]> git.karo-electronics.de Git - karo-tx-linux.git/blob - lib/rhashtable.c
Merge branches 'acpica-fixes', 'acpi-video' and 'acpi-processor'
[karo-tx-linux.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE       64UL
32 #define HASH_MIN_SIZE           4U
33 #define BUCKET_LOCKS_PER_CPU   128UL
34
35 static u32 head_hashfn(struct rhashtable *ht,
36                        const struct bucket_table *tbl,
37                        const struct rhash_head *he)
38 {
39         return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53         spinlock_t *lock = rht_bucket_lock(tbl, hash);
54
55         return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61
62
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64                               gfp_t gfp)
65 {
66         unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68         unsigned int nr_pcpus = 2;
69 #else
70         unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72
73         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75
76         /* Never allocate more than 0.5 locks per bucket */
77         size = min_t(unsigned int, size, tbl->size >> 1);
78
79         if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81                 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82                     gfp == GFP_KERNEL)
83                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
84                 else
85 #endif
86                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87                                            gfp);
88                 if (!tbl->locks)
89                         return -ENOMEM;
90                 for (i = 0; i < size; i++)
91                         spin_lock_init(&tbl->locks[i]);
92         }
93         tbl->locks_mask = size - 1;
94
95         return 0;
96 }
97
98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100         if (tbl)
101                 kvfree(tbl->locks);
102
103         kvfree(tbl);
104 }
105
106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108         bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112                                                size_t nbuckets,
113                                                gfp_t gfp)
114 {
115         struct bucket_table *tbl = NULL;
116         size_t size;
117         int i;
118
119         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120         if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121             gfp != GFP_KERNEL)
122                 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123         if (tbl == NULL && gfp == GFP_KERNEL)
124                 tbl = vzalloc(size);
125         if (tbl == NULL)
126                 return NULL;
127
128         tbl->size = nbuckets;
129
130         if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131                 bucket_table_free(tbl);
132                 return NULL;
133         }
134
135         INIT_LIST_HEAD(&tbl->walkers);
136
137         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138
139         for (i = 0; i < nbuckets; i++)
140                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141
142         return tbl;
143 }
144
145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146                                                   struct bucket_table *tbl)
147 {
148         struct bucket_table *new_tbl;
149
150         do {
151                 new_tbl = tbl;
152                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153         } while (tbl);
154
155         return new_tbl;
156 }
157
158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159 {
160         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161         struct bucket_table *new_tbl = rhashtable_last_table(ht,
162                 rht_dereference_rcu(old_tbl->future_tbl, ht));
163         struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164         int err = -ENOENT;
165         struct rhash_head *head, *next, *entry;
166         spinlock_t *new_bucket_lock;
167         unsigned int new_hash;
168
169         rht_for_each(entry, old_tbl, old_hash) {
170                 err = 0;
171                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172
173                 if (rht_is_a_nulls(next))
174                         break;
175
176                 pprev = &entry->next;
177         }
178
179         if (err)
180                 goto out;
181
182         new_hash = head_hashfn(ht, new_tbl, entry);
183
184         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185
186         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188                                       new_tbl, new_hash);
189
190         RCU_INIT_POINTER(entry->next, head);
191
192         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193         spin_unlock(new_bucket_lock);
194
195         rcu_assign_pointer(*pprev, next);
196
197 out:
198         return err;
199 }
200
201 static void rhashtable_rehash_chain(struct rhashtable *ht,
202                                     unsigned int old_hash)
203 {
204         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205         spinlock_t *old_bucket_lock;
206
207         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209         spin_lock_bh(old_bucket_lock);
210         while (!rhashtable_rehash_one(ht, old_hash))
211                 ;
212         old_tbl->rehash++;
213         spin_unlock_bh(old_bucket_lock);
214 }
215
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217                                     struct bucket_table *old_tbl,
218                                     struct bucket_table *new_tbl)
219 {
220         /* Protect future_tbl using the first bucket lock. */
221         spin_lock_bh(old_tbl->locks);
222
223         /* Did somebody beat us to it? */
224         if (rcu_access_pointer(old_tbl->future_tbl)) {
225                 spin_unlock_bh(old_tbl->locks);
226                 return -EEXIST;
227         }
228
229         /* Make insertions go into the new, empty table right away. Deletions
230          * and lookups will be attempted in both tables until we synchronize.
