_TIME_STAMP:
3466                 /* FIXME: not implemented */
3467                 return;
3468
3469         case RINGBUF_TYPE_DATA:
3470                 cpu_buffer->read_stamp += event->time_delta;
3471                 return;
3472
3473         default:
3474                 BUG();
3475         }
3476         return;
3477 }
3478
3479 static void
3480 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3481                           struct ring_buffer_event *event)
3482 {
3483         u64 delta;
3484
3485         switch (event->type_len) {
3486         case RINGBUF_TYPE_PADDING:
3487                 return;
3488
3489         case RINGBUF_TYPE_TIME_EXTEND:
3490                 delta = event->array[0];
3491                 delta <<= TS_SHIFT;
3492                 delta += event->time_delta;
3493                 iter->read_stamp += delta;
3494                 return;
3495
3496         case RINGBUF_TYPE_TIME_STAMP:
3497                 /* FIXME: not implemented */
3498                 return;
3499
3500         case RINGBUF_TYPE_DATA:
3501                 iter->read_stamp += event->time_delta;
3502                 return;
3503
3504         default:
3505                 BUG();
3506         }
3507         return;
3508 }
3509
3510 static struct buffer_page *
3511 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3512 {
3513         struct buffer_page *reader = NULL;
3514         unsigned long overwrite;
3515         unsigned long flags;
3516         int nr_loops = 0;
3517         int ret;
3518
3519         local_irq_save(flags);
3520         arch_spin_lock(&cpu_buffer->lock);
3521
3522  again:
3523         /*
3524          * This should normally only loop twice. But because the
3525          * start of the reader inserts an empty page, it causes
3526          * a case where we will loop three times. There should be no
3527          * reason to loop four times (that I know of).
3528          */
3529         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3530                 reader = NULL;
3531                 goto out;
3532         }
3533
3534         reader = cpu_buffer->reader_page;
3535
3536         /* If there's more to read, return this page */
3537         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3538                 goto out;
3539
3540         /* Never should we have an index greater than the size */
3541         if (RB_WARN_ON(cpu_buffer,
3542                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3543                 goto out;
3544
3545         /* check if we caught up to the tail */
3546         reader = NULL;
3547         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3548                 goto out;
3549
3550         /* Don't bother swapping if the ring buffer is empty */
3551         if (rb_num_of_entries(cpu_buffer) == 0)
3552                 goto out;
3553
3554         /*
3555          * Reset the reader page to size zero.
3556          */
3557         local_set(&cpu_buffer->reader_page->write, 0);
3558         local_set(&cpu_buffer->reader_page->entries, 0);
3559         local_set(&cpu_buffer->reader_page->page->commit, 0);
3560         cpu_buffer->reader_page->real_end = 0;
3561
3562  spin:
3563         /*
3564          * Splice the empty reader page into the list around the head.
3565          */
3566         reader = rb_set_head_page(cpu_buffer);
3567         if (!reader)
3568                 goto out;
3569         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3570         cpu_buffer->reader_page->list.prev = reader->list.prev;
3571
3572         /*
3573          * cpu_buffer->pages just needs to point to the buffer, it
3574          *  has no specific buffer page to point to. Lets move it out
3575          *  of our way so we don't accidentally swap it.
3576          */
3577         cpu_buffer->pages = reader->list.prev;
3578
3579         /* The reader page will be pointing to the new head */
3580         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3581
3582         /*
3583          * We want to make sure we read the overruns after we set up our
3584          * pointers to the next object. The writer side does a
3585          * cmpxchg to cross pages which acts as the mb on the writer
3586          * side. Note, the reader will constantly fail the swap
3587          * while the writer is updating the pointers, so this
3588          * guarantees that the overwrite recorded here is the one we
3589          * want to compare with the last_overrun.
3590          */
3591         smp_mb();
3592         overwrite = local_read(&(cpu_buffer->overrun));
3593
3594         /*
3595          * Here's the tricky part.
3596          *
3597          * We need to move the pointer past the header page.
3598          * But we can only do that if a writer is not currently
3599          * moving it. The page before the header page has the
3600          * flag bit '1' set if it is pointing to the page we want.
3601          * but if the writer is in the process of moving it
3602          * than it will be '2' or already moved '0'.
3603          */
3604
3605         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3606
3607         /*
3608          * If we did not convert it, then we must try again.
3609          */
3610         if (!ret)
3611                 goto spin;
3612
3613         /*
3614          * Yeah! We succeeded in replacing the page.
3615          *
3616          * Now make the new head point back to the reader page.
3617          */
3618         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3619         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3620
3621         /* Finally update the reader page to the new head */
3622         cpu_buffer->reader_page = reader;
3623         rb_reset_reader_page(cpu_buffer);
3624
3625         if (overwrite != cpu_buffer->last_overrun) {
3626                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3627                 cpu_buffer->last_overrun = overwrite;
3628         }
3629
3630         goto again;
3631
3632  out:
3633         arch_spin_unlock(&cpu_buffer->lock);
3634         local_irq_restore(flags);
3635
3636         return reader;
3637 }
3638
3639 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3640 {
3641         struct ring_buffer_event *event;
3642         struct buffer_page *reader;
3643         unsigned length;
3644
3645         reader = rb_get_reader_page(cpu_buffer);
3646
3647         /* This function should not be called when buffer is empty */
3648         if (RB_WARN_ON(cpu_buffer, !reader))
3649                 return;
3650
3651         event = rb_reader_event(cpu_buffer);
3652
3653         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3654                 cpu_buffer->read++;
3655
3656         rb_update_read_stamp(cpu_buffer, event);
3657
3658         length = rb_event_length(event);
3659         cpu_buffer->reader_page->read += length;
3660 }
3661
3662 static void rb_advance_iter(struct ring_buffer_iter *iter)
3663 {
3664         struct ring_buffer_per_cpu *cpu_buffer;
3665         struct ring_buffer_event *event;
3666         unsigned length;
3667
3668         cpu_buffer = iter->cpu_buffer;
3669
3670         /*
3671          * Check if we are at the end of the buffer.
