]> git.karo-electronics.de Git - karo-tx-linux.git/blob - lib/rbtree.c
eb823a31099c37678768551ed685d2dc0f0a6aca
[karo-tx-linux.git] / lib / rbtree.c
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
20   linux/lib/rbtree.c
21 */
22
23 #include <linux/rbtree.h>
24 #include <linux/export.h>
25
26 /*
27  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
28  *
29  *  1) A node is either red or black
30  *  2) The root is black
31  *  3) All leaves (NULL) are black
32  *  4) Both children of every red node are black
33  *  5) Every simple path from root to leaves contains the same number
34  *     of black nodes.
35  *
36  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37  *  consecutive red nodes in a path and every red node is therefore followed by
38  *  a black. So if B is the number of black nodes on every simple path (as per
39  *  5), then the longest possible path due to 4 is 2B.
40  *
41  *  We shall indicate color with case, where black nodes are uppercase and red
42  *  nodes will be lowercase.
43  */
44
45 #define RB_RED          0
46 #define RB_BLACK        1
47
48 #define rb_color(r)   ((r)->__rb_parent_color & 1)
49 #define rb_is_red(r)   (!rb_color(r))
50 #define rb_is_black(r) rb_color(r)
51 #define rb_set_red(r)  do { (r)->__rb_parent_color &= ~1; } while (0)
52 #define rb_set_black(r)  do { (r)->__rb_parent_color |= 1; } while (0)
53
54 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
55 {
56         rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
57 }
58 static inline void rb_set_color(struct rb_node *rb, int color)
59 {
60         rb->__rb_parent_color = (rb->__rb_parent_color & ~1) | color;
61 }
62
63 static inline void rb_set_parent_color(struct rb_node *rb,
64                                        struct rb_node *p, int color)
65 {
66         rb->__rb_parent_color = (unsigned long)p | color;
67 }
68
69 static inline struct rb_node *rb_red_parent(struct rb_node *red)
70 {
71         return (struct rb_node *)red->__rb_parent_color;
72 }
73
74 static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
75 {
76         struct rb_node *right = node->rb_right;
77         struct rb_node *parent = rb_parent(node);
78
79         if ((node->rb_right = right->rb_left))
80                 rb_set_parent(right->rb_left, node);
81         right->rb_left = node;
82
83         rb_set_parent(right, parent);
84
85         if (parent)
86         {
87                 if (node == parent->rb_left)
88                         parent->rb_left = right;
89                 else
90                         parent->rb_right = right;
91         }
92         else
93                 root->rb_node = right;
94         rb_set_parent(node, right);
95 }
96
97 static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
98 {
99         struct rb_node *left = node->rb_left;
100         struct rb_node *parent = rb_parent(node);
101
102         if ((node->rb_left = left->rb_right))
103                 rb_set_parent(left->rb_right, node);
104         left->rb_right = node;
105
106         rb_set_parent(left, parent);
107
108         if (parent)
109         {
110                 if (node == parent->rb_right)
111                         parent->rb_right = left;
112                 else
113                         parent->rb_left = left;
114         }
115         else
116                 root->rb_node = left;
117         rb_set_parent(node, left);
118 }
119
120 /*
121  * Helper function for rotations:
122  * - old's parent and color get assigned to new
123  * - old gets assigned new as a parent and 'color' as a color.
124  */
125 static inline void
126 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
127                         struct rb_root *root, int color)
128 {
129         struct rb_node *parent = rb_parent(old);
130         new->__rb_parent_color = old->__rb_parent_color;
131         rb_set_parent_color(old, new, color);
132         if (parent) {
133                 if (parent->rb_left == old)
134                         parent->rb_left = new;
135                 else
136                         parent->rb_right = new;
137         } else
138                 root->rb_node = new;
139 }
140
141 void rb_insert_color(struct rb_node *node, struct rb_root *root)
142 {
143         struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
144
145         while (true) {
146                 /*
147                  * Loop invariant: node is red
148                  *
149                  * If there is a black parent, we are done.
150                  * Otherwise, take some corrective action as we don't
151                  * want a red root or two consecutive red nodes.
