]> git.karo-electronics.de Git - karo-tx-linux.git/blob - lib/percpu-refcount.c
Merge tag 'driver-core-4.5-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / lib / percpu-refcount.c
1 #define pr_fmt(fmt) "%s: " fmt "\n", __func__
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/wait.h>
6 #include <linux/percpu-refcount.h>
7
8 /*
9  * Initially, a percpu refcount is just a set of percpu counters. Initially, we
10  * don't try to detect the ref hitting 0 - which means that get/put can just
11  * increment or decrement the local counter. Note that the counter on a
12  * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
13  * percpu counters will all sum to the correct value
14  *
15  * (More precisely: because moduler arithmatic is commutative the sum of all the
16  * percpu_count vars will be equal to what it would have been if all the gets
17  * and puts were done to a single integer, even if some of the percpu integers
18  * overflow or underflow).
19  *
20  * The real trick to implementing percpu refcounts is shutdown. We can't detect
21  * the ref hitting 0 on every put - this would require global synchronization
22  * and defeat the whole purpose of using percpu refs.
23  *
24  * What we do is require the user to keep track of the initial refcount; we know
25  * the ref can't hit 0 before the user drops the initial ref, so as long as we
26  * convert to non percpu mode before the initial ref is dropped everything
27  * works.
28  *
29  * Converting to non percpu mode is done with some RCUish stuff in
30  * percpu_ref_kill. Additionally, we need a bias value so that the
31  * atomic_long_t can't hit 0 before we've added up all the percpu refs.
32  */
33
34 #define PERCPU_COUNT_BIAS       (1LU << (BITS_PER_LONG - 1))
35
36 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
37
38 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
39 {
40         return (unsigned long __percpu *)
41                 (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
42 }
43
44 /**
45  * percpu_ref_init - initialize a percpu refcount
46  * @ref: percpu_ref to initialize
47  * @release: function which will be called when refcount hits 0
48  * @flags: PERCPU_REF_INIT_* flags
49  * @gfp: allocation mask to use
50  *
51  * Initializes @ref.  If @flags is zero, @ref starts in percpu mode with a
52  * refcount of 1; analagous to atomic_long_set(ref, 1).  See the
53  * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
54  *
55  * Note that @release must not sleep - it may potentially be called from RCU
56  * callback context by percpu_ref_kill().
57  */
58 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
59                     unsigned int flags, gfp_t gfp)
60 {
61         size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
62                              __alignof__(unsigned long));
63         unsigned long start_count = 0;
64
65         ref->percpu_count_ptr = (unsigned long)
66                 __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
67         if (!ref->percpu_count_ptr)
68                 return -ENOMEM;
69
70         ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
71
72         if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
73                 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
74         else
75                 start_count += PERCPU_COUNT_BIAS;
76
77         if (flags & PERCPU_REF_INIT_DEAD)
78                 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
79         else
80                 start_count++;
81
82         atomic_long_set(&ref->count, start_count);
83
84         ref->release = release;
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(percpu_ref_init);
88
89 /**
90  * percpu_ref_exit - undo percpu_ref_init()
91  * @ref: percpu_ref to exit
92  *
93  * This function exits @ref.  The caller is responsible for ensuring that
94  * @ref is no longer in active use.  The usual places to invoke this
95  * function from are the @ref->release() callback or in init failure path
96  * where percpu_ref_init() succeeded but other parts of the initialization
97  * of the embedding object failed.
98  */
99 void percpu_ref_exit(struct percpu_ref *ref)
100 {
101         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
102
103         if (percpu_count) {
104                 free_percpu(percpu_count);
105                 ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
106         }
107 }
108 EXPORT_SYMBOL_GPL(percpu_ref_exit);
109
110 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
111 {
112         struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
113
114         ref->confirm_switch(ref);
115         ref->confirm_switch = NULL;
116         wake_up_all(&percpu_ref_switch_waitq);
117
118         /* drop ref from percpu_ref_switch_to_atomic() */
119         percpu_ref_put(ref);
120 }
121
122 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
123 {
124         struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
125         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
126         unsigned long count = 0;
127         int cpu;
128
129         for_each_possible_cpu(cpu)
130                 count += *per_cpu_ptr(percpu_count, cpu);
131
132         pr_debug("global %ld percpu %ld",
133                  atomic_long_read(&ref->count), (long)count);
134
135         /*
136          * It's crucial that we sum the percpu counters _before_ adding the sum
137          * to &ref->count; since gets could be happening on one cpu while puts
138          * happen on another, adding a single cpu's count could cause
139          * @ref->count to hit 0 before we've got a consistent value - but the
140          * sum of all the counts will be consistent and correct.
141          *
142          * Subtracting the bias value then has to happen _after_ adding count to
143          * &ref->count; we need the bias value to prevent &ref->count from
144          * reaching 0 before we add the percpu counts. But doing it at the same
145          * time is equivalent and saves us atomic operations:
146          */
147         atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
148
149         WARN_ONCE(atomic_long_read(&ref->count) <= 0,
150                   "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
151                   ref->release, atomic_long_read(&ref->count));
152
153         /* @ref is viewed as dead on all CPUs, send out switch confirmation */
154         percpu_ref_call_confirm_rcu(rcu);
155 }
156
157 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
158 {
159 }
160
161 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
162                                           percpu_ref_func_t *confirm_switch)
163 {
164         if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC)) {
165                 /* switching from percpu to atomic */
166                 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
167
168                 /*
169                  * Non-NULL ->confirm_switch is used to indicate that
170                  * switching is in progress.  Use noop one if unspecified.