3672          */
3673         if (iter->head >= rb_page_size(iter->head_page)) {
3674                 /* discarded commits can make the page empty */
3675                 if (iter->head_page == cpu_buffer->commit_page)
3676                         return;
3677                 rb_inc_iter(iter);
3678                 return;
3679         }
3680
3681         event = rb_iter_head_event(iter);
3682
3683         length = rb_event_length(event);
3684
3685         /*
3686          * This should not be called to advance the header if we are
3687          * at the tail of the buffer.
3688          */
3689         if (RB_WARN_ON(cpu_buffer,
3690                        (iter->head_page == cpu_buffer->commit_page) &&
3691                        (iter->head + length > rb_commit_index(cpu_buffer))))
3692                 return;
3693
3694         rb_update_iter_read_stamp(iter, event);
3695
3696         iter->head += length;
3697
3698         /* check for end of page padding */
3699         if ((iter->head >= rb_page_size(iter->head_page)) &&
3700             (iter->head_page != cpu_buffer->commit_page))
3701                 rb_inc_iter(iter);
3702 }
3703
3704 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3705 {
3706         return cpu_buffer->lost_events;
3707 }
3708
3709 static struct ring_buffer_event *
3710 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3711                unsigned long *lost_events)
3712 {
3713         struct ring_buffer_event *event;
3714         struct buffer_page *reader;
3715         int nr_loops = 0;
3716
3717  again:
3718         /*
3719          * We repeat when a time extend is encountered.
3720          * Since the time extend is always attached to a data event,
3721          * we should never loop more than once.
3722          * (We never hit the following condition more than twice).
3723          */
3724         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3725                 return NULL;
3726
3727         reader = rb_get_reader_page(cpu_buffer);
3728         if (!reader)
3729                 return NULL;
3730
3731         event = rb_reader_event(cpu_buffer);
3732
3733         switch (event->type_len) {
3734         case RINGBUF_TYPE_PADDING:
3735                 if (rb_null_event(event))
3736                         RB_WARN_ON(cpu_buffer, 1);
3737                 /*
3738                  * Because the writer could be discarding every
3739                  * event it creates (which would probably be bad)
3740                  * if we were to go back to "again" then we may never
3741                  * catch up, and will trigger the warn on, or lock
3742                  * the box. Return the padding, and we will release
3743                  * the current locks, and try again.
3744                  */
3745                 return event;
3746
3747         case RINGBUF_TYPE_TIME_EXTEND:
3748                 /* Internal data, OK to advance */
3749                 rb_advance_reader(cpu_buffer);
3750                 goto again;
3751
3752         case RINGBUF_TYPE_TIME_STAMP:
3753                 /* FIXME: not implemented */
3754                 rb_advance_reader(cpu_buffer);
3755                 goto again;
3756
3757         case RINGBUF_TYPE_DATA:
3758                 if (ts) {
3759                         *ts = cpu_buffer->read_stamp + event->time_delta;
3760                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3761                                                          cpu_buffer->cpu, ts);
3762                 }
3763                 if (lost_events)
3764                         *lost_events = rb_lost_events(cpu_buffer);
3765                 return event;
3766
3767         default:
3768                 BUG();
3769         }
3770
3771         return NULL;
3772 }
3773 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3774
3775 static struct ring_buffer_event *
3776 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3777 {
3778         struct ring_buffer *buffer;
3779         struct ring_buffer_per_cpu *cpu_buffer;
3780         struct ring_buffer_event *event;
3781         int nr_loops = 0;
3782
3783         cpu_buffer = iter->cpu_buffer;
3784         buffer = cpu_buffer->buffer;
3785
3786         /*
3787          * Check if someone performed a consuming read to
3788          * the buffer. A consuming read invalidates the iterator
3789          * and we need to reset the iterator in this case.
3790          */
3791         if (unlikely(iter->cache_read != cpu_buffer->read ||
3792                      iter->cache_reader_page != cpu_buffer->reader_page))
3793                 rb_iter_reset(iter);
3794
3795  again:
3796         if (ring_buffer_iter_empty(iter))
3797                 return NULL;
3798
3799         /*
3800          * We repeat when a time extend is encountered or we hit
3801          * the end of the page. Since the time extend is always attached
3802          * to a data event, we should never loop more than three times.
3803          * Once for going to next page, once on time extend, and
3804          * finally once to get the event.
3805          * (We never hit the following condition more than thrice).
3806          */
3807         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3808                 return NULL;
3809
3810         if (rb_per_cpu_empty(cpu_buffer))
3811                 return NULL;
3812
3813         if (iter->head >= rb_page_size(iter->head_page)) {
3814                 rb_inc_iter(iter);
3815                 goto again;
3816         }
3817
3818         event = rb_iter_head_event(iter);
3819
3820         switch (event->type_len) {
3821         case RINGBUF_TYPE_PADDING:
3822                 if (rb_null_event(event)) {
3823                         rb_inc_iter(iter);
3824                         goto again;
3825                 }
3826                 rb_advance_iter(iter);
3827                 return event;
3828
3829         case RINGBUF_TYPE_TIME_EXTEND:
3830                 /* Internal data, OK to advance */
3831                 rb_advance_iter(iter);
3832                 goto again;
3833
3834         case RINGBUF_TYPE_TIME_STAMP:
3835                 /* FIXME: not implemented */
3836                 rb_advance_iter(iter);
3837                 goto again;
3838
3839         case RINGBUF_TYPE_DATA:
3840                 if (ts) {
3841                         *ts = iter->read_stamp + event->time_delta;
3842                         ring_buffer_normalize_time_stamp(buffer,
3843                                                          cpu_buffer->cpu, ts);
3844                 }
3845                 return event;
3846
3847         default:
3848                 BUG();
3849         }
3850
3851         return NULL;
3852 }
3853 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3854
3855 static inline int rb_ok_to_lock(void)
3856 {
3857         /*
3858          * If an NMI die dumps out the content of the ring buffer
3859          * do not grab locks. We also permanently disable the ring
3860          * buffer too. A one time deal is all you get from reading
3861          * the ring buffer from an NMI.