152                  */
153                 if (!parent) {
154                         rb_set_parent_color(node, NULL, RB_BLACK);
155                         break;
156                 } else if (rb_is_black(parent))
157                         break;
158
159                 gparent = rb_red_parent(parent);
160
161                 if (parent == gparent->rb_left) {
162                         tmp = gparent->rb_right;
163                         if (tmp && rb_is_red(tmp)) {
164                                 /*
165                                  * Case 1 - color flips
166                                  *
167                                  *       G            g
168                                  *      / \          / \
169                                  *     p   u  -->   P   U
170                                  *    /            /
171                                  *   n            N
172                                  *
173                                  * However, since g's parent might be red, and
174                                  * 4) does not allow this, we need to recurse
175                                  * at g.
176                                  */
177                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
178                                 rb_set_parent_color(parent, gparent, RB_BLACK);
179                                 node = gparent;
180                                 parent = rb_parent(node);
181                                 rb_set_parent_color(node, parent, RB_RED);
182                                 continue;
183                         }
184
185                         if (parent->rb_right == node) {
186                                 /*
187                                  * Case 2 - left rotate at parent
188                                  *
189                                  *      G             G
190                                  *     / \           / \
191                                  *    p   U  -->    n   U
192                                  *     \           /
193                                  *      n         p
194                                  *
195                                  * This still leaves us in violation of 4), the
196                                  * continuation into Case 3 will fix that.
197                                  */
198                                 parent->rb_right = tmp = node->rb_left;
199                                 node->rb_left = parent;
200                                 if (tmp)
201                                         rb_set_parent_color(tmp, parent,
202                                                             RB_BLACK);
203                                 rb_set_parent_color(parent, node, RB_RED);
204                                 parent = node;
205                         }
206
207                         /*
208                          * Case 3 - right rotate at gparent
209                          *
210                          *        G           P
211                          *       / \         / \
212                          *      p   U  -->  n   g
213                          *     /                 \
214                          *    n                   U
215                          */
216                         gparent->rb_left = tmp = parent->rb_right;
217                         parent->rb_right = gparent;
218                         if (tmp)
219                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
220                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
221                         break;
222                 } else {
223                         tmp = gparent->rb_left;
224                         if (tmp && rb_is_red(tmp)) {
225                                 /* Case 1 - color flips */
226                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
227                                 rb_set_parent_color(parent, gparent, RB_BLACK);
228                                 node = gparent;
229                                 parent = rb_parent(node);
230                                 rb_set_parent_color(node, parent, RB_RED);
231                                 continue;
232                         }
233
234                         if (parent->rb_left == node) {
235                                 /* Case 2 - right rotate at parent */
236                                 parent->rb_left = tmp = node->rb_right;
237                                 node->rb_right = parent;
238                                 if (tmp)
239                                         rb_set_parent_color(tmp, parent,
240                                                             RB_BLACK);
241                                 rb_set_parent_color(parent, node, RB_RED);
242                                 parent = node;
243                         }
244
245                         /* Case 3 - left rotate at gparent */
246                         gparent->rb_right = tmp = parent->rb_left;
247                         parent->rb_left = gparent;
248                         if (tmp)
249                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
250                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
251                         break;
252                 }
253         }
254 }
255 EXPORT_SYMBOL(rb_insert_color);
256
257 static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
258                              struct rb_root *root)
259 {
260         struct rb_node *other;
261
262         while (true) {
263                 /*
264                  * Loop invariant: all leaf paths going through node have a
265                  * black node count that is 1 lower than other leaf paths.
266                  *
267                  * If node is red, we can flip it to black to adjust.
268                  * If node is the root, all leaf paths go through it.
269                  * Otherwise, we need to adjust the tree through color flips
270                  * and tree rotations as per one of the 4 cases below.
