]> git.karo-electronics.de Git - karo-tx-linux.git/blob - lib/rhashtable.c
5919d63f58e4a4c4bb555044a2c66c4a60f1bf52
[karo-tx-linux.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on the following paper:
8  * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9  *
10  * Code partially derived from nft_hash
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/jhash.h>
24 #include <linux/random.h>
25 #include <linux/rhashtable.h>
26
27 #define HASH_DEFAULT_SIZE       64UL
28 #define HASH_MIN_SIZE           4UL
29 #define BUCKET_LOCKS_PER_CPU   128UL
30
31 /* Base bits plus 1 bit for nulls marker */
32 #define HASH_RESERVED_SPACE     (RHT_BASE_BITS + 1)
33
34 enum {
35         RHT_LOCK_NORMAL,
36         RHT_LOCK_NESTED,
37 };
38
39 /* The bucket lock is selected based on the hash and protects mutations
40  * on a group of hash buckets.
41  *
42  * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
43  * a single lock always covers both buckets which may both contains
44  * entries which link to the same bucket of the old table during resizing.
45  * This allows to simplify the locking as locking the bucket in both
46  * tables during resize always guarantee protection.
47  *
48  * IMPORTANT: When holding the bucket lock of both the old and new table
49  * during expansions and shrinking, the old bucket lock must always be
50  * acquired first.
51  */
52 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
53 {
54         return &tbl->locks[hash & tbl->locks_mask];
55 }
56
57 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
58 {
59         return (void *) he - ht->p.head_offset;
60 }
61
62 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
63 {
64         return hash & (tbl->size - 1);
65 }
66
67 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
68 {
69         u32 hash;
70
71         if (unlikely(!ht->p.key_len))
72                 hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
73         else
74                 hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
75                                     ht->p.hash_rnd);
76
77         return hash >> HASH_RESERVED_SPACE;
78 }
79
80 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
81 {
82         return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
83 }
84
85 static u32 head_hashfn(const struct rhashtable *ht,
86                        const struct bucket_table *tbl,
87                        const struct rhash_head *he)
88 {
89         return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
90 }
91
92 #ifdef CONFIG_PROVE_LOCKING
93 static void debug_dump_buckets(const struct rhashtable *ht,
94                                const struct bucket_table *tbl)
95 {
96         struct rhash_head *he;
97         unsigned int i, hash;
98
99         for (i = 0; i < tbl->size; i++) {
100                 pr_warn(" [Bucket %d] ", i);
101                 rht_for_each_rcu(he, tbl, i) {
102                         hash = head_hashfn(ht, tbl, he);
103                         pr_cont("[hash = %#x, lock = %p] ",
104                                 hash, bucket_lock(tbl, hash));
105                 }
106                 pr_cont("\n");
107         }
108
109 }
110
111 static void debug_dump_table(struct rhashtable *ht,
112                              const struct bucket_table *tbl,
113                              unsigned int hash)
114 {
115         struct bucket_table *old_tbl, *future_tbl;
116
117         pr_emerg("BUG: lock for hash %#x in table %p not held\n",
118                  hash, tbl);
119
120         rcu_read_lock();
121         future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
122         old_tbl = rht_dereference_rcu(ht->tbl, ht);
123         if (future_tbl != old_tbl) {
124                 pr_warn("Future table %p (size: %zd)\n",
125                         future_tbl, future_tbl->size);
126                 debug_dump_buckets(ht, future_tbl);
127         }
128
129         pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
130         debug_dump_buckets(ht, old_tbl);
131
132         rcu_read_unlock();
133 }
134
135 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
136 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)                               \
137         do {                                                            \
138                 if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \
139                         debug_dump_table(HT, TBL, HASH);                \
140                         BUG();                                          \
141                 }                                                       \
142         } while (0)
143
144 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
145 {
146         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
147 }
148 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
149
150 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
151 {
152         spinlock_t *lock = bucket_lock(tbl, hash);
153
154         return (debug_locks) ? lockdep_is_held(lock) : 1;
155 }
156 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
157 #else
158 #define ASSERT_RHT_MUTEX(HT)
159 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
160 #endif
161
162
163 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
164 {
165         struct rhash_head __rcu **pprev;
166
167         for (pprev = &tbl->buckets[n];
168              !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
169              pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
170                 ;
171
172         return pprev;
