2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
37 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
39 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
42 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
45 #define RADIX_TREE_TAG_LONGS \
46 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
48 struct radix_tree_node {
49 unsigned int height; /* Height from the bottom */
52 struct radix_tree_node *parent; /* Used when ascending tree */
53 struct rcu_head rcu_head; /* Used when freeing node */
55 void __rcu *slots[RADIX_TREE_MAP_SIZE];
56 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
59 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
60 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
61 RADIX_TREE_MAP_SHIFT))
64 * The height_to_maxindex array needs to be one deeper than the maximum
65 * path as height 0 holds only 1 entry.
67 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
70 * Radix tree node cache.
72 static struct kmem_cache *radix_tree_node_cachep;
75 * Per-cpu pool of preloaded nodes
77 struct radix_tree_preload {
79 struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
81 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
83 static inline void *ptr_to_indirect(void *ptr)
85 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
88 static inline void *indirect_to_ptr(void *ptr)
90 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
93 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
95 return root->gfp_mask & __GFP_BITS_MASK;
98 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
101 __set_bit(offset, node->tags[tag]);
104 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
107 __clear_bit(offset, node->tags[tag]);
110 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
113 return test_bit(offset, node->tags[tag]);
116 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
118 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
121 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
123 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
126 static inline void root_tag_clear_all(struct radix_tree_root *root)
128 root->gfp_mask &= __GFP_BITS_MASK;
131 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
133 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
137 * Returns 1 if any slot in the node has this tag set.
138 * Otherwise returns 0.
140 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
143 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
144 if (node->tags[tag][idx])
150 * This assumes that the caller has performed appropriate preallocation, and
151 * that the caller has pinned this thread of control to the current CPU.
153 static struct radix_tree_node *
154 radix_tree_node_alloc(struct radix_tree_root *root)
156 struct radix_tree_node *ret = NULL;
157 gfp_t gfp_mask = root_gfp_mask(root);
159 if (!(gfp_mask & __GFP_WAIT)) {
160 struct radix_tree_preload *rtp;
163 * Provided the caller has preloaded here, we will always
164 * succeed in getting a node here (and never reach
167 rtp = &__get_cpu_var(radix_tree_preloads);
169 ret = rtp->nodes[rtp->nr - 1];
170 rtp->nodes[rtp->nr - 1] = NULL;
175 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
177 BUG_ON(radix_tree_is_indirect_ptr(ret));
181 static void radix_tree_node_rcu_free(struct rcu_head *head)
183 struct radix_tree_node *node =
184 container_of(head, struct radix_tree_node, rcu_head);
188 * must only free zeroed nodes into the slab. radix_tree_shrink
189 * can leave us with a non-NULL entry in the first slot, so clear
190 * that here to make sure.
192 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
193 tag_clear(node, i, 0);
195 node->slots[0] = NULL;
198 kmem_cache_free(radix_tree_node_cachep, node);
202 radix_tree_node_free(struct radix_tree_node *node)
204 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
208 * Load up this CPU's radix_tree_node buffer with sufficient objects to
209 * ensure that the addition of a single element in the tree cannot fail. On
210 * success, return zero, with preemption disabled. On error, return -ENOMEM
211 * with preemption not disabled.
213 * To make use of this facility, the radix tree must be initialised without
214 * __GFP_WAIT being passed to INIT_RADIX_TREE().
216 int radix_tree_preload(gfp_t gfp_mask)
218 struct radix_tree_preload *rtp;
219 struct radix_tree_node *node;
223 rtp = &__get_cpu_var(radix_tree_preloads);
224 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
226 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
230 rtp = &__get_cpu_var(radix_tree_preloads);
231 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
232 rtp->nodes[rtp->nr++] = node;
234 kmem_cache_free(radix_tree_node_cachep, node);
240 EXPORT_SYMBOL(radix_tree_preload);
243 * Return the maximum key which can be store into a
244 * radix tree with height HEIGHT.
246 static inline unsigned long radix_tree_maxindex(unsigned int height)
248 return height_to_maxindex[height];
252 * Extend a radix tree so it can store key @index.