3862          */
3863         if (likely(!in_nmi()))
3864                 return 1;
3865
3866         tracing_off_permanent();
3867         return 0;
3868 }
3869
3870 /**
3871  * ring_buffer_peek - peek at the next event to be read
3872  * @buffer: The ring buffer to read
3873  * @cpu: The cpu to peak at
3874  * @ts: The timestamp counter of this event.
3875  * @lost_events: a variable to store if events were lost (may be NULL)
3876  *
3877  * This will return the event that will be read next, but does
3878  * not consume the data.
3879  */
3880 struct ring_buffer_event *
3881 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3882                  unsigned long *lost_events)
3883 {
3884         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885         struct ring_buffer_event *event;
3886         unsigned long flags;
3887         int dolock;
3888
3889         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890                 return NULL;
3891
3892         dolock = rb_ok_to_lock();
3893  again:
3894         local_irq_save(flags);
3895         if (dolock)
3896                 raw_spin_lock(&cpu_buffer->reader_lock);
3897         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899                 rb_advance_reader(cpu_buffer);
3900         if (dolock)
3901                 raw_spin_unlock(&cpu_buffer->reader_lock);
3902         local_irq_restore(flags);
3903
3904         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3905                 goto again;
3906
3907         return event;
3908 }
3909
3910 /**
3911  * ring_buffer_iter_peek - peek at the next event to be read
3912  * @iter: The ring buffer iterator
3913  * @ts: The timestamp counter of this event.
3914  *
3915  * This will return the event that will be read next, but does
3916  * not increment the iterator.
3917  */
3918 struct ring_buffer_event *
3919 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3920 {
3921         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3922         struct ring_buffer_event *event;
3923         unsigned long flags;
3924
3925  again:
3926         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3927         event = rb_iter_peek(iter, ts);
3928         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3929
3930         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3931                 goto again;
3932
3933         return event;
3934 }
3935
3936 /**
3937  * ring_buffer_consume - return an event and consume it
3938  * @buffer: The ring buffer to get the next event from
3939  * @cpu: the cpu to read the buffer from
3940  * @ts: a variable to store the timestamp (may be NULL)
3941  * @lost_events: a variable to store if events were lost (may be NULL)
3942  *
3943  * Returns the next event in the ring buffer, and that event is consumed.
3944  * Meaning, that sequential reads will keep returning a different event,
3945  * and eventually empty the ring buffer if the producer is slower.
3946  */
3947 struct ring_buffer_event *
3948 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3949                     unsigned long *lost_events)
3950 {
3951         struct ring_buffer_per_cpu *cpu_buffer;
3952         struct ring_buffer_event *event = NULL;
3953         unsigned long flags;
3954         int dolock;
3955
3956         dolock = rb_ok_to_lock();
3957
3958  again:
3959         /* might be called in atomic */
3960         preempt_disable();
3961
3962         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3963                 goto out;
3964
3965         cpu_buffer = buffer->buffers[cpu];
3966         local_irq_save(flags);
3967         if (dolock)
3968                 raw_spin_lock(&cpu_buffer->reader_lock);
3969
3970         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3971         if (event) {
3972                 cpu_buffer->lost_events = 0;
3973                 rb_advance_reader(cpu_buffer);
3974         }
3975
3976         if (dolock)
3977                 raw_spin_unlock(&cpu_buffer->reader_lock);
3978         local_irq_restore(flags);
3979
3980  out:
3981         preempt_enable();
3982
3983         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3984                 goto again;
3985
3986         return event;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3989
3990 /**
3991  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3992  * @buffer: The ring buffer to read from
3993  * @cpu: The cpu buffer to iterate over
3994  *
3995  * This performs the initial preparations necessary to iterate
3996  * through the buffer.  Memory is allocated, buffer recording
3997  * is disabled, and the iterator pointer is returned to the caller.
3998  *
3999  * Disabling buffer recordng prevents the reading from being
4000  * corrupted. This is not a consuming read, so a producer is not
4001  * expected.
4002  *
4003  * After a sequence of ring_buffer_read_prepare calls, the user is
4004  * expected to make at least one call to ring_buffer_read_prepare_sync.
4005  * Afterwards, ring_buffer_read_start is invoked to get things going
4006  * for real.
4007  *
4008  * This overall must be paired with ring_buffer_read_finish.
4009  */
4010 struct ring_buffer_iter *
4011 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4012 {
4013         struct ring_buffer_per_cpu *cpu_buffer;
4014         struct ring_buffer_iter *iter;
4015
4016         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4017                 return NULL;
4018
4019         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4020         if (!iter)
4021                 return NULL;
4022
4023         cpu_buffer = buffer->buffers[cpu];
4024
4025         iter->cpu_buffer = cpu_buffer;
4026
4027         atomic_inc(&buffer->resize_disabled);
4028         atomic_inc(&cpu_buffer->record_disabled);
4029
4030         return iter;
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4033
4034 /**
4035  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4036  *
4037  * All previously invoked ring_buffer_read_prepare calls to prepare
4038  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4039  * calls on those iterators are allowed.
4040  */
4041 void
4042 ring_buffer_read_prepare_sync(void)
4043 {
4044         synchronize_sched();
4045 }
4046 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4047
4048 /**
4049  * ring_buffer_read_start - start a non consuming read of the buffer
4050  * @iter: The iterator returned by ring_buffer_read_prepare
4051  *
4052  * This finalizes the startup of an iteration through the buffer.
4053  * The iterator comes from a call to ring_buffer_read_prepare and
4054  * an intervening ring_buffer_read_prepare_sync must have been
4055  * performed.
4056  *
4057  * Must be paired with ring_buffer_read_finish.