173 }
174
175 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
176 {
177         unsigned int i, size;
178 #if defined(CONFIG_PROVE_LOCKING)
179         unsigned int nr_pcpus = 2;
180 #else
181         unsigned int nr_pcpus = num_possible_cpus();
182 #endif
183
184         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
185         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
186
187         /* Never allocate more than 0.5 locks per bucket */
188         size = min_t(unsigned int, size, tbl->size >> 1);
189
190         if (sizeof(spinlock_t) != 0) {
191 #ifdef CONFIG_NUMA
192                 if (size * sizeof(spinlock_t) > PAGE_SIZE)
193                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
194                 else
195 #endif
196                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
197                                            GFP_KERNEL);
198                 if (!tbl->locks)
199                         return -ENOMEM;
200                 for (i = 0; i < size; i++)
201                         spin_lock_init(&tbl->locks[i]);
202         }
203         tbl->locks_mask = size - 1;
204
205         return 0;
206 }
207
208 static void bucket_table_free(const struct bucket_table *tbl)
209 {
210         if (tbl)
211                 kvfree(tbl->locks);
212
213         kvfree(tbl);
214 }
215
216 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
217                                                size_t nbuckets)
218 {
219         struct bucket_table *tbl;
220         size_t size;
221         int i;
222
223         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
224         tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
225         if (tbl == NULL)
226                 tbl = vzalloc(size);
227
228         if (tbl == NULL)
229                 return NULL;
230
231         tbl->size = nbuckets;
232
233         if (alloc_bucket_locks(ht, tbl) < 0) {
234                 bucket_table_free(tbl);
235                 return NULL;
236         }
237
238         for (i = 0; i < nbuckets; i++)
239                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
240
241         return tbl;
242 }
243
244 /**
245  * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
246  * @ht:         hash table
247  * @new_size:   new table size
248  */
249 bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
250 {
251         /* Expand table when exceeding 75% load */
252         return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
253                (ht->p.max_shift && atomic_read(&ht->shift) < ht->p.max_shift);
254 }
255 EXPORT_SYMBOL_GPL(rht_grow_above_75);
256
257 /**
258  * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
259  * @ht:         hash table
260  * @new_size:   new table size
261  */
262 bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
263 {
264         /* Shrink table beneath 30% load */
265         return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
266                (atomic_read(&ht->shift) > ht->p.min_shift);
267 }
268 EXPORT_SYMBOL_GPL(rht_shrink_below_30);
269
270 static void lock_buckets(struct bucket_table *new_tbl,
271                          struct bucket_table *old_tbl, unsigned int hash)
272         __acquires(old_bucket_lock)
273 {
274         spin_lock_bh(bucket_lock(old_tbl, hash));
275         if (new_tbl != old_tbl)
276                 spin_lock_bh_nested(bucket_lock(new_tbl, hash),
277                                     RHT_LOCK_NESTED);
278 }
279
280 static void unlock_buckets(struct bucket_table *new_tbl,
281                            struct bucket_table *old_tbl, unsigned int hash)
282         __releases(old_bucket_lock)
283 {
284         if (new_tbl != old_tbl)
285                 spin_unlock_bh(bucket_lock(new_tbl, hash));
286         spin_unlock_bh(bucket_lock(old_tbl, hash));
287 }
288
289 /**
290  * Unlink entries on bucket which hash to different bucket.
291  *
292  * Returns true if no more work needs to be performed on the bucket.
293  */
294 static bool hashtable_chain_unzip(struct rhashtable *ht,
295                                   const struct bucket_table *new_tbl,
296                                   struct bucket_table *old_tbl,
297                                   size_t old_hash)
298 {
299         struct rhash_head *he, *p, *next;
300         unsigned int new_hash, new_hash2;
301
302         ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
303
304         /* Old bucket empty, no work needed. */
305         p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
306                                    old_hash);
307         if (rht_is_a_nulls(p))
308                 return false;
309
310         new_hash = head_hashfn(ht, new_tbl, p);
311         ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
312
313         /* Advance the old bucket pointer one or more times until it
314          * reaches a node that doesn't hash to the same bucket as the
315          * previous node p. Call the previous node p;
316          */
317         rht_for_each_continue(he, p->next, old_tbl, old_hash) {
318                 new_hash2 = head_hashfn(ht, new_tbl, he);
319                 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
320
321                 if (new_hash != new_hash2)
322                         break;
323                 p = he;
324         }
325         rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
326
327         /* Find the subsequent node which does hash to the same
328          * bucket as node P, or NULL if no such node exists.