254 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
256 struct radix_tree_node *node;
257 struct radix_tree_node *slot;
261 /* Figure out what the height should be. */
262 height = root->height + 1;
263 while (index > radix_tree_maxindex(height))
266 if (root->rnode == NULL) {
267 root->height = height;
272 unsigned int newheight;
273 if (!(node = radix_tree_node_alloc(root)))
276 /* Propagate the aggregated tag info into the new root */
277 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
278 if (root_tag_get(root, tag))
279 tag_set(node, tag, 0);
282 /* Increase the height. */
283 newheight = root->height+1;
284 node->height = newheight;
289 slot = indirect_to_ptr(slot);
292 node->slots[0] = slot;
293 node = ptr_to_indirect(node);
294 rcu_assign_pointer(root->rnode, node);
295 root->height = newheight;
296 } while (height > root->height);
302 * radix_tree_insert - insert into a radix tree
303 * @root: radix tree root
305 * @item: item to insert
307 * Insert an item into the radix tree at position @index.
309 int radix_tree_insert(struct radix_tree_root *root,
310 unsigned long index, void *item)
312 struct radix_tree_node *node = NULL, *slot;
313 unsigned int height, shift;
317 BUG_ON(radix_tree_is_indirect_ptr(item));
319 /* Make sure the tree is high enough. */
320 if (index > radix_tree_maxindex(root->height)) {
321 error = radix_tree_extend(root, index);
326 slot = indirect_to_ptr(root->rnode);
328 height = root->height;
329 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
331 offset = 0; /* uninitialised var warning */
334 /* Have to add a child node. */
335 if (!(slot = radix_tree_node_alloc(root)))
337 slot->height = height;
340 rcu_assign_pointer(node->slots[offset], slot);
343 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
346 /* Go a level down */
347 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
349 slot = node->slots[offset];
350 shift -= RADIX_TREE_MAP_SHIFT;
359 rcu_assign_pointer(node->slots[offset], item);
360 BUG_ON(tag_get(node, 0, offset));
361 BUG_ON(tag_get(node, 1, offset));
363 rcu_assign_pointer(root->rnode, item);
364 BUG_ON(root_tag_get(root, 0));
365 BUG_ON(root_tag_get(root, 1));
370 EXPORT_SYMBOL(radix_tree_insert);
373 * is_slot == 1 : search for the slot.
374 * is_slot == 0 : search for the node.
376 static void *radix_tree_lookup_element(struct radix_tree_root *root,
377 unsigned long index, int is_slot)
379 unsigned int height, shift;
380 struct radix_tree_node *node, **slot;
382 node = rcu_dereference_raw(root->rnode);
386 if (!radix_tree_is_indirect_ptr(node)) {
389 return is_slot ? (void *)&root->rnode : node;
391 node = indirect_to_ptr(node);
393 height = node->height;
394 if (index > radix_tree_maxindex(height))
397 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
400 slot = (struct radix_tree_node **)
401 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
402 node = rcu_dereference_raw(*slot);
406 shift -= RADIX_TREE_MAP_SHIFT;
408 } while (height > 0);
410 return is_slot ? (void *)slot : indirect_to_ptr(node);
414 * radix_tree_lookup_slot - lookup a slot in a radix tree
415 * @root: radix tree root
418 * Returns: the slot corresponding to the position @index in the
419 * radix tree @root. This is useful for update-if-exists operations.
421 * This function can be called under rcu_read_lock iff the slot is not
422 * modified by radix_tree_replace_slot, otherwise it must be called
423 * exclusive from other writers. Any dereference of the slot must be done
424 * using radix_tree_deref_slot.
426 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
428 return (void **)radix_tree_lookup_element(root, index, 1);
430 EXPORT_SYMBOL(radix_tree_lookup_slot);
433 * radix_tree_lookup - perform lookup operation on a radix tree
434 * @root: radix tree root
437 * Lookup the item at the position @index in the radix tree @root.
439 * This function can be called under rcu_read_lock, however the caller
440 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
441 * them safely). No RCU barriers are required to access or modify the
442 * returned item, however.