231          */
232         rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234         spin_unlock_bh(old_tbl->locks);
235
236         return 0;
237 }
238
239 static int rhashtable_rehash_table(struct rhashtable *ht)
240 {
241         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
242         struct bucket_table *new_tbl;
243         struct rhashtable_walker *walker;
244         unsigned int old_hash;
245
246         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
247         if (!new_tbl)
248                 return 0;
249
250         for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
251                 rhashtable_rehash_chain(ht, old_hash);
252
253         /* Publish the new table pointer. */
254         rcu_assign_pointer(ht->tbl, new_tbl);
255
256         spin_lock(&ht->lock);
257         list_for_each_entry(walker, &old_tbl->walkers, list)
258                 walker->tbl = NULL;
259         spin_unlock(&ht->lock);
260
261         /* Wait for readers. All new readers will see the new
262          * table, and thus no references to the old table will
263          * remain.
264          */
265         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
266
267         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
268 }
269
270 /**
271  * rhashtable_expand - Expand hash table while allowing concurrent lookups
272  * @ht:         the hash table to expand
273  *
274  * A secondary bucket array is allocated and the hash entries are migrated.
275  *
276  * This function may only be called in a context where it is safe to call
277  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
278  *
279  * The caller must ensure that no concurrent resizing occurs by holding
280  * ht->mutex.
281  *
282  * It is valid to have concurrent insertions and deletions protected by per
283  * bucket locks or concurrent RCU protected lookups and traversals.
284  */
285 static int rhashtable_expand(struct rhashtable *ht)
286 {
287         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
288         int err;
289
290         ASSERT_RHT_MUTEX(ht);
291
292         old_tbl = rhashtable_last_table(ht, old_tbl);
293
294         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
295         if (new_tbl == NULL)
296                 return -ENOMEM;
297
298         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
299         if (err)
300                 bucket_table_free(new_tbl);
301
302         return err;
303 }
304
305 /**
306  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
307  * @ht:         the hash table to shrink
308  *
309  * This function shrinks the hash table to fit, i.e., the smallest
310  * size would not cause it to expand right away automatically.
311  *
312  * The caller must ensure that no concurrent resizing occurs by holding
313  * ht->mutex.
314  *
315  * The caller must ensure that no concurrent table mutations take place.
316  * It is however valid to have concurrent lookups if they are RCU protected.
317  *
318  * It is valid to have concurrent insertions and deletions protected by per
319  * bucket locks or concurrent RCU protected lookups and traversals.
320  */
321 static int rhashtable_shrink(struct rhashtable *ht)
322 {
323         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
324         unsigned int size;
325         int err;
326
327         ASSERT_RHT_MUTEX(ht);
328
329         size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
330         if (size < ht->p.min_size)
331                 size = ht->p.min_size;
332
333         if (old_tbl->size <= size)
334                 return 0;
335
336         if (rht_dereference(old_tbl->future_tbl, ht))
337                 return -EEXIST;
338
339         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340         if (new_tbl == NULL)
341                 return -ENOMEM;
342
343         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344         if (err)
345                 bucket_table_free(new_tbl);
346
347         return err;
348 }
349
350 static void rht_deferred_worker(struct work_struct *work)
351 {
352         struct rhashtable *ht;
353         struct bucket_table *tbl;
354         int err = 0;
355
356         ht = container_of(work, struct rhashtable, run_work);
357         mutex_lock(&ht->mutex);
358
359         tbl = rht_dereference(ht->tbl, ht);
360         tbl = rhashtable_last_table(ht, tbl);
361
362         if (rht_grow_above_75(ht, tbl))
363                 rhashtable_expand(ht);
364         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
365                 rhashtable_shrink(ht);
366
367         err = rhashtable_rehash_table(ht);
368
369         mutex_unlock(&ht->mutex);
370
371         if (err)
372                 schedule_work(&ht->run_work);
373 }
374
375 static bool rhashtable_check_elasticity(struct rhashtable *ht,
376                                         struct bucket_table *tbl,
377                                         unsigned int hash)
378 {
379         unsigned int elasticity = ht->elasticity;
380         struct rhash_head *head;
381
382         rht_for_each(head, tbl, hash)
383                 if (!--elasticity)
384                         return true;
385
386         return false;
387 }
388
389 int rhashtable_insert_rehash(struct rhashtable *ht,
390                              struct bucket_table *tbl)
391 {
392         struct bucket_table *old_tbl;