271                  */
272                 if (node && rb_is_red(node)) {
273                         rb_set_black(node);
274                         break;
275                 } else if (!parent) {
276                         break;
277                 } else if (parent->rb_left == node) {
278                         other = parent->rb_right;
279                         if (rb_is_red(other))
280                         {
281                                 rb_set_black(other);
282                                 rb_set_red(parent);
283                                 __rb_rotate_left(parent, root);
284                                 other = parent->rb_right;
285                         }
286                         if (!other->rb_right || rb_is_black(other->rb_right)) {
287                                 if (!other->rb_left ||
288                                     rb_is_black(other->rb_left)) {
289                                         rb_set_red(other);
290                                         node = parent;
291                                         parent = rb_parent(node);
292                                         continue;
293                                 }
294                                 rb_set_black(other->rb_left);
295                                 rb_set_red(other);
296                                 __rb_rotate_right(other, root);
297                                 other = parent->rb_right;
298                         }
299                         rb_set_color(other, rb_color(parent));
300                         rb_set_black(parent);
301                         rb_set_black(other->rb_right);
302                         __rb_rotate_left(parent, root);
303                         break;
304                 } else {
305                         other = parent->rb_left;
306                         if (rb_is_red(other))
307                         {
308                                 rb_set_black(other);
309                                 rb_set_red(parent);
310                                 __rb_rotate_right(parent, root);
311                                 other = parent->rb_left;
312                         }
313                         if (!other->rb_left || rb_is_black(other->rb_left)) {
314                                 if (!other->rb_right ||
315                                     rb_is_black(other->rb_right)) {
316                                         rb_set_red(other);
317                                         node = parent;
318                                         parent = rb_parent(node);
319                                         continue;
320                                 }
321                                 rb_set_black(other->rb_right);
322                                 rb_set_red(other);
323                                 __rb_rotate_left(other, root);
324                                 other = parent->rb_left;
325                         }
326                         rb_set_color(other, rb_color(parent));
327                         rb_set_black(parent);
328                         rb_set_black(other->rb_left);
329                         __rb_rotate_right(parent, root);
330                         break;
331                 }
332         }
333 }
334
335 void rb_erase(struct rb_node *node, struct rb_root *root)
336 {
337         struct rb_node *child, *parent;
338         int color;
339
340         if (!node->rb_left)
341                 child = node->rb_right;
342         else if (!node->rb_right)
343                 child = node->rb_left;
344         else
345         {
346                 struct rb_node *old = node, *left;
347
348                 node = node->rb_right;
349                 while ((left = node->rb_left) != NULL)
350                         node = left;
351
352                 if (rb_parent(old)) {
353                         if (rb_parent(old)->rb_left == old)
354                                 rb_parent(old)->rb_left = node;
355                         else
356                                 rb_parent(old)->rb_right = node;
357                 } else
358                         root->rb_node = node;
359
360                 child = node->rb_right;
361                 parent = rb_parent(node);
362                 color = rb_color(node);
363
364                 if (parent == old) {
365                         parent = node;
366                 } else {
367                         if (child)
368                                 rb_set_parent(child, parent);
369                         parent->rb_left = child;
370
371                         node->rb_right = old->rb_right;
372                         rb_set_parent(old->rb_right, node);
373                 }
374
375                 node->__rb_parent_color = old->__rb_parent_color;
376                 node->rb_left = old->rb_left;
377                 rb_set_parent(old->rb_left, node);
378
379                 goto color;
380         }
381
382         parent = rb_parent(node);
383         color = rb_color(node);
384
385         if (child)
386                 rb_set_parent(child, parent);
387         if (parent)
388         {
389                 if (parent->rb_left == node)
390                         parent->rb_left = child;
391                 else
392                         parent->rb_right = child;
393         }
394         else
395                 root->rb_node = child;
396
397  color:
398         if (color == RB_BLACK)
399                 __rb_erase_color(child, parent, root);
400 }
401 EXPORT_SYMBOL(rb_erase);
402
403 static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
404 {
405         struct rb_node *parent;
406
407 up:
408         func(node, data);
409         parent = rb_parent(node);
410         if (!parent)
411                 return;
412
413         if (node == parent->rb_left && parent->rb_right)
414                 func(parent->rb_right, data);
415         else if (parent->rb_left)
416                 func(parent->rb_left, data);
417
418         node = parent;
419         goto up;
420 }
421
422 /*
423  * after inserting @node into the tree, update the tree to account for
424  * both the new entry and any damage done by rebalance
425  */
426 void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
427 {
428         if (node->rb_left)
429                 node = node->rb_left;
430         else if (node->rb_right)
431                 node = node->rb_right;
432
433         rb_augment_path(node, func, data);
434 }
435 EXPORT_SYMBOL(rb_augment_insert);
436
437 /*
438  * before removing the node, find the deepest node on the rebalance path
439  * that will still be there after @node gets removed
440  */
441 struct rb_node *rb_augment_erase_begin(struct rb_node *node)
442 {
443         struct rb_node *deepest;
444
445         if (!node->rb_right && !node->rb_left)
446                 deepest = rb_parent(node);
447         else if (!node->rb_right)
448                 deepest = node->rb_left;
449         else if (!node->rb_left)
450                 deepest = node->rb_right;
451         else {
452                 deepest = rb_next(node);
453                 if (deepest->rb_right)
454                         deepest = deepest->rb_right;
455                 else if (rb_parent(deepest) != node)
456                         deepest = rb_parent(deepest);
457         }
458
459         return deepest;
460 }
461 EXPORT_SYMBOL(rb_augment_erase_begin);
462
463 /*
464  * after removal, update the tree to account for the removed entry
465  * and any rebalance damage.