444 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
446 return radix_tree_lookup_element(root, index, 0);
448 EXPORT_SYMBOL(radix_tree_lookup);
451 * radix_tree_tag_set - set a tag on a radix tree node
452 * @root: radix tree root
456 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
457 * corresponding to @index in the radix tree. From
458 * the root all the way down to the leaf node.
460 * Returns the address of the tagged item. Setting a tag on a not-present
463 void *radix_tree_tag_set(struct radix_tree_root *root,
464 unsigned long index, unsigned int tag)
466 unsigned int height, shift;
467 struct radix_tree_node *slot;
469 height = root->height;
470 BUG_ON(index > radix_tree_maxindex(height));
472 slot = indirect_to_ptr(root->rnode);
473 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
478 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
479 if (!tag_get(slot, tag, offset))
480 tag_set(slot, tag, offset);
481 slot = slot->slots[offset];
482 BUG_ON(slot == NULL);
483 shift -= RADIX_TREE_MAP_SHIFT;
487 /* set the root's tag bit */
488 if (slot && !root_tag_get(root, tag))
489 root_tag_set(root, tag);
493 EXPORT_SYMBOL(radix_tree_tag_set);
496 * radix_tree_tag_clear - clear a tag on a radix tree node
497 * @root: radix tree root
501 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
502 * corresponding to @index in the radix tree. If
503 * this causes the leaf node to have no tags set then clear the tag in the
504 * next-to-leaf node, etc.
506 * Returns the address of the tagged item on success, else NULL. ie:
507 * has the same return value and semantics as radix_tree_lookup().
509 void *radix_tree_tag_clear(struct radix_tree_root *root,
510 unsigned long index, unsigned int tag)
512 struct radix_tree_node *node = NULL;
513 struct radix_tree_node *slot = NULL;
514 unsigned int height, shift;
515 int uninitialized_var(offset);
517 height = root->height;
518 if (index > radix_tree_maxindex(height))
521 shift = height * RADIX_TREE_MAP_SHIFT;
522 slot = indirect_to_ptr(root->rnode);
528 shift -= RADIX_TREE_MAP_SHIFT;
529 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
531 slot = slot->slots[offset];
538 if (!tag_get(node, tag, offset))
540 tag_clear(node, tag, offset);
541 if (any_tag_set(node, tag))
544 index >>= RADIX_TREE_MAP_SHIFT;
545 offset = index & RADIX_TREE_MAP_MASK;
549 /* clear the root's tag bit */
550 if (root_tag_get(root, tag))
551 root_tag_clear(root, tag);
556 EXPORT_SYMBOL(radix_tree_tag_clear);
559 * radix_tree_tag_get - get a tag on a radix tree node
560 * @root: radix tree root
562 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
566 * 0: tag not present or not set
569 * Note that the return value of this function may not be relied on, even if
570 * the RCU lock is held, unless tag modification and node deletion are excluded
573 int radix_tree_tag_get(struct radix_tree_root *root,
574 unsigned long index, unsigned int tag)
576 unsigned int height, shift;
577 struct radix_tree_node *node;
579 /* check the root's tag bit */
580 if (!root_tag_get(root, tag))
583 node = rcu_dereference_raw(root->rnode);
587 if (!radix_tree_is_indirect_ptr(node))
589 node = indirect_to_ptr(node);
591 height = node->height;
592 if (index > radix_tree_maxindex(height))
595 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
603 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
604 if (!tag_get(node, tag, offset))
608 node = rcu_dereference_raw(node->slots[offset]);
609 shift -= RADIX_TREE_MAP_SHIFT;
613 EXPORT_SYMBOL(radix_tree_tag_get);
616 * radix_tree_range_tag_if_tagged - for each item in given range set given
617 * tag if item has another tag set
618 * @root: radix tree root
619 * @first_indexp: pointer to a starting index of a range to scan
620 * @last_index: last index of a range to scan
621 * @nr_to_tag: maximum number items to tag
622 * @iftag: tag index to test
623 * @settag: tag index to set if tested tag is set
625 * This function scans range of radix tree from first_index to last_index
626 * (inclusive). For each item in the range if iftag is set, the function sets
627 * also settag. The function stops either after tagging nr_to_tag items or
628 * after reaching last_index.