329          */
330         INIT_RHT_NULLS_HEAD(next, ht, old_hash);
331         if (!rht_is_a_nulls(he)) {
332                 rht_for_each_continue(he, he->next, old_tbl, old_hash) {
333                         if (head_hashfn(ht, new_tbl, he) == new_hash) {
334                                 next = he;
335                                 break;
336                         }
337                 }
338         }
339
340         /* Set p's next pointer to that subsequent node pointer,
341          * bypassing the nodes which do not hash to p's bucket
342          */
343         rcu_assign_pointer(p->next, next);
344
345         p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
346                                    old_hash);
347
348         return !rht_is_a_nulls(p);
349 }
350
351 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
352                             unsigned int new_hash, struct rhash_head *entry)
353 {
354         ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
355
356         rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
357 }
358
359 /**
360  * rhashtable_expand - Expand hash table while allowing concurrent lookups
361  * @ht:         the hash table to expand
362  *
363  * A secondary bucket array is allocated and the hash entries are migrated
364  * while keeping them on both lists until the end of the RCU grace period.
365  *
366  * This function may only be called in a context where it is safe to call
367  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
368  *
369  * The caller must ensure that no concurrent resizing occurs by holding
370  * ht->mutex.
371  *
372  * It is valid to have concurrent insertions and deletions protected by per
373  * bucket locks or concurrent RCU protected lookups and traversals.
374  */
375 int rhashtable_expand(struct rhashtable *ht)
376 {
377         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
378         struct rhash_head *he;
379         unsigned int new_hash, old_hash;
380         bool complete = false;
381
382         ASSERT_RHT_MUTEX(ht);
383
384         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
385         if (new_tbl == NULL)
386                 return -ENOMEM;
387
388         atomic_inc(&ht->shift);
389
390         /* Make insertions go into the new, empty table right away. Deletions
391          * and lookups will be attempted in both tables until we synchronize.
392          * The synchronize_rcu() guarantees for the new table to be picked up
393          * so no new additions go into the old table while we relink.
394          */
395         rcu_assign_pointer(ht->future_tbl, new_tbl);
396         synchronize_rcu();
397
398         /* For each new bucket, search the corresponding old bucket for the
399          * first entry that hashes to the new bucket, and link the end of
400          * newly formed bucket chain (containing entries added to future
401          * table) to that entry. Since all the entries which will end up in
402          * the new bucket appear in the same old bucket, this constructs an
403          * entirely valid new hash table, but with multiple buckets
404          * "zipped" together into a single imprecise chain.
405          */
406         for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
407                 old_hash = rht_bucket_index(old_tbl, new_hash);
408                 lock_buckets(new_tbl, old_tbl, new_hash);
409                 rht_for_each(he, old_tbl, old_hash) {
410                         if (head_hashfn(ht, new_tbl, he) == new_hash) {
411                                 link_old_to_new(ht, new_tbl, new_hash, he);
412                                 break;
413                         }
414                 }
415                 unlock_buckets(new_tbl, old_tbl, new_hash);
416         }
417
418         /* Unzip interleaved hash chains */
419         while (!complete && !ht->being_destroyed) {
420                 /* Wait for readers. All new readers will see the new
421                  * table, and thus no references to the old table will
422                  * remain.
423                  */
424                 synchronize_rcu();
425
426                 /* For each bucket in the old table (each of which
427                  * contains items from multiple buckets of the new
428                  * table): ...
429                  */
430                 complete = true;
431                 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
432                         lock_buckets(new_tbl, old_tbl, old_hash);
433
434                         if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
435                                                   old_hash))
436                                 complete = false;
437
438                         unlock_buckets(new_tbl, old_tbl, old_hash);
439                 }
440         }
441
442         rcu_assign_pointer(ht->tbl, new_tbl);
443         synchronize_rcu();
444
445         bucket_table_free(old_tbl);
446         return 0;
447 }
448 EXPORT_SYMBOL_GPL(rhashtable_expand);
449
450 /**
451  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
452  * @ht:         the hash table to shrink
453  *
454  * This function may only be called in a context where it is safe to call
455  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
456  *
457  * The caller must ensure that no concurrent resizing occurs by holding
458  * ht->mutex.