171                  */
172                 WARN_ON_ONCE(ref->confirm_switch);
173                 ref->confirm_switch =
174                         confirm_switch ?: percpu_ref_noop_confirm_switch;
175
176                 percpu_ref_get(ref);    /* put after confirmation */
177                 call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
178         } else if (confirm_switch) {
179                 /*
180                  * Somebody already set ATOMIC.  Switching may still be in
181                  * progress.  @confirm_switch must be invoked after the
182                  * switching is complete and a full sched RCU grace period
183                  * has passed.  Wait synchronously for the previous
184                  * switching and schedule @confirm_switch invocation.
185                  */
186                 wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
187                 ref->confirm_switch = confirm_switch;
188
189                 percpu_ref_get(ref);    /* put after confirmation */
190                 call_rcu_sched(&ref->rcu, percpu_ref_call_confirm_rcu);
191         }
192 }
193
194 /**
195  * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
196  * @ref: percpu_ref to switch to atomic mode
197  * @confirm_switch: optional confirmation callback
198  *
199  * There's no reason to use this function for the usual reference counting.
200  * Use percpu_ref_kill[_and_confirm]().
201  *
202  * Schedule switching of @ref to atomic mode.  All its percpu counts will
203  * be collected to the main atomic counter.  On completion, when all CPUs
204  * are guaraneed to be in atomic mode, @confirm_switch, which may not
205  * block, is invoked.  This function may be invoked concurrently with all
206  * the get/put operations and can safely be mixed with kill and reinit
207  * operations.  Note that @ref will stay in atomic mode across kill/reinit
208  * cycles until percpu_ref_switch_to_percpu() is called.
209  *
210  * This function normally doesn't block and can be called from any context
211  * but it may block if @confirm_kill is specified and @ref is already in
212  * the process of switching to atomic mode.  In such cases, @confirm_switch
213  * will be invoked after the switching is complete.
214  *
215  * Due to the way percpu_ref is implemented, @confirm_switch will be called
216  * after at least one full sched RCU grace period has passed but this is an
217  * implementation detail and must not be depended upon.
218  */
219 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
220                                  percpu_ref_func_t *confirm_switch)
221 {
222         ref->force_atomic = true;
223         __percpu_ref_switch_to_atomic(ref, confirm_switch);
224 }
225
226 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
227 {
228         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
229         int cpu;
230
231         BUG_ON(!percpu_count);
232
233         if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
234                 return;
235
236         wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
237
238         atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
239
240         /*
241          * Restore per-cpu operation.  smp_store_release() is paired with
242          * smp_read_barrier_depends() in __ref_is_percpu() and guarantees
243          * that the zeroing is visible to all percpu accesses which can see
244          * the following __PERCPU_REF_ATOMIC clearing.
245          */
246         for_each_possible_cpu(cpu)
247                 *per_cpu_ptr(percpu_count, cpu) = 0;
248
249         smp_store_release(&ref->percpu_count_ptr,
250                           ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
251 }
252
253 /**
254  * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
255  * @ref: percpu_ref to switch to percpu mode
256  *
257  * There's no reason to use this function for the usual reference counting.
258  * To re-use an expired ref, use percpu_ref_reinit().
259  *
260  * Switch @ref to percpu mode.  This function may be invoked concurrently
261  * with all the get/put operations and can safely be mixed with kill and
262  * reinit operations.  This function reverses the sticky atomic state set
263  * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
264  * dying or dead, the actual switching takes place on the following
265  * percpu_ref_reinit().
266  *
267  * This function normally doesn't block and can be called from any context
268  * but it may block if @ref is in the process of switching to atomic mode
269  * by percpu_ref_switch_atomic().
270  */
271 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
272 {
273         ref->force_atomic = false;
274
275         /* a dying or dead ref can't be switched to percpu mode w/o reinit */
276         if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD))
277                 __percpu_ref_switch_to_percpu(ref);
278 }
279
280 /**
281  * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
282  * @ref: percpu_ref to kill
283  * @confirm_kill: optional confirmation callback
284  *
285  * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
286  * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
287  * called after @ref is seen as dead from all CPUs at which point all
288  * further invocations of percpu_ref_tryget_live() will fail.  See
289  * percpu_ref_tryget_live() for details.
290  *
291  * This function normally doesn't block and can be called from any context
292  * but it may block if @confirm_kill is specified and @ref is in the
293  * process of switching to atomic mode by percpu_ref_switch_atomic().
294  *
295  * Due to the way percpu_ref is implemented, @confirm_switch will be called
296  * after at least one full sched RCU grace period has passed but this is an
297  * implementation detail and must not be depended upon.
298  */
299 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
300                                  percpu_ref_func_t *confirm_kill)
301 {
302         WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
303                   "%s called more than once on %pf!", __func__, ref->release);
304
305         ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
306         __percpu_ref_switch_to_atomic(ref, confirm_kill);
307         percpu_ref_put(ref);
308 }
309 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
310
311 /**
312  * percpu_ref_reinit - re-initialize a percpu refcount
313  * @ref: perpcu_ref to re-initialize
314  *
315  * Re-initialize @ref so that it's in the same state as when it finished
316  * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
317  * initialized successfully and reached 0 but not exited.
318  *
319  * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
320  * this function is in progress.
321  */
322 void percpu_ref_reinit(struct percpu_ref *ref)
323 {
324         WARN_ON_ONCE(!percpu_ref_is_zero(ref));
325
326         ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
327         percpu_ref_get(ref);
328         if (!ref->force_atomic)
329                 __percpu_ref_switch_to_percpu(ref);
330 }
331 EXPORT_SYMBOL_GPL(percpu_ref_reinit);