630 * The tags must be set from the leaf level only and propagated back up the
631 * path to the root. We must do this so that we resolve the full path before
632 * setting any tags on intermediate nodes. If we set tags as we descend, then
633 * we can get to the leaf node and find that the index that has the iftag
634 * set is outside the range we are scanning. This reults in dangling tags and
635 * can lead to problems with later tag operations (e.g. livelocks on lookups).
637 * The function returns number of leaves where the tag was set and sets
638 * *first_indexp to the first unscanned index.
639 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
640 * be prepared to handle that.
642 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
643 unsigned long *first_indexp, unsigned long last_index,
644 unsigned long nr_to_tag,
645 unsigned int iftag, unsigned int settag)
647 unsigned int height = root->height;
648 struct radix_tree_node *node = NULL;
649 struct radix_tree_node *slot;
651 unsigned long tagged = 0;
652 unsigned long index = *first_indexp;
654 last_index = min(last_index, radix_tree_maxindex(height));
655 if (index > last_index)
659 if (!root_tag_get(root, iftag)) {
660 *first_indexp = last_index + 1;
664 *first_indexp = last_index + 1;
665 root_tag_set(root, settag);
669 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
670 slot = indirect_to_ptr(root->rnode);
673 unsigned long upindex;
676 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
677 if (!slot->slots[offset])
679 if (!tag_get(slot, iftag, offset))
682 /* Go down one level */
683 shift -= RADIX_TREE_MAP_SHIFT;
685 slot = slot->slots[offset];
691 tag_set(slot, settag, offset);
693 /* walk back up the path tagging interior nodes */
696 upindex >>= RADIX_TREE_MAP_SHIFT;
697 offset = upindex & RADIX_TREE_MAP_MASK;
699 /* stop if we find a node with the tag already set */
700 if (tag_get(node, settag, offset))
702 tag_set(node, settag, offset);
707 * Small optimization: now clear that node pointer.
708 * Since all of this slot's ancestors now have the tag set
709 * from setting it above, we have no further need to walk
710 * back up the tree setting tags, until we update slot to
711 * point to another radix_tree_node.
716 /* Go to next item at level determined by 'shift' */
717 index = ((index >> shift) + 1) << shift;
718 /* Overflow can happen when last_index is ~0UL... */
719 if (index > last_index || !index)
721 if (tagged >= nr_to_tag)
723 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
725 * We've fully scanned this node. Go up. Because
726 * last_index is guaranteed to be in the tree, what
727 * we do below cannot wander astray.
730 shift += RADIX_TREE_MAP_SHIFT;
734 * We need not to tag the root tag if there is no tag which is set with
735 * settag within the range from *first_indexp to last_index.
738 root_tag_set(root, settag);
739 *first_indexp = index;
743 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
747 * radix_tree_next_hole - find the next hole (not-present entry)
750 * @max_scan: maximum range to search
752 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
755 * Returns: the index of the hole if found, otherwise returns an index
756 * outside of the set specified (in which case 'return - index >= max_scan'
757 * will be true). In rare cases of index wrap-around, 0 will be returned.
759 * radix_tree_next_hole may be called under rcu_read_lock. However, like
760 * radix_tree_gang_lookup, this will not atomically search a snapshot of
761 * the tree at a single point in time. For example, if a hole is created
762 * at index 5, then subsequently a hole is created at index 10,
763 * radix_tree_next_hole covering both indexes may return 10 if called
764 * under rcu_read_lock.
766 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
767 unsigned long index, unsigned long max_scan)
771 for (i = 0; i < max_scan; i++) {
772 if (!radix_tree_lookup(root, index))
781 EXPORT_SYMBOL(radix_tree_next_hole);
784 * radix_tree_prev_hole - find the prev hole (not-present entry)
787 * @max_scan: maximum range to search
789 * Search backwards in the range [max(index-max_scan+1, 0), index]
790 * for the first hole.