459  *
460  * The caller must ensure that no concurrent table mutations take place.
461  * It is however valid to have concurrent lookups if they are RCU protected.
462  *
463  * It is valid to have concurrent insertions and deletions protected by per
464  * bucket locks or concurrent RCU protected lookups and traversals.
465  */
466 int rhashtable_shrink(struct rhashtable *ht)
467 {
468         struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
469         unsigned int new_hash;
470
471         ASSERT_RHT_MUTEX(ht);
472
473         new_tbl = bucket_table_alloc(ht, tbl->size / 2);
474         if (new_tbl == NULL)
475                 return -ENOMEM;
476
477         rcu_assign_pointer(ht->future_tbl, new_tbl);
478         synchronize_rcu();
479
480         /* Link the first entry in the old bucket to the end of the
481          * bucket in the new table. As entries are concurrently being
482          * added to the new table, lock down the new bucket. As we
483          * always divide the size in half when shrinking, each bucket
484          * in the new table maps to exactly two buckets in the old
485          * table.
486          */
487         for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
488                 lock_buckets(new_tbl, tbl, new_hash);
489
490                 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
491                                    tbl->buckets[new_hash]);
492                 ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
493                 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
494                                    tbl->buckets[new_hash + new_tbl->size]);
495
496                 unlock_buckets(new_tbl, tbl, new_hash);
497         }
498
499         /* Publish the new, valid hash table */
500         rcu_assign_pointer(ht->tbl, new_tbl);
501         atomic_dec(&ht->shift);
502
503         /* Wait for readers. No new readers will have references to the
504          * old hash table.
505          */
506         synchronize_rcu();
507
508         bucket_table_free(tbl);
509
510         return 0;
511 }
512 EXPORT_SYMBOL_GPL(rhashtable_shrink);
513
514 static void rht_deferred_worker(struct work_struct *work)
515 {
516         struct rhashtable *ht;
517         struct bucket_table *tbl;
518         struct rhashtable_walker *walker;
519
520         ht = container_of(work, struct rhashtable, run_work);
521         mutex_lock(&ht->mutex);
522         if (ht->being_destroyed)
523                 goto unlock;
524
525         tbl = rht_dereference(ht->tbl, ht);
526
527         list_for_each_entry(walker, &ht->walkers, list)
528                 walker->resize = true;
529
530         if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size))
531                 rhashtable_expand(ht);
532         else if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size))
533                 rhashtable_shrink(ht);
534
535 unlock:
536         mutex_unlock(&ht->mutex);
537 }
538
539 static void rhashtable_wakeup_worker(struct rhashtable *ht)
540 {
541         struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
542         struct bucket_table *new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
543         size_t size = tbl->size;
544
545         /* Only adjust the table if no resizing is currently in progress. */
546         if (tbl == new_tbl &&
547             ((ht->p.grow_decision && ht->p.grow_decision(ht, size)) ||
548              (ht->p.shrink_decision && ht->p.shrink_decision(ht, size))))
549                 schedule_work(&ht->run_work);
550 }
551
552 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
553                                 struct bucket_table *tbl, u32 hash)
554 {
555         struct rhash_head *head = rht_dereference_bucket(tbl->buckets[hash],
556                                                          tbl, hash);
557
558         ASSERT_BUCKET_LOCK(ht, tbl, hash);
559
560         if (rht_is_a_nulls(head))
561                 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
562         else
563                 RCU_INIT_POINTER(obj->next, head);
564
565         rcu_assign_pointer(tbl->buckets[hash], obj);
566
567         atomic_inc(&ht->nelems);
568
569         rhashtable_wakeup_worker(ht);
570 }
571
572 /**
573  * rhashtable_insert - insert object into hash table
574  * @ht:         hash table
575  * @obj:        pointer to hash head inside object
576  *
577  * Will take a per bucket spinlock to protect against mutual mutations
578  * on the same bucket. Multiple insertions may occur in parallel unless
579  * they map to the same bucket lock.
580  *
581  * It is safe to call this function from atomic context.
582  *
583  * Will trigger an automatic deferred table resizing if the size grows
584  * beyond the watermark indicated by grow_decision() which can be passed
585  * to rhashtable_init().