393         struct bucket_table *new_tbl;
394         unsigned int size;
395         int err;
396
397         old_tbl = rht_dereference_rcu(ht->tbl, ht);
398
399         size = tbl->size;
400
401         err = -EBUSY;
402
403         if (rht_grow_above_75(ht, tbl))
404                 size *= 2;
405         /* Do not schedule more than one rehash */
406         else if (old_tbl != tbl)
407                 goto fail;
408
409         err = -ENOMEM;
410
411         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412         if (new_tbl == NULL)
413                 goto fail;
414
415         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
416         if (err) {
417                 bucket_table_free(new_tbl);
418                 if (err == -EEXIST)
419                         err = 0;
420         } else
421                 schedule_work(&ht->run_work);
422
423         return err;
424
425 fail:
426         /* Do not fail the insert if someone else did a rehash. */
427         if (likely(rcu_dereference_raw(tbl->future_tbl)))
428                 return 0;
429
430         /* Schedule async rehash to retry allocation in process context. */
431         if (err == -ENOMEM)
432                 schedule_work(&ht->run_work);
433
434         return err;
435 }
436 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
437
438 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
439                                             const void *key,
440                                             struct rhash_head *obj,
441                                             struct bucket_table *tbl)
442 {
443         struct rhash_head *head;
444         unsigned int hash;
445         int err;
446
447         tbl = rhashtable_last_table(ht, tbl);
448         hash = head_hashfn(ht, tbl, obj);
449         spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
450
451         err = -EEXIST;
452         if (key && rhashtable_lookup_fast(ht, key, ht->p))
453                 goto exit;
454
455         err = -E2BIG;
456         if (unlikely(rht_grow_above_max(ht, tbl)))
457                 goto exit;
458
459         err = -EAGAIN;
460         if (rhashtable_check_elasticity(ht, tbl, hash) ||
461             rht_grow_above_100(ht, tbl))
462                 goto exit;
463
464         err = 0;
465
466         head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
467
468         RCU_INIT_POINTER(obj->next, head);
469
470         rcu_assign_pointer(tbl->buckets[hash], obj);
471
472         atomic_inc(&ht->nelems);
473
474 exit:
475         spin_unlock(rht_bucket_lock(tbl, hash));
476
477         if (err == 0)
478                 return NULL;
479         else if (err == -EAGAIN)
480                 return tbl;
481         else
482                 return ERR_PTR(err);
483 }
484 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
485
486 /**
487  * rhashtable_walk_init - Initialise an iterator
488  * @ht:         Table to walk over
489  * @iter:       Hash table Iterator
490  * @gfp:        GFP flags for allocations
491  *
492  * This function prepares a hash table walk.
493  *
494  * Note that if you restart a walk after rhashtable_walk_stop you
495  * may see the same object twice.  Also, you may miss objects if
496  * there are removals in between rhashtable_walk_stop and the next
497  * call to rhashtable_walk_start.
498  *
499  * For a completely stable walk you should construct your own data
500  * structure outside the hash table.
501  *
502  * This function may sleep so you must not call it from interrupt
503  * context or with spin locks held.
504  *
505  * You must call rhashtable_walk_exit if this function returns
506  * successfully.
507  */
508 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter,
509                          gfp_t gfp)
510 {
511         iter->ht = ht;
512         iter->p = NULL;
513         iter->slot = 0;
514         iter->skip = 0;
515
516         iter->walker = kmalloc(sizeof(*iter->walker), gfp);
517         if (!iter->walker)
518                 return -ENOMEM;
519
520         spin_lock(&ht->lock);
521         iter->walker->tbl =
522                 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
523         list_add(&iter->walker->list, &iter->walker->tbl->walkers);
524         spin_unlock(&ht->lock);
525
526         return 0;
527 }
528 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
529
530 /**
531  * rhashtable_walk_exit - Free an iterator
532  * @iter:       Hash table Iterator
533  *
534  * This function frees resources allocated by rhashtable_walk_init.
535  */
536 void rhashtable_walk_exit(struct rhashtable_iter *iter)
537 {
538         spin_lock(&iter->ht->lock);
539         if (iter->walker->tbl)
540                 list_del(&iter->walker->list);
541         spin_unlock(&iter->ht->lock);
542         kfree(iter->walker);
543 }
544 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
545
546 /**
547  * rhashtable_walk_start - Start a hash table walk
548  * @iter:       Hash table iterator
549  *
550  * Start a hash table walk.  Note that we take the RCU lock in all
551  * cases including when we return an error.  So you must always call
552  * rhashtable_walk_stop to clean up.
553  *
554  * Returns zero if successful.
555  *
556  * Returns -EAGAIN if resize event occured.  Note that the iterator
557  * will rewind back to the beginning and you may use it immediately
558  * by calling rhashtable_walk_next.