792 * Returns: the index of the hole if found, otherwise returns an index
793 * outside of the set specified (in which case 'index - return >= max_scan'
794 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
796 * radix_tree_next_hole may be called under rcu_read_lock. However, like
797 * radix_tree_gang_lookup, this will not atomically search a snapshot of
798 * the tree at a single point in time. For example, if a hole is created
799 * at index 10, then subsequently a hole is created at index 5,
800 * radix_tree_prev_hole covering both indexes may return 5 if called under
803 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
804 unsigned long index, unsigned long max_scan)
808 for (i = 0; i < max_scan; i++) {
809 if (!radix_tree_lookup(root, index))
812 if (index == ULONG_MAX)
818 EXPORT_SYMBOL(radix_tree_prev_hole);
821 __lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
822 unsigned long index, unsigned int max_items, unsigned long *next_index)
824 unsigned int nr_found = 0;
825 unsigned int shift, height;
828 height = slot->height;
831 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
833 for ( ; height > 1; height--) {
834 i = (index >> shift) & RADIX_TREE_MAP_MASK;
836 if (slot->slots[i] != NULL)
838 index &= ~((1UL << shift) - 1);
839 index += 1UL << shift;
841 goto out; /* 32-bit wraparound */
843 if (i == RADIX_TREE_MAP_SIZE)
847 shift -= RADIX_TREE_MAP_SHIFT;
848 slot = rcu_dereference_raw(slot->slots[i]);
853 /* Bottom level: grab some items */
854 for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
855 if (slot->slots[i]) {
856 results[nr_found] = &(slot->slots[i]);
858 indices[nr_found] = index;
859 if (++nr_found == max_items) {
872 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
873 * @root: radix tree root
874 * @results: where the results of the lookup are placed
875 * @first_index: start the lookup from this key
876 * @max_items: place up to this many items at *results
878 * Performs an index-ascending scan of the tree for present items. Places
879 * them at *@results and returns the number of items which were placed at
882 * The implementation is naive.
884 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
885 * rcu_read_lock. In this case, rather than the returned results being
886 * an atomic snapshot of the tree at a single point in time, the semantics
887 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
888 * have been issued in individual locks, and results stored in 'results'.
891 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
892 unsigned long first_index, unsigned int max_items)
894 unsigned long max_index;
895 struct radix_tree_node *node;
896 unsigned long cur_index = first_index;
899 node = rcu_dereference_raw(root->rnode);
903 if (!radix_tree_is_indirect_ptr(node)) {
909 node = indirect_to_ptr(node);
911 max_index = radix_tree_maxindex(node->height);
914 while (ret < max_items) {
915 unsigned int nr_found, slots_found, i;
916 unsigned long next_index; /* Index of next search */
918 if (cur_index > max_index)
920 slots_found = __lookup(node, (void ***)results + ret, NULL,
921 cur_index, max_items - ret, &next_index);
923 for (i = 0; i < slots_found; i++) {
924 struct radix_tree_node *slot;
925 slot = *(((void ***)results)[ret + i]);
928 results[ret + nr_found] =
929 indirect_to_ptr(rcu_dereference_raw(slot));
935 cur_index = next_index;
940 EXPORT_SYMBOL(radix_tree_gang_lookup);
943 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
944 * @root: radix tree root
945 * @results: where the results of the lookup are placed
946 * @indices: where their indices should be placed (but usually NULL)
947 * @first_index: start the lookup from this key
948 * @max_items: place up to this many items at *results
950 * Performs an index-ascending scan of the tree for present items. Places
951 * their slots at *@results and returns the number of items which were
952 * placed at *@results.
954 * The implementation is naive.
956 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
957 * be dereferenced with radix_tree_deref_slot, and if using only RCU
958 * protection, radix_tree_deref_slot may fail requiring a retry.