586  */
587 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
588 {
589         struct bucket_table *tbl, *old_tbl;
590         unsigned hash;
591
592         rcu_read_lock();
593
594         tbl = rht_dereference_rcu(ht->future_tbl, ht);
595         old_tbl = rht_dereference_rcu(ht->tbl, ht);
596         hash = head_hashfn(ht, tbl, obj);
597
598         lock_buckets(tbl, old_tbl, hash);
599         __rhashtable_insert(ht, obj, tbl, hash);
600         unlock_buckets(tbl, old_tbl, hash);
601
602         rcu_read_unlock();
603 }
604 EXPORT_SYMBOL_GPL(rhashtable_insert);
605
606 /**
607  * rhashtable_remove - remove object from hash table
608  * @ht:         hash table
609  * @obj:        pointer to hash head inside object
610  *
611  * Since the hash chain is single linked, the removal operation needs to
612  * walk the bucket chain upon removal. The removal operation is thus
613  * considerable slow if the hash table is not correctly sized.
614  *
615  * Will automatically shrink the table via rhashtable_expand() if the
616  * shrink_decision function specified at rhashtable_init() returns true.
617  *
618  * The caller must ensure that no concurrent table mutations occur. It is
619  * however valid to have concurrent lookups if they are RCU protected.
620  */
621 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
622 {
623         struct bucket_table *tbl, *new_tbl, *old_tbl;
624         struct rhash_head __rcu **pprev;
625         struct rhash_head *he, *he2;
626         unsigned int hash, new_hash;
627         bool ret = false;
628
629         rcu_read_lock();
630         tbl = old_tbl = rht_dereference_rcu(ht->tbl, ht);
631         new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
632         new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
633
634         lock_buckets(new_tbl, old_tbl, new_hash);
635 restart:
636         hash = rht_bucket_index(tbl, new_hash);
637         pprev = &tbl->buckets[hash];
638         rht_for_each(he, tbl, hash) {
639                 if (he != obj) {
640                         pprev = &he->next;
641                         continue;
642                 }
643
644                 ASSERT_BUCKET_LOCK(ht, tbl, hash);
645
646                 if (unlikely(new_tbl != tbl)) {
647                         rht_for_each_continue(he2, he->next, tbl, hash) {
648                                 if (head_hashfn(ht, tbl, he2) == hash) {
649                                         rcu_assign_pointer(*pprev, he2);
650                                         goto found;
651                                 }
652                         }
653
654                         INIT_RHT_NULLS_HEAD(*pprev, ht, hash);
655                 } else {
656                         rcu_assign_pointer(*pprev, obj->next);
657                 }
658
659 found:
660                 ret = true;
661                 break;
662         }
663
664         /* The entry may be linked in either 'tbl', 'future_tbl', or both.
665          * 'future_tbl' only exists for a short period of time during
666          * resizing. Thus traversing both is fine and the added cost is
667          * very rare.
668          */
669         if (tbl != new_tbl) {
670                 tbl = new_tbl;
671                 goto restart;
672         }
673
674         unlock_buckets(new_tbl, old_tbl, new_hash);
675
676         if (ret) {
677                 atomic_dec(&ht->nelems);
678                 rhashtable_wakeup_worker(ht);
679         }
680
681         rcu_read_unlock();
682
683         return ret;
684 }
685 EXPORT_SYMBOL_GPL(rhashtable_remove);
686
687 struct rhashtable_compare_arg {
688         struct rhashtable *ht;
689         const void *key;
690 };
691
692 static bool rhashtable_compare(void *ptr, void *arg)
693 {
694         struct rhashtable_compare_arg *x = arg;
695         struct rhashtable *ht = x->ht;
696
697         return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
698 }
699
700 /**
701  * rhashtable_lookup - lookup key in hash table
702  * @ht:         hash table
703  * @key:        pointer to key
704  *
705  * Computes the hash value for the key and traverses the bucket chain looking
706  * for a entry with an identical key. The first matching entry is returned.
707  *
708  * This lookup function may only be used for fixed key hash table (key_len
709  * parameter set). It will BUG() if used inappropriately.
710  *
711  * Lookups may occur in parallel with hashtable mutations and resizing.