4058  */
4059 void
4060 ring_buffer_read_start(struct ring_buffer_iter *iter)
4061 {
4062         struct ring_buffer_per_cpu *cpu_buffer;
4063         unsigned long flags;
4064
4065         if (!iter)
4066                 return;
4067
4068         cpu_buffer = iter->cpu_buffer;
4069
4070         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4071         arch_spin_lock(&cpu_buffer->lock);
4072         rb_iter_reset(iter);
4073         arch_spin_unlock(&cpu_buffer->lock);
4074         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4077
4078 /**
4079  * ring_buffer_read_finish - finish reading the iterator of the buffer
4080  * @iter: The iterator retrieved by ring_buffer_start
4081  *
4082  * This re-enables the recording to the buffer, and frees the
4083  * iterator.
4084  */
4085 void
4086 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4087 {
4088         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4089         unsigned long flags;
4090
4091         /*
4092          * Ring buffer is disabled from recording, here's a good place
4093          * to check the integrity of the ring buffer.
4094          * Must prevent readers from trying to read, as the check
4095          * clears the HEAD page and readers require it.
4096          */
4097         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4098         rb_check_pages(cpu_buffer);
4099         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4100
4101         atomic_dec(&cpu_buffer->record_disabled);
4102         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4103         kfree(iter);
4104 }
4105 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4106
4107 /**
4108  * ring_buffer_read - read the next item in the ring buffer by the iterator
4109  * @iter: The ring buffer iterator
4110  * @ts: The time stamp of the event read.
4111  *
4112  * This reads the next event in the ring buffer and increments the iterator.
4113  */
4114 struct ring_buffer_event *
4115 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4116 {
4117         struct ring_buffer_event *event;
4118         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4119         unsigned long flags;
4120
4121         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122  again:
4123         event = rb_iter_peek(iter, ts);
4124         if (!event)
4125                 goto out;
4126
4127         if (event->type_len == RINGBUF_TYPE_PADDING)
4128                 goto again;
4129
4130         rb_advance_iter(iter);
4131  out:
4132         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4133
4134         return event;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_read);
4137
4138 /**
4139  * ring_buffer_size - return the size of the ring buffer (in bytes)
4140  * @buffer: The ring buffer.
4141  */
4142 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4143 {
4144         /*
4145          * Earlier, this method returned
4146          *      BUF_PAGE_SIZE * buffer->nr_pages
4147          * Since the nr_pages field is now removed, we have converted this to
4148          * return the per cpu buffer value.
4149          */
4150         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4151                 return 0;
4152
4153         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4154 }
4155 EXPORT_SYMBOL_GPL(ring_buffer_size);
4156
4157 static void
4158 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4159 {
4160         rb_head_page_deactivate(cpu_buffer);
4161
4162         cpu_buffer->head_page
4163                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4164         local_set(&cpu_buffer->head_page->write, 0);
4165         local_set(&cpu_buffer->head_page->entries, 0);
4166         local_set(&cpu_buffer->head_page->page->commit, 0);
4167
4168         cpu_buffer->head_page->read = 0;
4169
4170         cpu_buffer->tail_page = cpu_buffer->head_page;
4171         cpu_buffer->commit_page = cpu_buffer->head_page;
4172
4173         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4174         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4175         local_set(&cpu_buffer->reader_page->write, 0);
4176         local_set(&cpu_buffer->reader_page->entries, 0);
4177         local_set(&cpu_buffer->reader_page->page->commit, 0);
4178         cpu_buffer->reader_page->read = 0;
4179
4180         local_set(&cpu_buffer->entries_bytes, 0);
4181         local_set(&cpu_buffer->overrun, 0);
4182         local_set(&cpu_buffer->commit_overrun, 0);
4183         local_set(&cpu_buffer->dropped_events, 0);
4184         local_set(&cpu_buffer->entries, 0);
4185         local_set(&cpu_buffer->committing, 0);
4186         local_set(&cpu_buffer->commits, 0);
4187         cpu_buffer->read = 0;
4188         cpu_buffer->read_bytes = 0;
4189
4190         cpu_buffer->write_stamp = 0;
4191         cpu_buffer->read_stamp = 0;
4192
4193         cpu_buffer->lost_events = 0;
4194         cpu_buffer->last_overrun = 0;
4195
4196         rb_head_page_activate(cpu_buffer);
4197 }
4198
4199 /**
4200  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4201  * @buffer: The ring buffer to reset a per cpu buffer of
4202  * @cpu: The CPU buffer to be reset
4203  */
4204 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4205 {
4206         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4207         unsigned long flags;
4208
4209         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210                 return;
4211
4212         atomic_inc(&buffer->resize_disabled);
4213         atomic_inc(&cpu_buffer->record_disabled);
4214
4215         /* Make sure all commits have finished */
4216         synchronize_sched();
4217
4218         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219
4220         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4221                 goto out;
4222
4223         arch_spin_lock(&cpu_buffer->lock);
4224
4225         rb_reset_cpu(cpu_buffer);
4226
4227         arch_spin_unlock(&cpu_buffer->lock);
4228
4229  out:
4230         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4231
4232         atomic_dec(&cpu_buffer->record_disabled);
4233         atomic_dec(&buffer->resize_disabled);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4236
4237 /**
4238  * ring_buffer_reset - reset a ring buffer
4239  * @buffer: The ring buffer to reset all cpu buffers
4240  */
4241 void ring_buffer_reset(struct ring_buffer *buffer)
4242 {
4243         int cpu;
4244
4245         for_each_buffer_cpu(buffer, cpu)
4246                 ring_buffer_reset_cpu(buffer, cpu);
4247 }
4248 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4249
4250 /**
4251  * rind_buffer_empty - is the ring buffer empty?