961 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
962 void ***results, unsigned long *indices,
963 unsigned long first_index, unsigned int max_items)
965 unsigned long max_index;
966 struct radix_tree_node *node;
967 unsigned long cur_index = first_index;
970 node = rcu_dereference_raw(root->rnode);
974 if (!radix_tree_is_indirect_ptr(node)) {
977 results[0] = (void **)&root->rnode;
982 node = indirect_to_ptr(node);
984 max_index = radix_tree_maxindex(node->height);
987 while (ret < max_items) {
988 unsigned int slots_found;
989 unsigned long next_index; /* Index of next search */
991 if (cur_index > max_index)
993 slots_found = __lookup(node, results + ret,
994 indices ? indices + ret : NULL,
995 cur_index, max_items - ret, &next_index);
999 cur_index = next_index;
1004 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1007 * FIXME: the two tag_get()s here should use find_next_bit() instead of
1008 * open-coding the search.
1011 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1012 unsigned int max_items, unsigned long *next_index, unsigned int tag)
1014 unsigned int nr_found = 0;
1015 unsigned int shift, height;
1017 height = slot->height;
1020 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1022 while (height > 0) {
1023 unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1026 if (tag_get(slot, tag, i))
1028 index &= ~((1UL << shift) - 1);
1029 index += 1UL << shift;
1031 goto out; /* 32-bit wraparound */
1033 if (i == RADIX_TREE_MAP_SIZE)
1037 if (height == 0) { /* Bottom level: grab some items */
1038 unsigned long j = index & RADIX_TREE_MAP_MASK;
1040 for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1042 if (!tag_get(slot, tag, j))
1045 * Even though the tag was found set, we need to
1046 * recheck that we have a non-NULL node, because
1047 * if this lookup is lockless, it may have been
1048 * subsequently deleted.
1050 * Similar care must be taken in any place that
1051 * lookup ->slots[x] without a lock (ie. can't
1052 * rely on its value remaining the same).
1054 if (slot->slots[j]) {
1055 results[nr_found++] = &(slot->slots[j]);
1056 if (nr_found == max_items)
1061 shift -= RADIX_TREE_MAP_SHIFT;
1062 slot = rcu_dereference_raw(slot->slots[i]);
1067 *next_index = index;
1072 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1074 * @root: radix tree root
1075 * @results: where the results of the lookup are placed
1076 * @first_index: start the lookup from this key
1077 * @max_items: place up to this many items at *results
1078 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1080 * Performs an index-ascending scan of the tree for present items which
1081 * have the tag indexed by @tag set. Places the items at *@results and
1082 * returns the number of items which were placed at *@results.
1085 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1086 unsigned long first_index, unsigned int max_items,
1089 struct radix_tree_node *node;
1090 unsigned long max_index;
1091 unsigned long cur_index = first_index;
1094 /* check the root's tag bit */
1095 if (!root_tag_get(root, tag))
1098 node = rcu_dereference_raw(root->rnode);
1102 if (!radix_tree_is_indirect_ptr(node)) {
1103 if (first_index > 0)
1108 node = indirect_to_ptr(node);
1110 max_index = radix_tree_maxindex(node->height);
1113 while (ret < max_items) {
1114 unsigned int nr_found, slots_found, i;
1115 unsigned long next_index; /* Index of next search */
1117 if (cur_index > max_index)
1119 slots_found = __lookup_tag(node, (void ***)results + ret,
1120 cur_index, max_items - ret, &next_index, tag);
1122 for (i = 0; i < slots_found; i++) {
1123 struct radix_tree_node *slot;
1124 slot = *(((void ***)results)[ret + i]);
1127 results[ret + nr_found] =
1128 indirect_to_ptr(rcu_dereference_raw(slot));
1132 if (next_index == 0)
1134 cur_index = next_index;
1139 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1142 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1143 * radix tree based on a tag
1144 * @root: radix tree root
1145 * @results: where the results of the lookup are placed
1146 * @first_index: start the lookup from this key
1147 * @max_items: place up to this many items at *results
1148 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1150 * Performs an index-ascending scan of the tree for present items which
1151 * have the tag indexed by @tag set. Places the slots at *@results and
1152 * returns the number of slots which were placed at *@results.