712  */
713 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
714 {
715         struct rhashtable_compare_arg arg = {
716                 .ht = ht,
717                 .key = key,
718         };
719
720         BUG_ON(!ht->p.key_len);
721
722         return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
723 }
724 EXPORT_SYMBOL_GPL(rhashtable_lookup);
725
726 /**
727  * rhashtable_lookup_compare - search hash table with compare function
728  * @ht:         hash table
729  * @key:        the pointer to the key
730  * @compare:    compare function, must return true on match
731  * @arg:        argument passed on to compare function
732  *
733  * Traverses the bucket chain behind the provided hash value and calls the
734  * specified compare function for each entry.
735  *
736  * Lookups may occur in parallel with hashtable mutations and resizing.
737  *
738  * Returns the first entry on which the compare function returned true.
739  */
740 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
741                                 bool (*compare)(void *, void *), void *arg)
742 {
743         const struct bucket_table *tbl, *old_tbl;
744         struct rhash_head *he;
745         u32 hash;
746
747         rcu_read_lock();
748
749         old_tbl = rht_dereference_rcu(ht->tbl, ht);
750         tbl = rht_dereference_rcu(ht->future_tbl, ht);
751         hash = key_hashfn(ht, key, ht->p.key_len);
752 restart:
753         rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
754                 if (!compare(rht_obj(ht, he), arg))
755                         continue;
756                 rcu_read_unlock();
757                 return rht_obj(ht, he);
758         }
759
760         if (unlikely(tbl != old_tbl)) {
761                 tbl = old_tbl;
762                 goto restart;
763         }
764         rcu_read_unlock();
765
766         return NULL;
767 }
768 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
769
770 /**
771  * rhashtable_lookup_insert - lookup and insert object into hash table
772  * @ht:         hash table
773  * @obj:        pointer to hash head inside object
774  *
775  * Locks down the bucket chain in both the old and new table if a resize
776  * is in progress to ensure that writers can't remove from the old table
777  * and can't insert to the new table during the atomic operation of search
778  * and insertion. Searches for duplicates in both the old and new table if
779  * a resize is in progress.
780  *
781  * This lookup function may only be used for fixed key hash table (key_len
782  * parameter set). It will BUG() if used inappropriately.
783  *
784  * It is safe to call this function from atomic context.
785  *
786  * Will trigger an automatic deferred table resizing if the size grows
787  * beyond the watermark indicated by grow_decision() which can be passed
788  * to rhashtable_init().
789  */
790 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
791 {
792         struct rhashtable_compare_arg arg = {
793                 .ht = ht,
794                 .key = rht_obj(ht, obj) + ht->p.key_offset,
795         };
796
797         BUG_ON(!ht->p.key_len);
798
799         return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
800                                                 &arg);
801 }
802 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
803
804 /**
805  * rhashtable_lookup_compare_insert - search and insert object to hash table
806  *                                    with compare function
807  * @ht:         hash table
808  * @obj:        pointer to hash head inside object
809  * @compare:    compare function, must return true on match
810  * @arg:        argument passed on to compare function
811  *
812  * Locks down the bucket chain in both the old and new table if a resize
813  * is in progress to ensure that writers can't remove from the old table
814  * and can't insert to the new table during the atomic operation of search
815  * and insertion. Searches for duplicates in both the old and new table if
816  * a resize is in progress.
817  *
818  * Lookups may occur in parallel with hashtable mutations and resizing.
819  *
820  * Will trigger an automatic deferred table resizing if the size grows
821  * beyond the watermark indicated by grow_decision() which can be passed
822  * to rhashtable_init().
823  */
824 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
825                                       struct rhash_head *obj,
826                                       bool (*compare)(void *, void *),
827                                       void *arg)
828 {
829         struct bucket_table *new_tbl, *old_tbl;
830         u32 new_hash;
831         bool success = true;
832
833         BUG_ON(!ht->p.key_len);
834
835         rcu_read_lock();
836         old_tbl = rht_dereference_rcu(ht->tbl, ht);
837         new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
838         new_hash = head_hashfn(ht, new_tbl, obj);
839
840         lock_buckets(new_tbl, old_tbl, new_hash);
841
842         if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
843                                       compare, arg)) {
844                 success = false;
845                 goto exit;
846         }
847
848         __rhashtable_insert(ht, obj, new_tbl, new_hash);
849
850 exit:
851         unlock_buckets(new_tbl, old_tbl, new_hash);
852         rcu_read_unlock();
853
854         return success;
855 }
856 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
857
858 /**
859  * rhashtable_walk_init - Initialise an iterator
860  * @ht:         Table to walk over
861  * @iter:       Hash table Iterator
862  *
863  * This function prepares a hash table walk.