466  */
467 void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
468 {
469         if (node)
470                 rb_augment_path(node, func, data);
471 }
472 EXPORT_SYMBOL(rb_augment_erase_end);
473
474 /*
475  * This function returns the first node (in sort order) of the tree.
476  */
477 struct rb_node *rb_first(const struct rb_root *root)
478 {
479         struct rb_node  *n;
480
481         n = root->rb_node;
482         if (!n)
483                 return NULL;
484         while (n->rb_left)
485                 n = n->rb_left;
486         return n;
487 }
488 EXPORT_SYMBOL(rb_first);
489
490 struct rb_node *rb_last(const struct rb_root *root)
491 {
492         struct rb_node  *n;
493
494         n = root->rb_node;
495         if (!n)
496                 return NULL;
497         while (n->rb_right)
498                 n = n->rb_right;
499         return n;
500 }
501 EXPORT_SYMBOL(rb_last);
502
503 struct rb_node *rb_next(const struct rb_node *node)
504 {
505         struct rb_node *parent;
506
507         if (RB_EMPTY_NODE(node))
508                 return NULL;
509
510         /* If we have a right-hand child, go down and then left as far
511            as we can. */
512         if (node->rb_right) {
513                 node = node->rb_right; 
514                 while (node->rb_left)
515                         node=node->rb_left;
516                 return (struct rb_node *)node;
517         }
518
519         /* No right-hand children.  Everything down and left is
520            smaller than us, so any 'next' node must be in the general
521            direction of our parent. Go up the tree; any time the
522            ancestor is a right-hand child of its parent, keep going
523            up. First time it's a left-hand child of its parent, said
524            parent is our 'next' node. */
525         while ((parent = rb_parent(node)) && node == parent->rb_right)
526                 node = parent;
527
528         return parent;
529 }
530 EXPORT_SYMBOL(rb_next);
531
532 struct rb_node *rb_prev(const struct rb_node *node)
533 {
534         struct rb_node *parent;
535
536         if (RB_EMPTY_NODE(node))
537                 return NULL;
538
539         /* If we have a left-hand child, go down and then right as far
540            as we can. */
541         if (node->rb_left) {
542                 node = node->rb_left; 
543                 while (node->rb_right)
544                         node=node->rb_right;
545                 return (struct rb_node *)node;
546         }
547
548         /* No left-hand children. Go up till we find an ancestor which
549            is a right-hand child of its parent */
550         while ((parent = rb_parent(node)) && node == parent->rb_left)
551                 node = parent;
552
553         return parent;
554 }
555 EXPORT_SYMBOL(rb_prev);
556
557 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
558                      struct rb_root *root)
559 {
560         struct rb_node *parent = rb_parent(victim);
561
562         /* Set the surrounding nodes to point to the replacement */
563         if (parent) {
564                 if (victim == parent->rb_left)
565                         parent->rb_left = new;
566                 else
567                         parent->rb_right = new;
568         } else {
569                 root->rb_node = new;
570         }
571         if (victim->rb_left)
572                 rb_set_parent(victim->rb_left, new);
573         if (victim->rb_right)
574                 rb_set_parent(victim->rb_right, new);
575
576         /* Copy the pointers/colour from the victim to the replacement */
577         *new = *victim;
578 }
579 EXPORT_SYMBOL(rb_replace_node);