1155 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1156 unsigned long first_index, unsigned int max_items,
1159 struct radix_tree_node *node;
1160 unsigned long max_index;
1161 unsigned long cur_index = first_index;
1164 /* check the root's tag bit */
1165 if (!root_tag_get(root, tag))
1168 node = rcu_dereference_raw(root->rnode);
1172 if (!radix_tree_is_indirect_ptr(node)) {
1173 if (first_index > 0)
1175 results[0] = (void **)&root->rnode;
1178 node = indirect_to_ptr(node);
1180 max_index = radix_tree_maxindex(node->height);
1183 while (ret < max_items) {
1184 unsigned int slots_found;
1185 unsigned long next_index; /* Index of next search */
1187 if (cur_index > max_index)
1189 slots_found = __lookup_tag(node, results + ret,
1190 cur_index, max_items - ret, &next_index, tag);
1192 if (next_index == 0)
1194 cur_index = next_index;
1199 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1201 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1202 #include <linux/sched.h> /* for cond_resched() */
1205 * This linear search is at present only useful to shmem_unuse_inode().
1207 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1208 unsigned long index, unsigned long *found_index)
1210 unsigned int shift, height;
1213 height = slot->height;
1214 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1216 for ( ; height > 1; height--) {
1217 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1219 if (slot->slots[i] != NULL)
1221 index &= ~((1UL << shift) - 1);
1222 index += 1UL << shift;
1224 goto out; /* 32-bit wraparound */
1226 if (i == RADIX_TREE_MAP_SIZE)
1230 shift -= RADIX_TREE_MAP_SHIFT;
1231 slot = rcu_dereference_raw(slot->slots[i]);
1236 /* Bottom level: check items */
1237 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1238 if (slot->slots[i] == item) {
1239 *found_index = index + i;
1244 index += RADIX_TREE_MAP_SIZE;
1250 * radix_tree_locate_item - search through radix tree for item
1251 * @root: radix tree root
1252 * @item: item to be found
1254 * Returns index where item was found, or -1 if not found.
1255 * Caller must hold no lock (since this time-consuming function needs
1256 * to be preemptible), and must check afterwards if item is still there.
1258 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1260 struct radix_tree_node *node;
1261 unsigned long max_index;
1262 unsigned long cur_index = 0;
1263 unsigned long found_index = -1;
1267 node = rcu_dereference_raw(root->rnode);
1268 if (!radix_tree_is_indirect_ptr(node)) {
1275 node = indirect_to_ptr(node);
1276 max_index = radix_tree_maxindex(node->height);
1277 if (cur_index > max_index)
1280 cur_index = __locate(node, item, cur_index, &found_index);
1283 } while (cur_index != 0 && cur_index <= max_index);
1288 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1292 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1295 * radix_tree_shrink - shrink height of a radix tree to minimal
1296 * @root radix tree root
1298 static inline void radix_tree_shrink(struct radix_tree_root *root)
1300 /* try to shrink tree height */
1301 while (root->height > 0) {
1302 struct radix_tree_node *to_free = root->rnode;
1303 struct radix_tree_node *slot;
1305 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1306 to_free = indirect_to_ptr(to_free);
1309 * The candidate node has more than one child, or its child
1310 * is not at the leftmost slot, we cannot shrink.
1312 if (to_free->count != 1)
1314 if (!to_free->slots[0])
1318 * We don't need rcu_assign_pointer(), since we are simply
1319 * moving the node from one part of the tree to another: if it
1320 * was safe to dereference the old pointer to it
1321 * (to_free->slots[0]), it will be safe to dereference the new
1322 * one (root->rnode) as far as dependent read barriers go.
1324 slot = to_free->slots[0];
1325 if (root->height > 1) {
1326 slot->parent = NULL;
1327 slot = ptr_to_indirect(slot);
1333 * We have a dilemma here. The node's slot[0] must not be
1334 * NULLed in case there are concurrent lookups expecting to
1335 * find the item. However if this was a bottom-level node,
1336 * then it may be subject to the slot pointer being visible
1337 * to callers dereferencing it. If item corresponding to
1338 * slot[0] is subsequently deleted, these callers would expect
1339 * their slot to become empty sooner or later.