864  *
865  * Note that if you restart a walk after rhashtable_walk_stop you
866  * may see the same object twice.  Also, you may miss objects if
867  * there are removals in between rhashtable_walk_stop and the next
868  * call to rhashtable_walk_start.
869  *
870  * For a completely stable walk you should construct your own data
871  * structure outside the hash table.
872  *
873  * This function may sleep so you must not call it from interrupt
874  * context or with spin locks held.
875  *
876  * You must call rhashtable_walk_exit if this function returns
877  * successfully.
878  */
879 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
880 {
881         iter->ht = ht;
882         iter->p = NULL;
883         iter->slot = 0;
884         iter->skip = 0;
885
886         iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
887         if (!iter->walker)
888                 return -ENOMEM;
889
890         mutex_lock(&ht->mutex);
891         list_add(&iter->walker->list, &ht->walkers);
892         mutex_unlock(&ht->mutex);
893
894         return 0;
895 }
896 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
897
898 /**
899  * rhashtable_walk_exit - Free an iterator
900  * @iter:       Hash table Iterator
901  *
902  * This function frees resources allocated by rhashtable_walk_init.
903  */
904 void rhashtable_walk_exit(struct rhashtable_iter *iter)
905 {
906         mutex_lock(&iter->ht->mutex);
907         list_del(&iter->walker->list);
908         mutex_unlock(&iter->ht->mutex);
909         kfree(iter->walker);
910 }
911 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
912
913 /**
914  * rhashtable_walk_start - Start a hash table walk
915  * @iter:       Hash table iterator
916  *
917  * Start a hash table walk.  Note that we take the RCU lock in all
918  * cases including when we return an error.  So you must always call
919  * rhashtable_walk_stop to clean up.
920  *
921  * Returns zero if successful.
922  *
923  * Returns -EAGAIN if resize event occured.  Note that the iterator
924  * will rewind back to the beginning and you may use it immediately
925  * by calling rhashtable_walk_next.
926  */
927 int rhashtable_walk_start(struct rhashtable_iter *iter)
928 {
929         rcu_read_lock();
930
931         if (iter->walker->resize) {
932                 iter->slot = 0;
933                 iter->skip = 0;
934                 iter->walker->resize = false;
935                 return -EAGAIN;
936         }
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
941
942 /**
943  * rhashtable_walk_next - Return the next object and advance the iterator
944  * @iter:       Hash table iterator
945  *
946  * Note that you must call rhashtable_walk_stop when you are finished
947  * with the walk.
948  *
949  * Returns the next object or NULL when the end of the table is reached.
950  *
951  * Returns -EAGAIN if resize event occured.  Note that the iterator
952  * will rewind back to the beginning and you may continue to use it.
953  */
954 void *rhashtable_walk_next(struct rhashtable_iter *iter)
955 {
956         const struct bucket_table *tbl;
957         struct rhashtable *ht = iter->ht;
958         struct rhash_head *p = iter->p;
959         void *obj = NULL;
960
961         tbl = rht_dereference_rcu(ht->tbl, ht);
962
963         if (p) {
964                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
965                 goto next;
966         }
967
968         for (; iter->slot < tbl->size; iter->slot++) {
969                 int skip = iter->skip;
970
971                 rht_for_each_rcu(p, tbl, iter->slot) {
972                         if (!skip)
973                                 break;
974                         skip--;
975                 }
976
977 next:
978                 if (!rht_is_a_nulls(p)) {
979                         iter->skip++;
980                         iter->p = p;
981                         obj = rht_obj(ht, p);
982                         goto out;
983                 }
984
985                 iter->skip = 0;
986         }
987
988         iter->p = NULL;
989
990 out:
991         if (iter->walker->resize) {
992                 iter->p = NULL;
993                 iter->slot = 0;
994                 iter->skip = 0;
995                 iter->walker->resize = false;
996                 return ERR_PTR(-EAGAIN);
997         }
998
999         return obj;
1000 }
1001 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1002
1003 /**
1004  * rhashtable_walk_stop - Finish a hash table walk
1005  * @iter:       Hash table iterator
1006  *
1007  * Finish a hash table walk.