4252  * @buffer: The ring buffer to test
4253  */
4254 int ring_buffer_empty(struct ring_buffer *buffer)
4255 {
4256         struct ring_buffer_per_cpu *cpu_buffer;
4257         unsigned long flags;
4258         int dolock;
4259         int cpu;
4260         int ret;
4261
4262         dolock = rb_ok_to_lock();
4263
4264         /* yes this is racy, but if you don't like the race, lock the buffer */
4265         for_each_buffer_cpu(buffer, cpu) {
4266                 cpu_buffer = buffer->buffers[cpu];
4267                 local_irq_save(flags);
4268                 if (dolock)
4269                         raw_spin_lock(&cpu_buffer->reader_lock);
4270                 ret = rb_per_cpu_empty(cpu_buffer);
4271                 if (dolock)
4272                         raw_spin_unlock(&cpu_buffer->reader_lock);
4273                 local_irq_restore(flags);
4274
4275                 if (!ret)
4276                         return 0;
4277         }
4278
4279         return 1;
4280 }
4281 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4282
4283 /**
4284  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4285  * @buffer: The ring buffer
4286  * @cpu: The CPU buffer to test
4287  */
4288 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4289 {
4290         struct ring_buffer_per_cpu *cpu_buffer;
4291         unsigned long flags;
4292         int dolock;
4293         int ret;
4294
4295         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4296                 return 1;
4297
4298         dolock = rb_ok_to_lock();
4299
4300         cpu_buffer = buffer->buffers[cpu];
4301         local_irq_save(flags);
4302         if (dolock)
4303                 raw_spin_lock(&cpu_buffer->reader_lock);
4304         ret = rb_per_cpu_empty(cpu_buffer);
4305         if (dolock)
4306                 raw_spin_unlock(&cpu_buffer->reader_lock);
4307         local_irq_restore(flags);
4308
4309         return ret;
4310 }
4311 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4312
4313 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4314 /**
4315  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4316  * @buffer_a: One buffer to swap with
4317  * @buffer_b: The other buffer to swap with
4318  *
4319  * This function is useful for tracers that want to take a "snapshot"
4320  * of a CPU buffer and has another back up buffer lying around.
4321  * it is expected that the tracer handles the cpu buffer not being
4322  * used at the moment.
4323  */
4324 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4325                          struct ring_buffer *buffer_b, int cpu)
4326 {
4327         struct ring_buffer_per_cpu *cpu_buffer_a;
4328         struct ring_buffer_per_cpu *cpu_buffer_b;
4329         int ret = -EINVAL;
4330
4331         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4332             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4333                 goto out;
4334
4335         cpu_buffer_a = buffer_a->buffers[cpu];
4336         cpu_buffer_b = buffer_b->buffers[cpu];
4337
4338         /* At least make sure the two buffers are somewhat the same */
4339         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4340                 goto out;
4341
4342         ret = -EAGAIN;
4343
4344         if (ring_buffer_flags != RB_BUFFERS_ON)
4345                 goto out;
4346
4347         if (atomic_read(&buffer_a->record_disabled))
4348                 goto out;
4349
4350         if (atomic_read(&buffer_b->record_disabled))
4351                 goto out;
4352
4353         if (atomic_read(&cpu_buffer_a->record_disabled))
4354                 goto out;
4355
4356         if (atomic_read(&cpu_buffer_b->record_disabled))
4357                 goto out;
4358
4359         /*
4360          * We can't do a synchronize_sched here because this
4361          * function can be called in atomic context.
4362          * Normally this will be called from the same CPU as cpu.
4363          * If not it's up to the caller to protect this.
4364          */
4365         atomic_inc(&cpu_buffer_a->record_disabled);
4366         atomic_inc(&cpu_buffer_b->record_disabled);
4367
4368         ret = -EBUSY;
4369         if (local_read(&cpu_buffer_a->committing))
4370                 goto out_dec;
4371         if (local_read(&cpu_buffer_b->committing))
4372                 goto out_dec;
4373
4374         buffer_a->buffers[cpu] = cpu_buffer_b;
4375         buffer_b->buffers[cpu] = cpu_buffer_a;
4376
4377         cpu_buffer_b->buffer = buffer_a;
4378         cpu_buffer_a->buffer = buffer_b;
4379
4380         ret = 0;
4381
4382 out_dec:
4383         atomic_dec(&cpu_buffer_a->record_disabled);
4384         atomic_dec(&cpu_buffer_b->record_disabled);
4385 out:
4386         return ret;
4387 }
4388 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4389 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4390
4391 /**
4392  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4393  * @buffer: the buffer to allocate for.
4394  * @cpu: the cpu buffer to allocate.
4395  *
4396  * This function is used in conjunction with ring_buffer_read_page.
4397  * When reading a full page from the ring buffer, these functions
4398  * can be used to speed up the process. The calling function should
4399  * allocate a few pages first with this function. Then when it
4400  * needs to get pages from the ring buffer, it passes the result
4401  * of this function into ring_buffer_read_page, which will swap
4402  * the page that was allocated, with the read page of the buffer.
4403  *
4404  * Returns:
4405  *  The page allocated, or NULL on error.
4406  */
4407 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4408 {
4409         struct buffer_data_page *bpage;
4410         struct page *page;
4411
4412         page = alloc_pages_node(cpu_to_node(cpu),
4413                                 GFP_KERNEL | __GFP_NORETRY, 0);
4414         if (!page)
4415                 return NULL;
4416
4417         bpage = page_address(page);
4418
4419         rb_init_page(bpage);
4420
4421         return bpage;
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4424
4425 /**
4426  * ring_buffer_free_read_page - free an allocated read page
4427  * @buffer: the buffer the page was allocate for
4428  * @data: the page to free
4429  *
4430  * Free a page allocated from ring_buffer_alloc_read_page.
4431  */
4432 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4433 {
4434         free_page((unsigned long)data);
4435 }
4436 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4437
4438 /**
4439  * ring_buffer_read_page - extract a page from the ring buffer
4440  * @buffer: buffer to extract from
4441  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4442  * @len: amount to extract
4443  * @cpu: the cpu of the buffer to extract
4444  * @full: should the extraction only happen when the page is full.