559  */
560 int rhashtable_walk_start(struct rhashtable_iter *iter)
561         __acquires(RCU)
562 {
563         struct rhashtable *ht = iter->ht;
564
565         rcu_read_lock();
566
567         spin_lock(&ht->lock);
568         if (iter->walker->tbl)
569                 list_del(&iter->walker->list);
570         spin_unlock(&ht->lock);
571
572         if (!iter->walker->tbl) {
573                 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
574                 return -EAGAIN;
575         }
576
577         return 0;
578 }
579 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
580
581 /**
582  * rhashtable_walk_next - Return the next object and advance the iterator
583  * @iter:       Hash table iterator
584  *
585  * Note that you must call rhashtable_walk_stop when you are finished
586  * with the walk.
587  *
588  * Returns the next object or NULL when the end of the table is reached.
589  *
590  * Returns -EAGAIN if resize event occured.  Note that the iterator
591  * will rewind back to the beginning and you may continue to use it.
592  */
593 void *rhashtable_walk_next(struct rhashtable_iter *iter)
594 {
595         struct bucket_table *tbl = iter->walker->tbl;
596         struct rhashtable *ht = iter->ht;
597         struct rhash_head *p = iter->p;
598
599         if (p) {
600                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
601                 goto next;
602         }
603
604         for (; iter->slot < tbl->size; iter->slot++) {
605                 int skip = iter->skip;
606
607                 rht_for_each_rcu(p, tbl, iter->slot) {
608                         if (!skip)
609                                 break;
610                         skip--;
611                 }
612
613 next:
614                 if (!rht_is_a_nulls(p)) {
615                         iter->skip++;
616                         iter->p = p;
617                         return rht_obj(ht, p);
618                 }
619
620                 iter->skip = 0;
621         }
622
623         iter->p = NULL;
624
625         /* Ensure we see any new tables. */
626         smp_rmb();
627
628         iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
629         if (iter->walker->tbl) {
630                 iter->slot = 0;
631                 iter->skip = 0;
632                 return ERR_PTR(-EAGAIN);
633         }
634
635         return NULL;
636 }
637 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
638
639 /**
640  * rhashtable_walk_stop - Finish a hash table walk
641  * @iter:       Hash table iterator
642  *
643  * Finish a hash table walk.
644  */
645 void rhashtable_walk_stop(struct rhashtable_iter *iter)
646         __releases(RCU)
647 {
648         struct rhashtable *ht;
649         struct bucket_table *tbl = iter->walker->tbl;
650
651         if (!tbl)
652                 goto out;
653
654         ht = iter->ht;
655
656         spin_lock(&ht->lock);
657         if (tbl->rehash < tbl->size)
658                 list_add(&iter->walker->list, &tbl->walkers);
659         else
660                 iter->walker->tbl = NULL;
661         spin_unlock(&ht->lock);
662
663         iter->p = NULL;
664
665 out:
666         rcu_read_unlock();
667 }
668 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
669
670 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
671 {
672         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
673                    (unsigned long)params->min_size);
674 }
675
676 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
677 {
678         return jhash2(key, length, seed);
679 }
680
681 /**
682  * rhashtable_init - initialize a new hash table
683  * @ht:         hash table to be initialized
684  * @params:     configuration parameters
685  *
686  * Initializes a new hash table based on the provided configuration
687  * parameters. A table can be configured either with a variable or
688  * fixed length key:
689  *
690  * Configuration Example 1: Fixed length keys
691  * struct test_obj {
692  *      int                     key;
693  *      void *                  my_member;
694  *      struct rhash_head       node;
695  * };
696  *
697  * struct rhashtable_params params = {
698  *      .head_offset = offsetof(struct test_obj, node),
699  *      .key_offset = offsetof(struct test_obj, key),
700  *      .key_len = sizeof(int),
701  *      .hashfn = jhash,
702  *      .nulls_base = (1U << RHT_BASE_SHIFT),
703  * };
704  *
705  * Configuration Example 2: Variable length keys
706  * struct test_obj {
707  *      [...]