1008  */
1009 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1010 {
1011         rcu_read_unlock();
1012         iter->p = NULL;
1013 }
1014 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1015
1016 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1017 {
1018         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1019                    1UL << params->min_shift);
1020 }
1021
1022 /**
1023  * rhashtable_init - initialize a new hash table
1024  * @ht:         hash table to be initialized
1025  * @params:     configuration parameters
1026  *
1027  * Initializes a new hash table based on the provided configuration
1028  * parameters. A table can be configured either with a variable or
1029  * fixed length key:
1030  *
1031  * Configuration Example 1: Fixed length keys
1032  * struct test_obj {
1033  *      int                     key;
1034  *      void *                  my_member;
1035  *      struct rhash_head       node;
1036  * };
1037  *
1038  * struct rhashtable_params params = {
1039  *      .head_offset = offsetof(struct test_obj, node),
1040  *      .key_offset = offsetof(struct test_obj, key),
1041  *      .key_len = sizeof(int),
1042  *      .hashfn = jhash,
1043  *      .nulls_base = (1U << RHT_BASE_SHIFT),
1044  * };
1045  *
1046  * Configuration Example 2: Variable length keys
1047  * struct test_obj {
1048  *      [...]
1049  *      struct rhash_head       node;
1050  * };
1051  *
1052  * u32 my_hash_fn(const void *data, u32 seed)
1053  * {
1054  *      struct test_obj *obj = data;
1055  *
1056  *      return [... hash ...];
1057  * }
1058  *
1059  * struct rhashtable_params params = {
1060  *      .head_offset = offsetof(struct test_obj, node),
1061  *      .hashfn = jhash,
1062  *      .obj_hashfn = my_hash_fn,
1063  * };
1064  */
1065 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1066 {
1067         struct bucket_table *tbl;
1068         size_t size;
1069
1070         size = HASH_DEFAULT_SIZE;
1071
1072         if ((params->key_len && !params->hashfn) ||
1073             (!params->key_len && !params->obj_hashfn))
1074                 return -EINVAL;
1075
1076         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1077                 return -EINVAL;
1078
1079         params->min_shift = max_t(size_t, params->min_shift,
1080                                   ilog2(HASH_MIN_SIZE));
1081
1082         if (params->nelem_hint)
1083                 size = rounded_hashtable_size(params);
1084
1085         memset(ht, 0, sizeof(*ht));
1086         mutex_init(&ht->mutex);
1087         memcpy(&ht->p, params, sizeof(*params));
1088         INIT_LIST_HEAD(&ht->walkers);
1089
1090         if (params->locks_mul)
1091                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1092         else
1093                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1094
1095         tbl = bucket_table_alloc(ht, size);
1096         if (tbl == NULL)
1097                 return -ENOMEM;
1098
1099         atomic_set(&ht->nelems, 0);
1100         atomic_set(&ht->shift, ilog2(tbl->size));
1101         RCU_INIT_POINTER(ht->tbl, tbl);
1102         RCU_INIT_POINTER(ht->future_tbl, tbl);
1103
1104         if (!ht->p.hash_rnd)
1105                 get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1106
1107         if (ht->p.grow_decision || ht->p.shrink_decision)
1108                 INIT_WORK(&ht->run_work, rht_deferred_worker);
1109
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(rhashtable_init);
1113
1114 /**
1115  * rhashtable_destroy - destroy hash table
1116  * @ht:         the hash table to destroy
1117  *
1118  * Frees the bucket array. This function is not rcu safe, therefore the caller
1119  * has to make sure that no resizing may happen by unpublishing the hashtable
1120  * and waiting for the quiescent cycle before releasing the bucket array.
1121  */
1122 void rhashtable_destroy(struct rhashtable *ht)
1123 {
1124         ht->being_destroyed = true;
1125
1126         if (ht->p.grow_decision || ht->p.shrink_decision)
1127                 cancel_work_sync(&ht->run_work);
1128
1129         mutex_lock(&ht->mutex);
1130         bucket_table_free(rht_dereference(ht->tbl, ht));
1131         mutex_unlock(&ht->mutex);
1132 }
1133 EXPORT_SYMBOL_GPL(rhashtable_destroy);