4445  *
4446  * This function will pull out a page from the ring buffer and consume it.
4447  * @data_page must be the address of the variable that was returned
4448  * from ring_buffer_alloc_read_page. This is because the page might be used
4449  * to swap with a page in the ring buffer.
4450  *
4451  * for example:
4452  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4453  *      if (!rpage)
4454  *              return error;
4455  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4456  *      if (ret >= 0)
4457  *              process_page(rpage, ret);
4458  *
4459  * When @full is set, the function will not return true unless
4460  * the writer is off the reader page.
4461  *
4462  * Note: it is up to the calling functions to handle sleeps and wakeups.
4463  *  The ring buffer can be used anywhere in the kernel and can not
4464  *  blindly call wake_up. The layer that uses the ring buffer must be
4465  *  responsible for that.
4466  *
4467  * Returns:
4468  *  >=0 if data has been transferred, returns the offset of consumed data.
4469  *  <0 if no data has been transferred.
4470  */
4471 int ring_buffer_read_page(struct ring_buffer *buffer,
4472                           void **data_page, size_t len, int cpu, int full)
4473 {
4474         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4475         struct ring_buffer_event *event;
4476         struct buffer_data_page *bpage;
4477         struct buffer_page *reader;
4478         unsigned long missed_events;
4479         unsigned long flags;
4480         unsigned int commit;
4481         unsigned int read;
4482         u64 save_timestamp;
4483         int ret = -1;
4484
4485         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4486                 goto out;
4487
4488         /*
4489          * If len is not big enough to hold the page header, then
4490          * we can not copy anything.
4491          */
4492         if (len <= BUF_PAGE_HDR_SIZE)
4493                 goto out;
4494
4495         len -= BUF_PAGE_HDR_SIZE;
4496
4497         if (!data_page)
4498                 goto out;
4499
4500         bpage = *data_page;
4501         if (!bpage)
4502                 goto out;
4503
4504         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4505
4506         reader = rb_get_reader_page(cpu_buffer);
4507         if (!reader)
4508                 goto out_unlock;
4509
4510         event = rb_reader_event(cpu_buffer);
4511
4512         read = reader->read;
4513         commit = rb_page_commit(reader);
4514
4515         /* Check if any events were dropped */
4516         missed_events = cpu_buffer->lost_events;
4517
4518         /*
4519          * If this page has been partially read or
4520          * if len is not big enough to read the rest of the page or
4521          * a writer is still on the page, then
4522          * we must copy the data from the page to the buffer.
4523          * Otherwise, we can simply swap the page with the one passed in.
4524          */
4525         if (read || (len < (commit - read)) ||
4526             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4527                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4528                 unsigned int rpos = read;
4529                 unsigned int pos = 0;
4530                 unsigned int size;
4531
4532                 if (full)
4533                         goto out_unlock;
4534
4535                 if (len > (commit - read))
4536                         len = (commit - read);
4537
4538                 /* Always keep the time extend and data together */
4539                 size = rb_event_ts_length(event);
4540
4541                 if (len < size)
4542                         goto out_unlock;
4543
4544                 /* save the current timestamp, since the user will need it */
4545                 save_timestamp = cpu_buffer->read_stamp;
4546
4547                 /* Need to copy one event at a time */
4548                 do {
4549                         /* We need the size of one event, because
4550                          * rb_advance_reader only advances by one event,
4551                          * whereas rb_event_ts_length may include the size of
4552                          * one or two events.
4553                          * We have already ensured there's enough space if this
4554                          * is a time extend. */
4555                         size = rb_event_length(event);
4556                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4557
4558                         len -= size;
4559
4560                         rb_advance_reader(cpu_buffer);
4561                         rpos = reader->read;
4562                         pos += size;
4563
4564                         if (rpos >= commit)
4565                                 break;
4566
4567                         event = rb_reader_event(cpu_buffer);
4568                         /* Always keep the time extend and data together */
4569                         size = rb_event_ts_length(event);
4570                 } while (len >= size);
4571
4572                 /* update bpage */
4573                 local_set(&bpage->commit, pos);
4574                 bpage->time_stamp = save_timestamp;
4575
4576                 /* we copied everything to the beginning */
4577                 read = 0;
4578         } else {
4579                 /* update the entry counter */
4580                 cpu_buffer->read += rb_page_entries(reader);
4581                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4582
4583                 /* swap the pages */
4584                 rb_init_page(bpage);
4585                 bpage = reader->page;
4586                 reader->page = *data_page;
4587                 local_set(&reader->write, 0);
4588                 local_set(&reader->entries, 0);
4589                 reader->read = 0;
4590                 *data_page = bpage;
4591
4592                 /*
4593                  * Use the real_end for the data size,
4594                  * This gives us a chance to store the lost events
4595                  * on the page.
4596                  */
4597                 if (reader->real_end)
4598                         local_set(&bpage->commit, reader->real_end);
4599         }
4600         ret = read;
4601
4602         cpu_buffer->lost_events = 0;
4603
4604         commit = local_read(&bpage->commit);
4605         /*
4606          * Set a flag in the commit field if we lost events
4607          */
4608         if (missed_events) {
4609                 /* If there is room at the end of the page to save the
4610                  * missed events, then record it there.
4611                  */
4612                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4613                         memcpy(&bpage->data[commit], &missed_events,
4614                                sizeof(missed_events));
4615                         local_add(RB_MISSED_STORED, &bpage->commit);
4616                         commit += sizeof(missed_events);
4617                 }
4618                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4619         }
4620
4621         /*
4622          * This page may be off to user land. Zero it out here.