1341 * For example, lockless pagecache will look up a slot, deref
1342 * the page pointer, and if the page is 0 refcount it means it
1343 * was concurrently deleted from pagecache so try the deref
1344 * again. Fortunately there is already a requirement for logic
1345 * to retry the entire slot lookup -- the indirect pointer
1346 * problem (replacing direct root node with an indirect pointer
1347 * also results in a stale slot). So tag the slot as indirect
1348 * to force callers to retry.
1350 if (root->height == 0)
1351 *((unsigned long *)&to_free->slots[0]) |=
1352 RADIX_TREE_INDIRECT_PTR;
1354 radix_tree_node_free(to_free);
1359 * radix_tree_delete - delete an item from a radix tree
1360 * @root: radix tree root
1363 * Remove the item at @index from the radix tree rooted at @root.
1365 * Returns the address of the deleted item, or NULL if it was not present.
1367 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1369 struct radix_tree_node *node = NULL;
1370 struct radix_tree_node *slot = NULL;
1371 struct radix_tree_node *to_free;
1372 unsigned int height, shift;
1374 int uninitialized_var(offset);
1376 height = root->height;
1377 if (index > radix_tree_maxindex(height))
1382 root_tag_clear_all(root);
1386 slot = indirect_to_ptr(slot);
1387 shift = height * RADIX_TREE_MAP_SHIFT;
1393 shift -= RADIX_TREE_MAP_SHIFT;
1394 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1396 slot = slot->slots[offset];
1403 * Clear all tags associated with the item to be deleted.
1404 * This way of doing it would be inefficient, but seldom is any set.
1406 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1407 if (tag_get(node, tag, offset))
1408 radix_tree_tag_clear(root, index, tag);
1412 /* Now free the nodes we do not need anymore */
1414 node->slots[offset] = NULL;
1417 * Queue the node for deferred freeing after the
1418 * last reference to it disappears (set NULL, above).
1421 radix_tree_node_free(to_free);
1424 if (node == indirect_to_ptr(root->rnode))
1425 radix_tree_shrink(root);
1429 /* Node with zero slots in use so free it */
1432 index >>= RADIX_TREE_MAP_SHIFT;
1433 offset = index & RADIX_TREE_MAP_MASK;
1434 node = node->parent;
1437 root_tag_clear_all(root);
1441 radix_tree_node_free(to_free);
1446 EXPORT_SYMBOL(radix_tree_delete);
1449 * radix_tree_tagged - test whether any items in the tree are tagged
1450 * @root: radix tree root
1453 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1455 return root_tag_get(root, tag);
1457 EXPORT_SYMBOL(radix_tree_tagged);
1460 radix_tree_node_ctor(void *node)
1462 memset(node, 0, sizeof(struct radix_tree_node));
1465 static __init unsigned long __maxindex(unsigned int height)
1467 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1468 int shift = RADIX_TREE_INDEX_BITS - width;
1472 if (shift >= BITS_PER_LONG)
1474 return ~0UL >> shift;
1477 static __init void radix_tree_init_maxindex(void)
1481 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1482 height_to_maxindex[i] = __maxindex(i);
1485 static int radix_tree_callback(struct notifier_block *nfb,
1486 unsigned long action,
1489 int cpu = (long)hcpu;
1490 struct radix_tree_preload *rtp;
1492 /* Free per-cpu pool of perloaded nodes */
1493 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1494 rtp = &per_cpu(radix_tree_preloads, cpu);
1496 kmem_cache_free(radix_tree_node_cachep,
1497 rtp->nodes[rtp->nr-1]);
1498 rtp->nodes[rtp->nr-1] = NULL;
1505 void __init radix_tree_init(void)
1507 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1508 sizeof(struct radix_tree_node), 0,
1509 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1510 radix_tree_node_ctor);
1511 radix_tree_init_maxindex();
1512 hotcpu_notifier(radix_tree_callback, 0);