708  *      struct rhash_head       node;
709  * };
710  *
711  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
712  * {
713  *      struct test_obj *obj = data;
714  *
715  *      return [... hash ...];
716  * }
717  *
718  * struct rhashtable_params params = {
719  *      .head_offset = offsetof(struct test_obj, node),
720  *      .hashfn = jhash,
721  *      .obj_hashfn = my_hash_fn,
722  * };
723  */
724 int rhashtable_init(struct rhashtable *ht,
725                     const struct rhashtable_params *params)
726 {
727         struct bucket_table *tbl;
728         size_t size;
729
730         size = HASH_DEFAULT_SIZE;
731
732         if ((!params->key_len && !params->obj_hashfn) ||
733             (params->obj_hashfn && !params->obj_cmpfn))
734                 return -EINVAL;
735
736         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
737                 return -EINVAL;
738
739         memset(ht, 0, sizeof(*ht));
740         mutex_init(&ht->mutex);
741         spin_lock_init(&ht->lock);
742         memcpy(&ht->p, params, sizeof(*params));
743
744         if (params->min_size)
745                 ht->p.min_size = roundup_pow_of_two(params->min_size);
746
747         if (params->max_size)
748                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
749
750         if (params->insecure_max_entries)
751                 ht->p.insecure_max_entries =
752                         rounddown_pow_of_two(params->insecure_max_entries);
753         else
754                 ht->p.insecure_max_entries = ht->p.max_size * 2;
755
756         ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
757
758         if (params->nelem_hint)
759                 size = rounded_hashtable_size(&ht->p);
760
761         /* The maximum (not average) chain length grows with the
762          * size of the hash table, at a rate of (log N)/(log log N).
763          * The value of 16 is selected so that even if the hash
764          * table grew to 2^32 you would not expect the maximum
765          * chain length to exceed it unless we are under attack
766          * (or extremely unlucky).
767          *
768          * As this limit is only to detect attacks, we don't need
769          * to set it to a lower value as you'd need the chain
770          * length to vastly exceed 16 to have any real effect
771          * on the system.
772          */
773         if (!params->insecure_elasticity)
774                 ht->elasticity = 16;
775
776         if (params->locks_mul)
777                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
778         else
779                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
780
781         ht->key_len = ht->p.key_len;
782         if (!params->hashfn) {
783                 ht->p.hashfn = jhash;
784
785                 if (!(ht->key_len & (sizeof(u32) - 1))) {
786                         ht->key_len /= sizeof(u32);
787                         ht->p.hashfn = rhashtable_jhash2;
788                 }
789         }
790
791         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
792         if (tbl == NULL)
793                 return -ENOMEM;
794
795         atomic_set(&ht->nelems, 0);
796
797         RCU_INIT_POINTER(ht->tbl, tbl);
798
799         INIT_WORK(&ht->run_work, rht_deferred_worker);
800
801         return 0;
802 }
803 EXPORT_SYMBOL_GPL(rhashtable_init);
804
805 /**
806  * rhashtable_free_and_destroy - free elements and destroy hash table
807  * @ht:         the hash table to destroy
808  * @free_fn:    callback to release resources of element
809  * @arg:        pointer passed to free_fn
810  *
811  * Stops an eventual async resize. If defined, invokes free_fn for each
812  * element to releasal resources. Please note that RCU protected
813  * readers may still be accessing the elements. Releasing of resources
814  * must occur in a compatible manner. Then frees the bucket array.
815  *
816  * This function will eventually sleep to wait for an async resize
817  * to complete. The caller is responsible that no further write operations
818  * occurs in parallel.
819  */
820 void rhashtable_free_and_destroy(struct rhashtable *ht,
821                                  void (*free_fn)(void *ptr, void *arg),
822                                  void *arg)
823 {
824         const struct bucket_table *tbl;
825         unsigned int i;
826
827         cancel_work_sync(&ht->run_work);
828
829         mutex_lock(&ht->mutex);
830         tbl = rht_dereference(ht->tbl, ht);
831         if (free_fn) {
832                 for (i = 0; i < tbl->size; i++) {
833                         struct rhash_head *pos, *next;
834
835                         for (pos = rht_dereference(tbl->buckets[i], ht),
836                              next = !rht_is_a_nulls(pos) ?
837                                         rht_dereference(pos->next, ht) : NULL;
838                              !rht_is_a_nulls(pos);
839                              pos = next,
840                              next = !rht_is_a_nulls(pos) ?
841                                         rht_dereference(pos->next, ht) : NULL)
842                                 free_fn(rht_obj(ht, pos), arg);
843                 }
844         }
845
846         bucket_table_free(tbl);
847         mutex_unlock(&ht->mutex);
848 }
849 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
850
851 void rhashtable_destroy(struct rhashtable *ht)
852 {
853         return rhashtable_free_and_destroy(ht, NULL, NULL);
854 }
855 EXPORT_SYMBOL_GPL(rhashtable_destroy);