4623          */
4624         if (commit < BUF_PAGE_SIZE)
4625                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4626
4627  out_unlock:
4628         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4629
4630  out:
4631         return ret;
4632 }
4633 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4634
4635 #ifdef CONFIG_HOTPLUG_CPU
4636 static int rb_cpu_notify(struct notifier_block *self,
4637                          unsigned long action, void *hcpu)
4638 {
4639         struct ring_buffer *buffer =
4640                 container_of(self, struct ring_buffer, cpu_notify);
4641         long cpu = (long)hcpu;
4642         int cpu_i, nr_pages_same;
4643         unsigned int nr_pages;
4644
4645         switch (action) {
4646         case CPU_UP_PREPARE:
4647         case CPU_UP_PREPARE_FROZEN:
4648                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4649                         return NOTIFY_OK;
4650
4651                 nr_pages = 0;
4652                 nr_pages_same = 1;
4653                 /* check if all cpu sizes are same */
4654                 for_each_buffer_cpu(buffer, cpu_i) {
4655                         /* fill in the size from first enabled cpu */
4656                         if (nr_pages == 0)
4657                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4658                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4659                                 nr_pages_same = 0;
4660                                 break;
4661                         }
4662                 }
4663                 /* allocate minimum pages, user can later expand it */
4664                 if (!nr_pages_same)
4665                         nr_pages = 2;
4666                 buffer->buffers[cpu] =
4667                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4668                 if (!buffer->buffers[cpu]) {
4669                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4670                              cpu);
4671                         return NOTIFY_OK;
4672                 }
4673                 smp_wmb();
4674                 cpumask_set_cpu(cpu, buffer->cpumask);
4675                 break;
4676         case CPU_DOWN_PREPARE:
4677         case CPU_DOWN_PREPARE_FROZEN:
4678                 /*
4679                  * Do nothing.
4680                  *  If we were to free the buffer, then the user would
4681                  *  lose any trace that was in the buffer.
4682                  */
4683                 break;
4684         default:
4685                 break;
4686         }
4687         return NOTIFY_OK;
4688 }
4689 #endif
4690
4691 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4692 /*
4693  * This is a basic integrity check of the ring buffer.
4694  * Late in the boot cycle this test will run when configured in.
4695  * It will kick off a thread per CPU that will go into a loop
4696  * writing to the per cpu ring buffer various sizes of data.
4697  * Some of the data will be large items, some small.
4698  *
4699  * Another thread is created that goes into a spin, sending out
4700  * IPIs to the other CPUs to also write into the ring buffer.
4701  * this is to test the nesting ability of the buffer.
4702  *
4703  * Basic stats are recorded and reported. If something in the
4704  * ring buffer should happen that's not expected, a big warning
4705  * is displayed and all ring buffers are disabled.
4706  */
4707 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4708
4709 struct rb_test_data {
4710         struct ring_buffer      *buffer;
4711         unsigned long           events;
4712         unsigned long           bytes_written;
4713         unsigned long           bytes_alloc;
4714         unsigned long           bytes_dropped;
4715         unsigned long           events_nested;
4716         unsigned long           bytes_written_nested;
4717         unsigned long           bytes_alloc_nested;
4718         unsigned long           bytes_dropped_nested;
4719         int                     min_size_nested;
4720         int                     max_size_nested;
4721         int                     max_size;
4722         int                     min_size;
4723         int                     cpu;
4724         int                     cnt;
4725 };
4726
4727 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4728
4729 /* 1 meg per cpu */
4730 #define RB_TEST_BUFFER_SIZE     1048576
4731
4732 static char rb_string[] __initdata =
4733         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4734         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4735         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4736
4737 static bool rb_test_started __initdata;
4738
4739 struct rb_item {
4740         int size;
4741         char str[];
4742 };
4743
4744 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4745 {
4746         struct ring_buffer_event *event;
4747         struct rb_item *item;
4748         bool started;
4749         int event_len;
4750         int size;
4751         int len;
4752         int cnt;
4753
4754         /* Have nested writes different that what is written */
4755         cnt = data->cnt + (nested ? 27 : 0);
4756
4757         /* Multiply cnt by ~e, to make some unique increment */
4758         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4759
4760         len = size + sizeof(struct rb_item);
4761
4762         started = rb_test_started;
4763         /* read rb_test_started before checking buffer enabled */
4764         smp_rmb();
4765
4766         event = ring_buffer_lock_reserve(data->buffer, len);
4767         if (!event) {
4768                 /* Ignore dropped events before test starts. */
4769                 if (started) {
4770                         if (nested)
4771                                 data->bytes_dropped += len;
4772                         else
4773                                 data->bytes_dropped_nested += len;
4774                 }
4775                 return len;
4776         }
4777
4778         event_len = ring_buffer_event_length(event);
4779
4780         if (RB_WARN_ON(data->buffer, event_len < len))
4781                 goto out;
4782
4783         item = ring_buffer_event_data(event);
4784         item->size = size;
4785         memcpy(item->str, rb_string, size);
4786
4787         if (nested) {
4788                 data->bytes_alloc_nested += event_len;
4789                 data->bytes_written_nested += len;
4790                 data->events_nested++;
4791                 if (!data->min_size_nested || len < data->min_size_nested)
4792                         data->min_size_nested = len;
4793                 if (len > data->max_size_nested)
4794                         data->max_size_nested = len;
4795         } else {
4796                 data->bytes_alloc += event_len;
4797                 data->bytes_written += len;
4798                 data->events++;
4799                 if (!data->min_size || len < data->min_size)
4800                         data->max_size = len;
4801                 if (len > data->max_size)
4802                         data->max_size = len;
4803         }
4804
4805  out:
4806         ring_buffer_unlock_commit(data->buffer, event);
4807
4808         return 0;
4809 }
4810
4811 static __init int rb_test(void *arg)
4812 {
4813         struct rb_test_data *data = arg;
4814
4815         while (!kthread_should_stop()) {
4816                 rb_write_something(data, false);
4817                 data->cnt++;
4818
4819                 set_current_state(TASK_INTERRUPTIBLE);
4820                 /* Now sleep between a min of 100-300us and a max of 1ms */
4821                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4822         }
4823
4824         return 0;
4825 }
4826
4827 static __init void rb_ipi(void *ignore)
4828 {
4829         struct rb_test_data *data;
4830         int cpu = smp_processor_id();
4831
4832         data = &rb_data[cpu];
4833         rb_write_something(data, true);
4834 }
4835
4836 static __init int rb_hammer_test(void *arg)
4837 {
4838         while (!kthread_should_stop()) {
4839
4840                 /* Send an IPI to all cpus to write data! */
4841                 smp_call_function(rb_ipi, NULL, 1);
4842                 /* No sleep, but for non preempt, let others run */
4843                 schedule();
4844         }
4845
4846         return 0;
4847 }
4848
4849 static __init int test_ringbuffer(void)
4850 {
4851         struct task_struct *rb_hammer;
4852         struct ring_buffer *buffer;
4853         int cpu;
4854         int ret = 0;
4855
4856         pr_info("Running ring buffer tests...\n");
4857
4858         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4859         if (WARN_ON(!buffer))
4860                 return 0;
4861
4862         /* Disable buffer so that threads can't write to it yet */
4863         ring_buffer_record_off(buffer);
4864
4865         for_each_online_cpu(cpu) {
4866                 rb_data[cpu].buffer = buffer;
4867                 rb_data[cpu].cpu = cpu;
4868                 rb_data[cpu].cnt = cpu;
4869                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4870                                                  "rbtester/%d", cpu);
4871                 if (WARN_ON(!rb_threads[cpu])) {
4872                         pr_cont("FAILED\n");
4873                         ret = -1;
4874                         goto out_free;
4875                 }
4876
4877                 kthread_bind(rb_threads[cpu], cpu);
4878                 wake_up_process(rb_threads[cpu]);
4879         }
4880
4881         /* Now create the rb hammer! */
4882         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4883         if (WARN_ON(!rb_hammer)) {
4884                 pr_cont("FAILED\n");
4885                 ret = -1;
4886                 goto out_free;
4887         }
4888
4889         ring_buffer_record_on(buffer);
4890         /*
4891          * Show buffer is enabled before setting rb_test_started.
4892          * Yes there's a small race window where events could be
4893          * dropped and the thread wont catch it. But when a ring
4894          * buffer gets enabled, there will always be some kind of
4895          * delay before other CPUs see it. Thus, we don't care about
4896          * those dropped events. We care about events dropped after
4897          * the threads see that the buffer is active.
4898          */
4899         smp_wmb();
4900         rb_test_started = true;
4901
4902         set_current_state(TASK_INTERRUPTIBLE);
4903         /* Just run for 10 seconds */;
4904         schedule_timeout(10 * HZ);
4905
4906         kthread_stop(rb_hammer);
4907
4908  out_free:
4909         for_each_online_cpu(cpu) {
4910                 if (!rb_threads[cpu])
4911                         break;
4912                 kthread_stop(rb_threads[cpu]);
4913         }
4914         if (ret) {
4915                 ring_buffer_free(buffer);
4916                 return ret;
4917         }
4918
4919         /* Report! */
4920         pr_info("finished\n");
4921         for_each_online_cpu(cpu) {
4922                 struct ring_buffer_event *event;
4923                 struct rb_test_data *data = &rb_data[cpu];
4924                 struct rb_item *item;
4925                 unsigned long total_events;
4926                 unsigned long total_dropped;
4927                 unsigned long total_written;
4928                 unsigned long total_alloc;
4929                 unsigned long total_read = 0;
4930                 unsigned long total_size = 0;
4931                 unsigned long total_len = 0;
4932                 unsigned long total_lost = 0;
4933                 unsigned long lost;
4934                 int big_event_size;
4935                 int small_event_size;
4936
4937                 ret = -1;
4938
4939                 total_events = data->events + data->events_nested;
4940                 total_written = data->bytes_written + data->bytes_written_nested;
4941                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4942                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4943
4944                 big_event_size = data->max_size + data->max_size_nested;
4945                 small_event_size = data->min_size + data->min_size_nested;
4946
4947                 pr_info("CPU %d:\n", cpu);
4948                 pr_info("              events:    %ld\n", total_events);
4949                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4950                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4951                 pr_info("       written bytes:    %ld\n", total_written);
4952                 pr_info("       biggest event:    %d\n", big_event_size);
4953                 pr_info("      smallest event:    %d\n", small_event_size);
4954
4955                 if (RB_WARN_ON(buffer, total_dropped))
4956                         break;
4957
4958                 ret = 0;
4959
4960                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4961                         total_lost += lost;
4962                         item = ring_buffer_event_data(event);
4963                         total_len += ring_buffer_event_length(event);
4964                         total_size += item->size + sizeof(struct rb_item);
4965                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4966                                 pr_info("FAILED!\n");
4967                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4968                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4969                                 RB_WARN_ON(buffer, 1);
4970                                 ret = -1;
4971                                 break;
4972                         }
4973                         total_read++;
4974                 }
4975                 if (ret)
4976                         break;
4977
4978                 ret = -1;
4979
4980                 pr_info("         read events:   %ld\n", total_read);
4981                 pr_info("         lost events:   %ld\n", total_lost);
4982                 pr_info("        total events:   %ld\n", total_lost + total_read);
4983                 pr_info("  recorded len bytes:   %ld\n", total_len);
4984                 pr_info(" recorded size bytes:   %ld\n", total_size);
4985                 if (total_lost)
4986                         pr_info(" With dropped events, record len and size may not match\n"
4987                                 " alloced and written from above\n");
4988                 if (!total_lost) {
4989                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4990                                        total_size != total_written))
4991                                 break;
4992                 }
4993                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4994                         break;
4995
4996                 ret = 0;
4997         }
4998         if (!ret)
4999                 pr_info("Ring buffer PASSED!\n");
5000
5001         ring_buffer_free(buffer);
5002         return 0;
5003 }
5004
5005 late_initcall(test_ringbuffer);
5006 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */